
Tecniche di ottimizzazione per lo
sviluppo di applicazioni embedded
su piattatforme multiprocessore su
singolo chip

Michela Milano

mmilano@deis.unibo.it

DEIS Università di Bologna

Digital Convergence – Mobile Example

Broadcasting

TelematicsImaging

Computing

Communication
Entertainment

One device, multiple functions

Center of ubiquitous media network

Smart mobile device: next drive for semicon. Industry

SoC: Enabler for Digital Convergence

Today

Future

> 100X

Performance

Low Power

Complexity

Storage

SoCSoC

Systems on chip
Moore’s law provides exponential growth
of resources

But design does not become easier

Deep submicron problems (DSM)
Wire vs. transistor speed, power, signal integrity

Design productivity gap
IP re-use, platforms, NoCs

Verification technologies

Scalable VLIW
Media Processor:
• 100 to 300+ MHz
• 32-bit or 64-bit

Nexperia™

System Buses
• 32-128 bit

General-purpose
Scalable RISC
Processor
• 50 to 300+ MHz
• 32-bit or 64-bit

Library of Device
IP Blocks
• Image coprocessors
• DSPs
• UART
• 1394
• USB
…

TM-xxxx
D$

I$

TriMedia CPU

DEVICE IP BLOCK

DEVICE IP BLOCK

DEVICE IP BLOCK

.

.

.

DVP SYSTEM SILICON

P
I
B

U
S

SDRAM

MMI

D
V

P
 M

E
M

O
R

Y
 B

U
SDEVICE IP BLOCK

PRxxxx
D$

I$

MIPS CPU

DEVICE IP BLOCK

.

.

.

DEVICE IP BLOCK

P
I
B

U
S

TriMedia™MIPS™

The evolution of SoC platforms

2 Cores: Philips’ Nexperia PNX8850 SoC
platform for High-end digital video (2001)

Running forward…

Four 350/400 MHz StarCore
SC140 DSP extended cores

16 ALUs: 5600/6400 MMACS

1436 KB of internal SRAM &
multi-level memory hierarchy

Internal DMA controller supports
16 TDM unidirectional channels,

Two internal coprocesssors
(TCOP and VCOP) to provide
special-purpose processing
capability in parallel with the core
processors

6 Cores: Motorola’s MSC8126 SoC platform
for 3G base stations (late 2003)

System / ServiceApplication S/W

Mobile TerminalMiddleware

ModuleRTOS

ChipHAL

ProcessS/W IP

Target System Application

Requires design of Hardware AND software

SoC Solution-on-a-Chip

+

SOCSOC

System e-SW

Chip

Design as optimization

Design space
The set of “all” possible design choices

Constraints
Solutions that we are not willing to

accept

Cost function
A property we are interested in

(execution time, power, reliability…)

Optimization techniques

We will consider two techniques:
Constraint Programming

Integer Programming

Two aspects of a problem :
Feasibility

Optimality

Merging the two, one could obtain
better results

Pros and Cons

 Declarative programming: the user states the constraint
the solver takes into account propagation and search

 Strong on the feasibility side

 Constraints are symbolic and mathematic: expressivity

 Adding a constraint helps the solution process: flexibility

 Weak optimality pruning if the link between problem
decision variables and the objective function is loose

 No use of relaxations

Example

Weak optimality pruning if the link between problem
decision variables and the objective function is loose

Scheduling problems: minimizing makespan
Problem variables are starting times of activities, the last activity
provides the makespan

Scheduling problems: minimizing allocation cost
Problem variables are starting times of activities and resources,
the sum of resource assignment cost is the objective function

OF = C1+ C2+C3+C4 and all cost range from [1..50] suppose
we have a upper bound on the problem of 70. Nothing can be
pruned

The situation is even worse if the OF depends on
couples of assignments

• Standard form of Combinatorial Optimization Problem (IP)

min z = cj xj

subject to

 aij xj = bi i = 1..m

 xj 0 j = 1..n

 xj integer

• Inequality y 0 recasted in y - s = 0

• Maximization expressed by negating the objective function

j =1

j =1

n

n

May make the problem NP complete

Integer Programming

 0-1 Integer Programming

• Many Combinatorial Optimization Problem can be
expressed in terms of 0-1 variables (IP)

min z = cj xj

subject to

 aij xj = bi i = 1..m

 xj :[0,1]

j =1

j =1

n

n

May make the problem NP complete

 Linear Relaxation

min z = cj xj

subject to

 aij xj = bi i = 1..m

 xj 0 j = 1..n

 xj integer

The linear relaxation is solvable in POLYNOMIAL TIME

The SIMPLEX ALGORITHM is the technique of choice
even if it is exponential in the worst case

j =1

j =1

n

n

Removed

Linear Relaxation

 Geometric Properties

• The set of constraints defines a polytope

• The optimal solution is located on one of its vertices

min z = cj xj

subject to

 aij xj = bi i = 1..m

 xj 0 j = 1..n

The simplex algorithm starts from

one vertex and moves to an adjacent one

with a better value of the objective function

j =1

j =1

n

n

Optimal solution

Objective function

 IP solving process

• The optimal LP solution is in general fractional: violates
the integrality constraint but provides a bound on the
solution of the overall problem

• The solution process interleaves branch and bound:
• relaxation

• search

Pros and Cons

 Declarative programming: the user states the constraint
the solver takes into account relaxation and search

 Strong on the optimality side

 Many real problem structure has been deeply studied

 Only linear constraints should be used

 If sophisticated techniques are used, we lose flexibility

 No pruning on feasibility (only some preprocessing)

Resource-Efficient
Application mapping for MPSoCs

Given a platform

Achieve a specified throughput

Minimize usage of shared resources

MULTIMEDIA
APPLICATIONS

 Allocation and scheduling
• Given:

• An hardware platform with processors, (local and remote) storage
devices, a communication channel

• A pre characterized task graph representing a functional
abstraction of the application we should run

• Find:
• An allocation and a scheduling of tasks to resources respecting

• Real time constraints

• Task deadlines

• Precedences among tasks

• Capacity of all resources

• Such that
• the communication cost is minimized

 Allocation and scheduling
The platform is a multi-processor system with N nodes

Each node includes a processor and a schretchpad memory

The bus is a shared communication channel

In addition we have a remote memory of unlimited capacity
(realistic assomption for our application, but easily
generalizable)

The task graph can be of any kind. In this case it has a
pipeline workload

Real time video graphic processing pixel of a digital image

Task dependencies, i.e., arcs between tasks

Computation, communication, storage requirements on the
graph

The application

T5T1

T2

T0

T3

Generic Taks Graph: nodes are functional asbstractions,
arcs represent communications

T4 T6

T7

T8

Conditional Taks Graph: not all nodes are executed.
They model if then else behaviour

The application

T7T1 T2 T0 T3 …..

Signal Processing Pipeline

 Queues for inter-processor communication
 in TCM for efficiency reasons

 Program data
 in TCM (if space) or on-chip memory

 Internal state
 in TCM (if space) or on-chip memory

Each task is characterized by:
• WCET
• Memory requirements

Throughput
Constraint

Resource assignment and
scheduling

SHARED SYSTEM BUS

On-chip
Memory

Node 1 Node N

Processor

Tightly-Coupled
Memory

Bus Interface

.

.

.

.

.

Task. A (WCET Ta)
Task. B (WCET Tb)

Task. N (WCET Tn)

THE SYSTEM

LimitedSize Mem

Max bus
bandwidth

 Max
time

wheel
period

T

Assumed
To be

infinite

Our approach

SIMULATION BASED
Task graph

characterization

Task graph

T5T1

T2

T0

T3

T4 T6

T7

T8

SIMULATION BASED
result

VALIDATION

TM-xxxx
D$

I$

TriMedia CPU

DEVICE IP BLOCK

DEVICE IP BLOCK

DEVICE IP BLOCK

.

.

.

DVP SYSTEM SILICON

P
I

B
U

S
SDRAM

MMI

D
V

P
M

E
M

O
R

Y
B

U
S

DEVICE IP BLOCK

PRxxxx
D$

I$

MIPS CPU

DEVICE IP BLOCK
.
.
.

DEVICE IP BLOCK

P
I

B
U

S
Architecture

OPTIMIZER

Allocation
+

scheduling

Previous approaches

Complete approaches: find the optimal
solution and prove its optimality

The System Design community uses Integer
Programming techniques for every optimization
problem despite the structure of the problem itself

Scheduling is poorly handled by IP

Incomplete approaches: find a good solution,
in general a local minima

Many of such approaches

Require a lot of tuning

Our approach

Let us analyze the structure of the problem:
As a whole it is a scheduling problem with
alternative resources: very tough problem

It smoothly decomposes into allocation and
scheduling

Allocation better handled with IP techniques

Not with CP due to the complex objective function

Scheduling better handled with CP techniques

Not with IP since we should model for each task all its
possible starting time with a 0/1 variable

INTERACTION REGULATED VIA NO-GOOD

Problem decomposition

 Assignment of tasks and memory slotsAssignment of tasks and memory slots (master problem)
 Obj. Func. Relates alternative resources to couples of tasks
 Not a good scenario for Constraint Programming

 Task scheduling with static resource assignmentTask scheduling with static resource assignment (subproblem)
 Integer Programming does not handle time efficiently
 Constraint Programming is instead effective

Master
Problem

solution
Sub-

Problem

no good

solution

IP solver CP solver

Objective function:
Min(Communication Cost)

Master Problem model

 Assignment of tasks and memory slotsAssignment of tasks and memory slots (master problem)
 Tij= 1 if task i executes on processor j, 0 otherwise,
 Yij =1 if task i allocates program data on processor j memory, 0 otherwise,
 Zij =1 if task i allocates the internal state on processor j memory, 0 otherwise
 Xij =1 if task i executes on processor j and task i+1 does not, 0 otherwise

 Each process should be allocated to one processor Tij= 1 for all j

 Link between variables X and T: Xij = |Tij – Ti+1 j | for all i and j (can be linearized)

 If a task is NOT allocated to a processor nor its required memories are:
Tij= 0 Yij =0 and Zij =0

Objective function memi (Tij - Yij) + statei (Tij - Yij) + datai Xij /2

i

i j

Improvement of the model

 With the proposed model, the allocation problem solver tends to packWith the proposed model, the allocation problem solver tends to pack
all tasks on a single processor and all memory required on the localall tasks on a single processor and all memory required on the local
memory so as to have a ZERO communication cost: TRIVIAL SOLUTIONmemory so as to have a ZERO communication cost: TRIVIAL SOLUTION

 To improve the model we should add a relaxation of the To improve the model we should add a relaxation of the subproblemsubproblem to to
the master problem model:the master problem model:

For each set S of consecutive tasks whose sum of durations exceeds theFor each set S of consecutive tasks whose sum of durations exceeds the
Real time requirement, we impose that their processors should not be theReal time requirement, we impose that their processors should not be the
samesame

 WCETi > RT Tij |S| -1
i S i S

Sub-Problem model

Task scheduling with static resource assignmentTask scheduling with static resource assignment (subproblem)
We have to schedule tasks so we have to decide when they start

Activity Starting Time: Starti::[0..Deadlinei]

Precedence constraints: Starti+Duri Startj

Real time constraints: for all activities running on the same processor

 (Starti+Duri) RT

Cumulative constraints on resources
processors are unary resources: cumulative([Start], [Dur], [1],1)
memories are additive resources: cumulative([Start],[Dur],[MR],C)

What about the bus??

i

Bus model

BANDWIDTH
BIT/SEC

TIME

Max bus
bandwidth

Size of program data
 TaskExecTime

Task0 accesses
input data:

BW=MaxBW/NoProc

Task0
reads state

Task0
writes state

task0
task1

Additive bus model

The model does not hold under heavy bus congestion
Bus traffic has to be minimized

Results

Algorithm search time

The combined approach dominates, and its higher complexity
comes out only for simple system configurations

Energy-Efficient
Application mapping for MPSoCs

Given a platform

Achieve a specified throughput

Minimize power consumption

MULTIMEDIA
APPLICATIONS

Exploiting Voltage Supply

Supply voltage impacts power and performance
Circuit slowdown T=1/f=K/(Vdd-Vt)

a

Cubic power savings P=Ceff*Vdd
2*f

Just-in-time computation
Stretch execution time up to the max tolerable

Available time

Power
Fixed voltage + Shutdown

Variable voltage

In recent MPSoCs it is possible to
change the processors working
frequency.

 Dynamic Voltage Scaling
Problem (DVSP)

Given
An hardware platform with processors, a communication channel, a set of
discrete frequencies and the power consumption at each frequency,
A pre characterized task graph representing a functional abstraction of the
application we should run

Find
An allocation and a scheduling of tasks to resources and of frequencies to tasks
respecting

Real time constraints
Task deadlines
Precedence constraints among tasks
Capacity of all resources

Such that
the total power consumption is minimized. Power is consumed when a task
executes, when 2 tasks communicate and when a processor changes its
frequency.

Task1

Task3

Task2

Task4 Task5

Com1
R1-W1

Com2
R2-W2

Com3
R3-W3

Com4
R4-W4

Com5
R5-W5

 Example of DVSP

88888810102020101024241341345454100100DurationDuration

Com5Com5Com4Com4Com3Com3Com2Com2Com1Com1Task5Task5Task4Task4Task3Task3Task2Task2Task1Task1NameName

2 cores, running at 200MHz or 100MHz. The power consumption is 10mW at 200MHz and 3mW at 100MHz.2 cores, running at 200MHz or 100MHz. The power consumption is 10mW at 200MHz and 3mW at 100MHz.

Switching from 200 MHz to 100 MHz needs 2ns and 2pJ, while the opposite needs 3ns and 3pJ.Switching from 200 MHz to 100 MHz needs 2ns and 2pJ, while the opposite needs 3ns and 3pJ.

10000 1050

1590

1630

1050

1075 1745

1765

1885 1987

Task1 Task2

Task3 Task4 Task5R2 R3

W3W2

W2 R2 W3 R3

Proc1

Proc2

BUS

1887

Task1, Task2 and Task5 at 200MHz.Task1, Task2 and Task5 at 200MHz.
Task3 and Task4 at 100 MHz.Task3 and Task4 at 100 MHz.

Our approach

Let us analyze the structure of the problem:
As a whole it is a scheduling problem with alternative
resources (each processor at each frequency is an alternative):
very tough problem, it has never been solved to optimality
by the system design community.

It smoothly decomposes into allocation and scheduling
Allocation and frequency assignment better handled with IP techniques

Scheduling better handled with CP techniques

The objective function depends both on allocation and scheduling
variables

We exploit Logic Benders Decomposition to solve the problem

INTERACTION REGULATED VIA NO-GOODS and CUTTING PLANES

Unfeasible

No solution

Infeasible

Optimal solution

Problem decomposition

Assignment of tasks toAssignment of tasks to
processors and of frequencies toprocessors and of frequencies to
taskstasks (master problem)

 OF relates alternative
resources to couples of tasks
 Not a good scenario for CP

 Task scheduling with staticTask scheduling with static
resource assignmentresource assignment (subproblem)

 IP does not handle time
efficiently
 CP is instead effective

Objective Function:
Min(Power consumption)

Master Problem

(Allocation)

Sub-Problem

(Scheduling)

Feasible

allocation

No-good

Infeasible

Cutting plane

Feasible

Master Problem model (I)

Each task should be allocated to one processor at one mode:

 Assignment of tasks to processors and frequenciesAssignment of tasks to processors and frequencies (modes) to task
 Xptm = 1 if task t executes on processor p at mode m, 0 otherwise,
 Rpt1t2m =1 if task t1 running on processor p at mode m reads data from

task t2 not running on p
Wpt1t2m =1 if task t1 running on processor p at mode m writes data for

task t2 not running on p

 Communications between tasks happen at most once:

Master Problem model (II)

Task deadlines are captured:

A task executes

A task reads data
from another processor

A task writes data
to another processor

The objective function has three contributions:

Sub-Problem model (I)

Variables representing tasks and communications starting times (durations areVariables representing tasks and communications starting times (durations are
fixed)fixed)

•• StartStartii : starting time of task i , : starting time of task i , durationdurationii==WCNWCNii / / ffii

•• StartWriteStartWriteijij : starting time of task i writing activity , : starting time of task i writing activity , dWritedWriteijij==WCNWCNWWijij / / ffii

•• StartReadStartReadijij : starting time of task j reading activity , : starting time of task j reading activity , dReaddReadijij==WCNWCNRRijij / / ffjj

 For each couple of tasks (i, j), s.t. i communicates with j, we introduce the
constraints:

• StartWriteij + dWriteij <= StartReadji

• Starti + durationi <= StartWriteij

• StartReadji + dReadji <= Startj

Sub-Problem model (I)

Precedence constraints:
Starti + durationi <= Startj (same processor)
Starti + durationi + dWriteij + dReadji <= Startj (different processors)

 Resource modelling
processors – cumulative (StartListp,DurationListp,[1],1)
 bus – cumulative (StartReadWriteList,DurationList, Fraction,

TotBWidth)

Capturing deadlines:Capturing deadlines:
Starti + durationi <= dlti , for each task ti
Starti + durationi <= dlp , for each task i running on processor p

Sub-Problem model (II)
ModellingModelling transition times: transition times:
 we label each task with its frequency we label each task with its frequency ffii and we consider a transition table and we consider a transition table

defining the time that must elapse between the execution of two tasks withdefining the time that must elapse between the execution of two tasks with
different labelsdifferent labels

• Startf1 + durationf1 + TransTimef1f2 <= Startf2

 ModellingModelling transition costs: transition costs:
 we label each task with its frequency we label each task with its frequency ffii and we consider a transition table and we consider a transition table

defining the cost that must be paid to switch from one frequency to anotherdefining the cost that must be paid to switch from one frequency to another

The objective function is:The objective function is:

 where Swhere Spp is the set of tasks running on processor is the set of tasks running on processor pp

Improving the Master Problem:
Benders Cuts

When the sub-problem is solved, we can add Benders Cuts to the master
problem model:

If the sub-problem is unfeasible, the Benders Cut is a no-good. The
same allocation, and all the symmetric, must not be found again.

If the sub-problem has a solution whose cost is Setup*, we state that
this is the best solution unless a better one can be found with a
different allocation.

where Jp is the set of couples (task, mode) allocated to p

where Setupp* is the setup cost of processor p,

Improving the Master Problem:
relaxation of the subproblem

Let introduce a new variable Zpm in the master problem model, taking value 1 if the
mode m appears at least once on processor p. Calling Em the minimum energy for
switching to mode m

Is a valid lower bound for the setup costs of the processors, calculated in the sub-
problem.

A similar lower bound can be calculated for the setup time

so in the master problem we can capture also processor deadlines

Experimental results
Task Task graphgraph representingrepresenting a a

pipeline: pipeline: taskstasks executeexecute

iterativelyiteratively

MPEG MPEG encodingencoding

GenericGeneric task task graphgraph

GSM GSM applicationsapplications

Experimental results: Number of
iterations distribution

0

5

10

15

20

25

30

35

40

45

50
P

e
rc

e
n

ta
g

e
 o

f
o

c
c
u

rr
e
n

c
e

1 2 3 4 5 6 7 8 9 10 11+

Number of iterations

Both

Time

Cost

Allocation and scheduling of CTG

On going research

Up to now only the optimization part has been completed,
the validation still missing

Objective function: communication cost

Technique: Logic based Benders Decomposition. We
transform a stochastic problem in an approximation based
on the CTG analisys. The approximation turns out to be
exact.

Pipelined and non-pipelined applications

Performances comparable with the deterministic case

Some extremely hard instances: possibly solved with
randomization in complete search

Funzione obiettivo

MASTER PROBLEM

A
LM

A
 M

A
T
E
R
 S

T
U

D
IO

R
U

M
 –

 U
n
iv

e
rs

it
à
 d

i
B
o
lo

g
n
a

Substituting:

Depends on decision variables and on stochastic variables

When the allocation is fixed only on stochastic vars.

The expected value reduces to a deterministic function

Objective function

Analisi di un CTG

We need to know the probability of existence and co-
exostence of nodes

MASTER PROBLEM

A
LM

A
 M

A
T
E
R
 S

T
U

D
IO

R
U

M
 –

 U
n
iv

e
rs

it
à
 d

i
B
o
lo

g
n
a

We have developed polynomial algorithms

CTG Data structures:
Activation set (AS)
Sequence matrix

Coexistence
set

Probability of AS
existence

Coexistence
probability

Complexity O(c3)

CTG analysis

Allocation and scheduling of Multiple
Task Graphs

On going research

Up to now we are developing the optimization part, the
validation still missing

Objective function: communication cost + migration cost

Technique: Logic based Benders Decomposition.

We start from a situation where a TG1 is running and the
second TG2 starts. We minimize the communication cost
overall plus the migration cost of TG2.

Many pareto optimal solutions, choose at runtime

Pipelined applications

Problem: transition graph with multiple nodes for each
configuration

Allocation and scheduling of Multiple
Task Graphs

First solution
TG1 is running and TG2 starts its execution. We
optimally allocate the second task by possibly migrating
some tasks in TG1.

Various combination of communication cost and
migration cost. Try to find pareto optimal points

Choose at run-time

Same technique when a task graph stops its
execution.

Allocation and scheduling of Multiple
Task Graphs

Second solution
Compute different minimum communication cost
transition graphs with a bounded migration cost

Example: task graphs A, B and C

A
B
C

A
B

A
C

B
C

A

B

C

Each arc is labelled
with the minimum
delta communication
cost. Each node is
an allocation

Conclusions

Analize problem structure

Important to choose the correct solver and
representation

CP and IP have different strenghts: exploit
both!!

