Synchronization Analysis for Decentralizing Composite
Web Services

Mangala Gowri Nanda
IBM India Research Laboratory
Block 1, IIT, Hauz Khas
New Delhi 110016, India

mgowri@in.ibm.com

ABSTRACT

Web Services are emerging as the standard mechanism for
making information and software available programmati-
cally via the Internet, and as building blocks for applications.
A composite web service may be built using multiple com-
ponent web services. Once its specification has been devel-
oped, the composite service may be orchestrated either using
a centralized engine or in a decentralized fashion. Decen-
tralized orchestration improves scalability and concurrency.
Dynamic binding coupled with decentralized orchestration
adds high availability and fault tolerance to the system. In
this paper, we categorize different forms of concurrency and
provide an algorithm to identify these forms in a composite
service specification. We also consider the impact of dy-
namic binding and faults on synchronization constructs.

Keywords

Web services, decentralized orchestration, synchronization

1. INTRODUCTION

Web services encapsulate information, software or other
resources, and make them available over the network via
standard interfaces and protocols. Complex web services
may be created by aggregating the functionality provided
by simpler ones. This is referred to as service composition.
Typically a composite service is defined using an XML-based
specification language such as BPEL' and its execution is
driven by a centralized engine that interprets the workflow
specification.

RuntimeArchitectule. Figure 1(a) shows the centralized
orchestration of a FindRoute service, which sends a name,
namel, to AddrBook(1) and a name, name2, to Addr Book-
(2). The two addresses returned are sent to the RoadRoute

"http://www-106.ibm.com/developerworks/webservices/
library /ws-bpel/

Permissionto malke digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citationonthefirst page.To copy otherwiseto
republisho poston senersor to redistrituteto lists, requiresprior specific
permissiorand/orafee.

SAC 2003,Melbourne Florida, USA

Copyright 2002ACM 1-58113-624-2/03/03.$5.00.

Neeran Karnik
IBM India Research Laboratory
Block 1, IIT, Hauz Khas
New Delhi 110016, India

kneeran@in.ibm.com

AddressBook(1)

b e

Client

Composite AddressBook(2)

Service
(FindRoute)
RoadRoute
(a)
AddressBook(1)

L
Client

Composite
Service
(FindRoute)
RoadRoute
(b)

&L Workflow Agent L1 Web service component

Figure 1: Centralized and Decentralized Architec-
ture

service which returns the driving directions from one address
to the other.

In decentralized orchestration, rather than send every mes-
sage through a single centralized server, messages are sent
directly from the component where the data is generated
to the component where the data is needed. For exam-
ple, the address generated at AddressBook(1l) is sent asyn-
chronously to RoadRoute. A decentralized orchestration
(Figure 1(b)) requires an engine or agent at or near the
site of each component service. The agent has the following
logic:

e Receive data/control messages from preceding components
e Execute business logic

e Invoke the component web service

e Evaluate exit conditions and asynchronously send data /
control messages to succeeding component(s).

All messages between agents are asynchronous, whereas
the web service invocation is synchronous. The composite
service also behaves like an agent and sends and receives
asynchronous requests from the component agents.

DynamicBinding Load distribution based on replicated
services has become the standard way to improve the scala-
bility and availability of Internet services. The services may
be replicated within a local cluster [6] or the replicas may
be geographically distributed [19]. The process of selecting
one of the instances at runtime is termed dynamic binding.
The actual instance invoked may be determined dynamically
based on criteria such as request content [13, 2], scheduling
algorithms [11] or geographical location [16].

Motivation. Given a composite service specification, there
are two ways to improve its performance:

e parallelize components where the dependencies permit,

o decentralize the orchestration.

In Figure 1(b), there is clearly a synchronization over-
head involving correlation of data from two different ser-
vices at the RoadRoute service. However, this is offset by
the reduced data flowing through the network and the ad-
ditional concurrency. Experimental analysis shows that, in
general, decentralized execution brings performance bene-
fits, whereas with parallelization, the performance benefits
may be offset by synchronization overheads. More details
will be presented in Section 4. The advantages of decentral-
ized execution are:

e The centralized engine does not become a performance
bottleneck.

o The data flowing through the network is reduced as data
flows only along data and control dependence edges.

e Improved concurrency brings improved performance.

e Asynchronous messaging results in better throughput and
graceful degradation [7].

The advantages of dynamic binding are:

o It supports fault tolerance. If one service is not available,
another equivalent service may be chosen at runtime.

e A service may be chosen on the basis of the price it charges
or the response time it guarantees. This helps the composite
service in conforming to its QoS commitments.

e It permits load balancing across the competing services
and hence may improve performance.

1.1 Problem Description

We are building a tool that takes as input a centralized
web service specification and converts it into a decentral-
ized specification. Currently, the input is an XML specifi-
cation which is a subset of BPEL.? The output is an XML
specification (in the same language) for decentralized execu-
tion. We have also built the workflow agent which takes the
XML specification as input and executes it. Converting a
centralized specification to a decentralized specification re-
quires three steps (i) Automatic Parallelization and Code
Partitioning (ii) Synchronization analysis and (iii) Genera-
tion of the decentralized specification. We use a variation of
Sarkar’s algorithm for code partitioning [15] but the details
are beyond the scope of this paper. The code partitioning
determines what data needs to flow between components.
The synchronization analysis determines when the data will
be transferred. Both analyses are important as the out-

2 Although standard workflow specifications are not designed
for decentralized orchestration, we found that BPEL, in par-
ticular, can be used for decentralized specification as well.
In this paper we do not give details of the XML specification.

put specification must make explicit both the interaction
between components as well as the synchronization mecha-
nism.

Synchronizationanalysis.Web services support message
passing and RPC for component interaction. Based on these
protocols, some of the standard models of synchronization
are the Postal model and the Deposit/Fetch model [17]. Con-
currency adds complexity to coordination. Hence, variations
of the standard synchronization protocols have to be used.
Different forms of concurrency based on the program struc-
ture need to be handled differently. We categorize the dif-
ferent forms of concurrency, and give an algorithm which
uses static analysis to detect the different forms of concur-
rency in a given composite service. We also specify how
synchronization is to be achieved in each case.

DynamicBinding Let there be several instances (with dif-
ferent access URLS) of the component service RoadRoute in
the example in Figure 1(b). In the presence of dynamic bind-
ing, at runtime the two AddressBook services must choose
one instance of RoadRoute to which they will send the ad-
dresses. Clearly, they must both choose the same instance,
or the workflow will never complete. So an arbitration pro-
tocol is required between the two AddressBook services. Co-
ordination for handling dynamic binding is also dependent
on the type of concurrency.

Contributionsof this paper. In this paper we

o identify coordination problems in decentralized execution
of composite services,

e give solutions to the problem of coordination,

e experimentally evaluate the different solutions.

2. WORKFLOW DEPENDENCE GRAPHS

A Workflow Dependence Graph (WDG) is a graphical rep-
resentation of a decentralized, concurrent orchestration. It
can be obtained from a Control Flow Graph (CFG) [1] rep-
resenting the workflow specification itself. The CFG of the
input specification is a directed graph in which each node
represents a task in the workflow specification. Each task
may be an invocation of a workflow component web service
or a part of the logic glue that binds the components into a
composite whole. The CFG has a unique Start node that
has no predecessors, and a unique Exzit node with no suc-
cessors. Every node is reachable from the Start node, and
the Exit node is reachable from every node.

The Program Dependence Graph [12] (PDG) is a graph in
which the nodes are the statements and predicate expres-
sions of the CFG and the edges are data dependence and
control dependence edges.

Data Dependence: A node Nj is data dependent on a node
Nj, if N; defines some data z, N; uses the data z, and there
exists a path from IV; to IN; without intervening definitions
of = [1].

Postdominance: A node N; postdominates a node Nj iff
N; # N; and N; is on every path from N; to Exit. A
node N; postdominates a branch of a predicate INV; iff N; is
the successor of V; in that branch or IV; postdominates the
successor of N; in that branch.

Control Dependence: A node Nj is control dependent on a
predicate NNV; iff N; postdominates a branch of IV; but N;

does not postdominate IN;.

We partition the PDG to generate a WDG. Whereas the
PDG has one node for every task in the composite service,
the WDG has one node for each component in the workflow
and all the tasks in the PDG are partitioned across the WDG
nodes so as to minimize the number of inter-component mes-
sages [10]. The edges of the WDG are inter-component data
and control dependence edges. Data dependence edges in-
dicate the data to be transferred from one component to
another. The implication of a control dependence edge from
N; to Nj is that N; must execute before IN; may execute.

Once the WDG has been computed, a decentralized or-
chestration can follow WDG edges rather than control flow
edges.

3. SYNCHRONIZATION

We consider two basic synchronization protocols. In the
Direct Deposit model, the sender deposits the data directly
into the receiver’s buffers. In the Request-Response model,
data is buffered at the sender, a control message is sent
indicating availability of the data, and the receiver pulls the
data when required.

3.1 Concurrency

In the presence of concurrency, a node may have two or
more incoming edges. In this section, we examine the effect
of concurrency on synchronization. We identify the differ-
ent forms of concurrency and describe the different ways to
manage synchronization. We first analyze sequential code in
the CFG and determine the forms of concurrency possible;
then we analyze code with branches and finally code with
iteration.

SequentiaCode. For a WDG generated from a CFG with
only sequential flow, a node in the WDG may have two in-
coming edges if it has two incoming data dependence edges
as shown in Figure 2. Let N3 be a node with two incoming
data dependence edges N1y — N3 and Ny — N3. Then we
classify the possible forms of concurrency as a concurrency
and B concurrency on the following basis: in o concurrency
there is no path from N; to N» in the WDG, whereas in
B concurrency, there exists a path from N; to Nz in the
WDG. The corresponding synchronization protocols are vi-
sually depicted in Figure 2 and we briefly explain the pro-
tocols for 3 concurrency below.

e Direct Deposit: /N1 and N directly and asynchronously
send data to Ns.

e Request-Response: N; and N> send control messages
to N3; and N3 pulls the data from N; and N> after
receiving both the control messages.

e Combined Direct Deposit and Request-Response (CD-
DRR): N> does a direct deposit at N3 and N3 pulls
data from N;. This is possible since there is a path
from N to N» indicating that data is ready at INi.
Hence a control message from Nj to N3 is not required.

e Pipeline: This option dispenses with concurrency by
pipelining the data from Ni to N3 through No.

The CDDRR and Pipeline options are not available in «
concurrency since there is no path from N; to N> in the
WDG.

CFG WDG Orchestration
a fork ®\
@ 3
7 S
@ @.
| Ny r - s
"\\ @ @join © g/j@\@i@
)
B (d) @7@@
A ") Q& 3 23@

© @-@-0-0-3
® O-=2-=3

___ control flow ___control dep _ —.data message
__-datadependence __.datadependence __control message

y N

Figure 2: Synchronization protocols (d) for Direct
Deposit, (r) for Request Response, (c) for Combined
Direct Deposit and Request Response, and (p) for
Pipeline, for WDGs generated from sequential code.

BrandhedCode. When there is a branch node in the CFG,
the different forms of concurrency possible are o, a1, B1, a2,
and (2 concurrency as shown in Figure 3.

In o concurrency, although there are two dependences
reaching N3, at run time only one path will be executed,
and hence N3 has only one dependence at runtime and there
is no concurrency.

In a; and B: concurrency, we observe that N; does not
know whether N3 or N} will be executed and hence cannot
do a direct deposit until N> has completed. This happens
because N3 does not post-dominate N; in the CFG. The
modified protocol for Direct Deposit is shown in Figure 3.
The other synchronization protocols do not differ from the
corresponding a and 3 concurrency protocols.

In a2 and B2 concurrency, N3 does post-dominate N1, but
the data generated at N; may get killed along some path to
N3. Hence in this case also N; cannot do a direct deposit
at Ns. In addition, the data generated at N; may have to
be discarded depending on the path taken at runtime. The
protocols are visually depicted in Figure 3.

Iteration. A loop header may be treated in the same way as
a branch node. In the absence of loop-carried dependences,
iteration does not add any further complexity to the syn-
chronization. Since a loop defines a strongly connected re-
gion wherein there is a path from every node to every other
node in the region, in the case of loop-carried dependence,
some form of 8 concurrency will apply.

3.2 Dynamic Binding

The different coordination schemes for dynamic binding
are shown in Figure 4. The possible coordination schemes
depend on the synchronization protocol used and the type of

CFG WDG Orchestration
o @ @
! OFOZO)
©-®-®

]

@G

@ @ @igi(@

(D)— discard
@ &=
@3

0 @O=2] ; 3] :Z@
0 @O=2 iémm

© O ~2=@=3~1 -3
® O=D=2r=0)

_ - data message
- control message

—~control flow
_ —datadependence _ -. data dependence

—-control dep

Figure 3: Synchronization protocols (d) for Direct
Deposit, (r) for Request Response, (c) for Combined
Direct Deposit and Request Response, and (p) for
Pipeline, for WDGs generated from branched code.

WDG
a- Wﬁch fork @ @:/’7®\@

O
join
WDG 5

B- Synch @ @~2—=6

b O

© Q2@
@ O—@—0®

— Data Message ----> Control Message
fffffff > Combined Data & Control Message

Figure 4: Coordination in Dynamic binding

concurrency. We now show how to handle dynamic binding
for o and B concurrency. The other cases are similar.

o Concurency N; and N> need to arbitrate to decide
which instance of N3 to use. Since the actual instances of
Ni and N> themselves may have been decided dynamically,
it is not possible for N; and N> to know each others ad-
dresses. However, Ny is a common ancestor of N1 and N» in
the WDG, and hence the address of Ny can be propagated
down to both N; and N and Ny can be the arbitrator.
There are two possible schemes of arbitration:

(a) No makes the dynamic binding decision and passes the
URL of the chosen instance of N3 to N1 and N» as control
messages that may be combined with data messages. Then
no further arbitration is required.

(b) When N; and N> are ready to send data to N3, they
make a dynamic binding decision to bind to (say) Instance;
and Instances respectively and inform No using a control
message. If Np receives Ni’s request first then it accepts
that decision and sends an accept to N1 and when N>’s re-
quest arrives, it replies with the first decision taken so that
N> knows it must use Instance; instead. Thus, N1 and N»
synchronize, using Ny as an arbitrator.

These schemes apply to both Direct Deposit and Request
Response synchronization. Option (b) may appear more
complex than (a) but it has certain advantages as we will
see in Section 3.3.

B Concurency wDG; in Figure 4 enumerates the differ-
ent ways in which N; and N, may arbitrate. Option (a)
and (b) are similar to (a) and (b) in a concurrency and can
be used on top of Direct Deposit and Request Response.
Option (c) is used in the case of Combined Direct Deposit
and Request Response. N> takes the dynamic binding de-
cision and N3 pulls the data from Ni. Option (d) depicts
the Pipeline case. There is no concurrency and hence no
arbitration.

No Extra
a- Synch Data

fork @ @O :g>@ x

o O O

©) (O

@oin
B~ Synch

@ @ @ ~2—=0 x

D
© O—a
(v © @ -0 Y
© &= x
(N

— Data Message
— Abort Message

----= Control Message
---== Combined Data & Control Message

Figure 5: Error Management

3.3 Distributed Error Management

There are two typical conditions under which the workflow
may have to be terminated:
A synchronization problem: In situations where two
nodes need to synchronize, if the join node fails after receiv-
ing one message there is a possibility that the workflow may
have to abort.
Condition violation: A client may specify conditions un-
der which a workflow must be aborted. For example, if the
price of available movie tickets for “Lord of the Rings” ex-
ceeds $7, then abort the workflow.

Handlingworkflowabort. There are several options for a
component when it detects a condition that calls for an abort
- it may ignore the situation, it may send a message directly
to the request initiator, or it may send a message back along
the path on which the request arrived. Although exceptions
are usually handled by propagating the error back along the
call graph, in decentralized orchestration sometimes it makes
sense to propagate the error forward. In Figure 5 we depict
what happens when a node detects an abort condition.

a concurency.

o In case (a) N1 sends an abort message to N3 but it is not
possible to inform N> about the abort and hence the data
flows from N> to N3 where it is discarded.

e In case (b) there are two synchronization situations that
may arise that have been depicted as (b) and (') in Figure 5.
In case (b), the abort message from N; to Ny reaches before
the synchronization request from Na to No. Hence, N> can
be informed about the abort and it will send no data to Ns.
However, (as depicted in case (b)) if the abort message from
N1 to Np reaches after the synchronization request from No
to No, then N3 needs to be informed that it will receive no
message from N;. Therefore, Ny needs to send an abort

Input: Nodes Ni, Ny, N3 // N1 and N3 send data to N3
Output: Type of concurrency
if Path(Ny, N2) == false then
N, = CommonAncestor(Ni, N3)
if N, is a conditional node then
o0 concurrency
else // a concurrency
if PostDom(N3, N1) and
!K'illed(Nl, No, N3) then
«a concurrency
else if !|PostDom(N3, N1) and
|Killed(N1, N2, N3) then
Q@i concurrency
else
Qs concurrency
else // 3 concurrency
if PostDom(N3, N1) and
!Killed(Nl, No, N3) then
B concurrency
else if !|PostDom(N3, N1) and
IKilled(Ny1, N2, N3) then
B1 concurrency
else
B2 concurrency

Figure 6: Concurrency analysis

message to N3 which can then discard any messages related
to this request.

B concurrency

e In case (a) N> needs to send a message to N3 indicating
that the request has been aborted. Else, N3 will receive
data from N; and keep waiting for the second data message
from N> (presumably until some predetermined timeout),
thus wasting resources.

e In case (b) and (¢) N2 sends a message back along the call
graph to Vi since N is holding data to be sent to N3. Ni
can now discard the data and send a message directly to the
request initiator indicating an abort.

Thus we see that in case (a) it is important to propagate
the error message forward along the call graph, rather than
backwards. Note however, that forward propagation of er-
rors does not go through every succeeding node in the graph
but only through the nesting “join” nodes. For 3 concur-
rency, in terms of efficiency, we note that in case (b) and case
(¢) no unnecessary data is put on the network, whereas in
case (a), the data is sent from N; to N3 and then discarded.
In case (d), unnecessary data flows from N to Na where it
is discarded. Thus the more complex coordination protocol
fares better in the presence of faults.

34 TheAlgorithm

Since our source program is a structured program (with-
out unconditional gotos and without irreducible loops), all
forms of concurrency can be treated as a combination of
these basic constructs. If there are more than two depen-
dence edges at a node they can be evaluated pair-wise and
each pair will fall into one of the above categories.

The algorithm for determining the type of concurrency is
given in Figure 6. N3 is the join node with two incoming
edges from N; and N,. For each pair of incoming edges the
algorithm in Figure 6 is executed.

The function CommonAncestor(N;, Nj) returns the clos-

est common ancestor of N; and N; in the WDG. The func-
tion PostDom(N;, N;) returns true if N; postdominates N,
in the CFG and false otherwise. The function Killed(N;, Nj,
Ny) returns true if the definition at N; is killed along the

path N; - N; — N in the CFG. Note that CommonAncestor

and Path are computed on the WDG but PostDom and
Kiilled are computed on the original CFG.

Having determined the type of concurrency in the com-
posite service, we can then use the appropriate decentralized
orchestration as shown in Figures 2-5.

4. EXPERIMENTAL RESULTS
4.1 Experimental setup

We have implemented a workflow agent for decentralized
composite service execution. Each node has one such agent,
capable of receiving and sending asynchronous messages over
HTTP. At runtime the agent interprets a decentralized spec-
ification coded in a subset of BPEL.

Requests are initiated by clients that send a synchronous
HTTP message to a composite service. The composite ser-
vice holds the client’s connection and asynchronously dis-
patches data to the relevant component service(s). The last
component asynchronously returns a response to the com-
posite service, which forwards the response to the client over
its pending connection. We vary the load on the system by
varying the number of concurrent clients.

We conducted experiments both in a LAN environment
as well as on a WAN. All the web services run on stan-
dard Intel-based machines running tomcat on Linux. In the
LAN setting, the machines are networked using 100Mbps
Ethernet. For the WAN experiments, we used machines
distributed between locations in India, New York and Cali-
fornia.

4.2 Resultsand Analysis

We ran the experiments with dummy “echo” services that
merely echo back the request. To experiment with different
message sizes, we gave the echo service a second parameter
indicating the required length of the output message. We
experimented with message sizes ranging from about 2000
bytes to 20000 bytes. The size of HTTP messages is typically
in the range of 1K to 10K bytes but we feel that web services
may have larger message sizes especially due to XML-izing
of the data. We have plotted the average response time for
each of the coordination models as a function of the message
length. The plots for both the LAN-based and WAN-based
experiments are shown in Figure 7. We discuss the plots
below.

e In the LAN environment we found that the response time
is very sensitive to the size of the message.

- a concurrency: Direct Deposit is a clear winner. The cen-
tralized orchestration is the worst performer at lower mes-
sage lengths, but at higher message lengths it gives better
results than the Request-Response option. The Request-
Response option does not scale well with increasing message
length due to the large number of connections and lack of
data concurrency

- B8 concurrency: At low loads the Pipeline option and Com-
bined Direct Deposit and Request-Response options actually
perform better than the Direct Deposit option due to its low
synchronization requirements. But as the load increases we
observe that Direct Deposit scales the best due to its high

support for concurrency. Results for 8, concurrency are very
similar to 8 concurrency

- B2 concurrency: The modified Direct Deposit option has
significant coordination overheads. The Pipeline actually
scales and performs better due to the lower synchronization
and connection requirements, despite the overhead of extra
data.

e In the WAN environment the increase of response time
with message length was not so marked.

- a concurrency: Direct Deposit is a clear winner but the
Request-response option also easily outperforms the Cen-
tralized orchestration. The network transmission is the sin-
gle largest overhead in the system. The centralized orches-
tration does not scale well.

- B concurrency: The Pipeline option with minimum syn-
chronization overheads leads despite carrying extra data.
All the decentralized options scale well. Only the central-
ized option does not scale well.

- B2 concurrency: In this case the Pipeline’s performance
drops drastically since the pipeline is across three connec-
tions (N1 — No — N3 — Nj) all of which were inter-
continent links. In the 8 concurrency pipeline only one of
the links was an inter-continent link. This shows that the
pipeline is useful only if the distances, data and number of
links are small.

In general, in the WAN environment, the network trans-
mission is the largest overhead. In the LAN environment
network delays are small, and the number of connections
governs the scalability of an orchestration. In both set-
tings, decentralization clearly brings performance benefits.
Pipelines are useful only over small distances and for small
messages. Otherwise, concurrency brings greater perfor-
mance.

Dynamic Binding and Error Management: Prelimi-
nary experimental evaluation shows that the arbitration op-
tion (a) gives the best performance especially as it is typi-
cally coupled with the efficient Direct Deposit synchroniza-
tion. We need to determine the effect of faults on this pol-
icy as it likely to perform poorly in the presence of faults.
However, if we assume that faults are rare (which is not un-
realistic), then this scheme should continue to give the best
performance.

5. RELATED WORK

Much work has been done in analysis of synchronization
models and in coordination. Stricker et al. [17] analyze the
execution costs of different synchronization protocols, Mehta
et al [9] have come up with a complete taxonomy of soft-
ware connectors. Amongst others, they identify the differ-
ent styles applicable to middleware and distributed systems.
Ciancarini et al. [5] focus on the role of XML in coordinat-
ing middleware. XML plays a strong role in our tool also,
although this paper does not go into the details. Cabri et
al [4] focus on coordination for mobile agents.

Distributed workflows have been around for some time.
Tripathi et al. [18] focus on XML specification that is in-
terpreted by mobile agents. Kim et al. [8] have modeling
methodology to analyze the scalability and performance of
centralized versus distributed data and/or control depen-
dence. Ponnekanti et al. [14] have an interesting rule-based
algorithm that permits semi-automation of workflow compo-
sition. Atluri et al. [3] discuss security issues in distributed

Type LAN WAN

9000 " T 35000 " T
Direct Deposit Direct Deposit
Request Response - Request Response -
Central - Central -
8000
30000
8 7000 €
g 2
S s
8 8
& & 25000 |-
z 6000 =
= £
g g
= 5000 = 20000
@ @
i &
g 2
s s
2 2
8 4000 |- 8
o g 15000 |-
g @
Z 3000 | z
10000
2000
1000 . 1 1 1 1 1 1 5000 1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
a Message Size in KBytes Message Size in KBytes
10000 T T 35000 T T
Direct Deposit Direct Deposit ——
Request Response - Request Response -
9000 Combined Direct Deposit with Request Response - Combined Direct Deposit with Request Response,
Pipeline 30000 - Pipeliné |
Gentral
8000
2 @
B 2
8 7000 - § 25000 [
@ @
& &
E 6000 [E
c £ 20000 |-
g g
< 5000 =
@ @
& &
s § 15000
S 4000 - 2
e 4
& &
© 3000 14
g £ 10000 -
2 s
< <
2000
5000
1000 [
0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
Message Size in KBytes Message Size in KBytes
35000 . r 220000 . . T
Direct Deposit Direct Deposit ——
equest Response - equest Response -
Combined Direct Deposit with Request Response - 200000 | Combined Direct Deposit with Request Response - 4
Pipeline - Pipeline -
30000 [B
180000
25000 - 160000 -
E £ 140000 -
£ 20000 £
g g
= = 120000 [
@ @
& &
& 15000 - 2
a 2100000 -
e 4
& &
g @ L
& 10000 g 80000
2 s
< <
60000 |
5000
40000 [
0 1 1 1 1 1 1 1 1 20000 L— 1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
2 Message Size in KBytes Message Size in KBytes

Figure 7: Experimental results

workflows. The Workflow Management Coalition (WfMC)
has proposed a reference architecture and defined interfaces
for vendors. While this is a useful step toward interoperabil-
ity, the current specification is oriented towards centralized
engines and does not provide support for decentralized en-
gines with dynamic binding. To the best of our knowledge,
no one else has addressed the issues of dynamic binding and
fault handling in decentralized workflows, or the resultant
synchronization problems.

6. SUMMARY AND CONCLUSION

In general, decentralized systems have more complex co-
ordination requirements than other distributed systems. In
this paper we have focused on issues related to synchroniza-
tion and coordination between components of a decentral-
ized composite web service. We first determined the dif-
ferent types of concurrency that may be found in a decen-
tralized setting. Then we determined the different possible
ways to coordinate the components. Finally we experimen-
tally evaluated each of the options. In general, our exper-
iments demonstrate that decentralization improves perfor-
mance and scalability.

Future Work We are currently working on building a dy-
namically configurable system that reconfigures itself based
on monitoring feedback. The feedback can be used to deter-
mine the best selection policy for dynamic binding, and to
determine the appropriate synchronization protocol for each
concurrency point in the system.

Limitations Decentralized orchestration works on the as-
sumption that there is an agent at or near each distributed
node, which is capable of executing the generated XML spec-
ification.

7. REFERENCES

[1] A. Aho, R. Sethi, and J. Ullman. Compilers:
Principles, Techniques and Tools. Addison-Wesley,
1986.

[2] M. Aron, D. Sanders, P. Druschel, and
W. Zwaenepoel. Scalable content-aware request
distribution in cluster-based netwrok servers. In
Proceedings of the 2000 USENIX Annual Technical
Conference, June 2000.

[3] V. Atluri, S. A. Chun, and P. Mazzoleni. A chinese
wall security model for decentralized workflow
systems. In Proc. of the Conference on Computer and
Communications Security, November 2001.

[4] G. Cabri, L. Leonardi, and F. Zambonelli.
Coordination models for internet applications based
on mobile agents. IEEE Computer Magazine, 1999.

[5] P. Ciancarini, R. Tolksdorf, and F. Zambonelli.
Coordination middleware for xml-centric applications.
In Proceedings of the ACM Symposium on Applied
Computing, 2002.

[6] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer,
and P. Gauthier. Cluster-based scalable network
services. In Proceedings of the ACM Symposium of
Operating Systems (SOSP), October 1997.

[7] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and
D. Culler. Scalable, distributed data structures for
internet service construction. In Proceedings of the
Symposium on Operating Systems Design and
Implementation(0OSDI2000), October 2000.

[8] K.-H. Kim and C. A. Ellis. Workflow performance and
scalability analysis using the layered queuing modeling
methodology. In Proceedings of the International
Conference on Supporting Group Work, 2001.

[9] N. R. Mehta, N. Medvidovic, and S. Phadke. Towards
a taxonomy of software connectors. In Proceedings of
the 22nd International Conference on Software
Engineering(ICSE 2000), May 2000.

[10] M. G. Nanda and S. Chandra. Decentralizing
composite web services. In preparation.

[11] J. Nieh, C. Vaill, and H. Zhong. Virtual-time
round-robin: An O(1) proportional share scheduler. In
Proceedings of the 2001 USENIX Annual Technical
Conference, June 2001.

[12] K. Ottenstein and L. Ottenstein. The program
dependence graph in a software development
environment. In Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development
Environments, pages 177-184. ACMSIGSOFT, 1984.

[13] V. S. Pai, M. Aron, G. Banga, M. Svendsen,

P. Druschel, W. Zwaenepoel, and E. Nahum.
Locality-aware request distribution in cluster-based
network servers. In Proceedings of the Eight
International Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS-VIII), October 1998.

[14] S. R. Ponnekanti and A. Fox. SWORD: A developer
toolkit for building composite web services. In
Proceedings of the 11th International World Wide
Web Conference, 2002.

[15] V. Sarkar. Automatic partitioning of a program
dependence graph into parallel tasks. IBM Journal of
Research and Development, 35:779-804, 1991.

[16] M. Sayal, Y. Breitbart, P. Scheuermann, and
R. Vingralek. Selection algorithms for replicated web
servers. In Proceedings of the ACM Workshop on
Internet Server Performance (WISP’98), 1998.

[17] T. Stricker, J. Stichnoth, D. O. Hallaron, and
T. Gross. Decoupling synchronization and data
transfer in message passing systems of parallel
computers. In Proceedings of the ACM International
Conference on Supercomputing, 1995.

[18] A. Tripathi, T. Ahmed, V. Kakani, and S. Jaman.
Distributed Collaborations using Network Mobile
Agents. In 2nd International Symposium on Agent
Systems and Applcations/4th International
Symposium on Mobile Agents, September 2000.

[19] H. Yu and A. Vahdat. The costs and limits of
availability for replicated services. In Proceedings of
the ACM Symposium of Operating Systems, 2001.

