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ABSTRACT
A fundamental issue in the engineering of coordination models is
to design coordination abstractions that are correct with respect to
the specification of the coordination model they implement. The
traditional semantic framework for coordination is focused on de-
scribing the admissible evolutions over time of a coordinated sys-
tem, and is particularly suitable for specifying the laws of a coor-
dination model. On the other hand, formally describing run-time
aspects of an implementation requires a different framework, cap-
turing as fundamental idea the interactive behavior of a coordina-
tion medium.

In this paper, these two frameworks are compared by tackling a
crucial issue of coordination models, that is, the conformance of
an implementation with respect to a specification. In particular, a
definition of conformance is introduced that is shown to be com-
patible with the standard notion of implementation by horizontal
refinement promoted in the context of process algebras.
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1. BACKGROUND AND MOTIVATION
Formal semantics are generally meant to capture, describe, and

understand in a precise way some aspects of interest of a system
at the desired level of abstraction. This issue becomes particularly
crucial for those systems whose complexity cannot be simply tack-
led by the designer’s early experience. In this case, the precise
description provided by formal models generally makes it possible
to devise a system design which can be easily guided to correct,
reliable, and effective implementations.

Coordination languages and models are being exploited as a
successful framework for structuring complex concurrent systems,
providing the propercoordination abstractionsto manage and rule
the interactions of separated activities. Traditional examples of co-
ordination abstractions are tuple spaces in the LINDA model [16]
and channels in MANIFOLD [1]. The issue of coordination is par-
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ticularly crucial for tackling complexity of today’s distributed sys-
tems, and as a result, formal approaches have been extensively pro-
posed to capture the true semantics of coordination models.

In particular, the original application of coordination models to
closed, parallel environments promoted a viewpoint ofcoordina-
tion as a concurrent languagefor defining the interactive part of a
system [27]. Correspondingly, the traditional semantic framework
for coordination is the same used to formalize foundational calculi
for concurrent languages such as CCS [19]. A coordinated system
is understood as a concurrent program: the set of states of the coor-
dinated system is modeled as a process algebra [2] and its evolution
by means of Plotkin’s structural operational semantics (SOS) [24].
By this approach, not only traditional coordination models have
been given a semantic account – such as e.g. LINDA in [8] and
MANIFOLD in [3] – but also advanced features of today’s coordi-
nation infrastructures have been described – as in the formalization
of JavaSpaces [15] proposed in [10]. We refer to this semantic
framework as “Coordination as a Language” (CaL).

On the other hand, nowadays coordination is almost never de-
ployed as a language supported by a compiler as originally con-
ceived [17], but rather, as an infrastructure providingcoordination
as a serviceto component-oriented applications. Some examples of
coordination infrastructures are JavaSpaces, Lime [23], and TuC-
SoN [21]. As recently claimed in [27], this new viewpoint on co-
ordination calls for considering as first-class entity of investigation
the coordination medium[12], which represents the run-time ab-
straction providing the coordination service, eventually deployed
as part of a coordination infrastructure. The semantic framework
promoted by this notion naturally describes coordination in terms
of the interactive behavior of the coordination medium, which is
amenable e.g. to a characterization as a labelled transition system
[18]. Many works exist that proceeds along this direction, such as
the study of Abstract Linda Systems in [17], the semantic frame-
work for tuple-based coordination models proposed in [20], the ob-
servation framework for coordination [28, 26], the formal frame-
work for event-based systems used in [14], the study of LINDA

optimizations in [25], and the notion of expressiveness for coordi-
nation media developed in [29]. We refer to the general semantic
framework underlying these approaches as “Coordination as a Ser-
vice” (CaS).

The framework CaL has the main goal of representing in a sound
way the possible evolutions of a system adopting a given coordina-
tion model, so it is quite useful to provide compact specifications
of the laws underlying this model – namely, thecoordination laws
[12]. For instance, in [7] this framework is used to show that the or-
dering semantics for the LINDA out primitive may indeed change
the expressiveness of the model, whereas existing informal spec-



ifications lack this information, and existing systems implement
different semantics. Moreover, the work in [11] showed that the
framework CaL can also be exploited for discovering incorrectness
of informal specifications, as in the case of the claimed serializabil-
ity of transactions in JavaSpaces.

On the other hand, the framework CaS is more geared towards
describing the implementation of a coordination model. In partic-
ular, it provides an operational description of the coordination me-
dia supporting the model, specifying their single-step capability of
evolving their internal state and interacting with coordinated enti-
ties. As claimed also in [17], reasoning about a coordination model
in terms of the interactive behavior of its media generally facilitates
the understanding of the run-time evolution of the resulting system.

Given the different applications of the two frameworks, one for
specifying the laws of a coordination model, the other for describ-
ing their implementations, a fundamental question naturally arises:
in the context of coordination models, when can an implementa-
tion be assumed to conform to a specification? The main goal of
this paper is to address this issue.

More technically, we provide a notion of conformance of a co-
ordination medium with respect to some coordination laws, that is,
a notion of conformance of a CaS model with respect to a CaL
model. Some difficulties arise in solving this problem, stemming
to the intrinsic semantic differences between the two frameworks.
While a CaL model is essentially the definition of a concurrent pro-
gramming language, possibly flavouring techniques such as encod-
ings [9] and modular embeddings [5], a CaS model represents the
coordination medium abstraction by a labelled transition system,
enabling the adoption of techniques related to observational seman-
tics, such as process equivalence and preorder [18].

2. OUTLINE
Section 3 describes the basic notation and syntactic conventions

used in this paper, while Sections 4 and 5 briefly discuss the basic
semantic frameworks CaL and CaS.

Then, our investigation of the conformance problem proceeds in
two steps. In Section 6, we start by defining a notion of confor-
mance of a coordination modelY with respect to anotherX, both
represented on the CaL framework. This is essentially based on the
existence of an encoding ofY into X that is required to both(i)
satisfy compatibility with respect to the operational semantics ofX

andY, and(ii) preserve a notion of successful termination. Since
the CaS framework can be seen also as a more refined version of
CaL – that is, a CaS model can be interpreted in terms of the frame-
work CaL –, this result may be applied e.g. to check conformance
between a CaL and a CaS model, stating whether a coordination
medium satisfies given coordination laws. A notion of equivalence
between two models is then defined as their mutual conformance,
which can be used e.g. to check if a coordination medium exhibits
all the behavior allowed by some coordination laws. As a rele-
vant example of application, in Section 7 we define a coordination
medium exactly implementing the standard laws of LINDA as re-
ported in Section 4.

As a second step, in Section 8 we analyze the relationship be-
tween our notion of conformance and the existing notion of “pro-
cess implementation” by(horizontal) refinement[18] promoted in
the context of interactive systems and process algebras. We show
an important result: if in a CaS model we substitute a coordination
medium with a refinement of it, we obtain a new CaS model that
conforms to the original one. This means that once we identify the
coordination medium equivalent to a given CaL model, each refine-
ment of it keeps satisfying the same rules, so it still conforms to the
coordination model specification.

3. NOTATION
In the remainder of the paper, given any setA, this is automat-

ically ranged over by meta-variableA (and by its decorationsA′,
A′′, A0, A1, . . . ) – and analogously,B is ranged over by meta-
variableB and its decorations, and so on. Then, in any algebraic
structure(A, ‖, 0), where “‖” is a binary composition operator, and
0 ∈ A is thezeroof the structure, we suppose that the following
congruence rules hold:

A‖0 ≡ A A‖A′ ≡ A′ ‖A (A‖A′)‖A′′ ≡ A‖(A′ ‖A′′)

Typically, one such structure is defined by a BNF rule of the kind
A ::= 0 | . . . | A ‖ A. In this case, operator

∏
is used for

multiple application of composition, writing e.g.
∏
i∈{1,2,3}Ai as

a shorthand forA1 ‖ A2 ‖ A3. Notationa ∈ A means thatA is
equivalent (modulo the above congruence rules) to a term of the
kind a ‖A′ (and intuitivelya /∈ A is used whena ∈ A does not
hold).

In this paper, a (labelled) transition system is a structure
X = 〈X ,−→X , ActX ,X0〉. X is the set of states of the sys-
tem of interest,ActX is the set of itsactions (or labels),
−→X⊆ X ×ActX ×X is therelation transition, orderly associ-
ating an old state, an action, and a new state, andX0 ⊆ X is the set
of valid initial states. As usual, notationX

a−→X X ′ is a shorthand
for 〈X, a,X ′〉 ∈−→X . A transition system without labels is natu-
rally defined asX = 〈X ,−→X ,X0〉 where the transition relation
is of the kind−→X⊆ X × X . For simplicity of treatment, in both
kinds of transition systems we stick to the case whereX coincides
with the set of states reachable fromX0 by a finite sequence of
transitions−→X .

4. COORDINATION AS A LANGUAGE
The traditional approach to the formalization of a coordination

model is based on expressing a coordinated system in terms of
a process algebra [2], providing a SOS semantics in the style of
Plotkin’s [24]. The distributed state of a coordinated system is
seen as a parallel composition of agents and items of the interaction
space – also called theshared dataspace[8, 5] – both represented
as terms of the algebra. From a coordinated entity viewpoint, the
execution of a coordination primitive is modeled similarly to syn-
chronous communications as for instance in CCS [19]. From the
dataspace viewpoint, instead, a coordination primitive can be exe-
cuted only if some condition on the dataspace is satisfied (e.g. a
datum occurs), and the execution causes a change on the dataspace
(e.g. the datum is removed).

As a simple yet relevant example, consider the following for-
malization of LINDA model, adhering to the style of [8]. We stick
to LINDA primitives in, rd, andout for simplicity – avoiding the
management of predicative queriesinp andrdp as well as the prim-
itive eval for spawning processes. Primitiveout is given unordered
interpretation as defined in [7], for generality. As typically done
in the CaL framework, we also avoid to deal with tuple matching
functionality. The set of LINDA operations is then simply defined
asα ::= β | out(x), whereβ ::= in(x) | rd(x) andx is a generic
datum of the dataspace – namely, a tuple. Without lack of gener-
ality, we consider coordinated entitiesP ∈ P as finite, sequential
processes performing LINDA operations, with the CCS-like syntax
P ::= 0 | α.P .

The setL of admissible admissible configurations for a LINDA

system – briefly, its set of states –, is defined as a (finite) composi-
tion of processesP , datax, and items〈x〉 representing requests for
insertingx in the dataspace. This structure is easily represented by



grammar:

L ::= 0 | P | x | 〈x〉 | L‖L

According to the CaL framework, then, a SOS semantics is given
to this model by means of a transition system, describing the ad-
missible evolutions of a system configuration. This is of the kind
L = 〈L,−→L,L〉, where valid initial states are all the configura-
tions, and where relation transition−→L is specified by the rules:

out(x).P ‖L −→L P ‖L‖〈x〉 [L-OUT]

〈x〉‖L −→L L‖x [L-INS]

rd(x).P ‖L‖x −→L P ‖L‖x [L-RD]

in(x).P ‖L‖x −→L P ‖L [L-IN]

Execution ofout(x) primitive causes a pending request〈x〉 to be
inserted in the dataspace, waiting to be materialized in an actual
datumx by means of rule [L-INS]. Then, ard(x) primitive is exe-
cuted only whenx actually occurs in the space, so that the process
continuationP can carry on. The primitivein(x) has similar se-
mantics, but its execution causesx to be removed from the space.
In general, these rules specify the safety conditions of LINDA , de-
scribing which behavior of an actual implementation of the model
can be considered valid. So, these rules are easily seen as the coor-
dination laws of LINDA .

Notice that the CaL framework does not promote the clear en-
capsulation of the coordination abstraction. On the one hand, it
is generally unclear which terms of the algebra represent(i) parts
of the processes subject to coordination,(ii) parts of the system
providing coordination at run-time (the tuple space in the case of
L INDA ), or (iii) parts of others run-time abstractions living in the
system. In the specific case analyzed in this section, for instance,
pending requests〈x〉 may either be considered as part of the tu-
ple space or of the interaction space – respectively representing the
case where unordered semantics ofout is caused by the implemen-
tation of the medium or by the communication infrastructure. Sim-
ilar problems exist e.g. also with the formalization of transactions
and notification in JavaSpaces [10]. Furthermore, the exact interac-
tion acts occurring between coordination medium and coordinated
entities are not here represented either. For instance, the invocation
of primitive in involves at run-time a request to the tuple space and
then a subsequent reply: in the above model instead, only the re-
ply phase is taken into account, since e.g. rule [L-IN] atomically
represents the tuple removal and the process continuation carrying
on.

Notice that there are some works on the expressiveness of coor-
dination models such as [5] where a distinction between dataspace
and coordinated entities is clearly remarked, but where run-time in-
teraction acts are not fully taken into account. Therefore, we con-
sider these works as still adhering to the CaL framework.

5. COORDINATION AS A SERVICE
In [27] the formal framework underlying the notion of “Coordi-

nation as a Service” is introduced as a means to provide a unique
semantic setting for the many works developed to reason about co-
ordination models at run-time. In that framework, a coordinated
system is conceptually split in three distinct parts:

• A coordinated space, made of a finite number of coordinated
entities, each tagged by a unique identifier.

• A coordination space, made of one or more coordination me-
dia implementing the coordination laws.

• An interaction space, where communication events can be
posted and consumed, mediating between entities and media.

At a given time, a coordinated entity posts arequest eventon the
interaction space, which will be eventually consumed by some co-
ordination medium. Then, a coordination medium may post areply
eventto the interaction space, which will be consumed by the co-
ordinated entity it was directed to.

In this paper, as far as a comparison with LINDA traditional se-
mantics is concerned, we stick to a slightly simpler formalization
than the one presented in [27], assuming that(i) only one coor-
dination medium exists in the coordination space and that(ii) the
interaction space is not represented. In particular, the latter hy-
pothesis makes us represent only closed coordinated systems with
synchronous communications. However, all the results we obtain
therefore can be easily extended to the case where the interaction
space (as formalized in [27], Section 4) is simply supposed not to
loose messages nor change their order of delivery – which is ac-
tually a very common assumption in distributed systems. Dealing
with a coordination space with a multitude of coordination media
interacting each other is left as future work.

The key idea of this formal framework is to represent a co-
ordinated systemS as the explicit composition of two transition
systems: one describing the behavior of the coordinated space
C = 〈C,−→C , ActC , C0〉, and one describing the behavior of the
coordination mediumM = 〈M,−→M, ActM,M0〉.

Each statesC ∈ C of the coordinated space is made of a set
of coordinated entitiesQ ∈ Q, each tagged by a unique identifier
id ∈ Id, and denoted by the syntax:

C ::= 0 | 〈id,Q〉 | (C ‖ C)

The behavior of each coordinated entity can be understood as an
interactive component producing requestsreq ∈ Req, consum-
ing repliesrep ∈ Rep, or performing a silent actionτ , that is,
in terms of a transition system〈Q,−→Q, ActQ,Q0〉 where the
set of actionsActQ is of the kindActQ ::= τ | ↑req | ↓rep.
The set of actions for the coordinated space is defined as
ActC ::= τ | id↑req | id↓rep, respectively representing(i) silent
action of any coordinated entity,(ii) a request event of entityid
providing requestreq, or (iii) a reply event sent towards entityid
providing replyrep. The set of request events is denoted byE↑

and is ranged over by variablee↑, the set of reply events byE↓

ranged over bye↓. Semantics is simply assigned to−→C by rules:

Q
↑req−−→Q Q′

〈id,Q〉‖C id↑req−−−→C 〈id,Q′〉‖C
Q
↓rep−−→Q Q′

〈id,Q〉‖C id↓rep−−−→C 〈id,Q′〉‖C
Q

τ−→Q Q′

〈id,Q〉‖C τ−→C 〈id,Q′〉‖C

The set of initial statesC0 of the coordinated space is simply de-
fined by the composition of coordinated entities in an initial state.

In order to compose the coordinated spaceC to a coordination
medium, we suppose thatActM = ActC , that is, the coordination
medium may accept request events and produce reply events com-
patible toC, and may perform the internal silent actionτ . 1 The
systemS obtained by composingC andM is denoted by the syn-

1For simplicity, this formalization of the coordination medium is
again slightly different from the one reported in [27], where reply
events are sent only correspondingly to the reception of incoming
requests.



taxM⊗C, which forms the specification of the whole coordinated
system in the CaS framework.

Each model in the CaS framework can be actually given a repre-
sentation in the CaL framework, by associating toS a transition sys-
tem〈S,−→S ,S0〉, describing the evolutions of the whole coordi-
nated space. To this end, elementsS ∈ S are defined by the syntax
S ::= M⊗C, simply composing states ofM andC, S0 is made by
composing initial elements ofM andC, namely,S0 ::= M0 ⊗C0,
and−→S is defined by rules:

M
e↑−→M M ′ C

e↑−→C C′
M ⊗ C −→S M ′ ⊗ C′

M
e↓−→M M ′ C

e↓−→C C′
M ⊗ C −→S M ′ ⊗ C′

M
τ−→M M ′

M ⊗ C −→S M ′ ⊗ C
C

τ−→C C′
M ⊗ C −→S M ⊗ C′

As a result, each model in the CaS framework can be considered
also as a model in the CaL framework, in that it is still used to de-
scribe the admissible evolutions of the coordinated system. How-
ever, the CaS framework also provides a clear separation of the
coordinated space and the coordination medium. Since the for-
malization of coordinated entities simply concerns local properties
of the coordination models [17], such as the kind of communica-
tion protocol associated to each primitive, the core semantic part of
the specification is then the one within the coordination medium.
Hence, the CaS framework can be seen as the refinement of the CaL
framework that explicitly promotes the description of a coordina-
tion model in terms of the interactive behavior of its coordination
medium.

6. CONFORMANCE AND EQUIVALENCE
We start our investigation by defining notions of conformance

and equivalence between two coordination models expressed in
terms of the framework CaL – that is, expressed as transition sys-
tems〈X ,−→X ,X0〉. Informally speaking, our intention is to con-
sider a modelA as conforming toB, if all the evolutions allowed
byA are also allowed byB, namely, if the laws definingA are more
strict than the laws described byB. Correspondingly, a natural no-
tion of equivalence can be defined as mutual conformance of two
models. To the end of introducing these notions in a formal way, we
first briefly survey existing techniques for comparing coordination
models.

6.1 On embeddings and encodings
There are some formal techniques used to compare concurrent

languages that have been so far exploited also for semantics of co-
ordination models.

In [5] a technique calledmodular embedding[13] is used to com-
pare the expressiveness of coordination models including various
features related to transactions, constraint programming, and term-
rewriting models. First of all, given two languages (or models)L
andL′, their comparison is defined in terms of theobservation cri-
teria O ∈ L 7→ Obs andO′ ∈ L′ 7→ Obs′, associating to each
element of the language a representation of it according to a given
abstraction level. According to these observation criteria,L is said
to embedL′ if there exists an encoding of languagesC ∈ L′ 7→ L
and a decoding of observationsD ∈ Obs 7→ Obs′ so that for any
L′ we haveD(O[C(L′)]) = O′[L′]. In the context of concurrent
languages, this embedding is required to bemodular, that is, to sat-
isfy the following three properties:(i) since typically observations
are powersets, decodingD should be defined elementwise,(ii) en-
codingC should be compositional with respect to nondeterministic
operators (such as choice and parallel composition), and(iii) a no-

tion of termination invariance on observations should be preserved
by the decoding.

In the context of this paper, we cannot fully rely on this tech-
nique for comparing coordination models for a number of reasons.
First, we cannot assume the existence of nondeterministic opera-
tors in our languages, so that property(ii) cannot be satisfied. In
fact, a CaS model is intrinsically non compositional, since it con-
siders the coordination system as an aggregation of one coordina-
tion medium and more coordinated entities2. Then, the notion of
termination invariance alone – without property(ii) – now is too
weak, since it would equate programs that simply lead to the same
termination result, but perhaps to different final states and through
different evolutions. Notice that in the embedding approach, the
operational semantics of a language is generally used only so as to
determine observables, e.g. to check if the evolution of a program
eventually terminates in a successful way. On the other hand, for
our purpose operational semantics should play a more crucial role
to compare the evolutions induced by two coordination models.

Another approach, which seems more interesting to our end, is
based on the notion ofencoding, which has been used e.g. by Busi
et al. in their study of expressiveness for coordination models [9].
Its basic idea is that a modelX = 〈X ,−→X ,X0〉 is considered
more expressive than anotherY = 〈Y,−→Y ,Y0〉 if X is able to
represent all the system transformations represented byY. Vari-
ations of this kind of encoding have been used to study relative
notions of expressiveness of different coordination primitives, and
to provide separation results between two models by devising be-
havior properties – such as termination and divergence – decidable
for one language but not for the other.

In spite of the many variations of encodings exploited in these
papers, a general way to formally represent an encoding is as a
function

∣∣.∣∣ ∈ Y 7→ X so that:

Y −→Y Y ′ ⇒
∣∣Y ∣∣ −→+

X
∣∣Y ′∣∣

that is, a single transition inY must be simulated by one or more
transitions inX (denoted by−→+). We take this encoding tech-
nique as a basic framework for defining our notion of conformance
for coordination models.

Notice that amongst the many papers exploiting embeddings and
encoding techniques to compare coordination models, the closest in
spirit to our own is [4]. There, an embedding technique calledar-
chitectural embeddingis used to map a coordination model on top
of an architecture, and is used to analyze the implementability of
different coordination models on three kinds of architectures called
undelayed, globally delayed, andlocally delayed. The main differ-
ence with our paper is that the notion of implementability we tackle
is more related to process refinement, and mostly concerns aspects
of the coordination medium abstraction, while the approach in [4]
is more concerned with properties of the interaction space. Indeed,
relaxing our assumptions on the ordering of the interaction space,
and integrating the notion of implementability promoted in [4] with
our own is interesting and deserves further studying.

6.2 Conformance and equivalence by
encoding

In this section, the general notion of encoding is exploited to pro-
vide a suitable definition of conformance and equivalence between

2We think that this problem is quite general: as a model becomes
more and more oriented to run-time aspects concerning implemen-
tation, it may be natural to witness the vanishing of compositional
properties. Indeed, this reflects a typical property of certain sys-
tems, e.g., coordination infrastructures are in general not composi-
tional.



two modelsX = 〈X ,−→X ,X0〉 andY = 〈Y,−→Y ,Y0〉.
Since we want to apply the notion of conformance on both the

CaL and CaS frameworks, we allow some flexibility on how system
evolutions in a model are simulated by the other. Not only a single
transition inY is to be simulated by one or more transitions ofX,
but it may be the case that a transition inY is associated to no
transitions inX. For instance, a sequence of transitions ofY – say
with actionsa1, a2, . . . , an – may be logically associated to just
one ofX (as shown in next section). In this case, a reasonable
encoding may associate only one transition in that sequence – say
e.g. the latteran – to the transition ofX, while the others to none.
To cope with this problem, we use an encoding of the kind:

Y −→Y Y ′ ⇒
∣∣Y ∣∣ −→∗X ∣∣Y ′∣∣

mapping a transition ofY to zero or more transitions ofX (denoted
by−→∗). We say that an encoding satisfying this property iscom-
patible with respect to the operational semantics.

However, now we also need to prevent those cases where the
encoding makes all the elements ofY collapse into a unique ele-
ment inX , that is, generally speaking, we need our encoding to
preserve a certain degree of injectivity. Since we want to do this in
a quite general way, we borrow the observables technique from em-
beddings, so that preserving a suitable notion of observables may
ensure – along with the above compatibility with respect to oper-
ational semantics – that encodings properly deal with our confor-
mance notion.

The notion of observable we use here is that of successful ter-
mination, that is, the encoding should preserve information on
whether all the coordinated entities have successfully terminated,
and are not waiting for some blocking primitive to be executed. On
the one hand, this notion is independent of the actual internal def-
inition of a coordination medium, hence it also allows us to com-
pare models providing different implementations of a coordination
medium. On the other hand, it guarantees that the final result of
a coordinated system’s evolution is correctly preserved, preventing
the encoding from erasing relevant information about the system
dynamics allowed. It is worth noting that this notion of observ-
ables is quite similar to that used in the modular embeddings of [5],
which however also distinguishes the case of unsuccessful termina-
tion.

So, we also consider both modelsX andY equipped with a no-
tion of successful termination, denoting byTX ⊆ X andTY ⊆ Y
the set of successful termination states ofX andY.

DEFINITION 1. Y is said to conform toX, writtenY ≺λ X if
there exists an encoding

∣∣.∣∣X ∈ Y 7→ X , so that the two following
properties hold:

• Y −→Y Y ′ ⇒
∣∣Y ∣∣X −→∗X ∣∣Y ′∣∣X

(compatibility w.r.t. operational semantics)

• Y ∈ TY ⇔
∣∣Y ∣∣X ∈ TX

(preservation of termination success)

It is straightforward to see that the relation≺λ is a preorder on
structures〈〈X ,−→X ,X0〉, TX 〉, that is, it is transitive and reflex-
ive. We naturally extend this notion by defining equivalence be-
tween two models.

DEFINITION 2. X is said to be equivalent toY, written
X ≈λ Y, if X and Y mutually conform to each other, that is,
X ≺λ Y andY ≺λ X.

Again, it is simple to show that≈λ is an equivalence relation, that
is, it is transitive, reflexive, and symmetric.

7. THE LINDA COORDINATION MEDIUM
In this section we present a formalization of LINDA model in the

CaS framework that is proved to be equivalent to the CaL model
of L INDA presented in Section 4. Indeed, this not only shows an
application of previous definitions, but it is also meant to provide
some hints on how a formalization in the CaL framework can be
generally turned into an equivalent coordination medium by taking
into account implementation issues.

7.1 Definition
As a first step, we analyze the primitives allowed by the LINDA

coordination model, and the kind of interaction schema they rely
on. Requests are invocations of LINDA primitives, so the setReq
coincides with the set of primitivesα; on the other hand, since here
we do not deal with predicative queriesinp andrdp, only positive
reply to in andrd is considered, which is denote by symbolok,
so thatRep = {ok}. The set of states of the coordinated enti-
ties is modeled by the syntaxQF ::= 0 | α.QF | ok.QF , with
operational semantics defined by rules:

α.QF
↑α−→Q QF ok.QF

↓ok−−→Q QF

In order to properly describe the synchronicity/blocking aspects of
Linda primitives, then, we suppose the set of initial statesQ0 of a
coordinated entity to have elements defined as:

Q0 ::= 0 | in(x).ok.Q0 | rd(x).ok.Q0 | out(x).Q0

In the transition systemQ = 〈Q, ActQ,−→Q,Q0〉 defining the be-
havior of a coordinated entity, then, we defineQ as the set of states
QF that are reachable by elements inQ0 through a finite sequence
of transitions−→Q. In this way, we obtain that coordinated entities
are always well formed with respect to the expected interaction pro-
tocol of primitives – e.g., situations likeok.ok.0 or in(x).rd(x).0
never occurs.

As second step, we provide a LINDA coordination medium
M
L = 〈ML,−→ML, ActM ,ML

0 〉 that is meant to represent all
and only the system evolutions described by the CaL formalization
reported in Section 4. This is described by the algebra:

ML ::= 0 | e↑ | e↓ | x |ML ‖ML

so that at any time the state of a medium is a finite composition of
pending requestse↑, pending repliese↓, and tuplesx. Transition
relation−→ML is defined by rules:

ML e↑−→ML ML ‖e↑ [S-REQ]

ML ‖e↓ e↓−→ML ML [S-REP]

id↑out(x)‖ML τ−→ML ML ‖x [S-OUT]

id↑rd(x)‖ML ‖x τ−→ML ML ‖x‖ id↓ok [S-RD]

id↑ in(x)‖ML ‖x τ−→ML ML ‖ id↓ok [S-IN]

Rules [S-REQ] and [S-REP] can be seen as standard: they mean
that requests and replies are handled asynchronously. For the par-
ticular case of our LINDA system, furthermore, rule [S-REQ] im-
plicitly defines unordering of operationout, in that anout re-
quest remains pending until eventually evaluated. Rules [S-OUT],
[S-RD], and [S-IN] have a one-to-one, syntactical mapping with
rules [L-INS], [L-RD], and [L-IN] of the LINDA CaL formaliza-
tion: simply, instead of allowing the process continuation to carry
on, they just reify the reply. As initial state for this medium we
supposeML

0 = {0}.
Finally the CaS specification of the LINDA model is simply given

by S = M
L ⊗ CL, whereCL is the coordinated space obtained
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∣∣∣in(x).P
∣∣∣
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= in(x).ok.
∣∣∣P ∣∣∣
S

Figure 1: Mutual encodings of Linda-CaS and Linda-CaL

by the above defined coordinated entitiesQ. Notice that our hy-
pothesis on the initial state of coordinated entities and coordination
medium allow us to suppose some trivial sanity condition, such as
that there cannot occur two pending requests coming from the same
coordinated entity, or replies with no corresponding entity waiting
for their consumption, and so on.

7.2 Encoding
In this section, this formalization of a Linda coordinated system

is shown to be equivalent to the one presented in Section 4. We first
define a suitable notion of successful termination states forL and
S, simply as:

TL = {
∏
i

xi} TS = {
∏
i

xi ⊗
∏
j

〈idj , 0〉}

Both cases characterize states where coordinated entities are termi-
nated and no pending requests are to be treated, that is, the state of
the coordinated system is only made of tuples.

Then, we define the encodings
∣∣.∣∣L ∈ S 7→ L and∣∣.∣∣S ∈ L 7→ S as reported in Figure 1. In these definitions,

the allowed sets of indexesI, J, U,H,K are those for which the
encodings make sense, that is, for which the encoded state is
actually inS andL, respectively.

The upside part of the figure contains the encoding from the CaS
framework to CaL. Coordinated entitiesQ are simply encoded into
L INDA processesP by erasing their identifier and forgetting about
reception of replies. By doing that, however, any pending request
id ↑ β must rebuild thein or rd operation in the requesting entity
id, since that operation is not to be considered already executed,
but just requested. On the other hand, any pendingout(x) is en-
coded into a pending datum〈x〉, pending reply events are simply
dropped, and tuples are simply encoded into tuples. Symbol] in
the definition of the encoding is used for disjoint union.

The downside part of the figure describes the opposite encoding
from CaL to CaS. ProcessesP are translated into entitiesQ by
adding a fresh identifier (allidi are supposed to be different from
each other), and by inserting reply operationok after eachrd and
in. Pending data are encoded into pending requests forout sent
by a dummy coordinated entityid0, and tuples are encoded into
tuples. As an example, the CaS model:

x‖ id′ ↑out(x′)‖ id′′ ↑rd(x′′)⊗
〈id, in(x).ok.0〉‖〈id′, 0〉‖〈id′′, 0〉

is translated by
∣∣.∣∣L into the CaL model:

x‖〈x′〉‖ in(x).0‖rd(x′′).0

that is translated by
∣∣.∣∣S back to:

x‖ id0 ↑out(x′) ⊗ 〈id1, in(x).ok.0〉‖〈id2, rd(x′′).ok.0〉

Notice that the latter system can be essentially obtained from the
starting one after applying a [S-REQ] transition, which has no ac-
tual counterpart in the CaL model. The validity of this encoding is
stated by the following theorem:

THEOREM 1. TheL INDA CaL modelL is≈λ-equivalent to the
L INDA CaS modelS.

Proof Sketch.It is easy to show that both encodings preserve the no-
tion of successful termination. In fact,

∣∣.∣∣S transforms terminated
processesP into terminated processesQ, pending data into pend-
ing requests, and tuples to tuples, and similarly for

∣∣.∣∣L. In par-
ticular, a pending request is reconstructed into an operation only
to coordinated entities that wait to execute operationok, i.e., not
in the case of successful termination. Compatibility of

∣∣.∣∣S with
respect to operational semantics is easily proved by showing that
transitions [L-IN] and [L-RD] correspond to transition sequences
[S-REQ] [S-IN] [S-REP] and [S-REQ] [S-RD] [S-REP], transition
[L-OUT] to [S-REQ], and transition [L-INS] to [S-OUT], and vice
versa for

∣∣.∣∣L.

8. CONFORMANCE AND MEDIUM
IMPLEMENTATION

The notion of conformance we promote here amounts to con-
sidering a modelY as conforming to a modelX if all the system
evolutions described byY are allowed byX. Roughly speaking,Y
should allow for fewer evolutions thanX, so thatY can be seen as a
more deterministic, more directly executable version ofX, that is,
an implementation of the specification provided byX.

Indeed, this notion resembles the idea of implementation as hor-
izontal refinement [18]. The core part of a CaS specification is the
description of the behavior of the coordination medium in terms of
a transition system. Then, transition systems are already equipped
with notions of equivalence and preorder, namely, according to the
concept ofobservable behavior[18]. Each process described by
the transition system is associated with the set ofobservationsit
allows: each observation provides some information about an al-
lowed dynamics of the process. Correspondingly, a process is con-
sidered equivalent to another if it allows for the same set of obser-
vations. Moreover, a preorder on processes can also be introduced



to reflect a notion of refinement: a process is considered an imple-
mentation of another if it allows for fewer observations.

In particular, we are interested in studying how our notion of
conformance fits this idea of process implementation. We take as
the notion of observation semantics,weak trace(WT) semantics
[6, 18], where a process observation is any sequence of actions it
can execute (i.e., trace semantics), without considering silent ac-
tions (i.e., weak semantics). So, two processes are considered WT-
equivalent if they allow for the same sequences of actions modulo
the occurrence of silentτ actions. To this end, given any sequence
of actionsa∗, also calledtrace, we denote bya∗|τ the sequence ob-
tained by dropping anyτ action from it. Given a transition system
〈X ,−→X , ActX ,X0〉, processX is said to be a WT-refinement of
X ′ if we have:

X
a∗−→X XF ⇒ ∃b∗, X ′F : X ′

b∗−→X X ′F anda∗|τ = b∗|τ
that is, for any tracea∗ movingX toXF there is at least a traceb∗

ofX ′ (movingX ′ to someX ′F ) so thata∗ andb∗ are equal modulo
occurrences ofτ 3.

Our choice of weakness is motivated by the fact that implemen-
tations typically need to execute moreτ actions in order to realize
a given specification (see e.g. the approach based on weak equiv-
alence in [22]). Trace semantics has been chosen instead of others
such as bisimulation because of its simplicity: it is in fact one of the
larger (i.e., weaker) notions of equivalence. Notice that the discus-
sion we provide here applies to any stronger observation semantics,
such as e.g. bisimulation.

We state that the notion of (weak trace) preorder for coordination
media implies our notion of conformance, namely, in two systems
X = M

X ⊗ C andY = M
Y ⊗ C, if MY is a refinement ofMX ,

thenY conforms toX. Roughly speaking, by refining a medium
implementationM we remain conforming to the original coordina-
tion model ofM.

First of all, we need to adapt the definition of pre-
order to our framework, considering the general case
of two media M

X = 〈MX,−→MX , ActM,MX

0 〉 and
M
Y = 〈MY,−→MY , ActM,MY

0 〉 with different sets of states,
but clearly with the same set of actions (since they should be
composed to the same coordinated spaceC. We are interested in a
global notion of preorder betweenMY andMX, and not between
any two states of them. So, we suppose that each coordination
media has only one initial state, namely0XM ∈MX and0YM ∈MY,
representing an initial situation where no coordination patterns
have been set up by coordinated entities. We believe that this
notion is widely applicable to coordination models, e.g. in the case
of L INDA (and tuple spaces in general) this naturally amounts to a
medium without tuples nor pending requests.

DEFINITION 3. Given the two coordination mediaMX and
M
Y, MY is said to be a refinement ofMX, writtenMY ≺σ MX,

if:

0YM
a∗−→MY MY ⇒ ∃b∗,MX : 0XM

b∗−→MX MX anda∗|τ = b∗|τ

that is, for any tracea∗ of 0YM in MY there is a traceb∗ of 0XM in
M
X so thata∗ andb∗ are equal modulo occurrences ofτ . Then, the

main result we obtain is as follows:

THEOREM 2. Given the coordination mediaMX andMY and a
compatible coordinated spaceC, we have:

M
Y ≺σ MX ⇒ M

Y ⊗ C ≺λ MX ⊗ C

3In this formal definition, the syntaxX
a∗−→ X ′ with a∗ =

a0, a1, . . . , an naturally meansX
a0−→ a1−→ . . .

an−→ X ′.

which states that preorder for coordination media implies confor-
mance of the corresponding coordination models.

Proof. Let M
X = 〈MX,−→MX , ActM, {0XM}〉 and

M
Y = 〈MY,−→MY , ActM, {0YM}〉. For hypothesis, for any

MY ∈MY there exists at least oneMX ∈MX so that:

0YM
a∗−→MY MY and 0XM

b∗−→MX MX and a∗|τ = b∗|τ

We define an encoding
∣∣.∣∣µX ∈MY 7→ MX so that an elementMY

is assigned to any of theseMX. We prove that the encoding
∣∣.∣∣λX

fromMY ⊗ C toMX ⊗ C defined as:∣∣MY ⊗ C
∣∣λ
X =

∣∣MY
∣∣µ
X ⊗ C

satisfies the two properties of Definition 1, from which the thesis
follows.

Preservation of termination states holds since:∣∣MY
∣∣µ
X = 0XM ⇔MY = 0YM

so that successful termination states0YM ⊗ C are encoded into suc-
cessful termination states0XM⊗C (and unsuccessful ones to unsuc-
cessful ones).

To prove compatibility with respect to operational semantics,
suppose:

MY ⊗ C −→∗Y MY

F ⊗ C′

is a generic evolution ofY. From the definition of−→Y we have:

MY a∗−→MY MY

F , C
c∗−→C C′

for somea∗, c∗ so thata∗|τ = c∗|τ , because each non-silent action
of MY is associated with the same action inC. On the other hand,
fromMY ≺σ MX and for the definition of

∣∣.∣∣µX , we have:

0YM
a′∗−−→MY MY a∗−→MY MY

F

0XM
b′∗−−→MX

∣∣MY
∣∣µ
X

b∗−→MX
∣∣MY

F

∣∣µ
X

for somea′∗, b′∗, b∗ so that, in particular,a∗|τ = b∗|τ . As a result,
by composingMX (obtained by encodingMY) andC we have:∣∣MY

∣∣µ
X ⊗ C −→X

∣∣MY

F

∣∣µ
X ⊗ C

′

from which ∣∣MY ⊗ C
∣∣λ
X −→X

∣∣MY

F ⊗ C′
∣∣λ
X

follows for the definition of
∣∣.∣∣λX . The compatibility of

∣∣.∣∣λX with
respect to the operational semantics is then proved.

9. CONCLUSIONS AND
FUTURE WORKS

Coordination models and languages promote a strong methodol-
ogy for building today’s distributed systems. They call for the en-
capsulation of the intrinsic complexity of system interactions into
well defined coordination abstractions, amenable to an explicit de-
sign and supporting the implementation of coordination infrastruc-
tures at each step of the development process. This goal is so cru-
cial that requires a profound understanding of the semantics of a
coordination model and of the properties of its proposed imple-
mentations.

We believe that the framework built up in this paper can be a
suitable tool for reasoning about this issue. Our analysis is based
on a notion of conformance for coordination models, stating ade-
quacy of a coordination medium with respect to some coordination
laws. In particular, by exploiting the LINDA use case, we show how



to define a coordination medium equivalent to given coordination
laws.

Several future works can be developed to deepen the investiga-
tion of our framework. It would be interesting to deepen the com-
parison of our notion of conformance with other forms of embed-
dings and encodings exploited for comparing the expressiveness of
coordination models [5, 4]. Then, studying the conformance issue
of other, more complex coordination models such as JavaSpaces
would provide interesting case studies to further evaluate our ap-
proach. Finally, one of our main future works is to evaluate the
applicability of the formal framework developed in this paper as
a means to devise an engineering methodology for coordination
models in distributed systems.
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