
Agent-Oriented

Software Engineering

Ambra Molesini

Cesena - 19 Aprile 2006

Email: ambra.molesini@unibo.it

 amolesini@deis.unibo.it

Outline

Part 1: What is Agent-Oriented
Software Engineering (AOSE)

Part 2: Survey on AOSE methodologies

Part 3: The SODA Methodology

Part 1

Agent-Oriented Software Engineering

Software Engineering

Software is pervasive and critical:

It cannot be built without a disciplined, engineered,
approach

There is a need to model and engineer both

The development process

Controllable, well documented, and reproducible
ways of producing software

 The software

Well-defined quality level (e.g., % of errors and
performances)

Enabling reuse and maintenance.

Requires:

Methodologies Abstractions, and tools

Software Engineering Abstractions

Software deals with “abstract” entities, having a
real-world counterpart:

Numbers, dates, names, persons, documents ...

In what terms should we model them in software?
Data, functions, objects, agents …

I.e., what are the ABSTRACTIONS that we have to
use to model software?

May depend on the available technologies!
Use OO abstractions for OO programming envs.

Not necessarily: use OO abstractions because they are
better, even for COBOL programming envs.

Why Agent-Oriented Software

Engineering?

Software engineering is necessary to discipline

Software systems and software processes

Any approach relies on a set of abstractions and
on related methodologies and tools

Agent-based computing

Introduces novel abstractions

Requires clarifying the set of necessary
abstractions

Requires adapting methodologies and producing
new tools

Novel, specific agent-oriented software engineering
approaches are needed!

Weak Viewpoint

Remember that….

An agent is a software component with internal
(either reactive or proactive) threads of execution,
and that can be engaged in complex and stateful
interactions protocols

A multi-agent system is a software systems made up
of multiple independent and encapsulated loci of
control (i.e., the agents) interacting with each other
in the context of a specific application viewpoint….

SE Viewpoint on Agent-Oriented

Computing

We commit to weak viewpoint because
It focuses on the characteristics of agents that have
impact on software development

Concurrency, interaction, multiple loci of control
Intelligence can be seen as a peculiar form of control
independence
Conversations as a peculiar form of interaction

It is much more general
Does not exclude the strong AI viewpoint
Several software systems, even if never conceived
as agents-based one, can be indeed characterised in
terms of weak multi-agent systems

Let’s better characterize the SE perspective on
agents…

MAS vs. OOSE

SE Implications of Agent

Characteristics

Autonomy
Control encapsulation as a dimension of modularity
Conceptually simpler to tackle than a single (or multiple inter-
dependent) locus of control

Situatedness
Clear separation of concerns between

the active computational parts of the system (the agents)
the resources of the environment

Sociality
Not a single characterising protocol of interaction
Interaction protocols as an additional SE dimension

Openness
Controlling self-interested agents, malicious behaviours, and
badly programmed agents
Dynamic re-organization of software architecture

Mobility and Locality
Additional dimension of autonomous behaviour
Improve locality in interactions

Agent-Oriented Abstractions

The development of a multi-agent system should
fruitfully exploit abstractions coherent with the above
characterization

Agents, autonomous entities, independent loci of
control, situated in an environment, interacting with each
other
Environment, the world of resources agents perceive
Interaction protocols, as the acts of interactions
between agents

In addition, there may be the need of abstracting:
The local context where an agent lives (e.g., a sub-
organization of agents) to handle mobility & opennes

Necessity of mechanisms to manage the complexity of
system description

Why Agents and Multi-Agent

Systems?

Other lectures may have already outlined the
advantages of (intelligent) agents and of multi-agent
systems, and their possible applications

Autonomy for delegation (do work on our behalf)
Monitor our environments
More efficient interaction and resource management

Here, we state that
 Agent-based computing, and the abstractions it
uses, represent a new and general-purpose
software engineering paradigm!

There is much more to agent-oriented

software engineering

AOSE is not only for “agent systems”
Most of today’s software systems have characteristics
that are very similar to those of agents and multi-agent
systems
The agent abstractions, the methodologies, and the tools
of AOSE suit such software systems

AOSE is suitable for a wide class of scenarios and
applications!

Agents’ “artificial Intelligence” features may be important
but are not central

But of course…
AOSE may sometimes be too “high-level” for simple
complex systems…

Agents and Multi-Agent Systems

are (virtually) Everywhere

Examples of components that can be modelled (and
observed) in terms of agents:

Autonomous network processes
Computing-based sensors
 PDAs
 Robots

Example of software systems that can be modelled as
multi-agent systems:

Internet applications
P2P systems
Sensor networks
Pervasive computing systems

Summarizing

A software engineering paradigm defines:

The mindset, the set of abstractions to be used in
software development and, consequently,

Methodologies

The range of applicability

Agent-oriented software engineering defines

Abstractions of agents, environment, interaction
protocols, context

Of course, also specific methodologies (in the
following of the tutorial)

Appears to be applicable to a very wide rage of
distributed computing applications….

Part 2

Survey on AOSE Methodology

Outline

What is a Methodology?

Methodology overview

Gaia

PASSI

Tropos

What is a methodology?

A methodology is a collection of methods covering
and connecting different stages in a process. The
purpose of a methodology is to prescribe a certain
coherent approach to solving a problem in the
context of a software process by preselecting and
putting in relation a number of methods

A methodology has two important components: one
that describe the process elements of the approach,
and a second that focuses on the work products and
their documentation

From: “Fundamental of Software Engineering”. Prentice Hall International

What is an AO methodology?

AOSE methodologies mainly try to suggest a clean
and disciplined approach to analyze, design and
develop multi-agent systems, using specific methods
and techniques

AOSE methodologies, typically start from a “meta-
model”, identifying the basic abstractions to be
exploited in development

On this base, they exploit and organize these
abstractions so as to define guidelines on how to
proceed in the analysis, design, and development,
and on what output to produce at each stage

Meta-model

Meta-model enables checking and verifying the
completeness and expressiveness of a methodology by
understanding its deep semantics, as well as the
relationships among concepts in different languages or
methods

the process of designing a system (object or agent-
oriented) consists of instantiating the system meta-
model that the designers have in their mind in order to
fulfill the specific problem requirements1

1 Bernon at. all “A study of some multi-agent meta-models” Agent-Oriented

Software Engineering V. Volume 3382 of LNCS, Springer (2004) 62–77

MAS Meta-model

MAS meta-models usually include concepts like role,
goal, task, plan, communication

In the agent world the meta-model becomes a
critical element when trying to create a new
methodology because in the agent oriented context,
to date, there are not common denominator

each methodology has its own concepts and system
structure

Agent-Oriented methodologies

A Variety of Methodology exists and have been
proposed so far

Gaia (Zambonelli, Jennings, Wooldridge)

Tropos (Giorgini et al.)

PASSI (Cossentino)

SODA (Omicini, Molesini)

Prometheus (Winokoff and Pagdam)

Etc.

Exploiting abstractions that made them more suited
to specific scenarios or to others..

In this part we show Gaia, PASSI and Tropos

In part 3 we focus on SODA

 Ok, I am not an impartial judge…

Gaia

Zambonelli, Jennings and Wooldridge

The Gaia Methodology

It is the most known AOSE methodology
Firstly proposed by Jennings and Wooldridge in 1999
Extended and modified by Zambonelli in 2000
Final Stable Version in 2003 by Zambonelli, Jennings,
Wooldridge
Many other researchers are working towards further
extensions…

 Key Goals
Starting from the requirements (what one wants a
software system to do)
Guide developers to a well-defined design for the
multi-agent system
The programmers can easily implement
Able to model and deal with the characteristics of
complex and open multi-agent systems

Key Characteristics of Gaia

Exploits organisational abstractions

Conceive a multi-agent systems as an organisation of
individual, each of which playing specific roles in that
organisation

And interacting accordingly to its role

Introduces a clear set of abstractions

Roles, organisational rules, organisational structures

Useful to understand and model complex and open
multi-agent systems

Abstract from implementation issues

The Gaia

Meta-model

Structure of

Gaia Process

Analysis Phase

Sub-organisation

determining whether multiple organisations have to
co-exist in the system

See if the system can easily conceived as a set of
loosely interacting problems

Environmental Model

Analyse the operational environment

See how it can be modelled in term of an agent
environment

Resources to be access and how

Analysis Phase

Preliminary Role Model

See what “roles” must be played in the organisation

A role defines a “responsibility” centre in the
organisation with a set of expected behaviours
(permissions and responsibilities)

Preliminary Interaction Model

See how roles must interact with each other so as to
fulfil expectations

Definition of protocols for each type of inter-role
interaction

Analysis Phase

Organisational Rules

Analyse what “global” rules exists in the system that
should rule all the interactions and behaviour between
roles

These defines sorts of “social rules” or “law” to be
enacted in the organisation

Liveness rules define how the dynamics of the
organisation should evolve over the time

Safety rules define time-independent global invariants
for the organisation that must be respected

Gaia Analysis:

Graphical Representation of Models

From Analysis to Design

Once all the analysis model are in place
We can start reasoning at how organising them into a
concrete architecture

An “agent architecture” in Gaia is
A full specification of the structure of the organisation
With full specifications on all the roles involved
With full specification on all interaction involved

It is important to note that in Gaia
 Role and Interaction models are “preliminar”
 They cannot be completed without choosing the final
structure of the organisation

Defining all patterns of interactions
 Introducing further “organisational” roles
Arranging the structure so that the organisational rules
are properly enacted

Architectural Design Phase

Aimed at determining the final architecture of the
system

The architecture, i.e., the organisational structure
consists in

 The topology of interaction of all roles involved

Hierarchies, Collectives, Multilevel…

Which roles interact with which

The “control regime” of interactions

What type of interactions? Why?

Control interactions, Work partitioning, work
specialization, negotiations, open markets, etc.

Architectural Design Phase

Choosing the Organisational Structure

Consideration about simplicity, real-world
organisation, complexity of the problem, need to
enact organisational rule with small effort

Exploiting organisational Patterns

Completion of role model with the organisational
roles identified from the adoption of specific
organisational structure

Completion of interaction model with the
organisational protocols derived from adopted
organisational structure

Detailed Design Phase

Devoted to transform “roles” and “interaction
protocols” into more concrete components, easy to
be implemented

Roles becomes agents

With internal knowledge, a context, internal
activities, and services to be provided

Sometimes, it is possibly thinking at compacting the
execution of several roles into a single agent

Clearly, we can define “agent classes” and see what
and how many instances for these classes must be
created

Interaction protocols becomes sequence of messages

To be exchanged between specific agents

Having specific content and ontologies

Limitations

Gaia does not deal directly with implementation
issues

Gaia does not deal with the activity of requirements
capture and modelling and of early requirements
engineering

Gaia supports only the sequential approach to
software development

… the Environment?

… the support to manage complexity?

PASSI

Cossentino

Characteristic of PASSI

PASSI (Process for Agent Societies Specification
and Implementation) is a step-by-step
requirement-to-code methodology.

The methodology integrates design models and
concepts from both Object Oriented Software
Engineering and MAS using UML notation

PASSI refers to the most diffuse standards: UML,
FIPA, JAVA, Rational Rose

PASSI is conceived to be supported by PTK (PASSI
Tool Kit) an agent-oriented CASE tool

Characteristic of PASSI

PASSI process supports:

Modelling of requirements is based on use-cases

Ontology that as a central role in the social model

Multiple perspectives: agents are modelled from
the social and internal point of view, both
structurally and dynamically

Reuse of existing portions of design code; this is
performed through a pattern-based approach

Design of real-time systems

The design process is incremental and iterative

Extends UML with the MAS concepts

PASSI

Meta-Model

PASSI Process Overview

The System Requirement Model

It is composed of four phase

Domain Requirements Description: a functional
description on the system using conventional use
case diagrams

Agent Identification: the phase of attribution of
responsibilities to agent, represented as a
stereotyped UML packages

Role Identification: a series of sequence diagrams
exploring the responsibilities of each agent through
role-specific scenarios

Task Specification: specification of the capabilities
of each agent with activity diagrams

Agent Societies Model

A model of the social interactions and dependencies
among the agents involved in the solution.
Developing this model involves three step:

Ontology Description: use of class diagrams and
OCL constraints to describe the knowledge ascribe
to individual agents and their communications

Role Description: class diagrams are used to show
the roles played by agent, the task involved,
communication capabilities and inter-agent
dependency

Protocol Description: use of sequence diagrams to
specify the grammar of each pragmatic
communication protocol in terms of speech-act
performatives

Agent Implementation Model

A classical model of the solution architecture in
terms of classes and methods; the most important
differences with common object-oriented approach
is that we have two different levels of abstraction,
the social (multi-agent) level and the single level.
This model is composed by:

Agent Structure Definition: conventional class
diagrams describe the structure of solution agent
classes

Agent Behaviour Description: activity diagrams or
state charts describe the behaviour of individual
agent

Code Model

A model of the solution at the code level requiring
the following steps to produce it:

Generation of code from the model using one of the
functionalities of the PASSI add-in

It is possible to generate not only the skeletons but
also largely reusable parts of the method’s
implementation based on a library of reused patterns
and associated design description

Manual completion of the source code

PASSI Patterns

PASSI considers a pattern of agent as composed of
its design level description and the corresponding
JAVA code

More in detail each patter is composed of

A structure

Usually a base agent class and a set of task/
behaviour classes

Described using UML class diagrams

A behaviour

Expressed by the agent using its structural elements

Detailed in UML dynamic diagrams (activity / state
chart)

A portion of code

Some lines of code implementing the structure and
the behaviour described in the previous diagram

Deployment Model

A model of the distribution of the parts of the
system across hardware processing units and their
migration between processing units. It involves one
step

Development configuration: deployment diagrams
describe the allocation of agents to the available
processing units and any constraints on migration
and mobility

Test

The testing activity has been divided in two
different steps

The Single Agent Test is devoted to verifying the
behaviour of each agent regarding the original
requirements for the system solved by specific
agent.

During the Society Test, integration verification is
carried out together with the validation of the
overall results of this iteration

The Single Agent Test is performed on the single
agent before the deployment phase, while the
Society Test is carried out on the complete system
after its deployment.

Limitations

Multiplicity problem (from UML): the need to
concurrently refer to different models in order to
understand a system and the way it operates and
changes over time is a critical issue

(From UML) Each model introduces its own set of
symbols and concepts, thus leading to an unnatural
complexity in terms of vocabulary.

The environment is not considered.

… the support to manage complexity?

Tropos

Giogini et all.

Characteristic of Tropos

Tropos is an agent-oriented software development
methodology founded on two key features

(i) the notions of agent, goal, plan and various other
knowledge level concepts are fundamental primitives
used uniformly throughout the software development
process

(ii) a crucial role is assigned to requirements analysis
and specification when the system-to-be analyzed
with respect to its intended environment.

Then the developers can capture and analyze the
goals of stakeholders

These goals play a crucial role in defining the
requirements for the new system: prescriptive
requirements capture the what and the how for the
system-to-be

Characteristic of Tropos

Tropos adopts Eric Yu's i* model which offers actors
(agents, roles, or positions), goals, and actor
dependencies as primitive concepts for modelling an
application during early requirements analysis

GoalGoal

TaskTask

ResourceResource

SoftgoalSoftgoal

Actor

Tropos Meta-model 1/2

Actor: an entity that
has strategic goals and
intentionality
Goal: actors' strategic
interests
Resource: a physical
or an informational
entity
Plan: a way of doing
something
Dependency:
depender dependum

 dependee

Tropos Meta-model 2/2

AND/OR
decomposition:
root(Goal)
sub(Goals)

Contribution:
towards the
fulfillment of a goal

Means-end
analysis: a
means to satisfy
the goal

Tropos

Early Requirements
Analysis

Late Requirements
Analysis

Requirements Analysis

Architectural Design

Detailed Design

Early Requirements Analysis

Focuses on the intentions of stakeholders.
Intentions are modelled as goals

Through some form of goal-oriented analysis, these
initial goals lead to the functional and non-
functional requirements of the system.

Stakeholders are represented as (social) actors who
depend on each other for goals to be achieved,
tasks to be performed, and resources to be
furnished.

Includes the Actor diagram and Rationale diagram

Early Requirements Analysis

An Actor diagram is a graph involving actors who
have strategic dependencies among each other. A
dependency describes an “agreement" between a
depending actor (depender) and an actor who is
depended upon (dependee)

Actor Diagrams are extended during this phase by
incrementally adding more specific actor
dependencies, discovered by means-end analysis of
each goal. This analysis is specified using a
rationale diagrams.

Means-end analysis aims at identifying plans,
resources and softgoals that provide means for
achieving a goal.

Early Requirements Analysis

A Rationale diagram describes and supports the
reasoning that each actor goes through concerning
its relationships with other actors

Late Requirements Analysis

The conceptual model developed during early
requirements is extended to include system as new
actor, along with dependencies between this actor
an others in its environment
These dependencies define functional and non-
functional requirements for the system-to-be.
In Tropos, the system is represented as one or
more actors which participate in a Actor diagram,
along with other actors from the system's
operational environment. In other words, the
system comes into the picture as one or more
actors who contribute to the fulfilment of
stakeholder goals
Actor and Rationale diagrams are also used in this
phase

Architectural Design

Tropos is interested in developing a suitable set of
architectural styles for multi-agent software
systems: studying the Organization Theory and
Strategic Alliances leads to propose models such as
the structure-in-5, the pyramid style, the chain of
values, the matrix, the bidding style to try to find
and formalise recurring organisational structures and
behaviours.

The analysis for selecting an organisational setting
that meets the requirements of the systems is based
on specific propagation algorithms.

Detailed Design

This phase introduces additional detail for each
architectural component of a system

In particular, this phase determines how the goals
assigned to each actor are fulfilled by agents in terms
of design patterns

Social Pattern in Tropos are designed patterns focusing
on social and intentional aspects that are recurrent in
MAS. They are classified in Pair and Mediation.

Pair: describes direct interaction between negotiating
agent (es: Bidding pattern)

Mediator: describes intermediary agents that help other
agents to reach an agreement on an exchange of service
(es: Broker pattern)

AO Visual Modelling with Tropos

Early

Requirements

Late

Requirements

Architectural

Design
Implementation

Detailed

Design

Actors in the

organisational

setting

System Actor Sub-system

Actors
Agents Sw Agents

Requirement driven approach

Limitations

Tropos is not intended for any type of software: no
system with no identifiable stakeholders

Tropos, in its current form, is not suitable for
sophisticate software agents requiring advanced
reasoning mechanism for planning

… and the environment?

… the support to manage complexity?

Part 3

SODA

Outline

Introduction to SODA

Agents & Artifacts

Layering Principle

SODA in detail

Introduction to SODA

SODA

SODA (Societies in Open and Distributed Agent
spaces) is an agent-oriented methodology for the
analysis and design of agent-based systems

SODA focuses on inter-agent issues, like the
engineering of societies and environments for MASs

SODA adopts agents and artifacts as building block
for MAS development

SODA

SODA introduces a simple layering principle in order
to manage the complexity of the system description

SODA adopts a tabular representations

Agents & Artifacts

Remember that…

Artifacts take the form of objects or tools that
agents share and use to

support their activities

achieve their objectives

Artifacts are explicitly designed to provide some
functions which guide their use.

An artifact can have responsibilities

 Example

Coordination Artefacts

govern social activities

enable and mediate agent interaction

mediate the interaction between individual agents

and their environment

capture, express and embody the parts of the

environment that support agents’ activities

Features & Classification

An artifact exposes

usage interface

operating instructions

function description

Other interesting artifact features are:

inspectability

malleability

linkability

A possible classification

individual artifacts

social artifacts

resource artifacts

Agents & Artifacts

Artifacts constitute the basic building block both
for

MAS analysis/modelling

MAS development

Agents and Artefacts can be assumed as two
fundamental abstractions for modelling MAS
structure

agents speaking with other agents

agents using artifacts to achieve their objectives

Meta-model Ingredients

Agents & Artifacts lead to new ontological meta-
model for MASs

Artifacts allow to

model the environment as a first-class entity

engineer the space of interaction among agents
(not only mere conversations between agents,
but complex agent interaction patterns)

enrich MAS design with social/organisational
structure, topological models, as well as (complex)
security models

Agents model individual/social activities

Artifacts glue agents together

they mediate between individual agents and MAS

they build up agent societies

they wrap up and bring to the cognitive level of
agents the resources of MAS

In particular in SODA…

Individual

Artefacts

Social

Artefacts

Resource

Artefacts

Layering Principle

Complex systems and layering

As advocate in the theory of hierarchies all complex
systems are amenable to be represented as
organised on different layers

Each level is essential to the general understanding
of the system’s wholeness, and is autonomous with
its own laws, patterns and behaviour

At the same time, no level can be understood in
isolation independently of all the other levels, and
the system as a whole can be understood only
through the understanding and representation of all
its levels

A complex system is a system requiring layer,
independent but strongly correlated ones, in order to
fully understand and reproduce its dynamics and
behaviour. (e.g., biological systems)

Layering and MASs

When applied to the engineering of MASs, the
hierarchy principle suggests that agent-oriented
processes and methods should support some forms
of MAS layering

Allowing engineers to design and develop MAS along
different levels of abstractions

a number of independent, but strictly related, MAS
layers

Layering in SODA

We achieve the layering principle by means of the
zooming and projection mechanisms.

In the zooming mechanism we have two kinds of
zoom

in-zoom: when passing from abstract layer to
another more detailed

out-zoom: when passing from detailed layer to
another more abstract.

The projection mechanism projects the no zoomed
entities form one layer to another to achieve the
internal consistency of one layer

System’s view

It is possible to have two type of system’s view

Horizontal views allow to analyse the system in one
level of detail.

Vertical view allows to analyse of one kind of abstract
entity in its whole layer from layer.

Meta-Model of Layering

Layer

Layering

In/out zoom Projection

Layering in SODA

In general, when working with SODA, we start from
a certain layer, we could call core layer, and it is
labelled with “c”

In the other layer we find only the in/out zoomed
entities and the projection entities.

The in-zoomed layers are labelled with “c+1”, “c+2”
and the out-zoomed layers are labelled “c-1”, “c-2”. .

The projection entities will be labelled with “+” if the
projection is form abstract layer to detailed layer, “-”
otherwise

Important

The only relations between layers are the
“zooming relation” express by means of zooming
table (in the following)

if we have relation between entities belonging
different layers we have to project these entities
in the same layer

SODA

Omicini, Molesini

SODA

SODA is organised in three phase:

Requirements analysis phase: the system’s
requirements are analysed and modelled in terms of
tasks, functions and dependencies

Analysis phase: in this phase we analyse the solution
domain, the system is modelled in terms of roles,
resources, interactions and constraints

Design phase: in this phase we design the system in
terms of agents, societies and artifacts

First Meta-model of Requirements

Analysis Phase

Task is an activity that requires one or more
competences and the use of functions

Function is an reactive activity that aimed at
supporting tasks

Dependency is any relationship (interactions,
constraints. . .) among other (tasks and/or
functions) abstract entities

FunctionDependency

0..n 1..n0..n 1..n

partecipateTask

0..n1..n 0..n1..n

partecipate

Meta-Model of Requirements

Analysis Phase

Task Dependency

0..n1..n 0..n1..n

partecipate Function

0..n 1..n0..n 1..n
partecipate

Layer

1..n1..n

composed of

1..n1..n

composed of

1..n1..n

composed of

Layering

In/out zoom Projection

First Meta-Model of

Analysis Phase

Group

Interaction

Place

Role partecipate Resourcepartecipate

is allocated in

Sanction

Organisational Security Topological

composed of

EnvironmentCostraint

Entities in the Meta-model of

Analysis Phase

Role is defined as the abstraction responsible for the
achievement of one or more tasks.

Group is defined as the abstraction responsible for a
collection of roles. It derives from the zoom of a role.
To preserve the consistency in the group it is
necessary to introduce social rules.

Resource is defined as the abstraction that provides
some functions.

Interaction is defines as a relation that aimed to
exchange some information (of any type) among
abstract entities. It is represented by means of
interaction protocols

Entities in the Meta-model of

Analysis Phase

Constraint is defined as a relation among abstract
entities that aimed to bound the abstract entities. For
example constraint can be organisational constraints,
topological constraints, security constraints.

Sanction is a punishment of constraint violation

Environment is the environment of the system.

Place is a conceptual locus in the environment.

Complete Meta-

Model of

Analysis Phase

From Requirements Analysis

to Analysis

Task Dependence Function

Role

1..n

1

Resource

1..n

1

Interaction Constraint

Entities of Design Phase

Agent Individual Artifact
use

Resource

Artifact
Social Artifact

need

use

Society govern

First Meta-Model of Design Phase

Agent
Interaction

Protocol
Individual Artifact

use

Constraint

Resource

Artifact
PlaceSocial Artifact

need

use

Environment

govern

Society governGroup
is assoc iated

Role is asociated

Complete Meta-

Model of Design

Phase

Interaction

Protocol

Constraint

Place

Environment

Role

Group

In/Out zoom Projection

Resource

Artifact

Social

Artifact

need

govern

Society governis associated

Agentis asociated
Individual

Artifact

use

use

Layering

Layer composed of

composed of
 composed of

Tables of Requirements Analysis

Responsibility Tables

task descriptiontask name

DescriptionTask

function descriptionfunction name

DescriptionFunction

(L)Tt

(L)Ft

Tables of Requirements Analysis

Dependency Table

dependency descriptiondependency name

DescriptionDependency

(L)Dt

Tables of Requirements Analysis

Link Tables

dependency namestask name

DependencyTask

dependency namesfunction name

DependencyFunction

(L)TDt

(L)FDt

Zooming Table

in-zoom entitiesout-zoom entity

Layer L+1Layer L

(L)Zt

Tables of Analysis and Design

phases

Sorry, currently…

SODA: Pros and Cons

Pros

Design societies

Design environments

Layering principle

Cons

 Only Inter-agents aspects need to other
methodology for design intra-agents aspects

Available Thesis

Tecnologie ad agenti per una casa intelligente

Realizzazione di un tool a supporto della
metodologia SODA

…

From: http://www.alice.unibo.it

Addendum

Select References

Selected References

Introductory to Agents and Multiagent Systems

 – A. Newell, “The Knowledge Level”, Artificial Intelligence, 18(1):87-127,
1982.

 – P. Wegner, “Why Interaction is More Powerful than Algorithms”,
Communications of the ACM, 40(5):80–91, 1997.

 – M. Wooldridge, “Reasoning About Rational Agents”, MIT Press, 2000.
 – M. Wooldridge, N. Jennings, “Intelligent Agents: Theory and Practice”,

The Knowledge Engineering Review, Vol. 10, No. 2, 1999.
 – D. Chess, C. Harrison, A. Kershenbaum , “Mobile Agents: are They a

Good Idea?”, Mobile Object Systems, Lecture Notes in Computer
Science, No. 122 2 , Springer-Verlag (D), pp. 25-45, February 1997.

 – V. Parunak, “Go to the Ant: Engineering Principles from Natural Agent
Systems ”, Annals of Operations Research, 75:69-101, 1997.

 – N. R. Jennings, "An Agent-Based Approach for Building Complex
Software System", Communications of the ACM, 44(4):35:41, 2001.

Selected References

Agent Abstractions

 – F. Zambonelli, V. Parunak, “From Design to Intention: Signs of a
Revolution” , 1st Joint Conference on Autonomous Agents and Multi-
agent Systems, Bologna (I), July 2002.

 – A. Howard, M. J. Mataric, “Cover Me! A Self-Deployment Algorithm for
Mobile Sensor Networks”, International Conference on Robotics and
Automation, 2002, to appear.

 – B. A. Huberman, T. Hogg, "The Emergence of Computational Ecologies",
in Lectures in Complex Systems , Addison-Wesley, 1993.

 – D. Estrin, D. Culler , K. Pister, G. Sukhatme , “Connecting the Physical
World with Pervasive Networks”, IEEE Pervasive Computing, vol.
1(1):59-69,Jan 2002.

 – M. Ripeani, A. Iamnitchi , I. Foster, “ Mapping the Gnutella Network”,
IEEE Internet Computing, 6(1):50-57, Jan.-Feb. 2002.

 – M. Sipper. “The Emergence of Cellular Computing” , IEEE Computer,
37(7):18-26, July 1999.

 – D.Tennenhouse, "Proactive Computing", Communications of the ACM,
43(5):43-50, May 2000.

 – F. Zambonelli, A. Roli, S. Gatti , “What Can Cellular Automata Tell Us
About the Behaviour of Large Multiagent Systems?, 1st International
Workshop on Large Multi- Agent Systems, Orlando (FL), May 2002.

Selected References

Introductory to AOSE

 – N.R. Jennings, “On Agent-Based Software Engineering”, Artificial Intelligence,
117:227-296, 2000.

 – N. R. Jennings, P. Faratin , T. J. Norman, P. O'Brien , B. Odgers, “Autonomous Agents
for Business Process Management” , Int. Journal of Applied AI, Vol. 14 (2), pp. 145-
189, 2000.

 – M. J.Wooldridge and N. R. Jennings, "Software Engineering with Agents: Pitfalls and
Pratfalls", IEEE Internet Computing, Vol.3, No. 3, May-June 1999.

 – Y. Shoham, “An Overview of Agent-Oriented Programming”, in J. M. Bradshaw,
editor, Software Agents, pages 271–290. AAAI Press / The MIT Press, 1997.

 – K. Siau and M. Rossi, “Evaluation of Information Modelling Methods – A Review”,
Proceeding 31st Annual Hawaii International Conference on System Sciences,pp.
314-322, 1998.

 – F. Zambonelli, N. Jennings, M. Wooldridge, “Organizational Abstractions for the
Analysis and Design” , 1st International Workshop on Agent-oriented Software
Engineering, LNAI No. 1957, Springer , 2001.

 – F. Zambonelli, N, Jennings, A. Omicini, M. Wooldridge, “Agent-Oriented software
Engineering for Internet Applications”, Coordination of Internet Agents: Models,
Technologies, and Applications, Chapter 13. Springer-Verlag, March 2001.

Selected References

Surveys on Methodologies
– C. Iglesias, M. Garijo , J. C. Gonzales, “A Survey of Agent-oriented

Methodologies”, Intelligent Agents V, LNAI No. 1555, 1999.

– M. Wooldridge , P. Ciancarini, “Agent-Oriented Software Engineering”, in Agent-
Oriented Software Engineering, LNCS No. 1957, 2001.

– O. Shehory and A. Sturm, “Evaluation of Modeling Techniques for Agent- Based
Systems ”, Proceedings of The Fifth International Conference on Autonomous
Agents, pp. 624-631, 2001.

Book on Methodologies
– B. Henderson-Sellers, P. Giorgini, “Agent-Oriented Methodologies”, Idea Group

 Inc, Hersey, PA, USA, 2005.

– F. Bergenti, M-P. Gleizes, F.Zambonelli, “Methodologies and Software Engineering

 for Agent Systems”, Kluwer Accademic Publisher, 2004.

– M. Luck, R. Ashri, M. D’Inverno, “Agent-Based Software Development ”, Artech
House Publisher, 2004.

Selected References

The GAIA Methodology
 – F. Zambonelli, N.R. Jennings, M. Wooldridge, “Multi-Agent Systems as

Computational Organisations: The Gaia Methodology”, in “Agent-Oriented
Methodologies”, B. Henderson-Sellers and P. Giorgini, Idea Group Inc, Hersey,
PA, USA, 2005.

– F. Zambonelli, N.R. Jennings, M. Wooldridge, “Developing Multi-Agent Systems :
The Gaia Methodology”, ACM Transaction on Software Engineering and
Methodology, 12(3), pp. 417--470.

The PASSI Methodology
 – M. Cossentino, ”From Requirements to Code with the PASSI Methodology”, in

“Agent-Oriented Methodologies”, B. Henderson-Sellers and P. Giorgini, Idea
Group Inc, Hersey, PA, USA, 2005.

 – A. Chella, M.Cossentino, L.Sabatucci, V. Seidita, “From PASSI to Agile PASSI:
Tailoring a Design Process to Meet new Needs”, in 2004 IEEE/WIC/ACM
international Joint Conference on Intelligent Agent Technology, Beijing, China

Selected References

The TROPOS Methodology
– P. Giorgini, M. Kolp, J. Mylopoulos, J. Castro , ”Tropos: a Requirements-Driven

Methodology for Agent-Oriented Software”, in “Agent-Oriented Methodologies”, B.
Henderson-Sellers and P. Giorgini, Idea Group Inc, Hersey, PA, USA, 2005.

– P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, A. Perini , ”Tropos: An Agent-
Oriented Software Development Methodology”, Autonomous Agent and Multi-Agent
Systems. Vol 8 pp. 203—236 issn: 1387-2532

The SODA Methodology
– A. Omicini, “SODA: Societies and Infrastructures in the analysis and deisgn of

agent-based systems ”, Agent-Oriented Software Engineering, LNCS 1957,
Springer-Verlag, 2001.

– A. Molesini, A. Omicini, A. Ricci, E. Denti, “Zooming Multi-Agent Systems”, Agent-
Oriented Software Engineering VI, LNCS 3950, Springer-Verlag, 2006.

– A. Molesini, A. Omicini, E. Denti, A. Ricci, “SODA: a Roadmap to Artifacts”,
Engineering Societies in the Agents World VI, LNCS 3963, Springer-Verlag, 2006.

– A. Molesini, E. Denti, A. Omicini, “MAS Meta-model on test: UML vs. OPM in the
SODA case study”, Multi-Agent Systems and Applications IV, LNAI 3690, Springer-
Verlag, 2005.

Selected References

Other Relevant Methodologies:
MASE

 – S. A. DeLoach, M. F. Wood, Cl. H . Sparkman , “Multiagent Systems Engineering”, The
 International Journal of Software Engineering and Knowledge Engineering, Vol. 11 (3)
 pp. 231-258, 2001.

MESSAGE
 – G. Caire , F. Leal, P. Chainho, R. Evans, F. Garijo, J. Gomez, J. Pavon , P. Kearney, J. Stark, P.
 Massonet, Agent Oriented Analysis using MESSAGE/UML”, 2 nd International Workshop on
 Agent-Oriented Software Engineering, LNCSN o .2222, Springer-Verlag , pp. 119-135, 2001.

CommonKADS
 – C. A. Iglesias , M. Garrijo , J. Gonzalez and J. R. Velasco, “ Analysis and Design of Multiagent
 Systems using MAS-CommonKADS” , Intelligent Agents IV: Agent Theories, Architectures and
 Languages, M. P. Singh, Anand Rao and M. J. Wooldridge, eds., LNCS 1365, Springer-Verlag ,
 pp. 313-328, 1997

AUML
 – B. Bauer, J.P. Muller, J. Odell , “ Agent UML: A Formalism for Specifying Multiagent Software
 Systems ”, The International Journal of Software Engineering and Knowledge Engineering, Vol.
 11 (3), pp. 207-230, 2001.

DESIRE
 – F. M. T. Brazier, B. Dunin- Keplicz, N. R. Jennings and J. Treur, “DESIRE: Modelling Multi- Agent
 Systems in a Compositional Formal Framework”. Intl. Journal of Cooperative Information
 Systems, Vol. 6, pp. 67-94, 1997.

Selected References

Open Research Directions & Visions

 – F. Zambonelli, V. Parunak, “From Design to Intention: Signs of a Revolution” , 1st
Joint Conference on Autonomous Agents and Multi-agent Systems, Bologna (I), July
2002

 – V. Parunak, S. Bruekner, " Entropy and Self-Organization in Agent Systems ", 5th

International Conference on Autonomous Agents , ACM Press, May 2001.
 – R. Albert, H. Jeong, A. Barabasi, “Error and Attack Tolerance of Complex N etworks”,

Nature, 406:378-382, 27 July 2000.
 – G. D. Abowd, E. D. Mynatt, “Charting Past, Present and Future Research in Ubiquitous

Computing” , ACM Transactions on Computer-Human Interaction, 7(1):29-58, March
2000.

 – H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight, R. Nagpal, E. Rauch,
G. Sussman and R. Weiss, “Amorphous Computing”, Communications of the ACM,
43(5), May 2000.

 – M. Mamei, F. Zambonelli, L. Leonardi, “A Physically Grounded Approach to Coordinate
Movements in a Team”, 1st International Workshop on Mobile Teamwork, Vienna (A),
IEEE CS Press, July 2002.

 – A. Roli, F. Zambonelli, “What Can Cellular Automata Tell Us About the Behavior of
Large Multiagent Systems?”, 1 st International Workshop on Engineering of Large
Multiagent Systems ”, Orlando (FL), May 2002, to appear in LNCS.

 – F. Zambonelli, A. Omicini, “Challenges and Research Directions in Agent-Oriented
Software Engineering ”, Autonomous Agents and Multi-Agent Systems 9(3). Kluwer
Academic Publishers, November 2004.

