
XML Applications
Prof. Andrea Omicini

DEIS, Ingegneria Due
Alma Mater Studiorum, Università di Bologna a Cesena

andrea.omicini@unibo.it

Outline

XHTML

XML Schema

XSL & XSLT

2

XHTML

HTML vs. XML

HTML
Presentation oriented
No structure, no semantics for data

XML
Data oriented
Allows for structural / semantic representation
Can be validated through grammars

4

XHTML: An XML-based HTML

The idea: use XML rather than SGML to define an HTML equivalent
so, XHML is an XML application
keeping most HTML tags with their original semantics
but!

with the properties of well-formedness and validability of XML
In fact, most browsers have extended support from HTML to XHTML
soon and easily

http://www.w3.org/MarkUp/2004/xhtml-faq
Standard W3C
"The Extensible HyperText Markup Language (XHTML™) is a family of current and
future document types and modules that reproduce, subset, and extend HTML,
reformulated in XML"

XHTML 1.0, 1.1, 2.0, Basic, etc.

5

Main differences

So, XHTML adds to HTML the same XML main rules
perfect match between start and end tags
no overlapping elements
one and only one root elements
attribute values are always quoted
at most one attribute with a given name per element
neither comments nor processing instructions within tags
no unescaped > or & signs in the character data of elements or attributes
…

which were typical sources of problems in HTML
Plus, it adds case-sensitivity

and all XHTML tags are lower-case

6

An XHTML Fragment

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <title>AO Biographic Notes</title>
 <link href="style.css" rel="stylesheet" type="text/css" media="screen" />
 <script type="text/javascript" src="common.js"></script>
 </head>
 <body class="papers">
 <h1 class="header">Biographic Notes</h1>

 <div class="body">
 ...
 </div>

 </body>
</html>

7

XML Schema

Limitations of DTDs

DTDs are great but
DTDs have no support for types
DTDs have no way to define the element's content
DTDs have SGML syntax

no XML syntax
no way to use XML technology for DTDs

e.g., no re-use of parsers

DTDs have some limitations in expressiveness
e.g., sequences constrain child types as well as order

DTDs have no support for namespaces
Why not use extensibility and flexibility of XML to define XML syntax?

using XML as a meta-markup language to define a new XML application?

9

Goals of XML Schemas

Defining an XML application for XML validation
Supporting everything from DTDs, plus

types
in particular for element contents

namespaces
Promoting re-use of all XML-related

technologies
like, say, XML parsers

knowledge
like, say, an human designer skilled at XML handling

10

Elements of XML Schemas:
Pre-defined Simple Type Elements

For a type system to be supported, first some pre-defined types
should be provided

string, boolean, float, double, integer
date
binary
uriReference
pattern

Then, you can define your own simple types

11

Elements of XML Schemas:
Simple Type Elements

xsd:simpleType

Example
<xsd:simpleType name="natural">
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="0" />
 </xsd:restriction>
<xsd:simpleType>

defines type natural as a restriction of integers to natural numbers

Other keywords available
see specification

12

Elements of XML Schemas:
Complex Type Elements

xsd:complexType

Example
<xsd:complexType name="complex">
 <xsd:sequence>
 <xsd:element name="real" type="xsd:float">
 <xsd:element name="imaginary" type="xsd:float">
 </xsd:sequence>
</xsd:complexType >

defines type complex as a pairing of real numbers

Using element declarations…
most of the facets for simple types can be used as attributes for elements

e.g., minInclusive,…

13

Elements of XML Schemas:
Element Declarations

xsd:element

Examples
<xsd:element name="point" type="complex">
<xsd:element name="goals" type="natural">

Element declaration associates types to elements
from pre-defined, simple to complex types

Element declarations make a given element admissible within the doc
again, what is not specified is not allowed

What is missing now are attribute declarations…

14

Elements of XML Schemas:
Attribute Declarations

xsd:attribute

Example
<xsd:attribute name="team" type="string">
<xsd:attribute name="team" type="boolean" use="required" default="false">

All attributes are declared as simple types
Only complex elements can have attributes
Attribute declarations make a given attribute admissible for an element
of a given complex type within the doc

15

Elements of XML Schemas:
Last Few Things

<xsd:schema xmlns:xsd="http://www.w3c.org/2001/XMLSchema">

Associates the XML Schema namespace to the xsd prefix
Just after the XML Declaration

since and XML Schema is first of all an XML document
<xsd:complexType mixed="true">

Complex Types are allowed to specify Mixed Content
for mixed-content, narrative-oriented XML documents

16

XSL & XSLT

XSL: eXtensible Stylesheet
Language

XML-based stylesheet language
http://www.w3.org/Style/XSL/

XSL is a family of recommendations for defining XML document
transformation and presentation

XSL Transformations (XSLT)
http://www.w3.org/TR/xslt
language for transforming XML

XML Path Language (XPath)
http://www.w3.org/TR/xpath
expression language used by XSLT to access or refer to parts of an XML document

XSL Formatting Objects (XSL-FO)
http://www.w3.org/TR/xsl/
XML vocabulary for specifying formatting semantics

18

XSL Transformations

XSLT is a language for transforming the structure of an XML document
Why Transform XML?

two main issues for XML
data separation from presentation
portability / transmission of information

often, the two together
In any case, this means that XML documents are typically NOT used in
the same form they come in

thus, the need to transform XML documents
Also, DOM and SAX allow for XML transformation

they are similar, and also procedural
a more high-level, declarative form should be possible
which is where XSLT comes in

19

An Example: Hello World, XML

helloworld.xml
<?xml version="1.0" encoding="iso-8859-1"?>
<?xml-stylesheet type="text/xsl" href="helloworld.xsl"?>
<greeting>Hello, World!!</greeting>

works as the input for transformation

20

An Example: Hello World, HTML

helloworld.html
<html>
 <head>
 <title>Today's Greeting</title>
 </head>
 <body>
 <p>Hello, World!!</p>
 </body>
</html>

works as the (desired) output of transformation

21

An Example: Hello World, XSLT

helloworld.xsl
<?xml version="1.0" encoding="iso-8859-1"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method='html' version='1.0' encoding='iso-8859-1' indent='yes'/>

<xsl:template match="/">
 <html>
 <head>
 <title>Today's Greeting</title>
 </head>
 <body>
 <p><xsl:value-of select="greeting" /></p>
 </body>
 </html>
</xsl:template>

</xsl:stylesheet>

actually transforms the XML input into the desired HTML output
22

Experiments

Browsers
A meta-processor for XSLT

23

XSLT in Short

Transformation rules are expressed through templates
every template indicates which parts of the XML documents it matches with

 through an XPath expression in its specification
template is activated for all and only the tree nodes of the XML document that
match the XPath expression

if more than one template match with the same expression, the template to
apply is chosen non-deterministically

unless import or priorities are of concern

always a root template activating the other templates
matching with the "root" expression "/"
if only one template, no need to specify the template element

templates can activate each other recursively through the recursive rule
<xsl:apply-templates/>

Just a matter to understand the mechanism and the syntax
24

Another Example of a XSLT sheet

<?xml version='1.0'?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

<xsl:template match="para">
 <p><xsl:apply-templates/></p>
</xsl:template>

<xsl:template match="emphasis">
 <i><xsl:apply-templates/></i>
</xsl:template>

</xsl:stylesheet>

transforms
<?xml version='1.0'?>
<para>This is a <emphasis>test</emphasis>.</para>

into
<?xml version="1.0" encoding="utf-8"?>
<p>This is a <i>test</i>.</p>

25

XSLT is Declarative

XSLT is a declarative language
no side effects

single assignement variables
non-destructive assignment

This frees us from the burden of how
eaving us only with the need for specifying what

26

Where to Use XSLT?

Data Conversion scenarios
when there are

different ways to represent the same things
chunks of knowledge from different sources to be put together

from XML to XML
but also from anything to anything, just using the right parser / writer

Publishing scenarios
typically meant to humans

through a possibly huge range of different media and scenarios
XML handles knowledge independently of the presentation

but then presentation is often needed in the end
And, the two things together, more often today

27

XPath

Expressions are part of the XSL specification
defined as stand-alone component since they are used in other contexts, such
as XLink & XPointer

Used throughout XSLT to select data from the source and manipulate it
Syntax defined through production rules

like many grammars you already know, maybe
The language is complex and articulated

better to learn by need, for you
Examples

chapter//footnote selects all the child node footnote of node chapter
which is child of the context node
attribute::colour selects the colour attribute of the context node

28

XML Formatting Objects (XSL-FO)

XML application to describe the layout of a page / presentation
a sort of page-description language à la PostScript, without a programing
language

XSL-FO provides a more sophisticated and flexible visual layout model
than HTML + CSS

like right-to-left and top-to-bottom text, footnotes, margin notes, page numbers
in cross-references, etc.
more or less generalises over HTML+CSS

in fact, you may easily find the same property specification as CSS
56 elements

in the http://www.w3.org/1999/XSL/Format namespace
rectangular areas with formatting properties

29

CSS vs. XSL

What to choose between CSS and XSL?
CSS and XSL overlap to some extent

CSS advantages
simple, specific, well supported by all browsers

XSL advantages
more powerful, more general, goes far beyond mere presentation

So, even though they overlap a bit, they have different goals and
scopes

so they can live together for a while
in the long run, XSL is the obvious front-runner

but simplicity, support and legacy have often won over any other consideration

30

