
Mirko Viroli
DEIS, Alma Mater Studiorum - Università di Bologna

mirko.viroli@unibo.it

Extending Programming
Languages: the case of Java

Extending a Language, 17/5/2006 2

Mirko Viroli
DEIS, Alma Mater Studiorum - Università di Bologna

mirko.viroli@unibo.it

The Research on Mainstream
Languages in aliCE

Extending a Language, 17/5/2006 3

Outline

1. On the Research Field of Mainstream Programming Langs

2. Generics in JDK 5.0
A brief tutorial
Relationships with the research in Cesena
Some pitfalls

3. Towards new extensions
Run-time generics, and the Sun-DEIS collaboration

4. Collaborations and thesis

Extending a Language, 17/5/2006 4

• Several research topics are on “new” areas
– agent-based systems, artificial intelligence, ...
– typically, big changes with small industrial impact
– medium-to-long term vision

• Some research topics are on mainstream areas
– working on extending mainstream frameworks such as Java, .NET
– typically, small changes with great impact
– short term vision

• A research topic in aliCE is on extending Java
– initially with my PhD, now with some collaborators

On Research and Programming Langs.

Extending a Language, 17/5/2006 5

The Role of OOP Languages

• Programming languages are still the most widely used artifact
for building software

• Among the others, object-orientation is the lead paradigm for
large-scale systems

• OOP Languages: C++, Java (,C#)

• OOP not only impacts implementation, but the whole
development cycle:
– design, coding, testing

Extending a Language, 17/5/2006 6

Java
Since 1995 Sun Microsystems’ Java surfaced as an alternative to

the widely-used C++

• Great interest from industries
– support for heterogeneity
– fasten the development process
– higher-quality documentation and libraries

• Adopted as reference for research
– cleaner and more compact semantics
– brings new and open issues to the mainstream

VM approach, garbage collection, reflection

• Cloned by competitors.. (Microsoft C#)

Extending a Language, 17/5/2006 7

Hot Issues in the OOP field

OOPLs seem to be at a mature stage
– still, new scenarios and applications call for improvements with a

potentially high impact

• Program Organization
– Modularity, Aspect Oriented,...

• Flexibility, reuse and safety
– Advanced Type Systems, Concurrency,...

Extending a Language, 17/5/2006 8

Generics

• “abstracting constructs from types”
– C++ templates, ADA Generics, ML polymorphism
– lacked in early versions of either Java and C#

• Pros, general enhancement of
– reuse, safety, maintainability, expressiveness

• Cons, need more experience
– more complex language need time to learn

– current designs maybe need to become more mature
e.g. how to port existing approaches in Java?

Extending a Language, 17/5/2006 9

Generics for Java
• The importance of generics was recognised!

• The GJ project (1996)
– followed a CFP by Sun Microsystems
– collaboration academy-industry
– published/advertised in scientific forums

new interest on generics for the mainstream

• Some extension/variation developed meanwhile
– e.g. “wildcards”

• It was finally released in JDK 5.0 (2004)
– it is the most crucial Java extension so far

Extending a Language, 17/5/2006 10

Collections in Java

• Java Collection Framework (JCF)
– classes and interfaces to represent collections/containers
– List, ArrayList, LinkedList, Hashtable, Vector
– mostly in package java.util

• It is one of the most used libraries
– to represent and manipulate data structures

• It is one of the most critic libraries
– a problem in it can have a dramatic impact
– big attention on possible changes
– big feedbacks on the languages and tools

Extending a Language, 17/5/2006 11

The genericity idiom (in Java 1.4)

• How to deal with the fact that the type of elements in the list is
not known?
– using the most general type, that is, Object

class List{
 Object head;
 List tail;
 List(Object h,List t){

head=h; tail=t;
 }
 Object getHead(){ return head; }
 List getTail(){ return tail; }
 void setHead(Object o){ head=o; }
 void setTail(List l){ tail=l; }
}

...
List l=new List("1",new List("2", null));
String s=(String)l.getHead(); // "1"
...
Integer i=(Integer)l.getHead();
// ClassCastException

Extending a Language, 17/5/2006 12

The safety problem

• Definition of “safety”:
– technically: correct programs never lead to an error

• A program is correct if it is well-typed
– what is a type system? It is basically a checking algorithm...

it associates to each expression a type
it verifies whether operators are used correctly with respect to the types of
arguments

• es.: 2+true, new Object().prova() are not well-typed

it is implemented inside the compiler “javac”

• It is a crucial property!!

Extending a Language, 17/5/2006 13

Safety of Java
• Which Java instructions can lead to a run-time error?

– NullPointerException, Object o=null; o.toString()
– ArrayIndexOutOfBoundsException, new int[]{}[-1]
– ClassCastException, Object o=”1”; Integer i=(Integer)o;
– ArrayStoreException, Object[] o=new Integer[1]; o[0]="1";
– ...?

• Each error could be intercepted with the proper additional code (through
instanceof operator)
– but programmers, obviously, never add that code

• These cases have to be avoided where possible
– if compilation succeeds we must know the program is correct
– in Java, at least, OO operations like method invocation and field access are safe

Extending a Language, 17/5/2006 14

The case of the genericity idiom
class List{
 ...
 List(Object h,List t){...}
 Object getHead(){...}
 List getTail(){...}
 void setHead(Object o){...}
 void setTail(List l){...}
}

// Please: this should be a List of java.lang.Integer!!!!
void int sum(List l){

if (l==null) return 0;
return ((Integer)l.getHead()).intValue()

+sum(l.getTail()));
}

List l=new List(new Float(1),
 new List(new Float(2),
 null));

int n=sum(l);
// ClassCastException

Extending a Language, 17/5/2006 15

Typing is here not sufficient!!

• The programmer:
– must rely on comments that describe what the List should contain

• That is, the type system is not sufficient
– the compiler does not guarantee that any object passed to sum

would be elaborated without errors
– the problem is that we are trying to use informal comments in place

of actual types!!
– (it is reported that more than 50% of errors are of this kind!!)

• What do we need?
– the possibility of denoting and managing types for the concepts of

“List of Integers” and “List of Strings”,..

Extending a Language, 17/5/2006 16

Parametric construct
• This problem is classically solved with a polymorphism

technique called parametric polymorphism
– polymorphism: the same code usable in more contexts!!
– inclusive polymorphism (subtyping): the code written for Object can

be used for an Integer as well!
– parametric polymorphism (genericity): the code for List can be used

for any kind of list, lists of integer, lists of floats,...

• Parametric polymorphism:
– generic modules in ADA, polymorphic functions in ML, templates in

C++
– idea: to make a construct (module, function, class, method, type)

parametric with respect to one (or more) type(s).

Extending a Language, 17/5/2006 17

The generic version of List
• Using generics as available in JDK 1.5

class List{
 Object head;
 List tail;
 List(Object h,List t){

head=h; tail=t;
 }
 Object getHead(){ return head; }
 List getTail(){ return tail; }
 void setHead(Object o){ head=o; }
 void setTail(List l){ tail=l; }
}

class List<X>{
 X head;
 List<X> tail;
 List(X h,List<X> t){
 head=h;tail=t;
 }
 X getHead(){ return head; }
 List<X> getTail(){ return tail; }
 void setHead(X o){ head=o; }
 void setTail(List<X> l){ tail=l; }
}

Extending a Language, 17/5/2006 18

Safe access
List l=new List("1",new List("2", null));
String s=(String)l.getHead(); // "1"
...
Integer i=(Integer) l.getHead();
// ClassCastException

List<String> l=new List<String>("1", new List<String>("2", null));
String s=l.getHead(); // "1"
...
Integer i=l.getHead(); // The type system here issues an error

• With this construct it is impossible to misinterpret the elements of a List
– the resulting language is more solid, expressive, maintainable,..
– it is however also more complicated!!!

Extending a Language, 17/5/2006 19

Generic classes

• Declaring a generic class
– it is a class that abstracts from the actual instantiation of one or more

types, which are then treated as (type) parameters
– if a class represents a collection, parameters represent the types of

elements in the collection

• Using a generic class
– for instance when creating an object: new List<String>(...)
– the actual instantation of the parameter must be specified
– then, List<String> is a type similar to standard types in Java

Extending a Language, 17/5/2006 20

More type parameters

class Hashtable<K, V>{
 ...
 Hashtable(){...}
 void put(K k,V v){...}
 V get(K k){...}
}
...
Hashtable<Integer,String> h=new Hashtable<Integer,String>();
h.put(new Integer(1350),"one");
h.put(new Integer(1211),"two");
h.put(new Integer(76),"three");
String s =h.get(new Integer(1211));

Extending a Language, 17/5/2006 21

Another example

class Pair<X,Y>{
 X fst;
 Y snd;
 Pair(X fst,Y snd) { this.fst=fst; this.snd=snd; }
 X getFst(){ return fst; }
 Y getSnd(){ return snd; }
}

Pair<String,String> p= new Pair<String,String>("1","2");
Pair<String,Integer> p2= new Pair<String,Integer>("1",new Integer("2"));
String s=p.getFst()+p.getSnd(); // "12"

Extending a Language, 17/5/2006 22

Generic Methods

• For the same reasons why a class could be generic, it might be
interesting to make a method generic!

• E.g.:
– when the utility of a library is a static method

class Utility{
 <X> static void transfer(List<X> from,List<X> to){...}
}

List<String> l1=...;
List<String> l2=...;
Utility.<String>transfer(l1,l2);

transfer guarantees
the correspondence

of “from” and “to” lists

Extending a Language, 17/5/2006 23

Generic Methods

• For the same reasons why a class could be generic, it might be
interesting to make a method generic!

• E.g.:
– when the utility of a library is a static method

class Pair<X,Y>
 ...
 <Z> Pair<X,Z> chgSnd (Z newsnd){

return new Pair<X,Z>(getFst(),newsnd);
 }
}
Pair<String,String> p=...;
Pair<String,Integer> p2=p.<Integer>chgSnd(new Integer(1));

Extending a Language, 17/5/2006 24

Inference in Method Calls
• In a generic method call, there could be cases where specifying the

instantiation of the type parameter is useless
– it can be inferred automatically by the compiler without ambiguity!

• In JDK 1.5:
– Specifying method type parameters is optional: if omitted it is just inferred!

class Pair<X,Y>
<Z> Pair<X,Z> chgSnd (Z newsnd){...}

}
Pair<String,String> p=...;
Pair<String,Integer> p2=p.<Integer>chgSnd(new Integer(1));
...
Pair<String,Float> p3=p.chgSnd(new Float(1.2));
// The compiler infers Float for Z

Extending a Language, 17/5/2006 25

Complications
<X> List<X> nil(){ return new List<X>(null,null);}
<X> List<X> cons(X x,List<X> l){ return new List<X>(x,l); }

List<String> l=cons("1",new List<String>("2",null)));
// Inferring String for X!!

List<String> l=cons(new Integer(1),new List<String>("2",null)));
// ambiguous!

List<Object> l=nil(); // Without information, Object is inferred!

List<String> l=cons("1",null); // OK, inferring String

Extending a Language, 17/5/2006 26

Why inference?

• It is generally considered as a nice way of reducing unnecessary syntax

• It is a mechanism invented in functional languages (ML)
– it does not work so well in OO languages...

• History of Java's type inference algorithm:
– first version: not sound!
– second version: correct! but optional
– third version: new difficulties (related to wildcards)!
– .. what next? (It seems (to me) it complicates any new addition..)

• My opinion:
– SAY NO TO INFERENCE IN METHOD CALLS!!!!

Extending a Language, 17/5/2006 27

Bounded Polymorphism
• It is possible to constrain the polymorphism of a generic class or method

– saying a type parameter must extend a class and/or implement some interfaces
– if you do not specify any constraint, Object is assumed as upperbound!

interface Initializable{
void init();

}
class Pair<X implements Initializable,Y implements Initializable>{
 ...
 void initBoth(){

getFst().init(); // Invoking init to an object of type X
getSnd().init(); // Invoking init to an object of type Y

 }
}

Extending a Language, 17/5/2006 28

F-Bounded Polymorphism

• The bound of a type variable can be put in a recursive way
– the resulting language is somehow complicated

interface Comparable<T>{
boolean isGreaterThan(T t);

}
class MyElement implements Comparable<MyElement>{

boolean isGreaterThan(MyElement e){...}
}
...
<T implements Comparable<T>> void sort(List<T> l){...}

Extending a Language, 17/5/2006 29

The JDK 5.0
• The language described so far, that is, GJ proposal

• Plus the wildcard mechanisms developed in 2002/2003
– originated from the following work at DEIS
– Atsushi Igarashi, Mirko Viroli: On Variance-Based Subtyping for

Parametric Types. ECOOP 2002 conference.

• Some background
– invented with the name “variant parametric types”
– first applied with some small variation in Tiger beta release (May 2003)
– syntax and name changed, as “wildcards”..

Extending a Language, 17/5/2006 30

Generics vs. subtyping

Two kinds of polymorphism

• inclusive (subtyping):
– it creates a hierarchy of types
– a subtype can be passed where a supertype is expected
– e.g.: a functionality working on a Number can actually accept also an Integer

• parametric (generics):
– a construct can be defined as parametric
– the parameter is specified when the type is used
– e.g.: List<X> instead of List, an example of use is List<String>

each has its own benefits, flexibility, applications
– can they be integrated each other?

Extending a Language, 17/5/2006 31

Factorisation and subtyping
• Factoring types in a hierarchy

– if you have a number of types
– if some of them have common properties (fields / methods)
– you factorise these properties into a common supertype S
– if in a context you need only those common properties, you can safely expect a

type S

• In Java, this approach is realised with inheritance!

A B C D E

S

Extending a Language, 17/5/2006 32

Generic types..

• From List<X> I can generate (use) types:
– List<Object>, List<Number>,List<Integer>,List<Float>

class List<X extends Object>{
 X head;
 List<X> tail;
 List(X h,List<X> t){
 head=h;tail=t;
 }
 X getHead(){ return head; }
 List<X> getTail(){ return tail; }
 void setHead(X o){ head=o; }
 void setTail(List<X> l){ tail=l; }
}

Extending a Language, 17/5/2006 33

Factoring generic types??
• Can we factorise generics?

– considering types List<Object>, List<Number>, List<Integer>, List<Float>
– do they have some common supertype (other than Object)?
– does it make sense to write functions accepting **any** list?
– for instance: is List<Object> more general than the others??

F I

N

OList<O>

List<N>

List<F>

List<I>?

Extending a Language, 17/5/2006 34

Factoring properties
• What do these types have in common:

– List<Object>,List<Integer>,List<Number>,List<Float>
– if I get their head I obtain a Object,Integer,Number, or Float
– but they are all of type Object

• Hence:
– a type that factors them can define a method: Object getHead()

• Viceversa:
– the method setHead(Object o) cannot be factorized
– because e.g. I can't put an Object into a List<Float>

• If a type is more general, it provides less operations!!

• Note that a wrong decision here might lead to an unsafe language!

Extending a Language, 17/5/2006 35

Arrays in Java
• One can note that (already in JDK 1.4) Java arrays are sorts of generic

types:
– Object[], Number[], Integer[], Float[]
– are similar to (Array<Object>,Array<Number>,Array<Integer>,Array<Float>)

• Which factoring do they admit?
– in Java the so-called covariance is used
– if X <: Y, then X[] <: Y[], that is:

F I

N

O

F[] I[]

N[]

O[]

Object[] o=new String[]{“1”,”2”,”3”};
// This compiles OK!!

Extending a Language, 17/5/2006 36

Unsafety of arrays
• But, is it right to factorise in O[] the operation of writing a new element in

N[]?
– answer: NO!, in fact:

String[] s=new String[]{“1”,“2”};
Object[] o=s; // OK for array covariance
o[0]=new Integer(1);
// Statically correct, but raises an ArrayStoreException

• This issue is not just a thing for theoreticians!
– each array store operation can possibly fail!!!
– the JVM must check that writing is correct, and this results in a serious

performance overhead!
– factorisation of generics must be designed with great care!!

Extending a Language, 17/5/2006 37

Two approaches
• Declaration-site variance

– trying to enforce a direct subtyping between different generic classes
(for instance List<Integer> <: List<Object> since Integer <: Object)

– It is the classical approach, but never been really used
– Like for arrays, it leads to run-time errors

• Use-site variance
– introducing NEW types that factorise many generic types, and define

only the operations that can be safely used
– invented in our ECOOP 2002 paper
– implemented by Sun Microsystems in Java Wildcards
– such new types called “wildcard types”

Extending a Language, 17/5/2006 38

Syntax of some of these new types

After a class List<X> is defined, you can use the following types:

• standard generic types, List<T>
– List<Object>, List<Integer>,...
– these are used to create objects, as usual

• covariant types, List<? extends T>
– List<? extends Number> is a supertype of all List<S> where S extends Number
– that is, where S <: Number

• where are covariant types useful?
– where a List<? extends Number> is expected, you can pass a List<Integer>,

List<Float>, and so on.

Extending a Language, 17/5/2006 39

Hierarchy

F I

N

O

List<O> List<N>
List<F>

List<? extends N>

List<I>

List<? extends Number> is like an interface
The type of all lists of all numbers

Extending a Language, 17/5/2006 40

More new types

After a class List<X> is defined, you can use the following types:

• covariant types, List<? extends T>
– List<? extends Number> is a supertype of all List<S> where S extends Number
– that is, where S <: Number

• contravariant types, List<? super T>
– List<? super Number> is a supertype of all List<S> where Number extends from S
– that is, where Number <: S

• bivariant types, List<?>
– List<?> is a supertype of any List<S>

Extending a Language, 17/5/2006 41

Hierarchy

F I

N

O

List<O> List<N>
List<F>

List<? super I>

List<I>

List<? super Integer> is like an interface
The type of all lists of something more
general than integers

Extending a Language, 17/5/2006 42

Subtyping variance-based

List<O> List<N> List<I>

List<?>

List<? extends O>

List<? extends N>

List<? extends I>

List<? super I>

List<? super N>

List<? super O>

Extending a Language, 17/5/2006 43

The interval metaphor
• Each wildcard type

– C<T>, C<? extends T>, C<? super T>, C<?> induces a sort of interval
– this interval defines all the types S such that C<S> is a subtype..

• List<Number>: [Number,Number]

• List<? extends Number>: [NullType,Number]

• List<? super Number>: [Number,Object]

• List<?>: [NullType,Object]

• A wildcard W is a subtype of another V if the interval of W
includes the interval of V

Extending a Language, 17/5/2006 44

An interpretation: Production/Consumption
Which operations are allowed by these types?

• List<T>
– all operations defined in class List can be invoked

• List<? extends T> (factors List<R>, R<:T)
– only getHead and getTail (setTail and setHead can be shown unsafe)
– it represents the lists which can just produce elements of type T

• List<? super T> (factors List<R>, R:>T)
– only setHead and setTail
– it represents the lists which can just consume elements of type T

• List<?> (factors List<R> for each R)
– no methods! You could invoke a method “int size(){..}”
– represents the lists that can produce and consume no elements of type T

Extending a Language, 17/5/2006 45

Example 1

• In importHead
– argument l is used only to invoke getHead
– do I really need a List<X>, or something more general could be useful?
– idea: using List<? extends X>

class List<X>{
 ...
 X getHead(){ ... }
 List<X> getTail(){ ... }
 void setHead(X o){ ... }
 void setTail(List<X> l){ ... }
 void importHead(List<X> l){

setHead(l.getHead());
} }

List<String> ls=
 new List<String>("1",
 new List<String>("2",null));
List<String> ls2=...; //["0","1"]
ls.importHead(ls2);
/* ls from ["1","2"] to ["0","2"] */

Extending a Language, 17/5/2006 46

Example 1 with wildcards
class List<X>{
 ...
 X getHead(){ ... }
 List<X> getTail(){ ... }
 void setHead(X o){ ... }
 void setTail(List<X> l){ ... }
 void importHead(List<? extends X> l){

setHead(l.getHead());
} }

List<Number> ln=...;
List<Integer> li=...;
List<Object> lo=...;
ln.importHead(li); // OK!!
ln.importHead(lo);// NO!!!

It is sufficient that the argument
is a list of elements which are

more specific than X

Extending a Language, 17/5/2006 47

Example 1 with generic methods
class List<X>{
 ...
 X getHead(){ ... }
 List<X> getTail(){ ... }
 void setHead(X o){ ... }
 void setTail(List<X> l){ ... }
 <Y extends X> void importHead(List<Y> l){

setHead(l.getHead());
} }

List<Number> ln=...;
List<Integer> li=...;
List<Object> lo=...;
ln.<Integer>importHead(li); // OK!!
ln.<Object>importHead(lo);// NO!!!

Must specify Y

Extending a Language, 17/5/2006 48

Which is better?

• Almost identical..
– The second is maybe better because it involves no other explicit type

Y..

class List<X>{
 <Y extends X> void importHead(List<Y> l){

setHead(l.getHead());
 }
 ...
 void importHead(List<? extends X> l){

setHead(l.getHead());
 }
}

Extending a Language, 17/5/2006 49

Example 2, contravariance

• In exportHead
– the argument l is used only to invoke setHead
– do I really need a List<X>, or something more general could be useful?
– idea: using List<? super X>

class List<X>{
 ...
 X getHead(){ ... }
 List<X> getTail(){ ... }
 void setHead(X o){ ... }
 void setTail(List<X> l){ ... }
 void exportHead(List<X> l){

l.setHead(getHead());
} }

List<String> ls=
 new List<String>("1",
 new List<String>("2",null));
List<String> ls2=...; //["0","1"]
ls.exportHead(ls2);
/* ls2 from ["0","1"] to ["1","1"]*/

Extending a Language, 17/5/2006 50

Example 2 with wildcards
class List<X>{
 ...
 X getHead(){ ... }
 List<X> getTail(){ ... }
 void setHead(X o){ ... }
 void setTail(List<X> l){ ... }
 void importHead(List<? super X> l){

l.setHead(getHead());
} }

List<Number> ln=...;
List<Integer> li=...;
List<Object> lo=...;
ln.exportHead(li); // NO!!
ln.exportHead(lo);// OK!!!

It is sufficient that the argument
is a list of elements which are

more general than X

Extending a Language, 17/5/2006 51

Example 2 with generic methods

class List<X>{
 ...
 X getHead(){ ... }
 List<X> getTail(){ ... }
 void setHead(X o){ ... }
 void setTail(List<X> l){ ... }
 <Y super X> void importHead(List<Y> l){

setHead(l.getHead());
} }

Differently from wildcards, bounds of a method or class parameter
cannot be of the super kind!!!

THE ABOVE EXAMPLE DOES NOT COMPILE!!!
Extending a Language, 17/5/2006 52

Example 3
class List<X>{
 ...
 boolean sameSize(List<X> l){ ... }
} }

class List<X>{
 ...
 boolean sameSize(List<?> l){ ... }
} }

class List<X>{
 ...
 <Y> boolean sameSize(List<Y> l){ ... }
} }

Extending a Language, 17/5/2006 53

Example 4
class List<X>{
 ...
 void importFirst(List<Pair<X,X>> l){

setHead(l.getHead().getFst());
} }

 ...
 void importFirst(List<? extends Pair<? extends X,?>> l){

setHead(l.getHead().getFst());
 }
 ...
 <Y extends X,Z,W extends Pair<Y,Z>>
 void importFirst(List<W> l){

setHead(l.getHead().getFst());
 }

Extending a Language, 17/5/2006 54

Examples from Java Collections Framework
Class Collections provides utilities for handling collections, as static
methods

interface Comparable<T>{ boolean isGreaterThan(T t); }
interface Comparator<T>{ int compare(T t1,T t2); ...}
...
<T>void fill(List<? super T> list, T obj)
<T>void copy(List<? super T> dest, List<? extends T> src)

<T extends Comparable<? super T>> void sort(List<T> list)
<T>void sort(List<T> list, Comparator<? super T> c)

Extending a Language, 17/5/2006 55

Is there more on that?
• Yes. Very strange and not fully documented things can happen,

that require the programmer to be particularly skilled.

class C<X>{
C<? super X> checkAndReturn(C<? super X> l){

return l;
}
public static void main(String[] s){

 C<? extends Number> l=null;
C<? super Number> l2=null;
l2=l.checkAndReturn(l2); // Is this call correct???

 }
}

Extending a Language, 17/5/2006 56

The compiler reports this error!!!

C.java:10: incompatible types
found : C<capture of ? super capture of ? extends java.lang.Number>
required: C<? super java.lang.Number>
 l2=l.checkAndReturn(l2);
 ^
1 error

class C<X>{
C<? super X> checkAndReturn(C<? super X> l){

return l;
}
public static void main(String[] s){

 C<? extends Number> l=null;
C<? super Number> l2=null;
l2=l.checkAndReturn(l2); // Is this call correct???

} }

Extending a Language, 17/5/2006 57

Why?
• The receiver of the invocation is to be captured:

– C<? extends Number> --> C<Z> where Z in [Number,Object]
– what the compiler calls C<capture of ? extends Number>

• The return type is computed based on this type and is captured
– C<? super X>, where X is “Z in [Number,Object]”
– that is, C<? super Z> where Z in [Number,Object]
– by capturing: C<W> where W in [NullType,Z] and Z in [Number,Object]

• Is the assignment correct?
– “C<W>, W in [NullType,Z], Z in [Number,Object]” <: C<? super Number>
– By looking at intervals, it is not sure if W is greater than Number!!
– Hence the assignment is not correct!

Extending a Language, 17/5/2006 58

Java subtyping is undecidable!!!

The system is out of resources.
Consult the following stack trace for details.
java.lang.StackOverflowError
 at com.sun.tools.javac.code.Types$ContainsTypeFcn.containsType(..
 at com.sun.tools.javac.code.Types.containsType(Types.java:841)
 at com.sun.tools.javac.code.Types.containsType(Types.java:811)
 at com.sun.tools.javac.code.Types$IsSubTypeFcn.visitClassType(..

class D<X extends C<C<? super X>>> {
 D(X x) {
 C<? super X> f = x;
 }
}

Extending a Language, 17/5/2006 59

About extending languages...
• Java was conceived as a very simple language

– no multiple inheritance
– no nested classes
– no generics
– ...

• Now it is a fairly more complicated language
– there is some code whose typing is very obscure

• However, this is not likely affecting typical Java users, but rather
designers of generic libraries...

Extending a Language, 17/5/2006 60

What is needed to extend a language
• If we are talking about a mainstream language, the chance of

winning is VERY low

• You need:
– a good idea, simple yet powerful
– a formal model stating it is correct (that is, safe)
– a good implementation support
– to be lucky

PhD, 27/5/2003 Mirko Viroli 61

The Type System

Extending a Language, 17/5/2006 62

Outline

1. On the Research Field of Mainstream Programming Langs

2. Generics in JDK 5.0
A brief tutorial
Relationships with the research in Cesena
Some pitfalls

3. Towards new extensions
Run-time generics, and the Sun-DEIS collaboration
Family Polimorphism

4. Collaborations and thesis

Extending a Language, 17/5/2006 63

ImpIementation of JDK 5.0

• How to implement generics?
– do we need a completely new compiler and JVM?

• Sun Microsystems called for proposals
– Java Specification Request JSR-0000014
– some requirement on performance: overhead < 10 %
– some requirement on compatibility

• Various Proposals
– GJ, NextGen, PolyJ, EGO, Reflective, LoadTime

• Who won?
– for JDK 5.0, GJ is the solution adopted
– by Bracha, Odersky, Stoutamire, Wadler

Extending a Language, 17/5/2006 64

Type erasure
• Idea, translating generic code into the corresponding non-generic one, at

compile-time

class List{
 Object head;
 List tail;
 List(Object h,List t){
 this.head=h;this.tail=t;
 }
}
...
List l=new List(“1”,null);
String s=(String)l.getHead();
...
Integer i=(Integer)l.getHead();
// Run-time exception

class List<X extends Object>{
 X head;
 List<X> tail;
 List(X h,List<X> t){
 this.head=h;this.tail=t;
 }
}
...
List<String> l=
 new List<String>(“1”,null);
String s=l.getHead();
...
Integer i=(Integer)l.getHead();
// Intercepted at compile-time

Extending a Language, 17/5/2006 65

The legacy problem

GJ is a good solution because

• Is upward compatibile
– old code can be read by the new compiler

• Is downward compatibile
– you do not need to change your JVM
– without generics you create the same .class
– with generics you create .class files readable from legacy JVMs

• Performance
– almost 0% in space and time!

Extending a Language, 17/5/2006 66

Implementation schema
• Java standard

javac
compiler

JVM
java

.java .class

JREJDK

• GJ extension with generics

g_javac
compiler

JVM
java

.java .class

JREJDK

g

additions

Extending a Language, 17/5/2006 67

Run-Time
Object.class

List.class

...

JVM’s Class table

internal
reference

Objects created with:
new List(..)

An Object created with “new List<String>(..)”,
translated into “new List(..)”

Once created, there is no more evidence it was a List<String>!!

Extending a Language, 17/5/2006 68

The run-time problem

• GJ and JDK 5.0 implementation does not support run-time generics!
– it does not integrate well with Reflection, Persistence, operators such as casts and

instanceof
– Operations like those above issue some warnings!!

List<String> l=new List<String>(...);
Object o=l;
...
List<String> l2=(List<String>)o; // OK!
List<Integer> l3=(List<Integer>)o; // Run-time error

List l=new List(...);
Object o=l;
...
List l2=(List)o; // OK!
List l3=(List)o; // OK!!!!!, but this is actually wrong

Extending a Language, 17/5/2006 69

Which impact?

• This is a big compromise
– Sun Microsystems basically released an incomplete version of

generics!!
– The reason is that no adequate solution to the problem existed at that

time!

• Which effect on programmers?
– not easy to predict...
– potentially relevant, maybe limited

• Note that C# already has runtime generics!!

Extending a Language, 17/5/2006 70

Java extensions with runtime generics

• Extending both the compiler and the JVM
– better performance, no legacy support

PolyJ (+ some work here in Cesena)

• Estending the compiler + a new class loader
– good performance, partial legacy support

load-time approaches

• Estending only the compiler
– worse performance, legacy support

NextGen by Sun Microsystems & Rice Univ.
EGO by Mirko Viroli + Maurizio Cimadamore (DEIS + Sun Microsystems)

Extending a Language, 17/5/2006 71

EGO (Exact Generics On-demand)

• Conceived by Mirko Viroli
– during the PhD
– Completed in collaboration with Maurizio Cimadamore at Sun Labs,

Palo Alto, and now developing support to wildcards
– Project in collaboration with Sun Microsystems

• Idea
– adding an expansion phase to GJ compiler, where the necessary

code is added so that information on type parameters is passed to
objects and properly stored for fast retrieval (type-passing style)

– where is the news? we do that efficiently!!

Extending a Language, 17/5/2006 72

Type-Passing (GJ GJ)
class List<X>{
 X head;
 List<X> tail;
 List(X h,List<X> t){
 this.head=h;this.tail=t;
 }
}
...
Object o=new List<String>(“1”,null);
...
if (o instanceof List<Integer>) ...
// Not supported in GJ

class List<X>{
 $D $d;
 X head;
 List<X> tail;
 List($D $d,X h,List<X> t){
 this.$d=$d;
 this.head=h;this.tail=t;
 }
}

Object o=new List<String>($dls,“1”,null);
...
if (o.$d.isSubType($dli)) ...

descriptor for
List<String>

Extending a Language, 17/5/2006 73

Access On-demand
class Client{
 void m(){
 Object o=new List<String>(“1”,null);
 Object o2=new List<Integer>(new Integer(2),null);
 }
}

class Client{
 void m(){
 Object o=new List<String>($get(0),“1”,null);
 Object o2=new List<Integer>($get(1),new Integer(2),null);
 }
 private static $D[] $ds=new $D[2];
 private static $D get(int i){
 if ($ds[i]!=null) return $ds[i];
 switch (i){
 case 0: return $ds[i]=$Dtab.register(/*List<String>*/);
 case 1: return $ds[i]=$Dtab.register(/*List<Integer>*/);
 }
 }
}

The descriptor is searched in a global
table, and is created only the very first

time! Extending a Language, 17/5/2006 74

Run-Time
Object.class

List.class

...

JVM’s Class table

internal
reference

link by field $d

Transparently, objects will carry
information on their run-time type

Object

String

List<String>

Integer

List<Integer>

...

Descriptor table

Objects created by expression
”new List<String>(..)”

Extending a Language, 17/5/2006 75

Will it be applied?

• EGO:
– it fully supports generics at run-time
– it gives similar legacy support properties than GJ
– acceptable perfomance (<5% in time)

• A new strategy for Sun?
– in a future release (JDK 1.6?) there will be a run-time support of

generics directly inside the JVM
– which approach?

• New DEIS-Sun collaboration
– The “EGO inside the JVM” project

Extending a Language, 17/5/2006 76

Available theses
• On wildcards

– basically concerning providing proper tool support for them!
– writing some Eclipse plugin that helps in dealing with the complications

due to wildcards

• On run-time generics
– starting from our prototype JVM
– adding support to Reflection (library + core support in the JVM)
– adding support to Persistence (library + core support in the JVM)
– measuring performance and finding optimisations

