Qutline

XML Concepts

What is XML?

Introducing XML

nlatform and technologies

What XML is not? Why Markup Languages?




l i) Hey,
XML: X for eXtensibility t00 many Languages already!!

— 1 Basic idea of XML —— Application domains are more and more
— asimple meta-language for humans and automata — numelrous
— to build electronic documents = gggi)ﬁix
Ther? g Useito deine ad ho: markp langlages S| Special / specialised languages as the engineer's tools
ML is quite free, in general — torepresent, denote & express behaviours and computations
it can be “extended" ——1{ Engineers working with computational / ICT systems will be called to
— actually, specialised use a number of different artificial languages, but also
— to define more specific ad hoc markup languages — to know and understand computational models and paradigms
——1 No predefined XML markups, as it happens instead in HTML — toselect languages and paradigms
— they need to be defined — to define and build new languages
— who does define them? — Laurea Magistralis ICT

R 7 ho? — “Linguaggi e modelli computazionali”, “Ingegneria del SW”

K 8

XML: Applications XML for Portable Data

—— XML per se is “small” & simple

— languages defined via XML are instead so many and complex ——1 Crossplatform, long-term data format
4[ XML Aoplications — passing XML data through space and time
1= XMpLEiefined markup languages — along with Unicode and text-base standard format
— defined through a precise syntax ——1 Text, text, text
— DTD or XML Schema — both data and markup
— they may be either standard or custom — allinthe XML file .
——{ Most standard XML applications are W3C ——1{ XML document structure simple & clear
— suchas — easy to parse
— s — Wwell-documented
g creme ——{ That is why XML is already everwhere
9 10

How XML Looks like from a
Brows

.
QOO CIEE= LH

o s ) T Ly -

How XML Looks like

——

<?xm version="1.0" encodi ng="utf-8"?>

<docr oot >
Th K. S s s ey ——— T
Hordeariotiy bt o

<head>
<title>This is ny document.</title>
/ head>

<body>
<p>A list of things | like.</p> Ry

<list> N
<i tenpweekends</ it em> St
<i tenrgood beer</item> -
<i tenpni dni ght snacks</iten>
<itenpice cream
<list> .-

<i t enpchocol ate</item> -
<i tenpcooki e dough</item>
<i tenpwhite russian</itenr
</list> e
</item N
<i tenpshade trees</itenmp
</list>

</ body> N
</ docr odt >




How to Work with XML What 1s an XML Document?

——{ Itcanbe

——{ XMLis text .
— so.any texteditor is perfectly fine — Atextfile
——1{ A number of XML editors around — Arecord in a database
— but typically, general text editors with some programming / Web-oriented — Arun-time construction in
capabilities are good enough, and often even hetter memory
—— Visualisation is a different matter —
— hbrowsers do somethin 4‘ i
— but XML s not a prgsentation language, so... In any casg, It can be
N ol e rstand handled and trasmitted by
—  whatan XML document is any system capable of
QR varks dealing with text documents

How does XML Work? Where is XML actually used?

——1 Who handles XML documents?
— after it has been produced
— how / why?

— L J)arsers
imm 1€

vising out the structure of the XML document
— verifying well-formedness and basic respect of XML syntax
——1{ XML validating parsers ——1 Everywhere already.

— when applicable
— there is either a DTD or a Schema

— checking validity
Examples
— web brorsers, word processors, database servers, drawing programs,
spreadsheets, programs in some language, efc.

15

Some History of XML & Related

—— Lot to be written, till...
— SGML is where it comes from
— HTML was the first successful application of SGML
— but had obvious limitations
— too complex
— more than 150 pages
— never implemented fully
— too complex for the Internet
—1{ SGML “Lite” (1996, Bosak, Bray et al.)
— XML 1.0 (February 1998)

— Then, a flow

— namespaces, XSL (then XSLT + XSL:FO), XHTML, CSS integration, XLink +
XPointer, XML Schema, DOM, etc.

XML Fundamentals

|

1



A Simple XML Document

XML Document & Files

W
< playars

——1 The document contains a single element

— oftype player
——1 Such an element is delimited by the tag prayer

— between start tag <player> and end tag </prayer>
—— Inbetween the tags lays the element’s content carto Nervo

— tagsare markup
— the most common form of markup, but there are other kinds

— contentis character data
— including the white space between carlo & Nervo

2

XML Trees: A Simple Example

| team

Mantova

Bologna

,:.w\! Ner

This is a complete XML document

It can be stored / recorded / built in the form of a number of different
files or even in other forms

— Carlonervo.xml, player.txt

— arecord in a database

— amemory area huilt by a CGl, and then transmitted

— sent by a Web server, with MIME type application/xml or text/xml

20

Tag Syntax

—— Very similar to HTML tags
— at least superficially
— <tag> for start tags, </tag> for end tags
— <tag /> for empty tags
— tags with no content, like <br />or<hr />
——{ XML is case sensitive
— 50, <player> can not be closed by end tag </Player>
— NOTE: thus, pay attention to non-case sensitive technologies when combined
with XML
— HTML, JavaScript & XHTML, ...

o vy
~ An XML Document hos o tree-like structure

— one and only one root
— root element or document element

— each node element can have one or more child elements
— each element has at least one parent
— child elements from the same parent are siblings
— leaves are either content or empty elements

——{ Well-formedness stems from here

— <em><b>Wrong </em> XML</b> is not permitted

— nesting need to be perfect, overlapping not allowed

2%



Narrative-Organised XML

<biography>

<name><first_name>Carlo</first_name> <last_name>Nervo</last_name></name> was born
somewhere and did nothing really meaningful before becoming a football player.
After playing many years in minor teams, such as <football_team>Mantova</
football_team>, he finally moved to <football_team>Bologna</football_team>, where

he exploded to become one of the most respected leaders of the team, and also a
member of the <football_team>ltalian National Team</football_team>.

</biography>

— XML Documents for written narrative, such as articles, reports, blogs,
books, novels
— elements with mixed content
— not easy for automated processing and exchange

2%

Using Elements or Attributes?

Attributes are for meto-data about the element, and content is
information of the element
— maybe, but then it is not easy to clearly distinguish between the two
—— Elementbased structure is more flexible than attribute-based
— attributes provide for a flat data structure / elements can be nested as needed
— attributes are unique within an element / any number of elements of the
same type can be used within an element
— Attributes are quite useful in narrative-based XML documents
— Wwhere the distinction between elements and attributes is even more blurred
——1{ The answer depends on how data will be accessed and manipulated

27

Parsed Character Data

——1{ An XML Parser interprets the character sequences it is fed with, trying
to devise out its tree-like structure
— 50, for instance, '<" always taken as the beginning of a tag
— what if we need a '<" character in the document, as in a JavaScript code?
——{ Al characters are interpreted as character data to be parsed
— unless an escape character '&" is encountered
— character data to parse start again after char ;'

XML Attributes

in the start tag
— and in the only tag of empty elements

— any number of attributes can be in principle associated to an element
—— An attribute is a name-value pair of the form name="vatue"

— alternative forms use single quotes instead of double quotes and spaces before
/ after the "equals” (=) sign

— only one attribute with a given name allowed per element

—1 Attributes do not change the tree structures of an XML document
— but they are qualifiers for the nodes and leaves of the tree

2%

XML Names

——] XML Names are used and are the same for the names of
elements, attributes and some other constructs
— toincrease efficiency and abate complexity
—— An XML name can include
— any letter
— latin or even non-latin, like ideographs
— any digit
— underscore, hyphen and period (_, -, .)
— acolon (;) is reserved to namespaces
1| An XML name may not include other punctuation signs, nor any sort of
white spaces
— and can begin only with letters, ideographs or underscore

28

Entity References

——| &entityreference;
— an entity is something defined outside the normal "flow" of the XML
document
— out of the XML tree
— used for constants, common values, external values, etc.
— through an entity reference
—— Users of any sort may define their own entities
— we'll see how soon, for instance through DTDs



Pre-defined XML Entities

(Pre-defined Entity References)

Morkep  Enlity  Description
L < | lessthen
&gt > | groferthan |
_%amp | & | ompersand
_ &quo; | " | double quote

&apos; ' single quote

Comments

— Easy!
<I-- Comment -->

It cannot contain -, nor it can end with --->

—— Comments do not affect the document tree-structure

— they can appear anywhere, even before the root element

— but not inside a tag or a comment

—— Parsers may either drop or keep them at their will

— | Comments are meant to improve human legibility of XML docs
— to give info to a computational agents, processing instructions

The XML Declaration

—— Looks like an XML processing instruction
— hutit is not: just the XML declaration
——1 Itis optional
— hbutif there, should be the first thing in the document, absolutely

— not even comments allowed before
<?xml version="1.0" encoding=""utf-8" standalone="no"?>

— | Version is the XML version (1.0, 11, ...)

—— Encoding is the form of the text (Unicode in the example)
— optional, default Unicode

——| Standalone means that it has no external DTD
— optional, default "no"

CDATA Sections

——1 Including code chunks from any language with < or * can be tedious

we need to say the parser "do not parse this"
good for instance to include segments of XML code to show

——] CDATA Section

between <1 [CDATAL and 11>
can contain anything but its own delimiters

—1{ After parsing, no way to tell where a text came from, a CDATA section
or not

XML Processing Instructions

—— Need to pass information for a given application through the parser

comments may disappear at any stage of the process

Processing instructions have this very end
— <?target .. ?>
1 The target may be the application that has to handle, or just an
identifier for the particular processing instruction

— <?php .. ?>
— <?xml-stylesheet .. ?>

—{ A processing instruction is markup, not an element

it can appear everywhere out of a tag, even before or after the root

Checking Well-Formedness

——1 Main rules

perfect match between start and end tags

no overlapping elements

one and only one root elements

attribute values are always quoted

at most one attribute with a given name per element

neither comments nor processing instructions within tags

no unescaped > or & signs in the character data of elements or attributes

= Toolélon the Web

Just look around



Validation

Flexibility or Rigidity?

—— XMLis flexible

— whatever this means
— but sometimes flexibility is not a feature within a given application scenario

—— Sometimes, some strict rule is required
— some control over syntax should be enforced
— like, a football player should have at least one team

——| Document Type Definition (DTD)
— to define which XML documents are valid

Validity is not mandatory as well-formedness
— how to handle errors is optional

DID is...

—— Avalid XML Document includes a DTD the document satisfies
—— Main principle
— everything not permitted is forhitten
— that is, DTDs specifies positive examples
—— Everything in the XML document must match a DTD declaration
— then, the document is valid
— otherwise, the document is invalid
| Many things a DD does not say
— Wwe stick with what we can specify

—— We do not go too deep into DTD syntax
— Wwe just look at the example above, and comment

41

——] SGML-based

— syntax a bit awkward
— but after all easy to understand
— and quite suited for short and expressive descriptions
—— Itallows XML designers to define a grammar for their documents
— typical syntax-based approach
— maybe limited, but easy to implement
— Maybe, DTD is not the future of XML document validation
— XML Schema should be that
— but understanding DTDs, how to modify them, how to write your own ones, is
likely to be useful or maybe necessary for a while, still

DTD Declaration

il { DD is declared here as internal

— but could be declared separatel
<IDOCTYPE football_player SYSTEM "football_player.dtd">

— even referring to an external / shared resource
<IDOCTYPE football_player SYSTEM "http://.'">

2



DTD Declarations: Define or Use?

——1 S0, you may
— define your own DTD, and
— either include it in your XML document
— orsave it as an independent document, and refer from one or more XML docs
— or use an external DD defined by someone else
— like, a working group you belong to, or a standardisation body of any sort
— by referring to that externally-defined syntax for your XML docs

Some Syntax

for Element Declarations

—— " is for sequence

— to define ordered lists

——{ """ is for choice

— to provide for alternatives
——1 suffixes
— "*"for zero or more occurrences
— "+"for one or more occurrences
— "?"for zero or one occurrence
——1 parenthesis for grouping
— atany level of indentation
— operators and suffixes applicable to any level

Attribute Types

CDATA

— any string of text acceptable in a well-formed XML attribute value
NMTOKEN, NMTOKENS

— more than an XML name: anything accepted as the first character
— the plural form accepts more than one separated by whitespaces
ENTITY, ENTITIES

I; name(s) of unparsed entities declared elsewhere in the document

— an XML name unique in the document, working as an identifier
IDREF, IDREFS

— reference(s) to IDs in the documents
NOTATION

— name of a notation used & defined in the document (rare!!)

——1 enumeration

— (valuel | .. | valueN)

I e

Element Declarations

S

| » QUIEOR L NG VI SO

/i :

1 Apiayer element eonlain one aame, ane surrame and one or more
team$
— inthat precise order

— and they are just parsed character data (#PCDATA)

44

Attribute Declarations

TLISY veom cur

L <LOOR. QUIEARLS" NG’ VA< ROGn
~ Atean element hos o current affribute
— which is mandatory
— #IMPLIED would say optional, instead
— and can be either yes or no
— enumeration as an attribute type

46

Attribute Defaults

—— #IMPLIED

— the attribute is optional
—— #REQUIRED

— the attribute is mandatory
— #FIXED

— either it is explicitly specified or not, it has a given value
— "literal"”

— the default value is the "literal" quoted string



Other DTD Declarations, etc.

Namespaces

——| ENTITY declarations

<IENTITY footer SYSTEM “http://lia.deis.unibo.it/~ao/footer'>

——1{ NOTATION declarations
— who cares actually

—— We stop here

— more only for those who need it ‘I”
I
1}

What are Namespaces for? Syntax for Namespace Use

—— Distinguish

— different XML applications may use the same names
— atany scale, from personal to world-wide

— anamespace allows them to be clearly distinguished [ QU%"rfiefq ames plte
—— Group [ alFiad
— names of elements and attributes of the same XML application can be grouped E(aTrpé?lir?Lg%?lrlzzﬂgn?eTes
tOgetgege more sy recognised and handied — rdf:description, xlink:type, xsl:template
- ) : e ——1{ Used for both element and attribute names
——{ Example: set is an element in both SVG and MathML applications
— what if | have to use them together?

— namespaces can be used to disambiguate names

Associating Prefixes to URI Setting Default Namespaces

—] ExamFIe

— alarge firm could have a number of namespaces for different purposes
<company

xmIns: local="http://www.company.it/xml/"
xmIns:euro ="http://www.company.eu/xml/"

— xmins attribute
xmlIns:wor Id="http: //ww .company .com/xml /" — alone, no suffix i I
> <svg xmlns="http:/www.w3c.org/2000/svg" width="_." height=".">
— then, you can use local, euro and world everywhere as prefixes </svg>
— typically declared in the topmost element, but could be declared anywhere — all the elements inside (including svg) are implicitly associated to the ntep:/
o eXample: <rdf:RDF xmlIns:rdf="http://ww.w3c.org/TR/REC-rdf-syntax#"> www.w3c.org/2000/svg Namespace
——{ URI are standardised, not prefixes — o need for the svg prefix made explicity
— hut usually svg, rdf and other prefixes are not re-defined

— also, they are conventional names
— not necessarily pointing to an actually resource

53



The XML Encoding Declaration

——] Part of the XML Declaration

<?xml version="1.0" encoding="utf-8" standalone="no"?>
——{ Most common values

— utf-8, utf-16 (Unicode)

— 150-8859-1 (Latin-1)
——1 See also: XML-Defined Character Sets

— Unicode and ISO are the most used families
——{ Used also for external parsed entities

— like DTD fragments, or XML chunks

— which may have different encodings

— there, version may be dropped

— itisatext declaration, but no longer a XML declaration

57

Encoding for Portability

——1{ Working around encoding is not simply an “internationalisation” issue
— itis also about portability
—— When transmitting / communicating through text-based files, many
errors typically occur
— Wwhich are often not easy to catch
——1{ XML abilities to
— handle encoding precisely and accurately
— embody encoding information within each document
make it a powerful tool for easy and hassle-free portability
— across platforms, across applications, across time

What does Text Mean?

—— “Text” can be encoded according so many different alphabets
— mapping between characters and integers (code points)
— character set
— ASCII being the most (un)famous, now Unicode
A character encoding determines how code points are mapped
onto bytes
— 50, a character set can have multiple encodings
— UTF-8 and UTF-16 are both Unicode encodings
—1{ Any XML document is a text document
— 50, encoding should be declared

Multi-Lingual Documents

——1 Example: a spell-checker, or a voice-reader parsing an XML doc
—— How to determine the language of a subpart?
— for multi-lingual docs
—{ xml:1ang attribute
— can be associated to any element
— determines the language of the element
—— Values are to be found in 150 639
— standard: two letters for each language known
— if not there, IANA
— prefix i-
— suhas i-navajo, i-klingon, ...
— if not there, too, such as for user-defined tags
— prefix x-
— suchas x-quenya




XML on Browsers Cascading Style Sheets

—— Cascading Style Sheets (CSS)

a simple mechanism for adding style (e.g. fonts, colors, spacing) to Web

——1 Different experiences with different browsers b
— when trying to visualise an XML document [ Standard W3C
——1{ XML however can be transformed —1 http://wBc.0rg/Style/CSS
— tobecome easier to handle by standard browsers 4[ Goals ] ;
BVOVT%'Q a%Pma‘C)l("ﬁE e ——1 describing how to present elements of a document
[t ';L:b::;fd c?r?:" Pl = spanning over a range of different media
I 1 0ving e explore the XML + CSS issue —[ separating style description from content and structure
{ —— Inthis course we assume that you already know the basics

— i not, look at http://www.w3.0rg/Style/CSS/ learning

62

CSS: An Example XML + CSS

—1 Any XML documents can be prepared for browser visualisation via CSS

06 B} poem.css D ——1 Two things needed
2LsnB]LI0|® 8 :‘.‘,:"‘_‘!:‘_“-l‘)'j“_"’ L::i."'.. — aCSS style sheet referring to the proper elements types of the XML document
o — the association between the XML document and the CSS style sheet
POEN { @isployt block ) ——1 Processing directive
. bt T S1EER Josh | 1be o0 W1 Pandr ¢ — to associate CSS to XML
TITLE € dispiog: blocks font-sizei 18pt; font-saight: bold ) <?xm - styl esheet type="text/css" href="nomefile.css" ?>
FOET € dispioy: ook sargin-botton: 1 " . . .
r.( s ,“ . ,.’ i - A =i CSS style sheet defining presentation style for the XML document tags
. e batsesr verses 4/ nonet ag {
STRICA { Ciaployt Dlock] sargin-bottoas 100x ) attributol : val orel;
VERSE { displey: block )

}
—— No need for DD or Schema
— even though the browser could anyway complain...

64

Example: How Mozilla Visualises it
[without CSS Style Sheet]




Example: How Mozilla Visualises it

[with CSS Style Sheet]

ann § Moo "
WV 0 OEE=s I

3
Darest Thou Now O Soul
WAL

Manipulating XML Documents

—— Representing information in an XML Document
— and presenting it somehow
— is not enough for most non-trivial application scenarios
—— Mostly, we often need to manipulate
— access, delete, modify
——1 parts of an XML document
— which either may or may not be and XML file
——1{ This is typically dome through programming language of many sorts
— through ad hoc API
—— The most used / hated / deprecated / widespread are
— DOM

— SAX

DOM & Levels

——| DOM views an XML tree as a data structure
— similar to the DOM from Javascript
—— DOM loads the whole XML document in memory to manipulate it
— maybe huge memory consumption
—— Itis quite large and complex...
—1 Level 1 Core: W3C Recommendation, October 1998
primitive navigation and manipulation of XML trees
other Level 1 parts: HTML
——1 Level 2 Core: W3C Recommendation, November 2000
adds Namespace support and minor new features
other Level 2 parts: Events, Views, Style, Traversal and Range
—— Level 3 Core: W3C Working Draft, April 2002

adds minor new features
other Level 3 parts: Schemas, XPath, Load/Save

n

Document Object Model (DOM)

——1 http://www.w3.0rg/DOM/
— standard W3C, as usual
"The Document Object Model is a platform- and language-neutral
interface that will allow programs and scripts to dynamically access and
update the content, structure and style of documents"
—— It applies to HTML as well as XML

— ltis essentially an API
— standardised for Java & ECMAScript
— hut can be extended to other languages
—— There is no time here to go deep into DOM
— We just try to understand its nature, goals and scope

70

DOM Nodes

— An XML document is a tree
—— The tree contains nodes
— one of them is a root node
— nodes possibly have siblings, children, one parent, content, tag, efc.
—— The DOM specification states that a node can contain
— document, doc. fragment, doc. type, element, attribute, processing instruction,
comment, text, CDATA section, entity, notation

——1 Italso defines which kind of child nodes they should / could have




Properties & Methods of DOM
Nodes

ethods are made ¢

Main Problem of DOM

g tail of followers
easons to exist

A Simpe Java DOM Fragment

Simple API for XML (SAX)




