
A New Approach to Scalable Linda-systems Based on
Swarms

Ronaldo Menezes
Florida Tech, Computer Sciences

150 W. University Blvd.
Melbourne, Florida, USA

rmenezes@cs.fit.edu

Robert Tolksdorf
Freie Universität Berlin, Institut für Informatik

Netzbasierte Informationssysteme
Takustrasse 9, D-14195 Berlin, Germany

research@robert-tolksdorf.de

ABSTRACT
Natural forming multi-agent systems (aka Swarms) have the abil-
ity to grow to enormous sizes without requiring any of the agents
to oversee the entire system. The success of these systems comes
from the fact that agents are simple and the interaction with the en-
vironment and neighboring agents is local in nature. In this paper
we look at abstractions in the field of swarms and study their ap-
plicability in the context of coordination systems. In particular, we
focus on the problematic issue of scalability of Linda systems.

1. INTRODUCTION
In the past 20 years coordination models, and in particular tuple-

space-based models such as Linda, have proven to be quite suc-
cessful in tackling the intricacies of medium-to-large-scale open
systems. Currently, the tuple-space model is incorporated in a few
commercial middleware platforms.

Yet, the coordination community is aware that Linda systems
may not scale well due to the amount of information transmitted
between the entities involved in this model. As the number of ac-
tors increases, the communication overhead becomes prohibitive.
One of the reasons for the somewhat poor scalability of Linda sys-
tems may be the fact that the design of these systems still inherit
ideas from early Linda systems [7]. These implementations were
focused on parallel computing and not on open large scale comput-
ing. When trying to use the communication abstraction advocated
by Linda in the context of large scale distributed systems one is
faced with a not-so-easy-to-solve scalability issue: communication
overhead.

Natural forming multi-agent systems, such as swarms of bees
and flies, schools of fish, and packs of wolves, are notorious for
their organization (coordination) and also for their ability to grow to
enormous sizes – some ant colonies are known to span thousands of
miles and to contain millions of ants. Their activities are based on
simple rules that can be easily implemented in computer programs.
Their interaction translates (in computer science terms) into local
communications. Abstractions taken from these areas have been
used extensively in areas such as optimization of NP-hard problems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC2003, Melbourne, Florida, USA
Copyright 2003 ACM 1-58113-624-2/03/03 ...$5.00.

[6] and implementation of network routing algorithms [2], and nor-
mally yield simple and efficient solutions.

Our work investigates the use of swarm-intelligence techniques
and observations in the context of the tuple space systems (in par-
ticular the Linda coordination system). Our goal is to look at the
scalability problem and study how to improve the current scenario
using techniques adapted from models originating from biological
collective organisms such as ant colonies and termite molds.

2. SCALABILITY OF LINDA SYSTEMS
Scalability is today thesine qua nonof efficient distributed sys-

tems. It is not uncommon for distributed systems to make use of a
large number of active entities. In fact, we can foresee an increase
on the number of active entities in the future and consequently an
increase of communication in these systems. Given this trend, we
can easily say that scalability is one of the main challenges for the
future of distributed systems.

Scalability is a well studied topic in the context of tuple-space
systems such as Linda [8]. Theoretical works tend to formalize the
concept of tuple spaces and use the formalism as a way to show
how the data should be distributed. For instance, Obreiter and Gräf
[9] argue that scalability can be achieved by organizing tuples in
servers based on the structure of the tuples. This is generally used
in implementations via the mechanism of hash codes associated
with tuples (and the use of this hash code to decide the physical
location of these tuples).

In the practical arena, Rowstron did several works attempting to
make Linda systems more scalable [12]. His approach is based on
the idea of configuring tuple spaces hierarchically and classifying
the spaces into local and global. Rowstron views tuple spaces as
indivisible entities although some argue that tuples (objects stored
in tuple spaces) must be the focus of distribution. One could easily
argue that the granularity of Rowstron’s systems is too coarse for
real-world large scale systems.

The drawback of the approaches such as the ones above is that
they are all based on the same concept: they are data-oriented.
They assume that improved scalability depends solely on the way
the data is distributed and not on how search for a tuple is per-
formed. Although better scalability can be achieved using data-
oriented techniques, it is a process of dubious reliability in the long
run. Additionally, data-oriented techniques do not show tolerance
to changes in the environment such as server failures and addition
of new servers on-the-fly, to name but a few.

In order to be of use to Linda systems, data-oriented techniques
need to be augmented with other concepts to help minimize the
communication overhead. This paper uses solutions for swarm sys-
tems to deal with scalability in Linda systems

3. DISTRIBUTING LINDA
The process of distributed tuple spaces has been widely discussed

by the coordination community. The literature on Linda-like sys-
tems describes a plethora of approaches for distributing tuple spaces.
Several major strategies can be distinguished and evaluated against
the requirements of large scale distribution.
• Centralizationis a simple client-server distribution strategy where

one specific server-machine operates the complete tuple space
as in TSpaces [14]. It can be accessed by clients that are arbi-
trarily located somewhere on a network.
The centralized tuple-space server has the advantage of an easy
implementation that basically attaches a network interface to an
otherwise non-distributed tuple-space. However, it carries all
the disadvantages of any centralization of services. The tuple-
space server is most likely to become a bottleneck under high
load induced from a large number of active clients, it is the sin-
gle point of failure in the entire system, and it does not make a
fair use of the resources available over the network.

• Partitioningof tuple spaces is a strategy in which data with com-
mon characteristics is co-located in one of a set of tuple-space
servers. Requests with the same characteristics are routed to-
wards that machine. While simple partitioning (eg. co-locating
tuples with same parity) might lead to unbalanced partitions, a
carefully chosen hashing function on tuples can do better [1].
Partitioning has the advantage of providing a distributed man-
agement of a tuple space including concurrent execution of op-
erations on the partitions and thus slightly relaxes the problems
of centralized solutions. However, for one, it does include a cen-
tralization for certain sets of tuple. Also, the partitioning scheme
handles reconfigurations very poorly. An automatic adaption of
any hashing function and the induced distributed reorganization
of the tuple-spaces content will be complex and costly.

• Full replication places complete and consistent copies of tuple
spaces on several machines at different locations. Any addition
of data has to be replicated at all nodes, a search for data can be
performed locally on one machine, and any removal of data has
to be replicated.
Full replication distributes the load for data-searches and inher-
ently offers some support for fault-tolerance. However, the com-
munication costs for keeping the replicas consistent on all par-
ticipating nodes is high and requires locking protocols or equiv-
alents since multiple local searches may lead to the decision to
remove the same piece of data [5].

• Intermediate replicationhas been proposed in the early of Linda
[4]. The schema bases on a grid of nodes that is formed by
logical intersecting “busses”. Each node is part of exactly one
outbusand oneinbus. Emitted data is replicated on all nodes
of the outbus, whereas searches are performed on the inbus. As
the inbus intersects all outbusses, it provides a complete view of
the tuple space. By introducing simulated nodes, the number of
nodes can change dynamically while retaining the virtual grid
[13].
The intermediate replication schema allows for as many con-
current replications and searches for data as there are out- and
inbusses respectively. The removal of some data, however, re-
quires a consistent update on all nodes on the respective outbus.
Intermediate replication is only a partial solution for large scale
Linda-like systems. While introducing more concurrency, it
still carries scalability problems of keeping replicas consistent
within an outbus.
While none of these approaches seems to be usable (without

modification) in the implementation of a large scale distributed

Linda-like system, the intermediate replication schema seems to
offer the most flexibility. In fact, it is the most general schema, as
it conceptually captures the centralized approach – a single outbus
of size 1 – and the fully replication case – a single outbus of sizen
for n participating nodes.

None of the approaches described here scale well and therefore
should not be used in an implementation of a large scale Linda.
Long-term solutions for this problem are long due and need to be
explored. Thus SwarmLinda.

4. CONCEPTS OF A SWARMLINDA
Over the past years, new models originating in biology, such as

swarms and ant colonies have been studied in the field of computer
science [11, 3, 6]. The current interest lies on using these abstrac-
tions as a technique (a meta-heuristic) for finding feasible solutions
to NP-hard problems.

In these models, actors (workers) sacrifice individual goals (if
any) for the benefit of the society. At the same time, these actors
(birds, fish, ants, termites) act extremely decentralized without any
explicit global or central control. The work is carried out by making
purely local decisions and by taking actions that require only very
small computations. These characteristics alone allow for the sys-
tems to scale to very large sizes – ant colonies can involve millions
of individual ants and still perform highly complex tasks such as
building an ant hill. This so-calledswarm intelligenceprovides an
interesting opportunity to rethink scalability of coordination media
like tuple spaces.

We apply these principles as a radical new approach to imple-
menting a large scale distributed coordination platform, which we
call SwarmLinda. An example of such principles being used as an
alternative to data-oriented schemes could simply consist of a sys-
tem where templates are modeled as ants that search for food (the
matching tuples). One can understand the “world” of Linda servers
as a two-dimensional space in which ants search for food, leaving
trails to successful matches.

With an ant-based optimization of the trails in this world, shortest
tuple-producer-consumer paths can be found. These paths can be
exploited to optimize system performance: instead of queries to
sets of replicas, the “template-ant” goes directly to where it expects
a match. Technically, this accounts to a single message interchange
directly between the producing and consuming sites.

The nature of ant-based optimization ensures that changes in the
structure of a distributed application in terms of tuple-generation
and -consumption are dynamically discovered. Secondly, when
searching for food, the “template-ants” make only local decisions,
like moving to some next server, examining the local tuple-store,
etc. No global state will be established by the mechanism.

4.1 Principles and Abstractions
A SwarmLinda has to consider a few principles that can be ob-

served in most naturally occurring swarm systems [10]:

Simplicity: Natural swarm individuals are simple creatures that
perform simple tasks. They do no deep reasoning and imple-
ment only a small set of simple rules. The execution of these
rules in a society leads to the emergence of complex behavior.
Active entities in SwarmLinda should obey this principle of low
complexity and should be “small” in terms of resource usage.

Dynamism: Natural swarms operate in a dynamically changing
environment and adapt to it. In an open distributed system, the
configuration of running applications and services changes over
time. If a tuple is found in a given location it doesn’t necessarily
mean that other similar tuples will exist in the same location in

the future. Therefore, a search heuristic for tuples should not be
fixed; instead it should dynamically adapt to changes.

Locality: Natural swarm individuals observe their direct neighbor-
hood and take decisions based on this local view. As the key to
scalability in SwarmLinda, an active entity has to perform only
local searches and inquire only to direct neighbors.

One needs to understand how a SwarmLinda should be organized
in order to respect the principles just described. Standard Linda
systems do not have the idea of ants or food. A SwarmLinda needs
to abstract these concepts in the Linda world:Individualsare the
active entities that are able to observe their neighborhood, to move
in the environment, and to change the state of the environment in
which they are located.Environmentis the context in which the in-
dividuals work and which they observe.Stateis a characteristic of
the environment that can be observed and changed by individuals.

There is not necessarily a fixed mapping between the abstrac-
tions above and the concepts common to Linda implementations.
Although the environment and the state are somewhat fixed, the in-
dividuals may represent different Linda entities depending on the
algorithm in question.

5. ALGORITHMS FOR A SWARMLINDA
Having described the general concepts of a SwarmLinda, we can

now focus on bringing it to life by defining the concrete environ-
ment and its state, and the individuals and the rules they apply. Next
we describe some algorithms that seem useful. These are taken
from abstraction of natural multi-agent systems [3, 10], especially
those formed by ants.

These algorithms make the core of SwarmLinda – they are the
abstraction of swarm intelligence in the context of Linda. In gen-
eral, these algorithms are fairly independent and should be able to
be implemented without requiring the other algorithms to exist in
the system.

5.1 Searching for Tuples
This algorithm is normally used by ants to find food. Ants look

for food in the proximity of the ant hill. Once found, the food is
brought to the ant hill and a trail is left so that other ants can know
where the food can be found. The ants know the way back to the
ant hill because they have a short memory of the last few steps they
took and also because the ant hill has a distinctive scent that can
be tracked by the ants. In a tuple space context, one could view
tuples as food. The locations where the tuples are stored can be
seen as the terrain while the templates are seen as ants that wander
in the locations in search of tuples. The ant hill is the process that
executed the operation.

The active individuals are the template-ants, the environment
consists of tuple-space servers whose state is composed by the tu-
ples stored and “scent” of different kinds of template that indicate
a likelihood that matches for a template is available at a location.
The scents are volatile and disappear slowly over time. The tuple-
searching ant should follow the following rules:
1. The first step spreads the scent of the process in the server it is

connected to and in this server’s neighborhood. This distinctive
scent will be tracked by the ants on their way back to the ant
hill.

2. Check for a matching tuple at the current location. If a match
is found, return to the origin location and leave scent for the
template matched at each step. They are able to find their way
back using their short memory and tracking the distinctive scent
of the process (as described above). If no match is found, check
the direct neighborhood.

3. If there are no scents around the current location that fit to the
template, randomly choose a direction in the grid of servers to
look for a tuple.

4. If there is a scent that indicates a direction for next step (match-
ing scent), move one step towards that scent and start over. As
pointed out before, we want to guarantee adaptability in Swarm-
Linda. Additionally, we also want to maintain the non-determi-
nism when searching for tuples. One way guarantee these prop-
erties is by adding a small random factor in a range of[−ξ, ξ] to
each scent. This enables new paths (not necessarily the path of
the strongest scent) to be discovered.

5. The activity of the ant is limited to ensure that it does not seek
for tuples that have not yet been produced. After each unsuc-
cessful step without a match, the ant stops its search with a prob-
ability of γ. This factor is 0 in the beginning and increased by
someΓ with each unsuccessful step.Γ itself also increases over
time. When the ant decides to stop searching, it takes one of
three actions:

• Sleep for some time and then continue. This is a pure lim-
itation of activity. If the ant has reached an area where no
matching tuples have been produced for a long time, the ant
will have a hard time to get out of that location. The sleeping
would allow sometime for the system to change and maybe
get to a state where tuples can be found in that location.

• Die and be reborn after some time at its original location –
where the search started.

• Materialize in some other random location and continue to
search for tuples. This will perhaps lead the ant to a find a
match but will not lead to an optimal trail from the original
location to the tuple found at such a distant place. However,
the trail from the randomly chosen location to the tuple is
marked for the other template-ants that operate in that region
and can help find optimal trails from their origins to tuples.
In sum, this method might be acceptable as a last resort.

Which action is taken depends on the age of the ant. After an
ant has slept several times, it then tries a rebirth. After some
rebirths, it decides to rematerialize elsewhere.

The result of the above is the emergence of application specific
paths between tuple producers and consumers. Given that scents
are volatile and become less strong with time, the paths found can
dynamically adapt to changes in the system – when consumers or
producers join, leave or move within the system.

Compare the approach above with one standard mechanism to
find distributed tuples: hashing. Tuples are normally searched based
on a hash function that takes the template as the input and generate
a location where the tuple can be found as the output. Hashing is
definitely fast but unfortunately not very adaptive. The determin-
ism that exist in hash functions forces tuples with the same template
to alwaysbe placed in the same location no matter the size of the
system, thus causing bottleneck problems if tuples matching such
template are in demand in the system.

Although in a SwarmLinda tuples matching the same template
would tendto stay together, this is not necessarily true in all cases.
If such tuples are being produced in locations that are far enough
from each other the tuples will remain separate and create clusters
across all the system. This minimizes the creation of bottlenecks
when tuples of a certain template are required by several processes.
As the search will start from various locations, tuples will tend to
be retrieved from the closest cluster from the source of the search.

Another problem with hashing approaches is that they are not
fault tolerant – if a tuple is being hashed to a location, that location
is expected to be working. From the point of view of swarm tech-

niques, failures are just another change in the environment. This
would be like ants trying to search for food in a food supply that
was suddenly destroyed.

5.2 Distribution Mechanism
Historically, tuples have been distributed using variousstatic

mechanisms (as described in Section 3). In SwarmLinda the parti-
tioning of the tuple space would be dynamic using the concept of
brood sorting used by ants.

Ants are able to sort different kinds of things they keep in the
ant hill such as food, larvae, eggs, etc. In an ant hill these are
normally sorted by type. That is, they are grouped by type in one
place and kept separate from other things. More importantly, ants
do this process in spite of the amount of each type, thus being very
scalable.

The individuals that operate here are tuple-ants in contrast to the
algorithm of the previous section. The environment is unchanged
– it remains as a network of servers. Their state is the set of tuples
stored thus far.

A SwarmLinda implementation may use brood sorting as below
in the process of tuple distribution. One could see tuples being
grouped based on their template which will lead to the formation
of clusters of tuples. In this process, tuples are the food and the ant
is the active process representing the out primitive:

1. Upon the execution of an out primitive, start visiting the servers.
2. Observe the kind of tuples (the template they match) the servers

are storing. Each out process should have a limited memory so
it doesn’t remember the information about the entire “grid” of
servers but only the last few – this guarantees that the decision
of a process is based on local information.

3. Store the tuple in the server if nearby servers store tuples match-
ing the same template. Again this decision also considers a
small random factor[−ξ, ξ].

4. If nearby servers do not contain similar tuples, randomly choose
(using the random factor) whether to drop or continue to carry
the tuple to the next step (to another server).

In order to guarantee that the steps above work well, certain con-
dition must be satisfied. The out process should be able to store the
tuple eventually. For each time the process decidesnot to store the
tuple, the random factor will tend toξ. This increases the chance of
storing the tuple in the next step. Also the likelihood to store the tu-
ple is also calculated stochastically based on the kinds of objects in
memory – if most of the objects in memory are of the same kind as
the one being carried out the likelihood to store the tuple becomes
very high.

The power of this approach shows when it is compared with the
partitioning scheme as described in Section 3. Similar to the case
for searching tuples, partitioning is based primarily in the use of
a hash function to decide where the tuple should be placed. This
standard technique is far from being able to cope with failures and
changes in the application behavior.

The approach described in this subsection is able to improve the
availability of the system without having to count on costly tech-
niques such a replication of data. In the ant-based approach de-
scribed above, there are no assumptions about the behavior of ap-
plications, there are no pre-defined distribution schema, there are
no special scenarios implemented to deal with failures in the server.

Scalability is also improved. In SwarmLinda, servers can be
added at any point and the ants will make sure that these servers
are explored and used in storing tuples.

Another fact that improves scalability is the limitation in the
memory of the ant-tuples. This forces them to make decision based

on local informationonly. In practice, this may account for hav-
ing the out-process having to communicate to servers only in its
neighborhood.

5.3 Dealing with Openness
The ability of a system to deal with changes can be a great asset.

For instance, in open Linda systems the need for tuples of specific
formats (templates) can change greatly overtime.Swarm systems
are very adaptive and can rapidly respond to changes in the environ-
ment. Ants for instance, can move the ant hill to another location
if they find themselves in danger. Here, we again use tuple-ants as
the individuals. The environment is again a terrain of servers that
has scents as the state.

Ants find the ant hill based on a particular scent unique to the
ant hill. This scent is what keeps the ants together in the ant hill.
For a SwarmLinda, we want tuples matching the same template to
be kept together (as described in Section 5.2) but we do not want
them to be fixed to a given location. Instead, we want them to
dynamically adapt to changes.

There is a functionSc : T → S on templates and tuples. There
is a relationC : S × S on scent that defines similarity of scent.
When templatete and tupletu match, thenSc(te), Sc(tu) ∈ C.

1. A new tuple-ant that carries a tupletu emitsSc(tu) at its origin.
A new template-ant that carries a templatete emitsSc(te) at its
origin.

2. Template-ants remain at that position and never move.
3. Tuple-ants sense their environment for a scent similar – as given

by C – toSc(tu). If there is such, then other template- or tuple-
ants are around.

4. Based on the strength of the detected scent plus the small ran-
dom factor[−ξ, ξ], the tuple-ant decides to move into that di-
rection or to stay where it is.

The above causes tuples to stay closer to where other similar
tuples are needed or are being produced (based on the number of
in and out primitives executed) even if this consists of migrating
from one server to another. This would also have an effect on the
distribution mechanism explained in Section 5.2. When a tuple is
being stored the scent left by previous in and out primitives should
also be considered when deciding to drop the tuple in the current
server or to keep “walking” through the terrain of servers searching
for a good place to drop the tuple.

5.4 Balancing tuple- and template movement
In the preceding algorithms, we always identified either the tuple-

ants or the template-ants as individuals that move and perform a
continued search. In this section we describe an intermediate ap-
proach where ants can be both tuples and templates.

Consider an application where one node consumes a lot of tu-
ples that are generated on other nodes. If trails from the producers
to the consumer are found – and these can be found by program-
ming a tuple-ant with the algorithm from Section 5.1 – it makes no
sense to have the consumer start template-ants that seek the pro-
ducers. Based on the system history (of scents) it is known where
a consumer is and what the path is, so tuple-ants should be started
there while the template-ants at the consumer should remain sta-
tionary and basically wait for a matching tuple-ant to appear. But
if the former consumer starts to be a producer after the calculation
of some results, it might become reasonable to start template-ants
from the former producers to reach out for the result.

Our algorithm should lead to a dynamic balance between active
and passive ants that takes into account the current producer/ con-
sumer configuration in the system.

For the algorithm, the individuals are tuple- and template-ants.
The environment is still the terrain of servers. The state at each
location includes two scents: One scent indicates whether the lo-
cation is visited successfully by other ants – it is an attraction – or
not – it is an outsider. Successful means that the visiting ant found
a match at this location. We call this the visitor scent. The second
scent, the producer-consumer scent ranges over[−φ, φ]. Positive
values indicate that the matches that took place were such that a
visiting template-ant retrieved a tuple from that location – show-
ing that the location is a producer of information. If the scent is
negative, it indicates that visiting tuple-ants were matched with a
template at that location – the location is a consumer of tuples.

Tuple- and template-ants follow the algorithms from Section 5.1
to find matching templates resp. tuples. If an tuple-ant finds a
match, it neutralizes a bit of producer-consumer scent at the lo-
cation. When a template-ant finds a matching tuple, it adds a bit of
this scent at the location. Both kinds of ants leave a bit of visitor
scent in the case of success.

When a new ant is born, it will either be a tuple- or a template-
ant depending on the kind of operation requested. A new tuple-ant
emits a bit of producer-consumer scent at the location of its birth, a
template-ant neutralizes some.

These ants can behave in two different ways: Either they are
active and move around following the search algorithms above, or
they are passive and remain at their origin to be found by others.

The further fate of a new ant depends on the current state of the
location where they are born. This state distinguishes producing
and consuming locations and whether the location is attractive for
visitors. The following table shows how new ants behave based on
these two characteristics:

Producer Consumer
Attraction Passive tuple-ant

Passive/active template-ant
Active/passive tuple-ant
Passive template-ant

Outsider Active tuple-ant
Passive template-ant

Passive tuple-ant
Active template-ant

If a producer is visited by many ants, there is no need to send
out tuple-ants. Template-ants can be passive too as many visitors
satisfy them, but also active to establish a global balance. The ratio
passive/active could be adjusted.

For an attractive consumer, template-ants can remain passive.
Tuple-ants might be active with the same argument on a global bal-
ance. If a producer is not visited by many other ants, it will send
out its tuples-ants to find matches. Its template-ants can remain
passive as there are not many. If a consumer is not visited by many
other ants, it will send out active template-ants to find matches and
generate passive tuple-ants to attract other active template-ants to
improve the chance of becoming an attraction.

The algorithm can be compared to the intermediate replication
scheme described in Section 3. There, an in leads to a broadcast
of the template on the inbus and to a search for a matching tuple.
An out leads to the replication of the tuple on the outbus where
the local lists of waiting tuples are then searched. This seems to
resemble the idea of having tuple-ants and template-ants go out and
seek for matches. However, the in- and outbusses in intermediate
replication are usually very static. In the SwarmLinda algorithm
the balance between tuple- and template-ants is highly dynamic and
adapts to the current behavior of the running applications.

6. CONCLUSION
This paper describes approaches for the implementation of a

SwarmLinda. The paper demonstrates that organized behavior in
SwarmLinda can be implemented based on a few simple rules that
mimic naturally forming multi-agents systems.

We claim that the use of swarm abstractions in an implementa-
tion of SwarmLinda would not only be simple but will improve its
scalability and adaptability.

The algorithms presented here provide an excellent alternative
to the standard approaches used in various Linda implementations.
The algorithms follow three principles that can be observed in any
swarm-based systems: simplicity, dynamism and locality.

7. REFERENCES
[1] Robert Bjornson.Linda on Distributed Memory

Multiprocessors. PhD thesis, Yale University Department of
Computer Science, 1992. Technical Report 931.

[2] Eric Bonabeau, Florian Henaux, Sylvain Guérin, Dominique
Snyers, Pascale Kuntz, and Guy Theraulaz. Routing in
telecommunications networks with ant-like agents. In Sahin
Albayrak and Francisco J. Garijo, editors,Proceedings of the
2nd International Workshop on Intelligent Agents for
Telecommunication Applications (IATA-98), volume 1437 of
LNAI, pages 60–71, Berlin, July 4–7 1998. Springer.

[3] E. Bonebeau, M. Dorigo, and G. Theraulaz.Swarm
Intelligence: From Natural to Artificial Systems. Oxford
Press, 1999.

[4] Nicholas Carriero and David Gelernter. The s/net’s linda
kernel.ACM Transactions on Computer Systems,
4(2):110–129, 1986.

[5] A. Corradi, L. Leonardi, and F. Zambonelli. Strategies and
protocols for highly parallel linda servers.Software: Practice
and Experience, 28(14), 1998.

[6] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system:
Optimization by a colony of cooperating agents.IEEE
Transactions on Systems, Man, and Cybernetics Part B:
Cybernetics, 26(1):29–41, 1996.

[7] David Gelernter. Generative Communication in Linda.ACM
Transactions on Programming Languages and Systems,
7(1):80–112, 1985.

[8] Ronaldo Menezes, Robert Tolksdorf, and Alan Wood.
Coordination and scalability. In Andrea Omicini, Franco
Zambonelli, Matthias Klusch, and Robert Tolksdorf, editors,
Coordination of Internet Agents: Models, Technologies, and
Applications, chapter 12, pages 299–319. Springer Verlag,
2001. ISBN 3540416137.

[9] P. Obreiter and G. Gräf. Towards scalability in tuple spaces.
In Proceedings of the 2002 Symposium on Applied
Computing, pages 344–350. ACM, March 2002.

[10] H.V.D. Parunak. “go to the ant”: Engineering principles from
natural multi-agent systems.Annals of Operations Research,
75:69–101, 1997.

[11] Mitchel Resnick.Turtles, Termites, and Traffic Jams. MIT
Press, 1994.

[12] A. Rowstron. WCL: A co-ordination language for
geographically distributed agents.World Wide Web,
1(3):167–179, 1998.

[13] Robert Tolksdorf. Laura - a service-based coordination
language.Science of Computer Programming, Special issue
on Coordination Models, Languages, and Applications,
1998.

[14] P. Wyckoff, S. McLaughry, T. Lehman, and D. Ford.
T spaces.IBM Systems Journal, 37(3):454–474, 1998.

