
ENGINEERING SYSTEMS

with COORDINATION MODELS

and TECHNOLOGIES

Alessandro Ricci

(DEIS, Università di Bologna in Cesena)

aricci@deis.unibo.it

Goals

• Recalling some elements of distributed

system engineering

• Introduction to coordination models and

technologies

• Overview of the TuCSoN coordination model

and technology

– Experimenting TuCSoN on-the-fly

• TuCSoN for students’ projects? Why not..

Outline

• (PART I) Elements of distributed system engineering

<few important points>

• (PART II) Introduction to the coordination world

<quick overview>

– Tuple Space / Linda example

• (PART III) TuCSoN model and technology

<focus>

– (NOTES 1) TuCSoN Live

– (NOTES 2) TuCSoN model/language details

– (NOTES 3) Some coordination patterns in Linda and TuCSoN

• (PART IV) Discussion: using TuCSoN for your projects

<focus according to available time>

PART I

Elements of distributed systems

engineering

Recalling some basic

engineering principles

• Engineering approach

– Using methodologies / models / languages / technologies to

face problems of a certain domain at the proper level of

abstraction

• direct/synthetic description of (1) domain aspects and their

relationships and (2) aspects/relationships evolution

• Pervasive principle: Encapsulation

– Lack of good abstractions leads to lower level mechanisms

• Longer design/development time

• Evolution is a nightmare

– Any addition, change --> new aspect --> new mechanism

Concurrent/Distributed

system scenarios

• Space, Time, Interaction

• Concurrency/parallelism

– Multiple independent activities / loci of control running

simultaneously

• Distribution

– Activities running on different and heterogeneous execution

contexts (machines, devices, ...)

• Interaction

– Dependencies among activities

– Collective goals involving activities coordination/cooperation

Object-Oriented paradigm: not enough

• How to model an independent activity?
– Objects? No way

• Objects encapsulate a state and a behaviour, but not a control flow

– Objects have autonomy over their state, they can control it

– Objects have not autonomy over their behaviour, they cannot control it

– Control flows along with data, going inside out though objects by
means of method invocation (as reification of message passing)

• Control is outside objects, owned by human designer who acts as a
control authority, establishing the control flow

• Object interaction is limited and disciplined by interfaces, governed
by the human designer

• How to model concurrent activities? How to model
interaction and coordination among concurrent
activities?
– Method invocation?? No way!

Toward task-oriented approach

• Identifying system basic tasks

• A task can be assigned to a single agent (individual
task) or to a society of agents (collective task)
– The agent abstraction

• Entity responsible of carrying out an individual task

• Encapsulates a control flow

– needed to carry out the task

– Society of agents and the coordination artifact abstraction

• Societies as set of agents using a coordination artifact to carry
out the social task

• Coordination artifacts as the abstractions modeling the shared
means/tools used by agents to fulfill a collective task

– Coordination artifacts in human society: languages, protocols, as
well as semaphors, ticket dispensers, blackboards, schedulers,
forms, …

Basic engineering approach

• [1] Task identification
– Individual tasks

• (Assigned to)/(drive the design of) single agents

– Social tasks
• (Assigned to)/(drive the design of) agent societies

– Coordination artifacts

• [2] Task folding/unfolding
– Task unfolding

• From individual to social

– Task folding
• From social to individual

Some design

• Agent design issues
– Information/Permissions required to fulfill the task

– Information possibly expected by task fulfillment

– Behaviour to fulfill the task

– Topology (agent location)

– ..

• Coordination artifacts design issues
– Coordination laws required to fulfill the collective task

– Shared communication protocols

– Constraints ruling the collective task

– Global properties result of the collective task

– Topology

• Location for embodied/physical coordination artifacts

– ..

An example: an alarm system

• Scenario:
– a building where access to rooms/resources must be ruled

according to some global organisation policy

• Example of an individual task:
– Monitoring a room

– Identifying users

– Informing the police

– ..

• Example of a collective task
– Organisation/Security policies

• When detecting unidentified users in rooms X,Y, lock
resources R1, R2 and inform the police

• From 23.00 to 6.00 only some users are allowed to access the
building

Downto development / deployment

• Agents and coordination artifacts need infrastructures
– Providing basic services to support agents and artifacts at

runtime

• Services for agent life cycle (creation, execution, death,
migration..)

• Services for coordination artifacts enaction, management, use,
evolution

– Enabling communication, synchronisation,..

– keeping the abstractions alive motto

• Basic services to deal with agent and coordination artifacts as
first class issues at runtime

– Support for dynamic construction, observation, evolution of the
systems

– Despite of the technology used for developing actually
agents and artifacts

<at the blackboard:

Infrastructure picture>

Technology picture (I)

• Web (HTTP+CGI/JSP/ASP/Servlets..)
• Distributed Object Model (Java RMI,

CORBA, DCOM+/.NET...)
• Distributed Component Model

(CORBAcomponents, EJB, .NET)

> weak support for task-oriented approach

Technology picture (II)

• Service-Oriented Infrastructures (Web
Services, CORBAservices, Jini, OSGi,..)

• Agent-oriented (JADE,RETSINA,TuCSoN..)
• Coordination Technologies (TuCSoN,

JavaSpaces...)

> good support for task-oriented approach

Focus on coordination

models and technologies

• Good support for task-oriented approach

– Promote separation between individual and

collective tasks

– Provide explicit abstractions to model/develop

coordination artifacts

– Support the agent abstraction

PART I - SUMMING UP

• The engineering of distributed systems calls

for abstractions encapsulating the control flow

• Task-oriented approach

– Individual and collective tasks

– agents and coordination artifacts abstractions

• Infrastructure concept

– Supporting development and deployment

– Several technologies

PART II

Coordination models and technologies

Coordination models & languages

roots

• Concurrent/parallel programming context

(~1980s)

– Programming = Computation + Coordination

• Coordination as the glue that binds separate activities

into an ensemble (Gelernter)

• Software engineering context (~1990s)

– Coordination = constraining/promoting/managing

interaction among independent components

– Architectures = Components + Connectors

Coordination metamodel

coordination medium

what

enable & govern & promote

interactions
 among the entities

according to some

coordination laws
- enacted by medium behaviour

- defining coordination semantics

coordinables
the glue

Coordination metamodel
(Ciancarini, 1996)

• Coordinables
– Entities whose mutual interaction is ruled by the model

– Example: processes, threads, objects, users, agents…

• Coordination Media
– Abstractions enabling and ruling agent interactions

– The core around which the components of the system are organised

– Examples: semaphors, monitors, channels, tuple spaces, blackboards,
pipes

• Coordination Laws
– Define the behaviour of the coordination media in response to

interaction events

– Usually defined in terms of

• The communication language
– the syntax used to express and exchange data structures

– Examples: Tuples, XML pages, Logic Tuples, (Java) Objects, ….

• The coordination language
– Set of interaction primitives and their semantics

– Examples: in/out/rd.. (Linda), send/receive (channels), push/pull (pipes..)

Software composition

 Objective

Linda

 Linda

 Sonia

 ACLT+ReSpecT (TuCSoN)

 Laura

 Bauhaus

Linda
 Jada

(PageSpace)

 Bonita

 Law Governed

Linda

 Tspaces

 JavaSpaces

 LIME MARS

 PoliS

 GAMMA

 HOGamma

 Structured

Gamma

 LO

 COOLL

 CLF

 IWIM (MANIFOLD)

Paradise

 Actors (AS+DIL+DCL+Sync)

 Synopsis

 Messengers

 RAPIDE

 Compositional

Programming

 CoLa

 Opus

 PCL

 Darwin/Regis

 Durra

 PICCOLA

 CSDL

 POLYLITH

 ConCoord

 Conic

 The Programmer’s Playground

 Jackal

 TOOLBUS

 UniCon

 ABLE GenVoca

 COOL

 Interaction

 Oriented

 Programming

 Infosleuth KAoS

 AgentTalk

 Ariadne/HOPLa

 PCN/Strand

 GammaLOG

 SHADE

ForumTal

k

agent oriented

Higher level agents

Concurrent/Distributed Systems

Model/Language Families (1999)

The Tuple Space model

• Coordination medium: Tuple Space

– Multiset / bag of data object/structures
called tuples

• Communication Language: tuples
– Tuple = ordered collection of (possibly

heterogeneous) information items

• Coordination Language set of
operations to put and retrieve tuples
to/from the space

Coordinables synchronise,

cooperate, compete based on

tuples available in the tuple space,

by associatively accessing,

consuming and producing tuples

A language for Tuple Spaces: Linda

• Communication Language

– Tuple, Templates (anti-tuples) and tuple matching

• Examples: p(1), printer(‘HP’,dpi(300)), my_array(0,0.5),
matrix(m0,3,3,0.5), tree_node(node00,value(13),left(_),right(node01)), …

• Coordination primitives

– out(T)

• Puts in the space the tuple T

• Examples: out(p(1)), out(printer(‘HP’,dpi(300)), out(array(1,13.4)),
out(course(‘Denti Enrico’,‘Poetry’,hours(150))…

– in(TT)

• Removes from the space a tuple matching the template TT

– Blocking behaviour

– non-determinism

• Examples: in(p(X)), in(printer(Name,dpi(300)), in(array(1,Value))…

– read(TT)

• Reads (without removing) from the space a tuple matching the template
TT

– Blocking behaviour

– Non-determinism

• Examples: read(p(1)), readd(printer(‘HP’,dpi(Dpi)),
read(array(Index,13.4)), read(course(‘Denti Enrico’,Course,_),
read(course(_,’Poetry’,Hours))…

• Generative Communication

• until explicitly withdrawn, the
tuples generated by coordinables
have an independent existence in
the tuple space. A tuple is equally
accessible to all the coordinables,
but is bound to none

• Associative access to the
tuple space

Tuple Spaces/Linda features

p(1)

out(p(1))

in(p(X))

p(1)

printer(‘HP’,dpi(300))

out(printer(‘HP’,dpi(300)))

array(1,13.3)

rd(array(1,Value))

rd(array(_,13.3))

Generative communication properties

• Communication orthogonality

– Both senders and the receivers can interact even without having prior
knowledge about each others

Space uncoupling (also called distributed naming)

Time uncoupling

• Free Naming

Support for continuation passing, Structured naming and inverse
Structured naming

- Flexibility exploiting tuple matching
- Job allocation & Reminder example (Gelernter)

 Seamless support for…

– Distributed data structures management

• Partial data structures

– All form of communication & Synchronisation

 Basic orthogonal mechanisms that can be composed flexibly to
obtain high level coordination patterns

• Some formal semantics (see Viroli seminar)

Tuple Spaces/Linda extensions

• Extending the communication language

– XML based tuples (ex: XMLSpaces)

– Java object tuples (ex: JavaSpaces)

– Logic-based tuples (ex: ReSpecT)

…

• Extending the coordination language

– adding coordination primitives:

• Non-blocking behaviour
– inp, rdp

• Inall, rdall, copy, copycollect,…

• Extending medium structure and topology

– multiple tuple spaces (ex: TuCSoN ...)

– nested spaces (ex: Bauhaus Linda)

• Extending medium behaviour

– Programmable tuple spaces (ex: ReSpecT/TuCSoN, MARS…)

– Event management (ex: JavaSpaces)

Benefits
• Ortogonality (Separation) of Coordination and

Computation Languages

– computational languages as sort of degenerate

coordination language in the form of global

variables and argument passing

– Ex: “Linda and friends”

• Linda+C, Linda+Prolog, Linda+Fortran,…

• Generality

– The same general purpose coordination language

can be used in different coordination contexts,

gluing different kind of computations

Heterogeneity

- gluing computation of heterogeneous computational

models, all in the same coordination context

Portability/Reusability

- Reusability (recycle-ability) in reusing application,

implementation, tools and heterogeneous programmer

expertise in the same coordination context

Linda

Manifold

ReSpecT

C JavaProlog
Scheme

computation

c
o

o
rd

in
a

ti
o

n

PART II - SUMMING UP

• Coordination models/languages & technologies

provide first class issues to model and develop

coordination artifacts

– Promotes the separation between computation and

coordination/interaction issues

– Several models with different expressivity

• An example: Tuple Space model and Linda language

– Shared tuple spaces as coordination artifacts

– Benefits of the generative communication

PART III

TuCSoN model and technology

TuCSoN at a glance

• Tuple Centre Spread over the Network

• From tuple spaces to tuple centres

– Programmable tuple spaces

– Programmable coordination artifacts!

• Tuple centres are distributed over the

network, collected in nodes

– Distributed coordination artifacts

TuCSoN Coordination Space

• Coordination space =

set of distributed nodes

– Each TuCSoN node is

an Internet node

• Identified by the IP

(logic) address

TuCSoN node

TuCSoN coordination space

TuCSoN Node/Context

• Each TuCSoN node defines a
coordination context,
providing an open/dynamic
set of tuple centres as
coordination artifacts

– Identified by means of a logic
name (term)

• Ex: ticket_dispenser,
mail(aricci), room(‘2.3’),…

– full tuple centre identifier:
<name>@<node>

• Ex:
mail(aricci)@myhome.org,
room(‘2.3’)@ingce.unibo.it,
ticket_dispenser@137.204.191.188,
…

TuCSoN node (coordination context)

ticket_dispenser

room(‘2.3’)
mail(aricci)

agent
tuple centre

TuCSoN Node/Context

• In order to access and

use the tuple centres of

a node, an agent must

enter the coordination

context

– Either logically or

physically (mobile

agents)
TuCSoN
coordination

contexts (nodes)

mobile

agent

generic

agent
entrance

negotiation

entrance

negotiation

Tuple Centres

• Programmable logic

tuple spaces

– Logic tuples as

communication language

• General purpose /

customizable

coordination artifacts

reaction(out(T),

 (out_r(bak(T))))

reaction(in(pp(X,Y)),(

 in_r(p(X)),in_r(p(Y)),

 out_r(pp(X,Y))))

out

out

in

rd

Tuple Centres features

• Programmable

– Tuple centre behaviour can

be programmed to enact the

desired coordination policies

– ReSpecT language as

programming language

• Programs as set of logic

tuples (reactions) specifying

medium behaviour reacting

to interaction events

– [vision] tuple centres as a

general purpose coordination

artifacts customizable by

means of the ReSpecT logic

based language

reaction(out(T),

 (out_r(bak(T))))

reaction(in(pp(X,Y)),(

 in_r(p(X)),in_r(p(Y)),

 out_r(pp(X,Y))))

specification tuples (ReSpecT lang)

Tuple Centres features

• Adaptable at runtime

– Tuple centre behaviour can

be changed/adapted

dynamically, at runtime, by

reprogramming the artifact

reaction(in(q(X),(

 no_r(q(X)),

 rd_r(p(Y)),

 out_r(q(Y))))

set_spec

Tuple Centres features

• Inspectable at runtime

– Tuple centre behaviour can

be inspected dynamically,

at runtime

reaction(in(q(X),(

 no_r(q(X)),

 rd_r(p(Y)),

 out_r(q(Y))))

get_spec

 Simple examples

Current behaviour of the tuple centre

(pseudocode):

When a tuple T is inserted, produce a
tuple backup(T)

When a tuple p(X) is inserted, update the
tuple total_tuple(N) (retrieve and

store the tuple with N incremented)…

p(1)

total_tuples(1)

p(2)

out(p(1))

total_tuples(2)
p(2)

p(1)

backup(p(1))

agent A

Tuple

Centre T

reactions execution..

in ReSpecT:

reaction(out(T),(

 out_r(backup(T)))).

reaction(out(p(X)),(

 in_r(total_tuples(N)),

 N1 is N + 1,

 out_r(total_tuples(Y1)))).

(agent operation)

 Simple examples

Tuple centre behaviour:

When an in operation is

executed with template
q(X), update the tuple

n_hits

n_hits (303)

in(q(X))

q(5)

q(5)

n_hits (303)

n_hits (303)

n_hits (304)

in ReSpecT:

reaction(in(q(X)),(

 in_r(n_hits(Y)),

 Y1 is Y + 1,

 out_r(n_hits(Y1)))).

agent A
Tuple

Centre T

TuCSoN Technology (1)

• TuCSoN API

– Virtually any hosting language

• Currently: Java, Prolog

– Support for Java and Prolog agents

– Heterogeneous hardware support:

• Currently: desktop PC, PDA (Compaq iPaq, Palm)

• In the future: LEGO, embedded computing

TuCSoN Technology (2)

• TuCSoN Service

– Booting the TuCSoN Service daemon

• The host becomes a TuCSoN node

• With current version (1.3.0):

java -cp tucson.jar alice.tucson.runtime.Node

• TuCSoN Tools

– Inspectors

• Fundamental tool to monitor tuple centre communication and coordination
state, and to debug tuple centre behaviour

• debugger for coordination artifacts

– Observing and debugging agent interaction

• With current version (1.3.0):
java -cp tucson.jar alice.tucson.ide.Inspector

– TuCSoNShell

• Shell interface for human agents

• With current version (1.3.0):

java -cp tucson.jar alice.tucson.ide.CLIAgent

PART III - SUMMING UP

• TuCSoN world

– Tuple centre as general purpose and

customizable coordination artifacts

– Coordination laws and strategy are specified

suitably forging the artifacts (programming the

tuple centres) and establishing the agent

interaction protocols in terms of exchanged tuples

• TuCSoN technology is available

PART III - NOTES (1)

TuCSoN live

<TuCSoN on the fly>

• Booting a TuCSoN node

• Using a tuple centre (as a human agent)

– TuCSoN shell tool

• Inspecting and debugging tuple centres

– TuCSoN inspector

<Development in TuCSoN>

• Building simple systems

– Experiments with the “Hello world” simple Java

agent

– Creating simple coordination among Java, human

and Prolog agents

TuCSoN in Java (1)

TuCSoN in Java (2)

TuCSoN in Java: A simple agent

TuCSoN in Prolog (tuProlog)

<TuCSoN environment overview>

• A look to the API

– Java and Prolog

• A look to infrastructure & tools deployment

• A look to some agents

<TuCSoN Internals>

• A look to the design & development

– “alice” open source project

• Tuple centre framework (alice.tuplecentre)

• tuProlog (alice.tuprolog, alice.tuprologx)

• ReSpect (alice.respect, alice.logictuple)

• TuCSoN (alice.tucson)

PART III - NOTES (2)

ReSpecT TUPLE CENTRE

model and language

Programmable Tuple Spaces

• Tuple Centres = Programmable Tuple Spaces
– The behaviour of the medium in response to communication events

is no longer fixed once and for all by the model, but can be defined
according to the required coordination policies

• Coordination laws no longer fixed, but specified/programmed according
to the coordination need

– The medium behaviour is enriched in terms of state transitions
(reactions) performed in response to the occurrence of standard
communication events (ex: insertion of a tuple, retrieve of a tuple,…)

– Tuple centres as general purpose reactive associate blackboards

• Same standard tuple space interface…

– entities perceive the tuple centre as a standard tuple space

• …but can behave in a very different way with respect to a tuple
space, since its behaviour can be specified so as to encapsulate
the coordination rules governing the interaction

Tuple Centre behaviour: reactions

• More formally, tuple centres enhance tuple spaces with with behaviour
specification, defining tuple centre behaviour in response to
communication events

– Communication events examples: the tuple T has been inserted in the
space, an in operation been beformed with template TT,…

• Behaviour specification is expressed in terms of a reaction
specification language, and associates any communication event
possibly occurring in the tuple centre to a (possibily) empty set of
computational activities called reactions

• Reactions act on the communication/coordination state

– Can access and modify the current tuple centre state

• adding, removing, reading tuples…

– Can access all the information related to the triggering communication
event

• The operation related generating communication events, the entity identity
performing the operations,…

Tuple Centre dynamics

• Multiple reactions in one shot
– Each communication event may trigger a multeplicity of reactions

which are executed locally to the tuple centre

• Super-imposing tuple space behaviour
– When a communication event occurs, a tuple centre first behaves

like a standard tuple space, then executes all the triggered
reactions before serving any other entity-triggered communication
event and any other coordination primitives invocation

– A tuple centre with empty behaviour = a tuple space

• Atomicity
– The observable behaviour of a tuple centre in response to a

communication event is still perceived by coordinable as a single-
step/atomic state transition of the medium, as in the case of tuple
spaces

• Reactions are not observable by coordinables

The ReSpecT language
• ReSpecT is a language for the specification of the behaviour of tuple

centres

– Logic tuples as communication language

• based of first-order logic, where a tuple is a fact

• Unification as tuple matching mechanism

– Examples: p(1,_) and p(1,2) match, p(X,X,1) and p(1,Y,Z) match, p(X,X) and p(1,2)
don’t match…

• Reactions defined through logic tuples too

– A specification tuple reaction(Op,R) associates the event

generated by the incoming communication operation Op to the reaction
R. Example:

reaction(out(p(1)), …)

– A reaction is defined a sequence of reaction goals, which may access
properties of the occurred communication event, perform simple term
operations, manipulate tuples in the tuple centre. Examples:
reaction(out(T), (out_r(backup(T)))).

reaction(out(p(X)), (in_r(total_tuples(N)), N1 is N + 1,

 out_r(total_tuples(N1)))).

reaction(in(q(X)), (no_r(q(_)), out_r(q(5)))).

ReSpecT primitives

The ReSpecT language

• Reaction goals are executed sequentially

– Reaction goals can trigger new reactions

• Reacting on out_r, in_r, rd_r, no_r primitives..

• Success/failure semantics of each reaction execution

– A reaction as a whole is either a successful or failed reaction if all its

reaction goals succeed or not

– Transactional semantics

• a successfull reaction can atomically modify the tuple centre state, a failed

yelds no results at all

• The execution order of (possibly) multiple triggered reactions is not

deterministic

• All the reactions triggered by a given communication event are

executed before serving any other communication event

– Coordinables perceive only the final result of the execution of the

communication event and the set of all the triggered reactions

Facts about ReSpecT

• Turing equivalent language
– Powerful enough to express any computation/algorithm

acting on the interaction space

General purpose enaugh to support the specification of any
compuatble coordination policies

Expressivity issues (see Viroli seminar)

• Formal semantics (see Viroli seminar)
– Fundamental to understand coordination activities

– The basis for supporting formal analysis and reasoning
about interaction dynamics

PART III - NOTES (2)

Some coordination patterns

developed using

Linda and TuCSoN

Some coordination patterns in

Linda & TuCSoN (ReSpecT)

• Basic coordination
– Communication & Interoperability

• Managing information flow

– Basic Synchronisation

• Managing temporal dependencies

– Basic Resource sharing / allocation

• Task allocation

• More articulated coordination
– Workflow Management

– Transactions

– Event-based Patterns

• Notifications

• Publish/Subscribe …

Enabling communication (1)

out(msg(agentB,content(‘test’,13)))

SENDER:

in(msg(agentB,Info))

RECEIVER (called agentB):

• Message Passing

Enabling communication (2)

…

out(compute_sum(5,8,me))

in(compute_sum_result(me,Value)

…

SERVICE USER:

in(compute_sum(X,Y,Who))

Sum X + Y

out(compute_sum_result(Who,Sum))

SERVICE PROVIDER

• RPC style

Enabling interoperability

…

out(compute_sum(5,8,me))

in(compute_sum_result(me,Value)

…

SERVICE USER:

in(make_sum(term(X,Y)))

Sum X + Y

out(sum_result(X,Y,Sum))

SERVICE PROVIDER

• Mediating different ontologies

SERVICE MEDIATOR

in(compute_sum(X,Y,Who))

out(service_requested(sum(X,Y),Who))

in(sum_result(X,Y,Sum))

in(service_requested(sum(X,Y),Who))

out(compute_sum_result(Who,Sum))

Good, but
-the mediation as a coordination

activity is charged upon an entity

(the service mediator), not upon

the medium

(Conceptual mismatch

engineering drawbacks)

Interoperability in TuCSoN

…

out(compute_sum(5,8,me))

in(compute_sum_result(me,Value)

…

SERVICE USER:

in(make_sum(term(X,Y)))

Sum X + Y

out(sum_result(X,Y,Sum))

SERVICE PROVIDER

• Ontology mediation charged upon the medium

reaction(out(compute_sum(X,Y,Who)),(

 in_r(compute_sum(X,Y,Who)),

 out_r(service_requested(sum(X,Y),Who)),

 out_r(make_sum(term(X,Y)))).

reaction(out(sum_result(X,Y,Sum)),(

 in_r(sum_result(X,Y,Sum)),

 in_r(service_requested(sum(X,Y),Who)),

 out_r(compute_sum_result(Who,Sum)))).

MEDIATION POLICY in ReSpecT
SERVICE MEDIATOR

in(compute_sum(X,Y,Who))

out(service_requested(sum(X,Y),Who))

in(sum_result(X,Y,Sum))

in(service_requested(sum(X,Y),Who))

uut(compute_sum_result(Who,Sum))

…

out(compute_sum(5,8,me))

in(compute_sum_result(me,Value)

…

SERVICE USER:

in(make_sum(term(X,Y)))

Sum X + Y

out(sum_result(X,Y,Sum))

SERVICE PROVIDER

TuCSoN StyleLinda Style

Basic synchronisation (1)

<outside sync region>
…

in(token)

<inside sync region>
out(token)

…

<outside sync region>
…

Synchronised agent:

• Synchronisation

To have synchronised region

allowing N users inside
 N tuples token

HYPOTHESIS:
Initial space content with the tuple token

Basic synchronisation (2)

…

<before barrier>
…
out(reay(agentA))

rd(ready(agentB))

<agents A and B

are now synchronised>

Agent A:

• Barrier Synchronisation

…

<before barrier>
…
out(ready(agentB))

rd(ready(agentA))

<agents B and A

are now synchronised>

Agent B:

Basic synchronisation (3)

…

out(ready(agentA))

rd(ready(agentB))

rd(ready(agentC))

…

Agent A:

• Barrier Synchronisation with 3+ entities

…

out(ready(agentB))

rd(ready(agentA))

rd(ready(agentC))

…

Agent B:

…
out(ready(agentC))

rd(ready(agentA))

rd(ready(agentB))

…

Agent C:
Good, but
-Adding an agent changing the

behaviour of all the other agents

-Every agent must be aware of all

the other ones

Barrier synchronisation in TuCSoN

…

out(ready)

rd(ready_all)

…

ANY agent:

• Encapsulating the barrier synchronisation policy

reaction(out(ready),(in_r(ready),

 in_r(ready_entities(N)), N1 is N+1,

 out_r(ready_entities(N1)))).

reaction(out_r(ready_entities(N)),(

 rd_r(barrier_size(N)), out_r(ready_all))).

BASIC BARRIER SYNCHRONISATION in ReSpecT

HYPOTHESIS:
- Initial space content with ready_entities(0)

- barrier_size(N) tuple to specify number of

coordinables to be synchronised

…

out(ready(agentA))

rd(ready(agentB))

rd(ready(agentC))

…

Agent A:

…

out(ready(agentB))

rd(ready(agentA))

rd(ready(agentC))

…

Agent B:

…
out(ready(agentC))

rd(ready(agentA))

rd(ready(agentB))

…

Agent C:

Linda Style TuCSoN Style

Resource sharing/allocation

• A dynamic/open set of agents accessing the

same resource (ex: a printer) according to a

coordination policy (ex: First Come First Served)

…

in(next_ticket(T))

T1 T + 1

out(next_ticket(T1))

in(turn(T))

 <use the resource>
out(turn(T1)

…

Each user agent:

HYPOTHESIS: Initial space content

includes the tuples:
 next_ticket(0)

turn(0)

Good, but
-Changing the coordination policy

 changing all the other entities

-Malicious/Failing agents?

Resource sharing/allocation

in TuCSoN (I)
• Encapsulating the sharing policy

– Scale down complexity to a synchronisation problem

…

in(next_ticket(T))

T1 T + 1

out(next_ticket(T1))

in(turn(T))

 <use the resource>
out(turn(T1)

…

Each user agent:

…

in(resource_token(<my name>))

<use the resource>
out(resource_token(<my name>))

…

EACH USER:

reaction(in(resource_token(Who)),(pre,

 in_r(tickets(N)), N1 is N + 1,

 out_r(tickets(N1)),

 out_r(turn(Who,N)))).

reaction(out_r(turn(Who,N)),(

 rd_r(current_turn(N)),

 out_r(resource_token(Who)))).

reaction(out(resource_token(Who)),(

 in_r(resource_token(Who)),in_r(turn(Who,N)),

 in_r(current_turn(N)), N1 is N+1,

 out_r(current_turn(N1)))).

SHARING COORDINATION LAWS in ReSpecT:

Linda Style

TuCSoN Style

Resource sharing/allocation

in TuCSoN (II)
• Changing/adapting the sharing policy

– From FIFO strategy to LIFO strategy

…

in(resource_token(<my name>))

<use the resource>
out(resource_token(<my name>))

…

Each user agent:

reaction(in(resource_token(Who)),(pre,

 in_r(last(N)), N1 is N + 1,

 out_r(last(N1)),

 out_r(heap(Who,N1)),

 out_r(check))).

…

LIFO SHARING POLICY:

unchanged

aehaviour for

agents

changing only

the glue code

Task allocation

• Task allocation to an open set of workers, with

task request provided by an open set of masters,

according to some policy

– MP3 Service Case Study: building a distributed

Internet-based MP3 encoding service

• masters request WAV MP3 conversion

• workers provide the conversion

• service provision policy: FIFO

– possibly dynamically/adaptable

from the articles “Make Room for

JavaSpaces” by Susan Hupfer – Java World

electronic magazine, Jiniology Serie

Also in the book:

“Java Spaces: Principle and Patterns” AW.

M

M

W

W

M

W

Task allocation: Linda approach

while (true) {

 acquireFromGUI(FileName)

 readRawData(FileName,RawData)

 in(tail(T))

 T1 T + 1

 out(tail(T1))

 out(mp3request(T1,FileName,

 RawData,myId))

 in(mp3result(FileName,

 ResultData,myId))

}

MP3 REQUESTER (master) MP3 CONVERTER (worker)

while (true) {

 rd(tail(T))

 in(head(H))

 if (T<H){

 out(head(H))

 } else {

H1 H + 1

 out(head(H1))

 in(mp3request(H,FileName,Data,

 FromWho))

 MP3Data from_raw_to_data(Data)

 out(mp3result(FileName,

 MP3Data,FromWho))

 }

}

good, but the coordination burden is almost

upon the coordinables

-changing policy changing coordinables
-…

Task allocation:

TuCSoN approach

while (true) {

 acquireFromGUI(FileName)

 readRawData(FileName,RawData)

 out(mp3request(FileName,RawData,myId))

 in(mp3result(FileName,ResultData,myId))

}

while (true) {

 in(mp3request(FileName,Data,FromWho))

 MP3Data from_raw_to_data(Data)

 out(mp3result(FileName,MP3Data,FromWho))

}

reaction(out(request(_,_,_)),(

 rd_r(workers_available(N)),

 N>0)).

reaction(out(request(Name,Data,From)),(

 rd_r(workers_available(N)),

 N == 0,

 in_r(tail(T)), T1 is T + 1, out_r(tail(T1)),

 in_r(request(Name,Data,From)),

 out_r(req_queue(T1,Name,Data,From)))).

reaction(in(request(Name,Data,From)),(pre,

 rd_r(head(H)),rd_r(tail(T)),

 T < H)).

reaction(in(request(Name,Data,From)),(pre,

 in_r(head(H)), rd_r(tail(T)),

 T >= H,

 H1 is H + 1, out_r(head(H1)),

 in_r(req_queue(H,N1,D1,F1)),

 out_r(request(N1,D1,F1)))).

reaction(in(request(_,_,_)),(pre,

 in_r(workers_available(N)),

 N1 is N + 1,out_r(workers_available(N1)))).

reaction(in(request(_,_,_)),(post,

 in_r(workers_available(N)),

 N1 is N - 1, out_r(workers_available(N1)))).

MP3 REQUESTER (master) MP3 REQUESTER (worker)

FIFO TASK ALLOCATION POLICY in ReSpecT

PART IV

Using TuCSoN for your projects

[discussion]

APPENDIX

Selected Bibliography & References

Selected bibliography (1)
• Interaction

– Why Interaction is more powerful that algorithms (Wegner) –
Communication of ACM, Vol. 40, No. 5, May 1997

– Interactive Foundation of Computing (Wegner) – Theoretical
Computer Science, Vol. 192, No. 2, February 1998

• Coordination Overview & Surveys
• Coordination Languages and their Significance (Gelernter, Carriero) –

Communication of ACM, Vol. 33, No. 2, February 1992

• Coordination Models and Languages as Software Integrators
(Ciancarini) – ACM Computing Surveys, Vol. 28, No. 2, June 1996

• Programmable Coordination Media (Denti, Natali, Omicini) – 2nd
International Conference (COORDINATION ‘97), Proceedings, LNCS
1282, Springer-Verlag, 1997

• Coordination Models and Languages (Arbab, Papadopoulos) –
Advances in Computers, Vol. 46, Academic Press, August 1998

• The Interdisciplinary Study of Coordination (Malone, Crostow) – ACM
Computing Surveys, Vol. 26, No. 1, March 1994

Selected bibliography (2)
• Coordination Models/Languages/Infrastructures and TuCSoN

– Tuple Spaces & Linda

• Generative Communication in Linda (Gelernter) – ACM
Transactions on Programming Languages and Systems, Vol.
7, No. 1, January 1985

– Tuple Centre & ReSpecT

• On the Expressive Power of a Language for Programming
Coordination Media (Denti, Natali, Omicini), 1998 ACM Symposium on
Applied Computing (SAC), 1998

• From Tuple Spaces to Tuple Centres (Omicini, Denti) – Science of
Computer Programming, No. 41, 2001

• Formal ReSpecT (Omicini, Denti) – Electronic Notes in Theoretical
Computer Science, No. 48, 2001

– TuCSoN

• <http://www.lia.deis.unibo.it/Staff/AndreaOmicini publication section>

• Several other works can be found at the articles page of the web sites:
– http://www.lia.deis.unibo.it/Staff/EnricoDenti

– http://www.lia.deis.unibo.it/Staff/AndreaOmicini

– http://www.lia.deis.unibo.it/Staff/AlessandroRicci

References

my email address: aricci@deis.unibo.it

• For questions, explorations, ideas, articles & technology requests

– Development issues

• using Java, Prolog, C, C++, C# with TuCSoN

• For thesis about coordination technologies

– Porting TuCSoN everywhere :)

– Infrastructure and System development issues

• Representing and Coordinating real world services in the TuCSoN world

(CSCW services (email, FTP,…), Web Services, …)

• Pervasive computing and Intelligent environments

– accessing to TuCSoN coordination contexts from mobile devices (PDA, Cellular

phones, LEGO)

(DEIS research group:

Enrico Denti, Gianluca Moro, Antonio Natali, Andrea Omicini,

Alessandro Ricci, Mirko Viroli)

Among the available thesis...

• Context: Coordination for pervasive computing and
intelligent environments
– TuVoC

• Design & development of a vocal service for TuCSoN
coordination contexts

– TuQu

• Design & development of a SQL service for TuCSoN
coordination contexts

– TuCStorm

• Porting TuCSoN on LEGO RCX

<end>

