
From Distributed Objects to
Multi-Agent Systems:

Evolution of Middleware (1)

Giovanni Rimassa

Whitestein Technologies AG – (gri@whitestein.com)

Presentation Outline (1)

• Middleware Overview
– What is Middleware
– Why Middleware
– Middleware and Models
– Middleware Technologies and Standards

• Object Oriented Middleware
– Mission: OOP for Distributed Systems
– OOPrinciples
– Bringing Objects to the Network
– Overview of the CORBA Standard

Presentation Outline (2)

• Agent Oriented Middleware
– Mission: Mainstreaming Agent Technology
– What is an Agent?
– Autonomy, Sociality and Other Agenthood Traits
– Overview of the FIPA Standard

• JADE: A Concrete FIPA Implementation
– Overview: The Software, the Project, the

Community
– JADE as a Runtime Support System
– JADE as a Software Framework
– JADE Internal Architecture

Middleware Overview

• What is Middleware?
– The word suggests something belonging to the middle.
– But middle between what?

• The traditional Middleware definition.
– The Middleware lies in the middle between the Operating

System and the applications.

• The traditional definition stresses vertical
layers.
– Applications on top of Middleware on top of the OS.
– Middleware-to-application interfaces (top interfaces).
– Middleware-to-OS interfaces (bottom interfaces).

Why Middleware?

• Problems of today.
– Software development is hard.
– Experienced designers are rare (and costly).
– Applications become more and more complex.

• What can Middleware help with?
– Middleware is developed once for many

applications.
– Higher quality designers can be afforded.
– Middleware can provide services to applications.
– Middleware abstracts away from the specific OS.

Middleware and Models (1)

• A key feature of Middleware is Interoperability.
– Applications using the same Middleware can interoperate.

– This is true of any common platform (e.g. OS file system).

• But, many incompatible middleware systems exist.
– Applications on middleware A can work together.

– Applications on middleware B can work together, too.

– But, A-applications and B-applications cannot!

• The Enterprise Application Integration (EAI) task.
– Emphasis on horizontal communication.
– Application-to-application and middleware-to-middleware.

Middleware and Models (2)

• Software development does not happen in
vacuum.
– Almost any software project must cope with past systems.

– There is never time nor resources to start from scratch.

– Legacy systems were built with their own approaches.

• System integration is the only way out.
– Take what is already there and add features to it.

– Try to add without modifying existing subsystem.

• First casualty: Conceptual Integrity.
– The property of being understandable and explainable

through a coherent, limited set of concepts.

Middleware and Models (3)

• Real systems are heterogeneous.
– Piecemeal growth is a very troublesome path for software

evolution.
– Still, it is very popular (being asymptotically the most cost

effective when development time goes to zero).

• Middleware technology is an integration
technology.
– Adopting a given middleware should ease both new

application development and legacy integration.
– To achieve integration while limiting conceptual drift,

Middleware tries to cast a Model on heterogeneous
applications.

Middleware and Models (4)

• Before: you have a total mess.
– A lot of systems, using different technologies.
– Ad-hoc interactions, irregular structure.
– Each piece must be described in its own reference frame.

• Then: the Integration Middleware (IM) comes.
– A new, shiny Model is supported by the IM.
– Existing systems are re-cast under the Model.
– New Model-compliant software is developed.

• After: you have the same total mess.
– But, no, now they are CORBA objects, or FIPA agents.

Middleware Technologies

• Abstract Middleware: a common Model.
• Concrete Middleware: a common
Infrastructure.

• Example: Distributed Objects.
– Abstractly, any Middleware modeling distributed systems as

a collection of network reachable objects has the same
model: OMG CORBA, Java RMI, MS DCOM, …

• Actually, even at the abstract level there are differences…

– Concrete implementations, instead, aim at actual
interoperability, so they must handle much finer details.

• Until CORBA 2.0, two CORBA implementations from different
vendors were not interoperable.

Middleware Standards

• Dealing with infrastructure, a key issue is the
so-called Network Effect.
– The value of a technology grows with the number of its

adopters.

• Standardization efforts become critical to
build momentum around an infrastructure
technology.
– Large standard consortia are built, which gather several

industries together (OMG, W3C, FIPA).

– Big industry players try to push their technology as de facto
standards, or set up more open processes for them
(Microsoft, IBM, Sun).

Middleware Discussion Template

• Presentation and analysis of the model
underlying the middleware.
– What do they want your software to look like?

• Presentation and analysis of the
infrastructure created by widespread use of
the middleware.
– If they conquer the world, what kind of world will it be?

• Discussion of implementation issues at the
platform and application level.
– What kind of code must I write to use this platform?

– What kind of code must I write to build my own platform?

Distributed Objects

• Distributed systems need quality software,

and they are a difficult system domain.

• OOP is a current software best practice.

• Question is:
– Can we apply OOP to Distributed Systems programming?
– What changes and what stays the same?

• Distributed Objects apply the OO paradigm

to Distributed Systems.
– Examples: CORBA, DCOM, Java RMI, JINI, EJB.

Back to Objects

• To describe the Distributed Objects
model, let’s review the basic OOP
computation model.
– The principles motivating OOP.

– The central concept.

– The central computation mechanism.

– The central software evolution mechanism.

• “Teach yourself OOP in 7 slides”.

Five OOPrinciples (1)

• Modular Linguistic Units.
– The language must support modules in its syntax.

• Embedded Documentation.
– A module must be self-documenting.

• Uniform Access.
– A service must not disclose whether it uses stored data or

computation.

• The three principles above are followed by
OO languages, but also by Structured
languages.

Five OOPrinciples (2)

• Open/Closed Principle (OCP).
– The language must allow the creation of modules closed for

use but open for extension.

• Single Choice Principle (SCP).
– Whenever there is a list of alternatives, at most one module

can access it.

• The two principles above require Object-
Orientation.
– OCP requires (implementation) inheritance.

– SCP requires (inclusion) polymorphism.

OOP Concept (1)

The fundamental concept of The fundamental concept of
objectobject--oriented programming is:oriented programming is:

The Object

The Class

OOP Concept (2)

• Def: Class
– “An Abstract Data Type, with an associated

Module that implements it.”

Type + Module = Class

Modules and Types

• Modules and types look very different.
– Modules give structure to the implementation.

– Types specifies how each part can be used.

• But they share the interface concept.
– In modules, the interface selects the public part.
– In types, the interface describes the allowed

operations and their properties.

OOP Mechanism

res = obj.meth(par)

Parameter List

Fundamental OOP Computation Mechanism: Method Call

Method Name

Target Object

Result

Access Operator

OOP Extensibility

• Subclassing is the main OOP extension
mechanism, and it is affected by the dual
nature of classes.
– Type + Module = Class.
– Subtyping + Inheritance = Subclassing.

• Subtyping: a partial order on types.
– A valid operation on a type is also valid on a subtype.
– Liskov Substitutability Principle.

• Inheritance: a partial order on modules.
– A module grants special access to its sub-modules.
– Allows to comply with the Open/Closed Principle.

Distributing the Objects

• Q: How can we extend OOP to a distributed system,
preserving all its desirable properties?

• A: Just pretend the system is not distributed, and
then do business as usual!

• …
• As crazy as it may seem, it works!

– Well, up to a point at least.

– But generally enough for a lot of applications.

• Problems arise from failure management.
– In reliable and fast networks, things run smooth…

(Distributed) Objects

The Object

The Class

The Remote Interface

The fundamental concept of Distributed Objects is:The fundamental concept of Distributed Objects is:

(Distributed) Objects

res = obj.meth(par)

Parameter List
Sent on the network

Method Name
Declared in the remote interface

Target Object
Encapsulates address and protocol

Result
Sent back

Access Operator
Grants location transparency

Fundamental Computational Mechanism: Remote Method Call

Distributed (Objects)

Communication
Mechanisms Structured Object Oriented

Explicit C Sockets java.net.*

Implicit RPC
CORBA

java.rmi.*

Distributed (Objects)

• The Distributed Objects
communication model is implicit.
– Transmission is implicit, everything

happens through stubs.
– The stub turns an ordinary call into an IPC

mechanism.
– One gains homogeneous handling of both

local and remote calls (location
transparency).

Distributed (Objects)

• The Distributed Objects communication
model is object oriented.
– Only objects exist, invoking operations on each

other.
– The interaction is Client/Server with respect to the

individual call (micro C/S, not necessarily macro
C/S).

– Each call is attached to a specific target object: the
result can depend on the target object state.

– Callers refer to objects through an object
reference.

Broker Architecture

• Broker is an architectural pattern in
[BMRSS96].
– Stock market metaphor.
– Publish/subscribe scheme.
– Extensibility, portability, interoperability.
– A broker reduces logic links from N

c
•N

s
to N

c
+ N

s
.

Broker

Client 1

Client 2

Client 3

Server 1

Server 2

Server 3

Client 1

Client 2

Client 3

Server 1

Server 2

Server 3

Proxy and Impl, Stub and Skeleton

ResType operation(ParType par) {

 // 1. Marshal parameter

 // 2. Send marshalled data to impl transport address
 // 3. Receive result from impl transport address

 // 4. Return Result

}

Client
RemoteInterface

operation(par : ParType) : ResType

invokes

RemoteImpl
RemoteProxy

skel : Address
RemoteSkel

ResType operation(ParType par) {

 // Execute the operation normally
}

connects to

void dispatch() {

 while(active) {

 // 1. receive from the RemoteProxy
 // 2. Unmarshal received data

 // 3. Call operation on RemoteImpl

 // 4. Send back result
 }

}

Network

What’s CORBA

• The word
– An acronym for Common ORB Architecture.

– ORB is an acronym again: Object Request Broker.

– CORBA is a standard, not a product.

• The proponents
– Object Management Group (OMG).

• A consortium of more than 800 companies, founded in 1989.
• Present all major companies.

ht t p: / / www. omg. or g
• The same institution that took up the Unified Modeling

Language specification from its original creator, Rational
Software Corp.

Object Management Architecture

• The OMA architecture was
OMG overall vision for
distributed computing.

– The Object Request Broker is
OMA backbone.

– The IIOP protocol is the
standard application transport
that grants interoperability.

• Now, the OMA vision has
been superceded by the
Model Driven Architecture,
almost a meta-standard in
itself.

Object Management Architecture

• The Common
Object Services
serve as CORBA
system libraries,
bundled with the
ORB infrastructure.
– Naming and Trader

Service.

– Event Service.

– Transaction Service.

– ...

Object Management Architecture

• The Common Facilities

are frameworks to
develop distributed
applications in various
domains.
– Horizontal Common

Facilities handle issues
common to most application
domains (GUI, Persistent
Storage, Compound
Documents).

– Vertical Common Facilities

deal with traits specific of a
particular domain (Financial,
Telco, Health Care).

OMA - ORB Core

• Part of the OMA dealing with
communication mechanisms.

• Allows remote method invocation
regardless of:
– Location and network protocols.

– Programming language.

– Operating System.

• The transport layer is hidden from
applications using stub code.

Remote invocation: Participants

• A Request is the closure of an invocation,
complete with target object, actual
parameters, etc.

• The Client is the object making the request.
• The Object Implementation is the logical

object serving the request.
• The Servant is the physical component that

incarnates the Object Implementation.
• The ORB connects Client and Servant.

ORB Core Components

ORB Core

Dynamic
Invocation

IDL
Stubs

ORB
Interface

Object
Adapter

Static IDL
Skeleton

Dynamic
Skeleton

Client Object Implementation

Interfaccia identica per ogni implementazione di ORB

Possono esistere molti Object Adapter

Ci sono stub e skeleton per ogni typo di oggetto

Interfaccia dipendente dallo specifico ORB

Invokes a method
creating a request

Implements a method
accepting the request

Request Path

ORB Core Interfaces

• Client side interfaces:
– Client Stub.

– Dynamic Invocation
Interface (DII).

• Server side interfaces:
– Static Skeleton.
– Dynamic Skeleton Interface

(DSI).

– Object Adapter (OA).
• CORBA 2.0 → BOA.
• CORBA 2.3 → POA.

ORB Core

Dynamic
Invocation

IDL
Stubs

ORB
Interface

Object
Adapter

Static IDL
Skeleton

Dynamic
Skeleton

Client Object Implementation

Interfaccia identica per ogni implementazione di
Possono esistere molti Object
Ci sono stub e skeleton per ogni typo di
Interfaccia dipendente dallo specifico

ORB Core

Dynamic
Invocation

IDL
Stubs

ORB
Interface

Object
Adapter

Static IDL
Skeleton

Dynamic
Skeleton

Client Object Implementation

Interfaccia identica per ogni implementazione di
Possono esistere molti Object
Ci sono stub e skeleton per ogni typo di
Interfaccia dipendente dallo specifico

ORB Core Interfaces

• Client (IDL) Stub.
– Specific of each remote interface and

operation, with static typing and dynamic
binding.

– Automatically generated by compilation
tools.

– Conversion of request parameter in
network format (marshaling).

– Synchronous, blocking invocation.

ORB Core Interfaces

• Dynamic Invocation Interface (DII)
– Generic, with dynamic typing and dynamic

binding.

• Directly provided by the Object Request
Broker.

• Both synchronous and deferred
synchronous invocations are possible.

• Provides a reflective interface
– Request, parameter, ...

ORB Core Interfaces

• Static skeleton (IDL)
– Corresponds to the Client Stub on Object Implementation

side.
– Automatically generated by compilation tools.
– Builds parameters from network format (unmarshaling), calls

the operation body and sends back the result.

• Dynamic Skeleton Interface (DSI)
– Conceptually alike to Dynamic Invocation Interface.
– Allows the ORB to forward requests to Object

Implementations it does not manage.
– Can be used to make bridges between different ORBs.

ORB Core Interfaces

• Object Adapter (OA)
– Connects the Servant (the component containing an

Object Implementation) to the ORB.
– In CORBA the Object Implementation is reactive.

• The OA has the task of activating and deactivating it.

– There can be many Object Adapters.
• The CORBA 2.0 standard specifies the Basic Object

Adapter (BOA).

• The CORBA 2.3 standard specifies the Portable
Object Adapter (POA).

ORB Core Interfaces

• ORB Interface
– Common interface for

maintenance operations.
– Initialization functions.
– Bi-directional translation

between Object
Reference and strings.

– Operations of this
interface are represented
as belonging to pseudo-
objects.

ORB Core

Dynamic
Invocation

IDL
Stubs

ORB
Interface

Object
Adapter

Static IDL
Skeleton

Dynamic
Skeleton

Client Object Implementation

Interfaccia identica per ogni implementazione di
Possono esistere molti Object
Ci sono stub e skeleton per ogni typo di
Interfaccia dipendente dallo specifico

CORBA Interoperability

• CORBA is heterogeneous for Operating
System, network transport and programming
language.

• With the 1.2 version of the standard,
interoperation was limited to ORBs from the
same vendor.

• In CORBA 1.2 two objects managed by ORBs
from different vendors could not interact.

• CORBA 2.x grants interoperability among
ORBs from different vendors.

CORBA Interoperability

• Recipe for interoperability
1) Communication protocols shared among

ORBs.
2) Data representation common among ORBs.
3) Object Reference format common among

ORBs.

⇒ Only ORBs need to be concerned with
interoperability.

CORBA Interoperability

• Common communication protocols
– The standard defines the General Inter-ORB Protocol

(GIOP), requiring a reliable and connection-oriented
transport protocol.

– With TCP/IP one has Internet Inter-ORB Protocol (IIOP).

• Common data representation
– As part of GIOP the CDR (Common Data Representation)

format is specified.
– CDR acts at the Presentation layer in the ISO/OSI stack.

• Common Object Reference format
– Interoperable Object Reference (IOR) format.

• Contains all information to contact a remote object (or more).

OMA - Common Object Services

• Design guidelines for CORBAservices
– Essential and flexible services.
– Widespread use of multiple inheritance (mix-in).
– Service discovery is orthogonal to service use.
– Both local and remote implementations are

allowed.

• CORBAservices are ordinary Object
Implementations.

OMA - Common Object Services

• Naming Service.
– Handles name ⇔ Object Reference associations.
– Fundamental as bootstrap mechanism.
– Allows tree-like naming structures (naming

contexts).

• Object Trader Service.
– Yellow Page service for CORBA objects.
– Enables highly dynamic collaborations among

objects.

OMA - Common Object Services

• Life Cycle Service.
– Object creation has different needs with respect to

object use ⇒ the Factory concept is introduced.
– Factory Finders are defined, to have location

transparency even at creation time.
– This service does not standardize Factories (they

are class-specific), but copy, move and remove

operations.

OMA - Common Object Services

• Event Service.
– Most objects are reactive.

– The Event Service enables notification delivery, decoupling
the producer and the consumer with an event channel.

– Supports both the push model (observer) and the pull model
for event distribution.

– Suitable administrative interfaces allow to connect event
supplier and event consumer of push or pull kind.

• Notification Service
– Improves the Event Service, with more flexibility.

OMA - Common Object Services

• Transaction Service.
– Transactions are a cornerstone of business

application.
– A two-phase commit protocol grants ACID

properties.
– Supports flat and nested transactions.

• Concurrency Control Service.
– Manages lock objects, singly or as part of groups.
– Integration with the Transaction Service.

• Transactional lock objects.

The OMG IDL Language

Motivation for an Interface Definition
Language.

• CORBA is neutral with respect to
programming languages.

• Different parts of an application can be
written in different languages.

• A language to specify interactions
across language boundaries is needed
⇒ Interface Definition Language (IDL).

The OMG IDL Language

Overall OMG IDL language features.
• Syntax and lexicon similar to

C/C++/Java.
• Only expresses the declarative part of a

language.
• Services are exported through

interfaces.
• Support for OOP concept as inheritance

or polymorphism.

Programming with CORBA

• The Broker architecture allows to build distributed
applications, heterogeneous with respect to:
– Operating System.

– Network Protocol.

• The OMG IDL language allows to build distributed
applications, heterogeneous with respect to:
– Programming Language.

• But, the system will have to be implemented in some
real programming languages at the end.
– The IDL specification have to be cast into those languages

Programming with CORBA

• CORBA programming environments
feature a tool called IDL compiler.
– It accepts OMG IDL as input, and generates code

in a concrete implementation language.

• With respect to a given IDL interface, a
component may be a client and/or a
server.
– The client requests the service, the server exports

it.
– The IDL compiler generates code for both.

Programming with CORBA

HelloC.hh

C++

Hello.idl

IDL

HelloC.cc

C++

HelloS.cc

C++

HelloS.hh

C++

HelloS.java

Java

HelloC.java

Java

IDL to C++ IDL to Java

HelloI.cc

C++

Server.cc

C++

Client.cc

C++

Client.java

Java

HelloI.java

Java

C++ Compile
and Link

C++ Compile
and Link

Java
Compile

Java
Compile

Client.exe

Exe

Server.exe

Exe

Client.jar

Exe

Server.jar

Exe

Server.java

Java

Programming with CORBA

• For each supported programming
language, the CORBA standard
specifies a Language Mapping:
– How every OMG IDL construct is to be translated.
– Programming techniques that are to be used.

• C++ Language Mapping.
• Java Language Mapping.
• Smalltalk Language Mapping.
• Python Language Mapping.

Objects and Metadata

• Compile-time vs. Run-time
– In C++ and Java the state of an object can change

at runtime, but its structure is carved by the
compilation process.

– Usually, the overall set of classes and functions
belonging to the system is defined at compile time
and cannot vary.

• With dynamic linking these rules can be
overcome, but traditional systems tend
to follow them anyway.

Objects and Metadata

• To increase system flexibility, one has
to add a new level that:
– Describes system capabilities.
– Allows changing them at runtime.

• Data belonging to this second level are
“data about other data”, that is they are
metadata (e. g. the schema of a DB).
– Systems have a (usually small) number of meta-
levels (e.g. objects, classes and metaclasses in
Smalltalk, ot the four-layer meta-model of UML).

Objects and Metadata

• Object oriented software system were
soon given metadata:
– Smalltalk has Metaclasses.
– CLOS (Common Lisp Object System) introduced

the concept of Meta-Object Protocol.
– Java has a Reflection API since version 1.1.

• In the book “Pattern Oriented System
Architecture: A system of Patterns”,
Reflection is an architectural pattern.

CORBA Metadata

• CORBA is an integration
technology.

• Therefore, the issue of metadata
and Reflection was given
appropriate attention.

• In a distributed system, metadata
have to be persistent, consistent
and available.

CORBA Metadata

• In the OMA architecture, metadata are
used in several parts:
– The Dynamic Invocation Interface allows to act on

the remote operation invocation mechanism itself.

– The Interface Repository allows runtime discovery

of new IDL interfaces and their structure.

– The Trader Service gathers services exported by

objects into a yellow-page structure.

The Dynamic Invocation Interface

• Goals of the DII
– The DII provides a complete and flexible

interface to the remote invocation

mechanism, around which CORBA is built.

– The central abstraction supporting the DII
is the Request pseudo-object, which reifies
an instance of a remote call (see the

Command design pattern in the Gang of
Four book).

The Dynamic Invocation Interface

• IDL interfaces for the DII
– Firstly, a request attached to a CORBA

object needs be created.

– The create_request() operation,
belonging to the Object pseudo-interface
(minimum of the inheritance graph), is to
be used.

– When a request is created, it is associated
to its original Object Reference for its
whole lifetime.

The Dynamic Invocation Interface

• To create a request, one uses the IDL:

modul e CORBA { / / PI DL
pseudo i nt er f ace Obj ect {
t ypedef unsi gned l ong ORBSt at us;
ORBSt at us cr eat e_r equest (i n Cont ext ct x,

i n I dent i f i er oper at i on, / / Oper at i on name
i n NVLi st ar g_l i st , / / Oper at i on ar gument s
i nout NamedVal ue r esul t , / / Oper at i on r esul t
out Request r equest , / / Newl y cr eat ed r equest
i n Fl ags r eq_f l ags; / / Request f l ags) ;

} ; / / End of Obj ect pseudo i nt er f ace
} ; / / End of CORBA modul e

The Dynamic Invocation Interface

• After creation, a request object can be
used:

– modul e CORBA {
t ypedef unsi gned l ong St at us;
pseudo i nt er f ace Request {

St at us add_ar g(i n I dent i f i er name,
i n TypeCode ar g_t ype,
i n any val ue, i n l ong l en,
i n Fl ags ar g_f l ags) ;

St at us i nvoke(i n Fl ags i nvoke_f l ags) ;
St at us del et e() ; / / Dest r oy r equest obj ect
St at us send(i n Fl ags i nvoke_f l ags) ;
St at us get _r esponse(i n Fl ags r esponse_f l ags) ;

} ; / / End of Request i nt er f ace
} ; / / End of CORBA modul e

The Dynamic Invocation Interface

• The DII, through request objects, allows

selecting the rendezvous policy:
– Synchronous call with invoke().

– Deferred synchronous call with send().

• With deferred synchronous invocations, a
group of requests can be sent all at once.

• The new Asynchronous Method Invocation

(AMI) specification of CORBA 2.4 also
introduces asynchronous calls.

Synchronous Call with the DII

:Client

add_arg()

serve request and do operation

wake up client

client

blocks

:Object Implementation

:Request {new}

createRequest()

create()

add_arg()

invoke()

Deferred Synchronous Call

:Client

get_response()

add_arg()

serve request and do operation
client

computes

:Object Implementation

:Request {new}

createRequest()

create()

add_arg()

send()

The Interface Repository

• The Interface Repository keeps the
descriptions of all the IDL interfaces
available in a CORBA domain.

• Using the Interface Repository,
programs can discover the structure of
types they don’t have the stubs for.

• The TypeCode interface provides an

encoding of the OMG IDL type system.

The Interface Repository

• Object oriented representation of the
syntax of a language:
– The formal grammar (e.g. in BNF notation) can be

turned into a structure of classes and associations.
– To do this, one defines a class for each non-terminal

symbol of the given grammar.

• Approach followed by OO parser
generators (ANTLR, JavaCC).
– Interpreter design pattern from Gang of Four book.

The Interface Repository

• The BNF expression of
a list of words (with right
recursion) results in the
Composite design
pattern of the Gang of

Four book:

<l i st > : : =
<wor d>
| <l i st > <wor d>

1..*

contents

1

Word

List

The Interface Repository

• The OMG IDL language representation:
– A complete OO representation of the IDL language is stored

within the Interface Repository.

– The IDL BNF results in both has-a and is-a links in the
objects structure.

• The Reposi t or y interface is the root of the
containment hierarchy, whereas the
I RObj ect interface is the root of the
inheritance hierarchy.

• The two Cont ai ner and Cont ai ned
interfaces form a Composite structure.

The Interface Repository

0..* 1

IRObject

Contained Container

AttributeDef

ConstantDef ExceptionDef

TypedefDef

InterfaceDef

ModuleDef RepositoryOperationDef

Composite

The Interface Repository

• Using the Interface Repository:
– Objects stored within the Interface

Repository are an equivalent
representation of actual OMG IDL source
code.

– Browsing the Interface Repository, one can
even rebuild IDL sources back.

• With Repository IDs, more interface
repositories can be federated.

The Interface Repository

• Every interface derived from IRObject
supports two kinds of operations.
– Read Interface to explore metadata (Introspective

Protocol).
– Write Interface to modify them and create new

ones (Intercessory Protocol).

• Every interface derived from
Container supports navigation
operations, as well as new elements
creation operations.

Dynamic Collaboration

• CORBA objects are more adaptable
than ordinary, programming language
objects such as Java or C++ objects.

• Two CORBA objects A and B, initially
knowing nothing about each other, can
set up a collaboration.
– Object A uses get _i nt er f ace() to get an
I nt er f aceDef describing B.

– Browsing the Interface Repository, A discovers the
syntax of B supported operations.

– Using DII, A creates a request and sends it to B.

Dynamic Collaboration

• With CORBA, the syntax of the operations

can be discovered at runtime.

• But the semantics of the operation is missing:
OMG IDL lacks preconditions, postconditions

and invariants.

• More complex systems (like multi-agent

systems) need languages to describe the
domain of the discourse (ontologies).

Summary on Distributed Objects

An impressive technology!
Extends OOP to Distributed Systems.

Hides DS programming complexity.

Supported by an open standard (OMG CORBA).

Integration across OSs, networks and languages.

A lot of free implementations available.

• Next in line: Multi-Agent Systems
– An emergent technology.
– Can they do better than Distributed Objects?

From Distributed Objects to
Multi-Agent Systems:

Evolution of Middleware (2)

Giovanni Rimassa

Whitestein Technologies AG – (gr i @whi t est ei n. com)

Summary on Distributed Objects

An impressive technology!
Extends OOP to Distributed Systems.
Hides DS programming complexity.

Supported by an open standard (OMG CORBA).
Integration across OSs, networks and languages.

A lot of free implementations available.

• Next in line: Multi-Agent Systems
– An emergent technology.
– Can they do better than Distributed Objects?

Agent Middleware

• According to our previous discussion
schema, an Agent middleware is supposed
to:
– Promote an agent-oriented Model.
– Realize an agent-oriented Infrastructure.

• We will have to go through some steps:
– Describe what agents and multi-agent system are.
– Compare the agent/MAS model with the OO model.
– Describe what kind of software components agents are.
– Provide an infrastructure example: the FIPA standard.
– Provide an implementation example: JADE.

What is a software agent?

• A software agent is a software system that
can operate in dynamic and complex
environments.
– It can perceive its environment through senses.
– It can affect its environment through actions.

Agent Envi ronment

Sensory data

Actions

Agenthood properties

• Fundamental features.
– An agent is autonomous.
– An agent is reactive.
– An agent is social.

• Useful features.
– An agent can be proactive (or goal-

directed).
– An agent can be mobile.
– An agent can be adaptive (or learning).

Autonomous Agents

Multi Agent Systems

Intelligent
AgentsLearning Agents

Mobile Agents

Application areas

• Information management.
– Information Filtering.
– Information Retrieval.

• Industrial applications.
– Process control.
– Intelligent manufacturing.

• Electronic commerce.

• Computer Supported Cooperative Work.

• Electronic entertainment.

Autonomy and Reactivity

• First fundamental trait of an agent: autonomy.
– An agent can act on the environment, on the basis of its

internal evolution processes.

• Second fundamental trait: reactivity.
– An agent can perceive changes in the environment, providing

responses to external stimuli.

• How do these qualities compare with objects?
– Objects are reactive.
– Objects are not autonomous.

Master and Servant (1)

• Fundamental computational mechanism of
the OOP:
– Method invocation.

– An object exposes its capabilities (public methods).

– Then other objects exploit them how and when they like
(they decide when to invoke the methods and which
parameters to pass to them).

• An object decides its behaviour space, but
does not further control its own behaviour.

• The object is servant, its caller is master.

Master and Servant (2)

• Method invocation follows Design by
Contract:
– It is a synchronous rendezvous, so the caller object has to

wait until the called object completes its task.

– The caller must ensure the correctness precondition of the
method are verified before invoking it.

• Though the caller object chooses the method
to invoke, then it surrenders itself (i.e. its
thread of control) to code that it is controlled
by the called.

• The object is master, its caller is servant.

Concurrent OOP

• Classical method invocation is a tight bond
between caller and called object.
– Not that this is always a bad thing (cohesion vs. coupling).

• However, in concurrent OOP things change a
lot.
– To exploit parallelism, other rendezvous policies are used,

such as deferred synchronous or asynchronous.

– In concurrent method invocation, correctness preconditions
become synchronization guard predicates.

• The bond of classical Design by Contract is
extremely loosened!

A Stairway to Agents

Objects

Active Objects

Actors Agents

Intelligent Agents

Reactive Method Invocation

Invocation Thread != Execution Thread

Persistently running, Mailbox

Sociality

Reasoning

Building a single agent

• Various proposals for an agent architecture.

Autonomy

Reactivity

Hybrid

Architectures

Deliberative

Architectures

Reactive

Architectures

• Deliberative

architectures
– Explicit, symbolic model of the

environment.
– Logic reasoning.

• Reactive architectures
– Stimulus ⇒ Response.

• Hybrid architectures
– BDI, Layered, ...

Sociality: From Agent To MAS

• Autonomy and Reactivity are about an agent
and its environment.

• Sociality is about having more than one agent
and they building relationships.

• The shift towards the social level marks the
border between Agent research and Multi-
Agent Systems (MAS) research.
– This is the major trait differentiating (non-intelligent) agents

from classical actors.

Communication in MAS

• MASs need a richer, more loosely coupled
communication model with respect to OO systems.

• Approach: trying to mimic human communication with
natural language.
– When people speak, they try to make things happen.

– Listening to someone speaking, something of her internal thoughts
is revealed.

– When institutionalized, word is law (“I pronounce you…”).

• A linguistic theory results in a communication model.
– Speech Act Theory.

– Agent Communication Languages (ACLs).

Speech Act Theory and ACLs

• Theory of human communication with
language.
– Considers sentences for their effect on the world.
– A speech act is an act, carried out using the language.

• Several categories of speech acts.
– Orders, advices, requests, queries, declarations, etc.

• Agent Communication Languages use
messages.
– Messages carry speech act from an agent to another.
– A message has transport slots (sender, receiver, …).
– A message has a type (request, tell, query).
– A message has content slots.

Say What?
• An Agent Communication Language

captures:
– The speaker (sender) and hearer (receiver) identities.

– The kind of speech act the sender is uttering.

– This should be enough to understand the message.

• “I request that you froznicate the quibplatz”.
– …

• There is more to the world than people and
words.
– There are also things.
– A common description of the world is needed.

– Describing actions, predicates and entities: ontologies.

Interaction and Coordination

• A MAS is more than a bunch of agents.
– In order to get something useful, some constraints have to be

set on what agents can do.

– Agents can represent different stakeholders.

• The society metaphor as a modeling tool.
– Social Role Model: which parts can be played in the society

(static, structural model).

– Interaction and Coordination Model: which patterns
conversation can follow (dynamic, behavioral model).

• Specifying conversation patterns with
Interaction Protocols.

Standards for Agents

• To achieve interoperability among
systems independently developed, a
common agreement is needed.

• Several institutions are interested in
building standards for agent technology.
– Agent Society;
– Foundation for Intelligent Physical Agents;

– Internet Engineering Task Force;
– Object Management Group;

– World Wide Web Consortium.

FIPA

• FIPA is a world-wide, non-profit association
of companies and organizations.

• FIPA produces specifications for generic
MAS and agent technologies.

• Promotes agent-level and platform-level
interoperability among MAS developed
independently.

Foundation for Intelligent Physical Agents

ht t p: / / www. f i pa. or g

FIPA Platform Architecture

Agent Platform

Agent
Management

System

Directory
Facilitator

Message Transport System

Agent

Software

Message Transport System

FIPA ACL Message

(REQUEST
: sender (agent - i dent i f i er : name da0)
: r ecei ver (set (agent - i dent i f i er : name df))
: cont ent " ((action (agent - i dent i f i er : name df)

(register (df - agent - descr i pt i on
: name (agent - i dent i f i er : name da0)
: ser vi ces (set (ser vi ce- descr i pt i on

: name sub- sub- df : t ype f i pa- df
: ont ol ogi es (set f i pa- agent - management)
: l anguages (set FI PA- SL)
: pr ot ocol s (set f i pa- r equest) : owner shi p JADE))

: pr ot ocol s (set) : ont ol ogi es (set) : l anguages (set)
)))) "

: r epl y- wi t h r wsub1234 : l anguage FI PA- SL0
: ont ol ogy FIPA-Agent-Management : pr ot ocol fipa-request
: conver sat i on- i d convsub1234

)

FIPA ACL Message Layers

• The previous message is a Speech-Act Level
message.

• A Speech-Act Level message has an encapsulated
content.
– Expressed in a content language, according to an ontology.

• For transport reasons, it is encapsulated again.
– An envelope is added, to form a Transport-Level message.

FIPA Ontologies and IPs

• FIPA specifications heavily rely on ontologies.
– All significant concepts are collected in standard ontologies

(fipa-agent-management , etc.).

– An Ontology Service is specified for ontology brokering.

• A set of standard Interaction Protocols is
provided.
– Elementary protocols directly induced by the semantics of

the single communicative acts (fipa-request, fipa-
query, etc.).

– More sophisticated negotiation protocols (fipa-contract-
net, fipa-auction-dutch, etc.).

FIPA ACL

• The FIPA ACL complies with a
communication model.
– Based on the speech-act theory.

– Speech acts correspond to communicative
acts in FIPA.

– FIPA CAs are gathered in the FIPA CA

Library.

– A formal semantics for each act is provided.

FIPA ACL

• Each CA semantics is expressed
with a modal logic system.
– Modal logics define a set of modalities,

grouping logical formulas.

– Within a modality, the usual first order logic

applies.

– There are axioms and rules to link

modalities among each other.

FIPA ACL

• The modal logic used in FIPA ACL
applies the BDI agent model.

–Beliefs (what an agent thinks he knows now).
–Desires (what an agent wishes to become true).
– Intentions (what an agent will try to make true).

• The BDI model adopts the

Intentional Stance.

FIPA ACL

• The Intentional Stance is a way to
model complex systems, whose
details are unknown.
– Attributing mentalistic traits to the system.

– Explaining its behaviour with them.

• Example: a computer chess player.
– Does it ‘want’ to win?

– Does it ‘fear’ to lose?

FIPA ACL

• With speech acts, we follow the

communication as attempt idea.
– The speaker tells the world something

about her mind (beliefs, intentions, …).

– The hearer is not forced to react.

– We can have pre-conditions for the
speaker to speak, but no post-conditions.

– We can infer the intentions of the speaker.

FIPA ACL

• The formal semantics of a FIPA

communicative act comprises:
– What must be true for the sender before

sending a CA (feasibility precondition).

– Which intentions of the sender could be
satisfied as a consequence of sending the

CA (rational effect).

FIPA ACL

• Observer knows act has <FP, RE>.

– It can deduce FP(content).

– It can deduce I
sender

(RE(content)).

– Nothing can be deduced about the receiver.

act(content)

sender
receiver

FIPA ACL

• FIPA ACL is an intentional language
for component communication.
– Better suited for autonomous components.

• In Object-Oriented systems, Design
by Contract is followed.
– Better suited for passive components.

• How do they compare?

FIPA ACL

• With Design by Contract, a method
has preconditions and postconditions.

{pre(formals)}body{post(formals)}
{pre(actuals)}cal l {post(actuals)}

• A FIPA ACL CA has FPs and REs.
{FP(content)}CA{RE(content)}_____

{FP(content’) ∧ Is(RE(content’))}send{}

FIPA ACL
• The FP and RE are predicates over

the message content.
– A content model is needed.

• Acts have different content types.
– Some acts contain predicates.

– Some other contain actions.
– Content expressions can also hold object

descriptions and several operators.

FIPA ACL

• Content element: Predicate.

– A logic formula, with zero or more terms,
yielding a boolean value.

• Content element: Action.

– An operation of an agent on its environment.

– Has zero or more terms, yields no result.
– Complex action expressions can be built with
; and | operators.

FIPA ACL

• Content term: Object Description.
– Frame structure, with named slots.

(person :name Giovanni :age 32)

• Content term: Variable.
?x

• Content term: Modal operators.
Bi ϕ Cj ψ Ikθ

Agent i believes ϕ
to be true

Agent j desires
that ψ be true

Agent k intends
to make it so
that θ be true

FIPA ACL

• Content term: Action operators.
– They link actions with their premises and

their consequences.
– Agent(i, a) – Agent i is the one

performing actions in action expression a.
– Feasible(a, p) – Action a can be done,

and predicate p will hold just after that.
– Done(a, p) – Action a was done, and

predicate p held just before that.
– Both have the predicate defaulting to true.

FIPA ACL

• Content term: Identifying reference
expression (IRE).
– Used in the reponse to open questions.
– Corresponds to logical quantifiers, but

yields a value.
Universal: al l ?x, ϕ(?x)

Existential: any ?x, ϕ(?x)

One and only one: i ot a ?x, ϕ(?x)

FIPA ACL

• IRE vs. quantifier example.
– To show the difference, let’s use an

example question.

• “What’s the day today?”
– Q1: ∃! ?d, Byoutoday-is(?d) ?

– A1: “Yes”.

– Q2: iota ?d, Byoutoday-is(?d)?

– A2: “Today is Thursday”.

FIPA ACL

• The FIPA Communicative Act
library specifies all FIPA CAs.
– Each CA has an informal and formal (FP +

RE) semantics.

– An Appendix details the semantic model of
CAs and their content.

– FIPA Spec SC00037J.

The inform CA

• The sender informs the receiver

that a given proposition is true.
– The content is a predicate.

– The sender believes the content.

– The sender wants the receiver to believe it.

• Formalizing <s, inform(r, ϕ)>:
– FP: B

s
ϕ ∧ ¬B

s
(B

r
ϕ ∨ B

r
¬ϕ)

– RE: B
r
ϕ

The request CA

• The sender requests the receiver to

perform some action.
– The content is an action expression.
– A CA is an action and can be requested.

• Formalizing <s, request(r, a)>:
– FP: FP(a)[i/j] ∧ Bs Agent(r, a)∧

¬BsIr Done(a)

– RE: Done(a)

The query-if CA

• The sender requests the receiver to

tell whether a predicate is true.

• It is a composite act:
query-if(ϕ)means:

request(inform(ϕ) | inform(¬ϕ))

• Formalizing <s, quer y- i f (r , ϕ) >
– FP: Replace a with the two inform CAs.

– RE: Done(<r , i nf or m(s, ϕ) > | <r , i nf or m(s, ¬ϕ) >)

The query-ref CA

• The sender queries the receiver for
the object(s) identified by an IRE.
– The content is an IRE (any, iota or all).
– It is a composite act:
quer y- r ef (Ref

x
ϕ(?x)) means:

r equest (i nf or m- r ef (Ref
x
ϕ(?x)))

– The i nf or m- r ef composite act means
the disjunction of all possible i nf or macts
over the range of the variable ?x .

Interaction Protocols

• Observing a single CA says nothing
about the receiver.
– No post-conditions outside sender’s mind.

– Messages can be lost (unreliable channel).

• To draw useful conclusions, we
must move from utterances to
conversations.

Interaction Protocols

• A rational agent tries to turn its
intentions into its beliefs.
– To do so, it must act on its environment, and

then perceive the results.
– It needs to both send and receive messages.

• FIPA specifies an IP Library,
containing conversation templates.
– IPs compose the semantics of single CAs.

Responder CAs

• A protocol has two roles:
– Initiator role (triggers the protocol).

– Responder role (receives initial triggers).

• There is a set of communicative acts

dedicated to responders.
– Agree.

– Refuse.

– Failure.

– Accept-Proposal.

FIPA-Request

• The IP generated by
the request CA.
– An initial r equest .
– An agr ee/r ef use branch.

– Actual action execution (not
shown in the diagram).

– Possible f ai l ur e report.
– Possible i nf or mreport.

• Informing about completion.
• Informing about action result.

FIPA-Query
• The IP generated by the
quer y- i f or quer y- r ef
CA.
– An initial query is sent.

– An agr ee/r ef use branch.

– Possible f ai l ur e report.

– Possible i nf or mreport.

• Informing whether (quer y- i f).

• Informing about query result (in
the quer y- r ef case).

FIPA-Contract-Net
• More complex IP.

– Does not follow simply
from CAs semantics.

– It embeds policies.

• One-to-many IP.
– One manager agent.

– N contractor agents.

– A cf p is issued.

– A contractor is selected

among proponents.

FIPA and JADE
• FIPA is a world-wide, non-profit association of

companies and organizations
(ht t p: / / www. f i pa. or g).

• FIPA produces specifications for generic MAS and
agent technologies.

• Promotes agent-level and platform-level
interoperability among MAS developed
independently.

A FIPA 2000-compliant agent platform.
A Java framework for the development of MAS.
An Open Source project, © TI Labs, LGPL license.

JADE is a joint development of TI Labs and Parma University.
Project home page: http://jade.cselt.it.

History of JADE

• Project started July
1998

• Present at both the
first (Seoul, 1999)
and the second
(London, 2001) FIPA
test.

• Many users
worldwide.
– 13 released versions.
– Internet-based support.
– Leading Open Source

platform.

JADE Family

• JADE has solved the basic MAS
infrastructure problem.
– Most new AgentCities nodes fire up JADE and go.

– With JADE-LEAP, FIPA runs on wireless devices.

– With BlueJADE, runs within J2EE app servers.
• Palo Alto HP Labs OS spinoff project.

(http://sourceforge.net/projects/bluejade).

• Users are moving on to higher level
tasks.

• Ontology design (Protegé plugin, WSDLTool).

• Intelligent agents design (ParADE, Corese, JESS).

JADE Features

• Distributed Agent Platform.
– Seen as a whole from the outside world.
– Spanning multiple machines.

• Transparent, multi-transport
messaging.
– Event dispatching for local delivery.
– Java RMI for intra-platform delivery.
– FIPA 2000 MTP framework.

– IIOP protocol for inter-platform delivery.
– HTTP protocol and XML ACL encoding.

– Protocol-neutral, optimistic address caching.

JADE Features

• Two levels concurrency model.
– Inter-agent (pre-emptive, Java threads).

– Intra-agent (co-operative, Behaviour classes).

• Object oriented framework for easy
access to FIPA standard assets.
– Agent Communication Language.

– Agent Management Ontology.

– Standard Interaction Protocols.

– User defined Languages and Ontologies.

JADE Features

• User defined content languages and
ontologies.
– Each agent holds a table of its capabilities.
– Message content is represented according to a meta-model,

in a content language independent way.
– User defined classes can be used to model ontology

elements (Actions, Objects and Predicates).

• Agent mobility.
– Intra-platform, not-so-weak mobility with on-demand class

fetching.

JADE Features

• Event system embedded in the kernel.
– Allows observation of Platform, Message, MTP and

Agent events.
– Synchronous listeners, with lazy list construction.

• Agent based management tools.
– RMA, Sniffer and Introspector agents use FIPA ACL.
– Extension of f i pa- agent - management ontology for

JADE-specific actions.
– Special j ade- i nt r ospect i on observation ontology.

JADE Platform Architecture

• Software Agents are software components.
– They are hosted by a runtime support called Agent Container.
– Many agents can live in a single container (about 1000 per host).

• Selective Network Awareness and Flexible
Deployment.
– Any mapping between agents, containers and hosts.

Agent Container

Network Host Network Host

Main Container Agent Container

Link

JADE Main Container

JADE Message Dispatching

Message Dispatcher

AGENT CONTAINER

Message Dispatcher

AGENT CONTAINER (FE)

Message Dispatcher

AGENT CONTAINER

Java RMI

Agent2

event

Local

cache

Agent
Global
Descriptor

Table

event Agent3

Agent1

Agent
Container

Table

JADE Agent Architecture

JADE Concurrency Model

• Multithreaded inter-

agent scheduling.

• Behaviour abstraction
– Composite for structure

– Chain of Responsibility for
scheduling.

– No context saving.

x:SequentialBehaviour y:SequentialBehaviour

x1:SimpleBehaviour x2:SimpleBehaviour y1:SimpleBehaviour y2:SimpleBehaviour

1 2

:Agent

1.1 1.2 2.1 2.2

r un()

mai nLoop()

b1 = schedul e()

Exc. handler

r un()

mai nLoop()

Exc. handler

r un()

mai nLoop()

Exc. handler

r un()

mai nLoop()

b2 = schedul e()

Exc. handler

b1. ac t i on() b1. done() ?

a) b) c) d)

r un()

mai nLoop()

Exc. handler

r un()

mai nLoop()

Exc. handler

b2. ac t i on() b2. done() ?

e) f)

Behaviours and Conversations

• The behaviours concurrency model can
handle many interleaved conversations.
– Using the Composite structure, arbitrarily fine

grained task hierarchies can be defined.
– The new FSMBehaviour supports nested FSMs.

• FIPA Interaction protocols are mapped
to suitable behaviours:
– An Initiator Behaviour to start a new conversation.
– A Responder Behaviour to answer an incoming

one.

JADE Behaviours Model

SimpleBehaviour

FSMBehaviour

registerState()
registerTransition()

SequentialBehaviour

addSubBehaviour()

ParallelBehaviour

addSubBehaviour()

Models a complex
task i.e. a task that is
made up by
composing a number
of other tasks.

Behaviour

<<abstract>> action()
<<abstract>> done()
onStart()
onEnd()
block()
restart()

CompositeBehaviour

OneShotBehaviour CyclicBehaviour

0..* 0..* Models a generic
task

Models a simple task
i.e. a task that is not
composed of sub-tasks

Models an atomic
task (its done()
method returns true)

Models a cyclic
task (its done()
method returns
false)

Models a complex task
whose sub-tasks are
executed concurrently

Models a complex task
whose sub-tasks are
executed sequentially

Models a complex task
whose sub-tasks
corresponds to the activities
performed in the states of a
Finite State Machine

JADE Behaviours Example

Fipa-Request interaction protocol (FIPA 97 spec).

request
action

not-understood
refuse
reason

agree

failure
reason

inform
Done(action)

inform
(iota x (result action) x)

JADE Behaviours Example

Object structure for FipaRequestInitiatorBehaviour.

main:FipaReques tInit iatorBehaviour

step1:SenderBehaviour step2:NonDeterministicBehaviour step3:NonDeterministicBehaviour

NotUnderstood:SimpleBehaviour refuse:SimpleBehaviour agree:SimpleBehaviour

failure:SimpleBehaviour inform:SimpleBehaviour

JADE Content Metamodel

Element

AgentAction

IRE VariableConcept AggregatePrimitive

Can be used as the

content of an ACL

message

Indicated entities

(abstract or concrete)

An ontology deals with these

types of element

Predicate Term

ContentElementList

ContentElement

Can be true

or false

JADE Content Processing

Parser

Encoder

Parser

Encoder

Content
Language

Codec
Ontology

String/byte[]
AbsContentElement ContentElement

content of the ACL
Message

Agent internal
representation

ContentManager

Validation

JADE Support Tools

• Administration tools.
– RMA Management Agent.

• White pages GUI.

• Agent life cycle handling.

– Directory Facilitator GUI.

• Yellow pages handling.

• Development tools.
– DummyAgent.

• Endpoint Debugger.

– Message Sniffer.

• Man-in-the-middle.

JADE Support Tools JADE Internals

• JADE is a MAS infrastructure.
– Applications developed over JADE use agent-level modeling

and programming.
– Software components hosted by JADE exhibit agent-level

features (they comply with the weak agent definition).
– JADE API is an agent-level API.

• JADE is implemented in Java.
– JADE applications integrate well with Java technology.
– JADE runtime exploits object-oriented techniques.
– JADE API is an object-oriented API.

JADE Layered Architecture

• JADE architecture is divided into two layers:
– Platform layer (uses object-oriented concepts, distribution via RMI).

– Agent layer (uses agent-level concepts, distribution via ACL).

• JADE architecture has two kind of interfaces:
– Vertical interfaces (bidirectional connections between layers).

– Horizontal interfaces (HRMI at platform layer, HACL at agent layer).

HRMI

HACL

VV

Agent Container

Network Host Netw ork Host

Main Container Agent Container

Link

V

Inter-layer Relationships

– Def.: X meta-of Y: Layer X describes and possibly controls layer Y.

– Def.: X support-of Y: Layer X provides services to layer Y.

• Platform support-of Agent: It’s the runtime system for agents.
• Agent meta-of Platform: Description with JADE ontologies.
• Agent meta-of Agent: It’s a self describing layer.

JADE Agent Level

JADE Platform Level

meta -of

support -of

meta -of

JADE Core Classes

AgentManager

<<Interface>>

java.rmi.Remote

<<Interface>>

AgentContainer

<<Interface>>
MainContainer

<<Interface>>

0..* 10..* 1
register with

MainContainerImpl

GADT

1

1

1

1

maintains

AgentDescriptor

agentID : AID

1

0..1

1

agentID : AID

0..1

AgentToolkit

<<Interface>>
Agent

10..* 10..*

uses

LADT

agentID : AID

1

0..1

1

agentID : AID

0..1

acc

AgentContainerImpl

1 11 1

maintained by

1

1

1

1

communicates using

Agent Suspension

A : Agent theAMS : AMS runtime :

AgentManager

B : AgentcontainerForB:

AgentContainer

frontEnd: Main

Container

ACL request to suspend B

verify

suspend

suspend

suspend
suspend

suspend yourself

Horizontal, Remote

Operation (Platform level)

Horizontal, Remote

Operation (Agent level)

Vertical, Local

Operation (DOWN)

Role switch

Vertical, Local

Operation (UP)

From here, it is

as if B decided

to suspend itself

JADE Agent Class

Behaviour
(from behaviours)

ACLMessage
(from acl)

Scheduler

schedule() : Behaviour

1

0..*

1

0..*

manages

MessageQueue

0..1

0..*

0..1

0..*

AgentState

AID

getName() : String

Codec
(from lang)

<<Interface>>
Ontology

(from onto)

<<Interface>>

AgentToolkit

<<Interface>>

Agent

do<Transition>()
addBehaviour(b : Behaviour)

removeBehaviour(b : Behaviour)
send(msg : ACLMessage)

receive() : ACLMessage
blockingReceive() : ACLMessage

registerLanguage(name : String, translator : Codec)
lookupLanguage(name : String) : Codec

registerOntology(name : String, o : Ontology)

lookupOntology(name : String) : Ontology

11 11 11

1

1..*

1

1..*

describes

lName : StringlName : String oName : StringoName : String

1

0..*

1

0..*

uses

Summary on Multi-Agent Systems

An interesting technology!
Connects Artificial Intelligence and Distributed Systems.

Hides DS programming complexity.

Promotes loosely coupled, multi-authority systems.

Supported by an open standard (FIPA).

Integration across OSs, networks and languages.

A lot of free implementations available (e.g. JADE).

• Now, Agent Technology is almost

famous.
– Will it mainstream?

– Will it replace Web Services? EJBs? .NET?

Any Order of Business

• Live Demo of JADE.
• Questions about JADE?
• …

