
XML Concepts
Prof. Andrea Omicini

DEIS, Ingegneria Due
Alma Mater Studiorum, Università di Bologna a Cesena

andrea.omicini@unibo.it

Outline

Introducing XML

XML Fundamentals

Document Types Definitions (DTDs)

Namespaces

Internationalisation

XML & CSS

DOM & SAX

2

Introducing XML

What is XML?

A W3C Standard
http://www.w3.org/XML/

A mark-up language for text documents
derived from SGML (Standard General Markup Language)

ISO 8879, http://www.iso.ch/cate/d16387.html

eXtensible Markup Language
A meta-markup language

to define markup languages
such as XHTML, XSLT, XML Schema…

A formally-defined text-based language
verifiable for well-formedness and validity
usable across platform and technologies

4

What XML is not?

XML is not
a programming language
a network-transport protocol
a document presentation language
a database (manager)

It can be used (and it is actually) in all of those contexts, but it remains
a markup language

5

Why Markup Languages?

Markup
encoding embodied in the document, specifying document properties, as well
as properties of information contained

for instance, formatting instructions
more generally, structural / semantic information

knowledge vs. data

Marks / Markups
tag used to qualify / label text chunks
e.g., HTML tags

XML example
 <student>
 <studentname>
 <name>Carlo</name>
 <surname>Nervo</surname>
 </studentname>
 <studentnumber>0000145678</studentnumber>
 <course>2036</course>
 </student>

6

XML: X for eXtensibility

Basic idea of XML
a simple meta-language for humans and automata
to build electronic documents
allowing users to define ad hoc markup languages

Then,
XML is quite free, in general
it can be “extended"

actually, specialised
to define more specific ad hoc markup languages

No predefined XML markups, as it happens instead in HTML
they need to be defined

who does define them?
can we do this? how?

7

Hey,
too many Languages already!!

Application domains are more and more
numerous
complex
specific

Special / specialised languages as the engineer's tools
to represent, denote & express behaviours and computations

Engineers working with computational / ICT systems will be called to
use a number of different artificial languages, but also

to know and understand computational models and paradigms
to select languages and paradigms
to define and build new languages

Laurea Magistralis ICT
“Linguaggi e modelli computazionali”, “Ingegneria del SW”

8

XML: Applications

XML per se is “small” & simple
languages defined via XML are instead so many and complex

XML Applications
XML-defined markup languages

defined through a precise syntax
DTD or XML Schema

they may be either standard or custom
Most standard XML applications are W3C

such as
XSLT
XML Schema
XHTML

9

XML for Portable Data

Cross-platform, long-term data format
passing XML data through space and time
along with Unicode and text-base standard format

Text, text, text
both data and markup
all in the XML file

XML document structure simple & clear
easy to parse
well-documented

That is why XML is already everwhere

10

How XML Looks like

<?xml version="1.0" encoding="utf-8"?>

<docroot>

 <head>
 <title>This is my document.</title>
 </head>

 <body>

 <p>A list of things I like.</p>

 <list>
 <item>weekends</item>
 <item>good beer</item>
 <item>midnight snacks</item>
 <item>ice cream
 <list>
 <item>chocolate</item>
 <item>cookie dough</item>
 <item>white russian</item>
 </list>
 </item>
 <item>shade trees</item>
 </list>

 </body>
</docroot>

11

How XML Looks like from a
Browser

12

How to Work with XML

XML is text
so any text-editor is perfectly fine

A number of XML editors around
but typically, general text editors with some programming / Web-oriented
capabilities are good enough, and often even better

Visualisation is a different matter
browsers do something

but XML is not a presentation language, so…
we need to understand

what an XML document is
how XML works

13

What is an XML Document?

It can be
A text file
A record in a database
A run-time construction in
memory
…

In any case, it can be
handled and trasmitted by
any system capable of
dealing with text documents

How does XML Work?

Who handles XML documents?
after it has been produced
how / why?

XML parsers
devising out the structure of the XML document
verifying well-formedness and basic respect of XML syntax

XML validating parsers
when applicable

there is either a DTD or a Schema
checking validity

Examples
web brorsers, word processors, database servers, drawing programs,
spreadsheets, programs in some language, etc.

15

Where is XML actually used?

Everywhere already.

16

Some History of XML & Related

Lot to be written, still…
SGML is where it comes from

HTML was the first successful application of SGML
but had obvious limitations

too complex
more than 150 pages
never implemented fully

too complex for the Internet
SGML “Lite” (1996, Bosak, Bray et al.)

XML 1.0 (February 1998)
Then, a flow

namespaces, XSL (then XSLT + XSL-FO), XHTML, CSS integration, XLink +
XPointer, XML Schema, DOM, etc.

17

XML Fundamentals

A Simple XML Document

19

XML Document & Files

This is a complete XML document
It can be stored / recorded / built in the form of a number of different
files or even in other forms

Carlonervo.xml, player.txt
a record in a database
a memory area built by a CGI, and then transmitted
sent by a Web server, with MIME type application/xml or text/xml

20

XML Elements & Tags

The document contains a single element
of type player

Such an element is delimited by the tag player
between start tag <player> and end tag </player>

In between the tags lays the element’s content Carlo Nervo
tags are markup

the most common form of markup, but there are other kinds
content is character data

including the white space between Carlo & Nervo

21

Tag Syntax

Very similar to HTML tags
at least superficially
<tag> for start tags, </tag> for end tags
<tag /> for empty tags

tags with no content, like
 or <hr />
XML is case sensitive

so, <player> can not be closed by end tag </Player>
NOTE: thus, pay attention to non-case sensitive technologies when combined
with XML

HTML, JavaScript & XHTML, …

22

XML Trees: A Simple Example

23

player

name surname team team

Carlo Nervo Bologna Mantova

An XML Document is an XML Tree

An XML Document has a tree-like structure
one and only one root

root element or document element
each node element can have one or more child elements

each element has at least one parent
child elements from the same parent are siblings
leaves are either content or empty elements

Well-formedness stems from here
Wrong XML is not permitted

nesting need to be perfect, overlapping not allowed

24

Narrative-Organised XML

<biography>
<name><first_name>Carlo</first_name> <last_name>Nervo</last_name></name> was born
somewhere and did nothing really meaningful before becoming a football player.

After playing many years in minor teams, such as <football_team>Mantova</
football_team>, he finally moved to <football_team>Bologna</football_team>, where
he exploded to become one of the most respected leaders of the team, and also a
member of the <football_team>Italian National Team</football_team>.

…

</biography>

XML Documents for written narrative, such as articles, reports, blogs,
books, novels

elements with mixed content
not easy for automated processing and exchange

25

XML Attributes

Elements can be labelled by attributes
attributes are specified in the start tag

and in the only tag of empty elements
any number of attributes can be in principle associated to an element

An attribute is a name-value pair of the form name="value"

alternative forms use single quotes instead of double quotes and spaces before
/ after the "equals" (=) sign
only one attribute with a given name allowed per element

Attributes do not change the tree structures of an XML document
but they are qualifiers for the nodes and leaves of the tree

26

Using Elements or Attributes?

Attributes are for meta-data about the element, and content is
information of the element

maybe, but then it is not easy to clearly distinguish between the two
Element-based structure is more flexible than attribute-based

attributes provide for a flat data structure / elements can be nested as needed
attributes are unique within an element / any number of elements of the
same type can be used within an element

Attributes are quite useful in narrative-based XML documents
where the distinction between elements and attributes is even more blurred

The answer depends on how data will be accessed and manipulated
27

XML Names

XML Names are used and are the same for the names of
elements, attributes and some other constructs

to increase efficiency and abate complexity
An XML name can include

any letter
latin or even non-latin, like ideographs

any digit
underscore, hyphen and period (_, -, .)
a colon (:) is reserved to namespaces

An XML name may not include other punctuation signs, nor any sort of
white spaces

and can begin only with letters, ideographs or underscore

28

Parsed Character Data

An XML Parser interprets the character sequences it is fed with, trying
to devise out its tree-like structure

so, for instance, '<' always taken as the beginning of a tag
what if we need a '<' character in the document, as in a JavaScript code?

All characters are interpreted as character data to be parsed
unless an escape character '&' is encountered
character data to parse start again after char ';'

29

E.g., the content of the element

<superheroes>Batman & Robin</superheroes>

becomes the parsed character data
Batman & Robin

Entity References

&entityreference;

an entity is something defined outside the normal "flow" of the XML
document

out of the XML tree
used for constants, common values, external values, etc.

through an entity reference
Users of any sort may define their own entities

we'll see how soon, for instance through DTDs

30

Pre-defined XML Entities
(Pre-defined Entity References)

31

CDATA Sections

Including code chunks from any language with < or " can be tedious
we need to say the parser "do not parse this"
good for instance to include segments of XML code to show

CDATA Section
between <![CDATA[and]]>

can contain anything but its own delimiters
After parsing, no way to tell where a text came from, a CDATA section
or not

32

Comments

Easy!
<!-- Comment -->

It cannot contain --, nor it can end with --->
Comments do not affect the document tree-structure

they can appear anywhere, even before the root element
but not inside a tag or a comment

Parsers may either drop or keep them at their will
Comments are meant to improve human legibility of XML docs

to give info to a computational agents, processing instructions

33

XML Processing Instructions

Need to pass information for a given application through the parser
comments may disappear at any stage of the process

Processing instructions have this very end
<?target … ?>

The target may be the application that has to handle, or just an
identifier for the particular processing instruction

<?php … ?>
<?xml-stylesheet … ?>

A processing instruction is markup, not an element
it can appear everywhere out of a tag, even before or after the root

34

The XML Declaration

Looks like an XML processing instruction
but it is not: just the XML declaration

It is optional
but if there, should be the first thing in the document, absolutely

not even comments allowed before
<?xml version="1.0" encoding="utf-8" standalone="no"?>

Version is the XML version (1.0, 1.1, …)
Encoding is the form of the text (Unicode in the example)

optional, default Unicode
Standalone means that it has no external DTD

optional, default "no"

35

Checking Well-Formedness

Main rules
perfect match between start and end tags
no overlapping elements
one and only one root elements
attribute values are always quoted
at most one attribute with a given name per element
neither comments nor processing instructions within tags
no unescaped > or & signs in the character data of elements or attributes
…

Tools on the Web
Just look around

36

DTD

Flexibility or Rigidity?

XML is flexible
whatever this means
but sometimes flexibility is not a feature within a given application scenario

Sometimes, some strict rule is required
some control over syntax should be enforced

like, a football player should have at least one team
Document Type Definition (DTD)

to define which XML documents are valid
Validity is not mandatory as well-formedness

how to handle errors is optional

38

Validation

A valid XML Document includes a DTD the document satisfies
Main principle

everything not permitted is forbitten
that is, DTDs specifies positive examples

Everything in the XML document must match a DTD declaration
then, the document is valid
otherwise, the document is invalid

Many things a DTD does not say
we stick with what we can specify

39

DTD is…

SGML-based
syntax a bit awkward
but after all easy to understand
and quite suited for short and expressive descriptions

It allows XML designers to define a grammar for their documents
typical syntax-based approach

maybe limited, but easy to implement
Maybe, DTD is not the future of XML document validation

XML Schema should be that
but understanding DTDs, how to modify them, how to write your own ones, is
likely to be useful or maybe necessary for a while, still

40

A Simple DTD Example

We do not go too deep into DTD syntax
we just look at the example above, and comment

41

DTD Declaration

DTD is declared here as internal
but could be declared separately

<!DOCTYPE football_player SYSTEM "football_player.dtd">

even referring to an external / shared resource
<!DOCTYPE football_player SYSTEM "http://…">

42

DTD Declarations: Define or Use?

So, you may
define your own DTD, and

either include it in your XML document
or save it as an independent document, and refer from one or more XML docs

or use an external DTD defined by someone else
like, a working group you belong to, or a standardisation body of any sort
by referring to that externally-defined syntax for your XML docs

43

Element Declarations

A player element contain one name, one surname and one or more
teams

in that precise order
and they are just parsed character data (#PCDATA)

44

Some Syntax
for Element Declarations

"," is for sequence
to define ordered lists

"|" is for choice
to provide for alternatives

suffixes
"*" for zero or more occurrences
"+" for one or more occurrences
"?" for zero or one occurrence

parenthesis for grouping
at any level of indentation
operators and suffixes applicable to any level

45

Attribute Declarations

A team element has a current attribute
which is mandatory

#IMPLIED would say optional, instead
and can be either yes or no

enumeration as an attribute type

46

Attribute Types

CDATA
any string of text acceptable in a well-formed XML attribute value

NMTOKEN, NMTOKENS
more than an XML name: anything accepted as the first character
the plural form accepts more than one separated by whitespaces

ENTITY, ENTITIES
name(s) of unparsed entities declared elsewhere in the document

ID
an XML name unique in the document, working as an identifier

IDREF, IDREFS
reference(s) to IDs in the documents

NOTATION
name of a notation used & defined in the document (rare!!)

enumeration
(value1 | … | valueN)

47

Attribute Defaults

#IMPLIED
the attribute is optional

#REQUIRED
the attribute is mandatory

#FIXED
either it is explicitly specified or not, it has a given value

"literal"
the default value is the "literal" quoted string

48

Other DTD Declarations, etc.

ENTITY declarations
<!ENTITY footer SYSTEM "http://lia.deis.unibo.it/~ao/footer">

NOTATION declarations
who cares actually

We stop here
more only for those who need it

49

Namespaces

What are Namespaces for?

Distinguish
different XML applications may use the same names

at any scale, from personal to world-wide
a namespace allows them to be clearly distinguished

Group
names of elements and attributes of the same XML application can be grouped
together

to be more easily recognised and handled
Example: set is an element in both SVG and MathML applications

what if I have to use them together?
namespaces can be used to disambiguate names

51

Syntax for Namespace Use

Qualified names
prefix : local_part

Examples of qualified names
or QNames, or raw names
rdf:description, xlink:type, xsl:template

Used for both element and attribute names

52

Associating Prefixes to URI

Example
a large firm could have a number of namespaces for different purposes

<company
 xmlns:local="http://www.company.it/xml/"
 xmlns:euro ="http://www.company.eu/xml/"
 xmlns:world="http://www.company.com/xml/"
>

then, you can use local, euro and world everywhere as prefixes
typically declared in the topmost element, but could be declared anywhere
example: <rdf:RDF xmlns:rdf="http://www.w3c.org/TR/REC-rdf-syntax#">

URI are standardised, not prefixes
but usually svg, rdf and other prefixes are not re-defined
also, they are conventional names

not necessarily pointing to an actually resource

53

Setting Default Namespaces

xmlns attribute
alone, no suffix

<svg xmlns="http:/www.w3c.org/2000/svg" width="…" height="…">
…
</svg>

all the elements inside (including svg) are implicitly associated to the http:/
www.w3c.org/2000/svg namespace

no need for the svg prefix made explicity

54

Internationalisation

What does Text Mean?

“Text” can be encoded according so many different alphabets
mapping between characters and integers (code points)

character set
ASCII being the most (un)famous, now Unicode

A character encoding determines how code points are mapped
onto bytes

so, a character set can have multiple encodings
UTF-8 and UTF-16 are both Unicode encodings

Any XML document is a text document
so, encoding should be declared

56

The XML Encoding Declaration

Part of the XML Declaration
<?xml version="1.0" encoding="utf-8" standalone="no"?>

Most common values
utf-8, utf-16 (Unicode)
ISO-8859-1 (Latin-1)

See also: XML-Defined Character Sets
Unicode and ISO are the most used families

Used also for external parsed entities
like DTD fragments, or XML chunks
which may have different encodings
there, version may be dropped

it is a text declaration, but no longer a XML declaration

57

Multi-Lingual Documents

Example: a spell-checker, or a voice-reader parsing an XML doc
How to determine the language of a subpart?

for multi-lingual docs
xml:lang attribute

can be associated to any element
determines the language of the element

Values are to be found in ISO 639
standard: two letters for each language known
if not there, IANA

prefix i-
such as i-navajo, i-klingon, …

if not there, too, such as for user-defined tags
prefix x-

such as x-quenya
58

Encoding for Portability

Working around encoding is not simply an “internationalisation” issue
it is also about portability

When transmitting / communicating through text-based files, many
errors typically occur

which are often not easy to catch
XML abilities to

handle encoding precisely and accurately
embody encoding information within each document

make it a powerful tool for easy and hassle-free portability
across platforms, across applications, across time

59

XML & CSS

XML on Browsers

Different experiences with different browsers
when trying to visualise an XML document

XML however can be transformed
to become easier to handle by standard browsers

Two main approaches
Web-based one: XML + CSS
XML-based one: XSL

In the following we explore the XML + CSS issue

61

Cascading Style Sheets

Cascading Style Sheets (CSS)
a simple mechanism for adding style (e.g. fonts, colors, spacing) to Web
documents

Standard W3C
http://w3c.org/Style/CSS

Goals
describing how to present elements of a document

spanning over a range of different media
separating style description from content and structure

In this course we assume that you already know the basics
if not, look at http://www.w3.org/Style/CSS/learning

62

CSS: An Example

63

XML + CSS

Any XML documents can be prepared for browser visualisation via CSS
Two things needed

a CSS style sheet referring to the proper elements types of the XML document
the association between the XML document and the CSS style sheet

Processing directive
to associate CSS to XML

<?xml-stylesheet type="text/css" href="nomefile.css" ?>

CSS style sheet defining presentation style for the XML document tags
nometag {
 attributo1 : valore1;
 …
}

No need for DTD or Schema
even though the browser could anyway complain…

64

XML + CSS Example: The XML Doc

65

Example: How Mozilla Visualises it
[without CSS Style Sheet]

66

Example: How Mozilla Visualises it
[with CSS Style Sheet]

67

DOM & SAX

Manipulating XML Documents

Representing information in an XML Document
and presenting it somehow
is not enough for most non-trivial application scenarios

Mostly, we often need to manipulate
access, delete, modify

parts of an XML document
which either may or may not be and XML file

This is typically dome through programming language of many sorts
through ad hoc API

The most used / hated / deprecated / widespread are
DOM
SAX

69

Document Object Model (DOM)

http://www.w3.org/DOM/
standard W3C, as usual

"The Document Object Model is a platform- and language-neutral
interface that will allow programs and scripts to dynamically access and
update the content, structure and style of documents"

It applies to HTML as well as XML
It is essentially an API

standardised for Java & ECMAScript
but can be extended to other languages

There is no time here to go deep into DOM
we just try to understand its nature, goals and scope

70

DOM & Levels

DOM views an XML tree as a data structure
similar to the DOM from Javascript

DOM loads the whole XML document in memory to manipulate it
maybe huge memory consumption

It is quite large and complex…
Level 1 Core: W3C Recommendation, October 1998

primitive navigation and manipulation of XML trees
other Level 1 parts: HTML

Level 2 Core: W3C Recommendation, November 2000
adds Namespace support and minor new features
other Level 2 parts: Events, Views, Style, Traversal and Range

Level 3 Core: W3C Working Draft, April 2002
adds minor new features
other Level 3 parts: Schemas, XPath, Load/Save

71

DOM Nodes

An XML document is a tree
The tree contains nodes

one of them is a root node
nodes possibly have siblings, children, one parent, content, tag, etc.

The DOM specification states that a node can contain
document, doc. fragment, doc. type, element, attribute, processing instruction,
comment, text, CDATA section, entity, notation

It also defines which kind of child nodes they should / could have

72

Properties & Methods of DOM
Nodes

Every DOM node has properties and methods to explore and
update the XML tree
Every DOM node has a name, a value, a type
There are general properties and methods for all kinds of nodes

attributes returns all the attributes of the node
appendChild(newChild) appends newChild after the other child nodes

Then, any specific kind of node has its own specific properties and
methods
These properties and methods are made available by the suitable API
for the language of choice

many solutions for Java
see for instance http://java.sun.com/xml/jaxp/

73

A Simpe Java DOM Fragment

 public static void main(String[] args) {
 try {
 DOMParser p = new DOMParser();
 p.parse(args[0]);
 Document doc = p.getDocument();
 Node n = doc.getDocumentElement().getFirstChild();
 while (n!=null && !n.getNodeName().equals("recipe"))
 n = n.getNextSibling();
 PrintStream out = System.out;
 out.println("<?xml version=\"1.0\"?>");
 out.println("<collection>");
 if (n!=null)
 print(n, out);
 out.println("</collection>");
 } catch (Exception e) {e.printStackTrace();}
 }

74

Main Problem of DOM

The XML document is loaded as a whole and handled altogether in
memory

it might be time-consuming and difficult to manage
wouldn't it be better if we could load only the part we are actually
manipulating

This is the motivation behind SAX
which is not started as a standard
has problems of acceptance
but has indeed a long tail of followers
and also its good reasons to exist

75

Simple API for XML (SAX)

Differently from DOM, SAX is event-based
It sees the document not as a tree, but as a text doc

flowing through the SAX parser
and generating events as soon as document started / ended, elements started
/ ended, character content, etc.

A very simple model
good for simple applications
and also to avoid memory abuse

Not so well-supported as DOM is
in terms of standardisation
as well as of tools

76

