
1

Agent-Oriented

Software Engineering

Franco Zambonelli

February 2005

2

Outline

Part 1: What is Agent-Oriented Software
Engineering (AOSE)

Why it is important
Key concepts.

Part 2: Agent-methodologies
Key Concepts
The Gaia Methodology
Case Study

Part 3: Implementing agents
Intra-agent vs. inter-agent issues
Multiagent infrastructures

Part 4: Conclusions and Open Research
directions.

3

Part 1

What is Agent-Oriented Software

Engineering

4

What is Software Engineering

Software is pervasive and critical:
It cannot be built without a disciplined,
engineered, approach

There is a need to model and engineer both:
The development process:

Controllable, well documented, and reproducible
ways of producing software;

The software:
Well-defined quality level (e.g., % of errors and
performances);
Enabling reuse and maintenance.

Requires:
Methodologies Abstractions, and tools.

5

Software Engineering

Abstractions

Software deals with “abstract” entities,
having a real-world counterpart:

Numbers, dates, names, persons, documents ...

In what terms should we model them in
software?

Data, functions, objects, agents …

I.e., what are the ABSTRACTIONS that we have
to use to model software?

May depend on the available technologies!
Use OO abstractions for OO programming envs.;

Not necessarily: use OO abstractions because they
are better, even for COBOL programming envs.

6

Methodologies

A methodology for software development:

Is intended to give discipline to software
development.

Defines the abstractions to use to model software:

Data-oriented methodologies, object-oriented

ones …

Define the MINDSET of the methodology.

Disciplines the software process:

What to produce and when;

Which artifacts to produce.

7

The Classical “Cascade” Process

The phases of software development:
Independent of programming paradigm;
Methodologies are typically organized around this
classical process.

Inputs, outputs, internal activities of “phases”

ANALYSIS

DESIGN

DEVELOPMENT

TEST

MAINTENANCE

8

Tools

Notation tools:
To represent the outcomes of the software
development phases:

Diagrams, equations, figures …

Formal models:
To prove properties of software prior to
development

Lambda and pi calculus, UNITY, Petri-nets, Z ….

CASE (Computer Aided Software
Engineering) tools:

Based on notations and models, to facilitate
activities:

Simulators, rapid prototyping, code generators.

9

Example: Object-oriented

Software Engineering (OOSE)

Abstractions:

Objects, classes, inheritance, services.

Methodologies:

Object-oriented analysis and design, RUP, OPEN,
etc..;

Centered around the object-oriented abstractions.

Tools (Modeling Techniques):

UML (standard), E-R, class lattices, finite state
automata, visual languages …

10

Why Agent-Oriented Software

Engineering?

Software engineering is necessary to
discipline:

Software systems and software processes;
Any approach relies on a set of abstractions and
on related methodologies and tools

Agent-based computing:
Introduces novel abstractions

Requires clarifying the set of necessary
abstractions
Requires adapting methodologies and producing
new tools

Novel, specific agent-oriented software
engineering approaches are needed!

11

What are Agents?

There has been some debate
On what an agent is, and what could be
appropriately called an agent

Two main viewpoints (centered on different
perspectives on autonomy):

The (strong) Artificial Intelligence viewpoint:

An agent must be, proactive, intelligent, and it
must converse instead of doing client-server
computing

The (weak) Software Engineering Viewpoint

An agent is a software component with internal
(either reactive or proactive) threads of
execution, and that can be engaged in complex
and stateful interactions protocols

12

What are Multiagent Systems?

Again….

The (strong) artificial intelligence viewpoint

A multiagent system is a society of individuals

(AI software agents) that interact by exchanging
knowledge and by negotiating with each other to
achieve either their own interest or some global

goal

The (weak) software engineering viewpoint

A multiagent system is a software systems made
up of multiple independent and encapsulated loci

of control (i.e., the agents) interacting with each
other in the context of a specific application
viewpoint….

13

The SE Viewpoint on Agent-

oriented Computing
We commit to it because:

It focuses on the characteristics of agents that
have impact on software development

Concurrency, interaction, multiple loci of control

Intelligence can be seen as a peculiar form of
control independence; conversations as a
peculiar form of interaction

It is much more general:

Does not exclude the strong AI viewpoint

Several software systems, even if never
conceived as agents-based one, can be indeed
characterised in terms of weak multi-agent
systems

Let’s better characterize the SE perspective
on agents…

14

SE Implications of Agent

Characteristics

Autonomy
Control encapsulation as a dimension of modularity
Conceptually simpler to tackle than a single (or multiple
inter-dependent) locus of control

Situatedness
Clear separation of concerns between:

the active computational parts of the system (the agents)
the resources of the environment

Sociality
Not a single characterising protocol of interaction (e.g.,
client-server)
Interaction protocols as an additional SE dimension

Openness
Controlling self-interested agents, malicious behaviors,
and badly programmed agents
Dynamic re-organization of software architecture

Mobility and Locality
Additional dimension of autonomous behavior
Improve locality in interactions

15

MAS vs. OOSE Characterisation

Environment

Agent Agent

Agent
Agent

Agent

Society of Agents (Multiagent Architecture)

High-level Dynamic

Interactions between

Agents

Interactions

with the

Environment

Object
(component)

Functional

Dependencies

Between

Objects/Components

Object
(component)

Object
(component)

Object
(component)

Object
(component)

Object
(component)

Object
(component)

Traditional Software Architecture

16

Agent-Oriented Abstractions

The development of a multiagent system
should fruitfully exploit abstractions coherent
with the above characterization:

Agents, autonomous entities, independent loci of
control, situated in an environment, interacting with
each other
Environment, the world of resources agents perceive
Interaction protocols, as the acts of interactions
between agents

In addition, there may be the need of
abstracting:

The local context where an agent lives (e.g., a sub-
organization of agents) to handle mobility & opennes

Such abstractions translates into concrete
entities of the software system

17

Agent-Oriented Methodologies

There is need for SE methodologies
Centered around specific agent-oriented abstractions

E.g., Agents, environments, interaction protocols

The adoption of OO methodologies would produce
mismatches

Classes, objects, client-servers: little to do with
agents!

Each methodology may introduce further
abstractions

Around which to model software and to organize the
software process

E.g., roles, organizations, responsibilities, beliefs,
desires and intentions…

Not directly translating into concrete entities of the
software system

E.g. the concept of role is an aspect of an agent, not
an agent 18

Agent-Oriented Tools

SE requires tools to
represent software

E.g., interaction diagrams, E-R diagrams,
etc.

verify properties
E.g., petri nets, formal notations, etc.

AOSE requires
Specific agent-oriented tools

E.g., UML per se is not suitable to model
agent systems and their interactions (object-
oriented abstractions not agent-oriented
ones)

19

Why Agents and Multiagent

Systems?

Other lectures may have already outlined
the advantages of (intelligent) agents and
of multiagent systems, and their possible
applications

Autonomy for delegation (do work on our behalf)
Monitor our environments
More efficient interaction and resource
management

Here, we state that
Agent-based computing, and the
abstractions it uses, represent a new and
general-purpose software engineering
paradigm!

20

There is much more to agent-

oriented software engineering

AOSE is not only for “agent systems.”
Most of today’s software systems have
characteristics that are very similar to those of
agents and multiagent systems

The agent abstractions, the methodologies, and
the tools of AOSE suit such software systems

AOSE is suitable for a wide class of
scenarios and applications!

Agents’ “artificial Intelligence” features may be
important but are not central

But of course…
AOSE may sometimes be too “high-level” for
simple complex systems…

21

Agents and Multiagent Systems

are (Virtually) Everywhere!

Examples of components that can be
modelled (and observed) in terms of
agents:

Autonomous network processes;
Computing-based sensors;
PDAs;
Robots.

Example of software systems that can be
modelled as multiagent systems:

Internet applications;
P2P systems;
Sensor networks;
Pervasive computing systems.

22

Summarizing

A software engineering paradigm defines:
The mindset, the set of abstractions to be used in
software development and, consequently,

Methodologies and tools

The range of applicability

Agent-oriented software engineering defines
Abstractions of agents, environment, interaction
protocols, context

Of course, also specific methodologies and tools
(in the following of the tutorial)

Appears to be applicable to a very wide rage of
distributed computing applications….

23

Part 2

Agent-oriented Methodologies

The Gaia Methodology

24

What is a methodology ?

1: a body of methods, rules, and postulates employed
by a discipline: a particular procedure or set of
procedures

2 : the analysis of the principles or procedures of
inquiry in a particular field

 (Merriam-Webster)

To evaluate a methodology, we need to recall what a

methodology is:

•But when referring to software:
•A methodology is the set of guidelines for
covering the whole lifecycle of system

development both technically and
managerially.

25

Agent-oriented Methodologies

They have the goal of

Guiding in the process of developing a multiagent systems

Starting from collection of requirements, to analisys, to design,

and possibly to implementation

An agent-oriented methodology defines the abstractions to
use to model software:

Typically, agents, environments, protocols..

Plus additional methodology-specific abstractions

And disciplines the software process:

What models and artifacts to produce and when
Model: an abstract representation of some aspect of interest of the
software
Artifact: documents describing the characteristic of the software

26

Agent-oriented Methodologies

A Variety of Methodology exists and have been
proposed so far

Gaia (Zambonelli, Jennings, Wooldridge)

Prometeus (Winikoff and Pagdam)

SODA (Omicini)

ADELFE (Gleizes)

Etc.

Exploiting abstractions that made them more suited
to specific scenarios or to others..

We focus on Gaia because is the reference one (i.e.,
the one any new proposal compares to) and the more
general one

Ok, I am not an impartial judge…

27

The Gaia Methodology

It is “THE” AOSE Methodology
Firstly proposed by Jennings and Wooldridge in
1999
Extended and modified by Zambonelli in 2000
Final Stable Version in 2003 by Zambonelli,
Jennings, Wooldridge
Many other researchers are working towards
further extensions…

Key Goals
Starting from the requirements (what one
wants a software system to do)
Guide developers to a well-defined design for
the multiagent system
The programmers can easily implement
Able to model and deal with the characteristics
of complex and open multiagent systems 28

Key Characteristics of Gaia

Exploits organizational abstractions
Conceive a multiagent systems as an
organization of individual, each of which
playing specific roles in that organization

And interacting accordingly to its role

Introduces a clear set of abstractions
Roles, organizational rules, organizational
structures

Useful to understand and model complex and
open multiagent systems

Abstract from implementation issues

29

Structure of

Gaia Process

Preliminary

Role Model

Preliminary

Interaction Model

Environmental

Model

Requirements

Organizational

Rules

Organizational

Patterns

Organizational Structure

Interaction Model Role Model

Services Model Agent Model

IMPLEMENTATION

ARCHITECTURAL

DESIGN

ANALYSIS

COLLECTION OF

REQUIREMENTS

GAIA

SCOPE

Subdivide System into

Sub-organizations

DETAILED

DESIGN

30

A Case Study:

Distributed Project Review

The ministry for research publish a call for
funding research

Scientists must “submit” a research proposal, e.g.,
in the form of a scientific article (paper)

A number of scientists (called reviewers or
referees”) review the papers and give marks

It has to complete a document called “review form”

To ensure fairness, the reviewers must be
anonymous, expert, and must be willing to do the
review,
Also, each project should receive a minimum
number of review from different scientists

Eventually, all accepted project/papers will sign a
contract, will receive the funds, and will publish
the results on a book

31

The Case Study: Why Agents?

It is a typical case of distributed
workflow management

There are actions to do on common documents
According to specific rules

Each of the human actors involved in the
process

Could be supported by a personal agents
Helping him to submit documents, filling in,
respect deadlines, etc.

Let’s see how we could develop this
using the Gaia methodology..

32

Gaia Analysis (1)

Once we know what the problem to solve is
First: Sub-organizations

See if it can easily conceived as a set of loosely
interacting problems

To be devoted to different sub-organization

And let’s focus on the different sub-organizations
“Divide et impera”

Second: Environment
Analyze the operational environment
See how it can be modeled in terms of an agent
environment

Resources to be accessed and how
So as to obtain an “environmental” model

33

Case Study Analisys (1)

First: Sub-organizations
There are clearly different organizations in
time

The submission of paper,

The review of paper

The Contractual phase for accepted ones

Second: Environment
The environment is clearly a computational
environment of digital resources

Filled in with papers and review forms

And possible with “user profiles” describing
the attitudes, expertises, and possibly the
conflicts of interest of scientists

34

Gaia Analysis (2)

Third: Roles
See what “roles” must be played in the organization

A role defines a “responsibility” center in the
organization, with a set of expected behaviors

So that its goals can be achieved
Defines the attributes and the responsibility of each
role, reasoning in terms of “sub-goals”

So as to define the “role model”, i.e., the list
specifying the characteristics of the various roles

Fourth: Protocols
See how roles must interact with each other so as to
fulfill expectations

Analyze these interaction protocols
So as to define an “interaction model”, i.e., the list
specifying the characteristics of the various protocols

35

Case Study Analysis (2)

Third: Roles
There are clearly such roles such as

“chair” (who received submissions and control the
review process)
“author” (who send submissions)
“reviewer” (who receive papers to review and send
back review forms)

Each with different permissions related to the
environment (e.g., authors cannot access review
forms) and with different responsibilities (reviewers
must fill in the review form in due time)

Fourth: Protocols
Protocols can be easily identified

“submit paper FROM author TO chair”
“send paper to review FROM chair TO”
Etc.

36

 Gaia Analysis (3)

Fifth: Organizational Rules
Analyze what “global” rules exists in the system
that should rule all the interactions and the
behavior between roles

These defines sorts of “social rules” or “laws” to be
enacted in the organization

The list of all identified rules, that we call
“organizational rules”, define the last model of the
analysis

37

Case Study Analysis (3)

Fifth: Organizational Rules
The process should clearly occur according to some
rules ensuring fairness of the process

An author should not also act as reviewer for his
own projects, or for those of his “friends”
A reviewer should not give two review for the same
project
Each project should receive the same minimal
number of review

And other you may think of…

38

Gaia Analysys:

Graphical Representation of Models

Environment

Roles

Interactions

Organizational Rules

Input:
Paper info

CheckAuctionSite

Manager AuctionSite
Manager

Connect to the auction site
for auction status and

information

Protocol Name:
Receive Paper

Initiator: ??
(PC Chair or PC Member)

Partner:
Reviewer

Description: When a paper has to be

assigned to a reviewer it (by someone

undefined at this stage) it will be

proposed by sending paper info to one of

the potential reviewer

Output:
No, don’t review
OR
Yes, I review it, send

me the full paper

Place 3 Place 2 Place 1

Paper A

attributes

Paper B

attributes

Review form
C

attributes

39

From Analysis to Design

Once all the analysis model are in place
We can start reasoning at how organizing them into
a concrete architecture

An “agent architecture” in Gaia is
A full specification of the structure of the
organization

With full specifications on all the roles involved

With full specification on all interaction involved

It is important to note that in Gaia
Role and Interaction models are “preliminar”

They cannot be completed without choosing the final
structure of the organization

Defining all patterns of interactions
Introducing further “organizational” roles
Arranging the structure so that the organizational
rules are properly enacted

40

From Analysis to Design

in the Case Study

The final organizational of the review
process may imply

Multi-level hierarchies to select papers (if there
are a lot of submissions the “chair” must be
supported by “co-chairs”)
A Negotiation process to select reviewers (it is
a difficult process, and agent could help in that
to march papers with appropriate reviewers)
A structure that avoid cheating (where an
authors is somehow allowed to act as reviewer
of its own project)

Then, it is clear that the analysis could
not have determines the final structure
and a definitive listing of roles and
protocols

41

Gaia Architecture Design (1)

Aimed at determining the final
architecture of the system
The architecture, i.e., the organizational
structure consists in

The topology of interaction of all roles
involved

Hierarchies, Collectives, Multilevel…
Which roles interact with which

The “control regime” of interactions
What type of interactions? Why?

Control interactions, Work partitioning, work
specialization, negotiations, open markets,
etc.

42

Case Study: Possible Organizational

Structures

Reviewer

PC Chair Agent

(assign reviews to

reviewers)

Data Repository (e.g., Web sites)

With Papers and Review Forms

Paper X

Review
Paper Z

Review

Paper Y

Review Paper Z

Paper Y

Paper X

Reviewer) Reviewer

Paper Assignments

PC Chair Agent

(partition papers

among PC Members)

Data Repository (e.g., Web sites)

With Papers and Review Forms

Paper X

Review
Paper Z

Review

Paper Y

Review Paper Z

Paper Y

Paper X

PC Member Agent
(assign reviews and negotiate

assigned paper with PC

members)

Reviewer

Agent

PC Member Agent
(assign reviews and negotiate

assigned paper with PC

members)

PC Member Agent
(assign reviews and negotiate

assigned paper with PC

members)

Reviewer

Agent
Reviewer

Agent

Reviewer

Agent

Bidding for

Reviews

Paper

Assignment

43

Gaia Architecture Design (2)

What “forces” determines/influence the
organizational structure?

Simplicity
Simple structures are always preferable

The Real-World organization
Trying to mimic the real-world organization
minimizes conceptual complexity

Complexity of the problem

Calls for distributed structures, with many
components involved

The need to enact organizational rules with small
effort

Calls for exploiting negotiations as much as possible,

Also to deal with open systems,

44

Choosing the Organizational Structure

Organizational

Rules

Computation &

Coordination

Complexity

Simplicity

Topology

Control

Regime

Structure of the

Real World

Organization

Design

Choice

Complex
Composite
Topology

Multilevel
Hierarchy

Hierarchy

Collective
Of Peers

Centralized Work
Partitioning

Work
Specialization

Market-based
Models

…

45

Gaia Architecture Design (3)

It is important to note that in the
definition of the organizational structure

This can be composed from a set of known
“organizational patterns”

So that previous experiences can be re-used

Once the organizational structure is
decided

Complete the role model

Additional roles may have been introduced due
to the specific structure chosen

Complete the interaction model
To account for all interactions between all roles
in a detailed way

46

Gaia Detailed Design

Devoted to transform “roles” and “interaction
protocols” into more concrete components, easy to
be implemented
Roles becomes agents

With internal knowledge, a context, internal activities,
and services to be provided

Sometimes, it is possibly thinking at compacting the
execution of several roles into a single agent

Clearly, we can define “agent classes” and see what
and how many instances for these classes must be
created

Interaction protocols becomes sequence of
messages

To be exchanged between specific agents
Having specific content and ontologies

And the final specifications go to the programmers…

47

About Gaia Notations

Gaia adopt a custom notation for its
models

However, Gaia does not prescribe this

Any other graphical or textual notations (e.g.
UML or whatever) can be used or can
complement the Gaia one

48

Part 3:

Implementation Issues and Multiagent
Infrastructures

49

Issues in Implementing

Agents and Multiagent Systems

How can we move from agent-based design
to concrete agent code?

Methodologies should abstract from:
Internal agent architecture

Communication architecture

Implementation tools

However, depending on tools the effort from
design to implementation changes:

It depends on how much abstractions are close to
the abstractions of agent-oriented design

The methodology could strongly invite to exploit a
specific infrastructure

50

Intra-agent Issues:

Implementing Agents

We have two main categories of tools to
implement agents:

Object-oriented tools: are very much related to
the object-oriented approach, e.g., Aglet;

BDI toolkits: are based on the BDI model (e.g.,
Jade).

The choice of the tool to adopt is hard and
there is no general answer:

Performances;

Maintenance;

… and many other issues.

We have already discussed about Aglets and
JADE agent implementation models, so we
skip them now…

51

Inter-agent Issues:

Implementing Multiagent Systems

Inter-agent implementation aspects are

orthogonal to intra-agent ones

Given a set of agents

With internal architecture

With specified interaction patterns

How can we glue them together?

Letting agents know each other

How to enable interactions?

Promoting spontaneous interoperability

How to rule interactions?

Preventing malicious or self-interested

behaviours?

52

Multiagent Infrastructures

Enabling and ruling interactions is mostly a
matter of the infrastructure

The “middleware” layer supporting
communication and coordination activities

Not simply a passive layer

But a layer of communication and coordination
middleware “services”

Actively supporting the execution of interaction
protocols

Providing for helping agents move in unknown
worlds

Providing for proactively controlling, and possibly
influencing interactions

53

Communication vs. Coordination

Infrastructures

Communication Infrastructures
Middleware layer mainly devoted to provide
communication facilities

Routing messages, facilitators, etc.

FIPA defines a communication infrastructure

Communication enabling

Coordination Infrastructure
Middleware layer mainly devoted to orchestrate
interactions

Synchronization, and constraints on interactions

MARS and Tucson are coordination infrastructures

Activities ruling

54

Communication Infrastructure

Agent in a MAS have to interact with each
other, requiring

Finding other agents

Directory services in the infrastructure keep
track of which agents are around, and what are
their characteristics (e.g., services provided)

Re-routing message

Facilitator agents (parts of the infrastructure)
can

receive messages to be delivered to agents with
specific characteristics, and re-route them

Control on ACL protocols

The execution of a single protocol can be
controlled in terms of a finite state machine

55

FIPA Specifications

for Communication Infrastructures

The Foundation for Intelligent Physical Agents
Specifies STANDARDS for multiagent infrastructures

to interoperate and be managed

Formally specified ACL
Specifies encoding, semantics, and pragmatics of messages

Includes: mobility, security, ontology, Human-Agent
comm.

FIPA reference architecture (see below)

Message Transport System

Agent
Management

System

Directory

Facilitator
(yellow pages,

Naming service)

Agent Platform

Agent life-cycle

Agent1

Other Agents
Speaks IIOP

Yellow
Pages

Supervisory
control

Authentication
of agents

Registration of
agents

Agentn

56

JADE (Java Agent DEvelopment

Framework)

JADE – A FIPA-compliant Agent Framework
http://sharon.cselt.it/projects/jade/

Is a software framework
simplifies the implementation of multi-agent systems

Attempts to be very efficient

Fully implemented in Java and fully distributed under
LGPL

Mostly oriented to AGENT COMMUNICATIONS (via
ACL)

Definitely the most used systems

AND IT IS ITALIAN!!!

Developed by UNIPR and TELECOM-IT

57

JADE continued

Is the middleware for MAS (Multi-Agent Systems)
Target users: agent programmers for MAS

Agent services

life-cycle (to handle creation and death of
agents), yellow-pages (naming service), message
transport (to have different platforms
interoperate)

Agent Communication Languages

Support for Speech Act and Negotiation protocols

Support for Shared Ontologies

Tools to support debugging phase

remote monitoring agent, dummy agent, sniffer
agent

Designed to support scalability

(from debugging to deployment)

from small scale to large scale 58

Network protocol stack using RMI or IIOP

JRE 1.2 JRE 1.2 JRE 1.2

Jade Main-container Jade Agent Container Jade Agent Container

Jade distributed Agent Platform

D
F

 A
g
en

t

A
M

S
 A

g
en

t

A
p
p
li

ca
ti

o
n
 A

g
en

t

A
p
p
li

ca
ti

o
n
 A

g
en

t

A
p
p
li

ca
ti

o
n
 A

g
en

t

A
p
p
li

ca
ti

o
n
 A

g
en

t

A
p
p
li

ca
ti

o
n
 A

g
en

t

A
p
p
li

ca
ti

o
n
 A

g
en

t

Host 1 Host 2 Host 3

Distributed architecture of a

JADE Agent Platform

A
p
p
li

ca
ti

o
n
 A

g
en

t

A
p
p
li

ca
ti

o
n
 A

g
en

t

59

JADE Agent Platform - GUI

Remote Agent Management

Remote Monitoring Agent

Management Agent

White pages GUI – to find agents

Agent life cycle handling allowing
start, stop, pause, migrate, etc.

Create and start agents on remote

host

Assumes container already
registered

Naturally uses ACL for

communication 60

JADE Communication Sub-system

Every agent has a private queue of ACL messages
created and filled by the JADE communication sub-
system

Designed as a chameleon to achieve the lowest cost
for message passing

The mechanism is selected according to the situation

The overheads depend on the receiver’s location and

the cache status

If you send a message to another agent and the sub-
system can’t find target, then it sends it to the AMS
to handle

Graphics tools to analyse agent communications

61

JADE Interaction Protocols

Interaction protocols
are the FIPA way to
manage interactions.
JADE provides support
for FIPA generic
interaction protocols,
e.g.:

FIPA Contract net;
FIPA English and Dutch
auctions.

JADE implements
interaction protocols as
FSM behaviors.

Graphics Tools to
Analyse Protocols

62

Software Engineering with

Communication Infrastructures

All application problems are to be identified
and designed in terms of

Internal agent behaviors and inter-agent
interaction protocols
These include, from the intra-agent engineering
viewpoint:

Controlling the global interactions
Controlling self-interested behaviours

Advantages:
All in the system is an agents
The engineering of the system does not imply the
engineering of the infrastructure
A standard has already emerged (FIPA)

Drawbacks:
The design is hardly re-tunable
Global problems spread into internal agents’ code

63

Coordination Infrastructures

The infrastructure is more than a support to
communication

Other than enabling interactions…
It can embed the “laws” to which interaction must
obey

E.g., to specify which agents can execute
which protocols and when
E.g., Gaia organizational rules

It can control the adherence of the MAS behavior
to the laws

E.g., to prevent malicious behaviors
Such laws can be re-configured depending on the
application problem

E.g., English vs. Vickery auctions have
different rules

64

The MARS Coordination Infrastructure

Mobile Agent Reactive Spaces

Developed at the University of Modena e Reggio Emilia

Ported on different agent systems (Aglets, Java2Go,

SOMA, JADE)

Strictly related to TUCSON

One shared data space on each node

“Tuple spaces”

Attributed-based access to local

resources

Programmable tuple spaces

Based on the original idea of

programmable coordination media

(Omicini & Denti 98)

A “meta-level” can control and

monitor all agent interactions

Meta-level
Tuple space

 Tuple space

b

Reference
to the local
tuple space

c

Reaction

Network Node

Agent Server

c

d

b

65

MARS Features
Mobile agents roam the
Internet

On each node, they connect
to a local tuple space

They can access it to

retrieve/put data

Data can be accessed via

attributes

Mediated interactions
between agents via the local
tuple space

Coordination and various
interactions protocols as
sequences of accesses to the

tuple space

Access to local resources

appears to agents as access
to data in the tuple space

WWW Server CORBA App.

Tuple Space

Internet Node

Application
Agents

Accesses to
Local Tuple Space

Accesses to
Local Services

The Internet

Roaming
Application

Agent
Accesses to NON

Local Tuple Spaces
FORBIDDEN

66

Programmable Coordination in MARS

The Tuple space of MARS is fully
programmable

It can control and influence all
interactions

The data space can embed the
coordination laws

Ruling, other than enabling, interactions
Global control on the behavior of the
MAS can be enacted

Interaction actions can be influenced
and constrained
Control of self-interested behavior and
errors

Ease of maintenance
To change the behavior of the MAS, no
need of changing agents, only
coordination laws

e.g., from English to Vickery auction

Coordination

Laws

 Data space

Internet Node

Multi-Agent System

67

Example of Coordination

Infrastructures: Fishmarket

Each agents in a MAS
Is dynamically attached a controller module
In charge of controlling its external actions
(i.e., protocol execution)

Inspired by real-world
fish market auctions

Fishers participate in
auctions by implicitly
respecting local rules

There is an implicit
(institutional) control

68

Software Engineering with

Coordination Infrastructure (1)

Clear separation of concerns
Intra-agent goals
Global MAS goals and global rules of the
organizations
Such separation of concerns has to reflect in
analysis and design

Example: the Gaia methodology version 2
Explicitly tuned to open MAS
Implicitly assuming the presence of a
coordination infrastructure

Identification of global organizational rules as a
primary abstraction in the software process

69

Software Engineering with

Coordination Infrastructure (2)

Advantages
Separation of concerns reduces complexity in
analysis and design

Inter-agent issues separated from intra-agent ones

Design for adaptivity perspective
Agents and rules can change independently

Intelligence in the infrastructure
A trend in the scenario of distributed computing

Drawbacks
Implement both agents and infrastructural
programs
Agents are no longer the only active components of
the systems

No longer homogeneous

Lack of standardization
70

Institutions

May basic researches in the area of MAS
recognize that:

Agents do not live and interact in a virgin world
Agents live in a society, and as that they have to
respect the rules of a society
Agents live in an organization, which can
effectively executed only in respect of
organizational patterns of interactions

In general: Multiagent systems represent
institutions

Where agents must conform to a set of expected
behavior in their interactions
Such an approach requires the introduction of a
conceptual coordination infrastructure during
analysis and design (as in Gaia v. 2)

71

Part 4

Conclusions and Open Issues

72

Open Issues in AOSE

Engineering MAS for Mobility & Ubiquity
What models and methodologies? What
infrastructures?

Emergent Behavior: Dynamic systems &
Complexity

Relations between MAS and complex systems
Exploiting emergence behavior in MAS

MAS as Social Systems
Relations with social networks and social
organizations
Self-organization
Performance models

Performance models for MAS
How to “measure” a MAS
In terms of complexity and efficiency?

73

Conclusions

In our humble opinion, agents will become the
dominant paradigm in software engineering

AOSE abstractions and methodologies apply to a
wide range of scenarios

Several assessed research works already exist
Modeling work
Methodologies
Implementation Tools

Still, there are a number of fascinating and
largely unexplored open research directions…

Ubiquity, self-organization, performance….

