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Universidad Técnica Federico Santa Marı́a
Avenida España 1680, Casilla 110-V

Valparaı́so, Chile

ccastro@inf.utfsm.cl

ABSTRACT
We propose a predefined set of basic components for de-
signing and implementing constraint solver cooperations and
solver cooperation languages. Combining these components
into patterns enables one to manage computation, control,
and coordination needed for solver cooperations. Our frame-
work has been implemented with the CHR language. We
then used it to implement some cooperation primitives, and
some constraint propagation with cooperative components.

1. INTRODUCTION
Solver cooperation is a research topic that has been widely

investigated during the last years [12, 20, 6, 5]. Nowadays,
very efficient constraint solvers are available. The challenge
is to make them cooperate in order to 1) solve hybrid prob-
lems that cannot be treated by a single solver, 2) improve
solving efficiency, and/or 3) reuse (parts of) solvers to reduce
implementation costs. Solver cooperation languages (such
as [9, 13, 15]) provide one with primitives to manage coop-
eration. However, implementing such a language is a tedious
task since the instructions are complex and do not make a
clear separation between computation and control. Indeed,
a primitive of such a language not only controls interaction
and manages coordination of several functions, but also ad-
ministers their computations. Moreover, most (if not all)
of these languages are tightly related to constraint problem
representation: this limits future evolutions and extensions
of these languages, and their cooperation features. Finally,
studying properties and characteristics of a cooperation de-
signed with such a language is very difficult because of the
complexity of the primitives.

The goal of our work is not to propose a new solver coop-
eration language (such as BALI [5] or the language of [9]),
but to propose a framework

• which simplifies the design and implementation of solver
cooperations and solver cooperation languages,
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• which allows for evolutionary cooperation languages
which can be extended, improved, and adapted in or-
der to better fulfil user’s needs,

• which enables one to obtain a simple relation between
solvers, cooperations, and constraints in order to study
and deduce constraint and cooperation properties (such
as in [19]) and to automatically generate cooperations.

In this paper, we focus on the first two items. Our frame-
work is based on basic components connected via channels
and executing concurrently: they aim at defining compu-
tations, behaviors, and interactions occurring in solver co-
operations. Connecting components enables one to manage
coordination (as defined in [3, 18, 17]) of the cooperation
they belong to.

The structure and the behavior of a component are im-
posed by its type. First, a component type fixes the skeleton
of a component: the number of input and output ports con-
nected via channels to other components, and the number
of function parameters. These standard functions compose
the computational part of a component. The type of a com-
ponent also determines its behavior and how to react to
external events. This event mechanism which is defined by
concurrent rules enables one to manage coordination, e.g., a
component can synchronize two components by waiting for
a message from each of them. Depending on their types,
components can thus be used to compute, to control and
coordinate other components, or to control the data-flow.

In our framework, the notion of pattern enables one to
reuse and to incrementally build some cooperations. In
fact, a pattern is a parametrized (by ports, functions, and
patterns) combination of components. Thus, a pattern can
define some more complex computation, coordination, and
behavior than a single component.

The main contribution of this paper is to simplify solver
cooperations and cooperation languages design and imple-
mentation. In fact, we propose a layer between standard
programming languages and complex solver cooperation lan-
guages (such as BALI [5] and the language of [9]) and this
framework allows one to design concurrent competitive, con-
current cooperative, and sequential cooperations.

Components have clear and simple behaviors that can eas-
ily be composed to create some more complex behaviors. We
do not propose a new coordination model/language but we
use some abstract concepts from the field of coordination
(in fact, these concepts happen to be present in the IWIM
model [3]) and applies them in the field of cooperative con-
straint solving.



Our framework does not rely on a specific structure for
constraint problems: one can thus freely consider new kinds
of cooperations, and easily reuse patterns of components
for different cooperations. The main drawback of this free-
dom is that the topology of components is determined before
computation: a component cannot create other components,
and cannot react to constraint structure. However, part of
this problem can be solved by patterns or by considering
more powerful function parameters.

The difference between the predefined set of agents of [21]
and our components is that these agents are devoted to a
specific distributed algorithm for consistency maintenance,
whereas our components are tools to design solver coopera-
tions, and for example, consistency maintenance. DICE [22]
is a software framework for constructing distributed con-
straint solvers. Although symbolic derivations are supported,
constraint solving is essentially based on domain reduction
and branching. The kernel of our framework is not a given
type of solvers, but the concept at the root of our framework
is interaction among solvers of any type, and communication
between solvers.

Our framework has been implemented with the Constraint
Handling Rules (CHR) language [10] to manage concurrent
rules implementing components. We then used our frame-
work to implement some common cooperation strategies and
the static (i.e., not reacting to constraints) primitives of the
cooperation language of [8]. These patterns enabled us to
implement some applications such as constraint propagation
based on cooperative components.

This paper is organized as follows. In Section 2, we give
some basic concepts related to constraints, control, and func-
tions used in solver cooperation. We then define our notion
of components and their types (Section 3), and how to com-
bine them to create patterns (Section 4). In Section 5 we
briefly describe the implementation of our framework, be-
fore presenting in Section 6 some applications. We finally
conclude in Section 7.

2. BASIC NOTIONS

2.1 Constraints
Solver cooperation languages generally impose a constraint

representation and map it to an interpretation. For exam-
ple, a constraint is a disjunction of conjunctions of atomic
constraints represented by a list of lists of atomic constraints
or by logical terms such as (c1,1 ∧ c1,2)∨ (c2,1 ∧ c2,2). When
considering more “computational” information, this repre-
sentation has to be extended with new structures. In [8],
besides the representation of constraints as logical terms,
sets and lists of constraints are required to represent differ-
ent “computational” possibilities, i.e., different candidates
on which a solver can be applied.

In order to abstract from standard representations and to
allow one to integrate computational information, we con-
sider that constraint representation is a parameter of our
framework. We call this pool of information a constraint
problem, and we denote by P the set of constraint problems.
A problem defines a set of solutions that we want to find in
an initial search space. Usual methods amount to reducing
the search space until it corresponds to the set of solutions.

We introduce some notions to clarify some of the opera-
tions we perform in cooperation. We refer to choice points

and branches to denote a node of the search tree and the
choices it leads to. We call computational choice points and
candidates several parts (the candidates) of a problem on
which a solver (cooperation) can be effectively applied. For
example, consider a solver which extract roots of a polyno-
mial equation. If the problem p contains several polynomial
equations, there is a computational choice point, and each
of the equations is a candidate. However, if we create p′ by
adding x = 1 to p, and p′′ by adding x 6= 1 to p, then we
have a choice point leading to the branches p′ and p′′ (this
is a common technique to perform enumeration).

2.2 Control
In most of the solver cooperation languages, the control is

part of the semantics of the primitives [5]. In our framework,
the components we consider are fine grain, less complex, and
possess less control capabilities. Thus, we consider some
control data to perform complex control among components.
We separate constraint problems from controls: problems
are data for computation, and controls are data to manage
interaction among components and data flow. A control
is represented by a Boolean value, and the set of controls is
denoted by B. In order to fully separate the two notions, our
framework provides channels and ports for data (problems),
and channels and ports for controls (Booleans).

2.3 Functions
Functions are parameters of components and are executed

by components. We consider different classes of functions
with respect to their profiles. Then, we refine these classes
with respect to semantics of functions. These sub-classes
have no effect upon connections of components but they
are standard classes with defined semantics used for solver
cooperations.

Transformers The first class of functions we consider are
computable functions from constraint problems to constraint
problems:

f : P → P

Among the functions of this class, the major sub-classes are
solvers, filters, and selectors. A solver is a function that
reduces the search space defined by a constraint problem.
Functions of very different nature are considered as solvers,
e.g., domain reduction functions [1, 2], symbolic transforma-
tions or deductions (such as Gröbner bases computation),
or splitting mechanisms (such as enumeration) which create
branches in the search space.

A filter is a computable function that returns a constraint
problem containing one or several computational candidates
which fulfil some requirements. A filter is generally used for
preparing data for a solver.

A selector returns a problem containing a part of the input
constraint problem. It can be used to select a branch at a
choice point, or a candidate at a computational choice point.

Problem combiners A constraint combiner σC : P ×P →
P combines two constraint problems into a new one. Stan-
dard combiners are disjunction, conjunction, or union of
constraints.

Control generator A property π : P → B is a function
which given a problem returns a control data. Usual ex-
amples of this type of functions are isLinear (to check if a



problem is composed of linear equations only), isEmpty (to
test whether a problem is empty or not), . . .

Comparator A comparator γ : P × P → B is a function
that given two problems returns a control. v and = are
standard comparators.

Control combiner A control combiner σB : B × B → B is
a function that combines two controls into one. Standard
control combiners are binary logical operators such as and,
or, or xor.

Control reverser This class of functions is composed of
one function. The not function not : B → B reverses a
control; this is the standard logical not operator.

3. COMPONENTS
Components are entities that are connected to each other

via channels to exchange problems and controls. Compo-
nents have different tasks: some are devoted to problem
transformation, some to control generation, some to control
and coordination management, some to data-flow manage-
ment.

Locally a component possesses some input and output
ports, i.e., some openings to the outside world. Ports are
connected by one to one, unidirectional channels carrying
messages. Ports and channels are dedicated either to prob-
lems (computational data) or to controls (control data). A
channel is declared by

connect(i : port type; o : port type)

which means that messages will pass from port i to port o.
i and o are of the same type which also determines the type
of the channel. Since ports are used as identifiers to connect
components, port names must be unique.

Messages are stored on input ports in a FIFO buffer until
they are consumed one by one by the component. Messages
pass through channels as soon as they are put on output
ports, and thus, channels do not need any buffer. An input
port can be connected to several channels whereas an output
port is connected to only one channel.

A component may execute some functions (presented in
Section 2.3) given as its parameters. Depending on the de-
sign of the system, the implementation of a component A
can have access to a function f as a library, as a piece of
code integrated in the code of the component, or even as an
external component connected to A.

A component is represented by a term as follows:

component type( in i1 : port type, . . . , in : port type;
out o1 : port type, . . . , om : port type;
f1 : function class, . . . , fl : function class)

where:

• component type represents the type of the component
(see Section 3.2),

• i1, . . . , in (resp. o1, . . . , om) are input (resp. output)
ports together with their respective types (port for
problems or controls),

• f1, . . . , fl are functions as described in Section 2.3 to-
gether with their respective classes (e.g., transformer,
combiner, control combiner, . . . ).

3.1 Components as concurrent rules
The way messages are read and sent defines behaviors of

components, their interactions, synchronizations, and coor-
dination. A component is described by a set of concurrent
rules of the form:

Head ⇒ Body

where:

• Head is a sequence of get(input port, data) instruc-
tions;

• Body is a sequence of put(output port, data) instruc-
tions, and function calls.

To match a rule means that some data are pending on all
the ports appearing in the head of the rule (in the get in-
structions). To fire (or to trigger) a rule signifies that the
rule matches and that the actions of the body are achieved
in sequence. Data pending on input ports are consumed as
soon as a rule that needs them to match is effectively fired.
Thus, they cannot be used to match two rules that are fired.

As rules are concurrent, when a component is composed of
several rules, the first one that matches is triggered. When
a rule is triggered, it cannot be stopped, and it executes
all the instructions of the body before finishing; then the
component returns to a state in which it tries to match rules.

The get(i, D) instruction is not blocking: if there is no
data on the input port i, then get simply fails and the rule
does not match. The instruction put(o, D) drops D on the
output port o. Then, D is delivered in finite time to the
other extreme of the channel connected to o.

Let us illustrate this notion of rules by an example. Con-
sider a component managed by the rule

get(i1, d1), get(i2, d2) ⇒ put(o, s(d1, d2))

Assume a message d1 arrives on i1, but nothing on i2. Then
the rule does not match and thus it is not triggered. More-
over, d1 remains on the port i1. Now assume a message d2

arrives on i2. Now the rule matches (there is a message on
i1 and one on i2), and is triggered: d1 and d2 are removed
from input ports, the function s is applied and the result
s(d1, d2) is put on o.

Note that the matching of a rule can be strengthened by
requesting some more conditions on messages, e.g., the rule
get(i, true) ⇒ put(o, false) specifies that the component
waits for a message on i, and that the message must be
the control data true.

3.2 Types of components
In the following, we abstract data types to concentrate on

component interaction, coordination, and synchronization.
This does not create any confusion since the type of data and
ports can be easily deduced from the context, and generally
by the type of functions given as parameters.

We group components into types that define skeletons of
components and their behavior. The skeleton of a compo-
nent is composed of its input ports, output ports, and the
number of functions given as its parameters. The behav-
ior of a component is described by the way the component
consumes messages, on which data it applies the functions,
and on which ports it puts some data. Although they han-
dle different types of data and different classes of functions,



a component managing a problem combiner, and a compo-
nent managing a control manager (see function classes in
Section 2.3) have the same skeleton, and the same behavior.

We now define the different types of components, their
skeletons, their behaviors, and their representations as con-
current rules.

Transformers Components of this type have one input port
i, one output port o, and a parameter function f . When they
receive a message d on i, they consume it, apply f on d, and
send the result on o. Their syntax is the following:

transformer(in i; out o; f)

A transformer component is used with transformer (solvers,
filters, . . . ) control generator (properties), and control re-
verser (not) functions. A single rule implements and man-
ages a transformer component:

get(i, d) ⇒ put(o, f(d))

Synchronizers These components synchronize two compo-
nents by the mediating of their messages. They have two
input ports (i1 and i2), one output port (o), and a function
parameter f . They act as follows: they wait for two mes-
sages (one on i1 and one on i2); as soon as they have the
two messages, they apply f on these data, and finally put
the result on o. A synchronizer component has this form:

synchronize(in i1, i2; out o; f)

and is managed by the rule

get(i1, d1), get(i2, d2) ⇒ put(o, f(d1, d2))

A synchronizer component can handle problem combiner
functions (i1, i2, and o are problem ports), comparator func-
tions (i1 and i2, are problem ports, o is a control port),
control manager functions (i1, i2, and o are control ports).

First A first component has four input ports (i1, i2, ii1,
and ii2) and one output port o. Ports ii1 and ii2 are some
kind of local memories: a first component can put (store)
and get (recall) some messages on them. Ports ii1 and ii2
are not accessible from outside of the component, and are
not connected to any channel. Thus, they do not appear in
the syntax of a first component:

first(in i1, i2; out o)

For a couple of messages (one arriving on i1, the other one
on i2), only the first one arrived is immediately put on o, the
other one will be destroyed when it will arrive. Four rules
define the behavior of a first component:

get(i1, d), get(ii2, true),⇒ put(ii2, false)
get(i2, d), get(ii1, true),⇒ put(ii1, false)
get(i1, d), get(ii2, false),⇒ put(ii1, true), put(o, d)
get(i2, d), get(ii1, false),⇒ put(ii2, true), put(o, d)

When the message true is put on ii1, this indicates that
the first component has already read a message on i1, and
forwarded it to o. If the message on ii1 is false, either
no message has been read yet on i1, or the component has
been reset. The reset is performed by Rule 1 (respectively
Rule 2) which destroys the message on i1 (respectively i2),
and reinitialize the component by putting false on ii2 (re-
spectively ii1). This mechanism “cleans” the input ports of

a first component to prepare for its later use. When im-
plementing the component, ii1 and ii2 must be initialized
by

put(ii1, false), put(ii2, false)

This component is interesting when using two similar coop-
erations in parallel: only the result of the fastest one is kept,
and forwarded as soon as it arrives.

Sieve A sieve component has two input ports (i1 for either
problems or controls, and i2 which is always a control port),
and one output port o (of the type of i1):

sieve(in i1, i2; out o)

A sieve component waits for a message d on i1, and for a
control b on i2. If b is true, then d is put on o, otherwise d
is consumed but no action is performed (nop):

get(i1, d), get(i2, true) ⇒ put(o, d)
get(i1, d), get(i2, false) ⇒ nop

Such a component blocks a message until a control arrives,
and deletes it if the control is false. This avoids putting
a message d on a component A when we are not sure to
consume d in A: A remains “clean” and ready for a next
use.

Duplicate A duplicate component gets a message d on its
input port i and returns a copy of d on both its output ports
o1 and o2. d can be a constraint problem, or a control; i, o1,
and o2 must be of the same type:

duplicate(in i; out o1, o2)

and its behavior is described by the rule

get(i, d) ⇒ put(o1, d), put(o2, d)

4. SOLVER COOPERATIONS
In this section, we use our restricted set of components

to design some usual forms of solver cooperations. A solver
cooperation is a set of connected interacting components
that exchange information. We can distinguish two types of
cooperations: compositions and patterns.

By composition, we mean a set of components that are
totally fixed. The coordination, the behavior, the topology,
and function parameters are fixed. A simple example con-
sists of applying two solvers s1 and s2 in sequence (this is
similar to the sequence primitive of BALI). This cooperation
is defined by the set of components

{ transformer(in: is1; out: os1; s1),
connect(os1, is2),
transformer(in: is2; out: os2; s2) }

As soon as a constraint problem p is put on is1, it is solved
by s1, and put on os1. When q = s1(p) has reached is2, it
is treated by s2, and the result is put on os2.

¿From a coordination point of view, patterns are more
interesting than composition. They define some more com-
plex and parametrized components that are built from basic
components (see Section 3) and patterns.

Unlike composition, patterns hide their internal structure:
this structure is visible in the definition of the patterns (i.e.,
similar to the body of a function), but not in its use (i.e.,



similar to the declaration of a function). The advantage is
to reuse some cooperations without any knowledge about
their internal structures and the components they involve
while having the possibility of having some ports, functions,
and patterns as parameters. The declaration of a pattern
pat has the form:

pat(in: i1, . . . , in; out: o1, . . . , om; f1, . . . , fl; p1, . . . , pk)

where the parameters are: i1, . . . , in are input ports; o1, . . . ,
om are output ports; f1, . . . , fl are functions; and, p1, . . . , pk

are patterns.
We say that in: i1, . . . , in; out: o1, . . . , om is the profile of

the pattern. Note that to shorten notation, we have omit-
ted the types of ports, classes of functions, and profiles of
patterns.

Ports of the profile of a pattern are the external ports of
the pattern, whereas ports that are used in the definition of a
pattern are said internal : external ports are visible from the
outside of the pattern and appear in its declaration, whereas
internal ports are only visible in its definition. Note that
function and pattern parameters of the pi’s do not appear
since they are internal to the pattern pat.

Hence, a pattern q can be used as a parameter of a pattern
p(. . . p′ . . .) if function parameters of q are instantiated (or
they are also parameters of p; in this case, they must have
the same formal name) and the profile of q is identical to
the one of p′. For execution, ports of the profile of q are
connected (with channels) to ports of p.

Thus, except the notion of pattern parameters, the con-
cept of pattern is very similar to the one of component: a
pattern has a fixed skeleton and a fixed behavior defined by
the components and patterns it is built upon (called inter-
nal), their composition, and their connections.

Let us illustrate the notion of pattern on simple examples.
On figures, normal lines represent problem channels, and
other lines are control channels.

MultiDuplicate pattern A data must often be duplicated
several times. For composing several duplicate components,
we propose a multiDuplicate pattern:

multiDuplicate(in i; out o1, . . . on)

This pattern (Figure 1, definition (left) and declaration
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Figure 1: MultiDuplicate pattern

(right)) duplicates a message (arriving on i) on several out-
put ports o1, . . . , on. This pattern is implemented by the
following definition:

duplicate(i, o1, o1′ ), connect(o1′ , o11′ ),
duplicate(o11′ , o2, o2′ ), connect(o2′ , o22′ ),

...
duplicate(on−3′ , on−2, on−2′ ), connect(on−2′ , on−22′ ),
duplicate(on−22′ , on−1, on)

Although this pattern is rather simple (no function or
pattern parameter), its writing is complex. The number of
channels grows in direct ratio with the number of duplicate

components. We consider implicit channels for simplifica-
tion.

Implicit channels Consider a component A and a compo-
nent B, such that the output port a of A is connected to the
input port b of B by a channel. When this does not cause
any confusion, instead of writing connect(a, b) we can re-
name b to a. Implicitly, there exists a channel between these
two ports, but explicitly, it looks like the two components
are sharing a port. Using this notion, the multiDuplicate
pattern simplifies to

duplicate(i, o1, o1′ ), duplicate(o1′ , o2, o2′ ), . . . ,

Switch pattern A switch pattern receives a constraint prob-
lem, and depending on the value of the application of a
property π on this problem, puts the result on one of the
two output ports. Its declaration is:

switch(in i; out o1, o2 ; π)

This switch pattern can be defined (and thus implemented)
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Figure 2: Switch pattern

by (see Figure 2):

multiDuplicate(i, s1, ip, s2),
transformer(ip, op, π),
duplicate(op, sc1, ni),
transformer(ni, sc2, not),
sieve(s2, sc2, o2),
sieve(s1, sc1, o1)

Fixed point A fixed point is a common primitive of solver
cooperations: it applies iteratively a cooperation (in our
case, a pattern p) until the result does not change any more,
i.e., the input and the output of the cooperation are the
same. The declaration of a fixed-point pattern is

fp(in i; out o ; Equal ; (p: coop; in: ic; out: oc))

where Equal is a function parameter 1 to test equality of two
constraint problems, and coop is a pattern having one input
and one output port, and possibly some function and pat-
tern parameters (see next section for an example of instan-
tiation of fixed-point). A possible definition of a fixed-point

1The Equal function is a parameter since depending on the
structure of constraint problems, testing equality can be dif-
ferent.
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Figure 3: Fixed point pattern

(Figure 3) is:

{ duplicate(i, ic, e2),
multiDuplicate(oc, s1d, s2d, e1),
synchronizer(e1, e2, e,Equal),
duplicate(e, ne, s2c),
sieve(s1d, s1c, i),
sieve(s2d, s2c, o),
transformer(ne, s1c, not),
coop(ic, oc)}

The Equal parameter of the fixed-point pattern is the pa-
rameter of an internal component (a synchronizer). When
instantiated, the pattern coop is replaced by its full declara-
tion (function and pattern parameters are added).

5. IMPLEMENTATION
To implement such a framework, several languages can be

very good candidates: Manifold [4] for its coordination facili-
ties [3, 18] and its appropriateness to our coordination needs,
ELAN [7, 14] for rule-based programming, or the implemen-
tation of a tuple-space based model (such as Linda [11]) for
pattern matching features.

We choose the CHR [10] language since with its rule and
concurrency capacities, it offered the opportunity to directly
implement the rules as presented before.

The instructions of our language are some Prolog pred-
icates that generate a set of CHR rules. Compiling these
CHR rules generates the topology of components, their com-
munication, and their interactions. The definition of com-
ponents as rules is used nearly straightforward in our imple-
mentation. In CHR, there is a shared memory which is the
constraint store. By shared, we mean that each rule uses
concurrently constraints of this memory to match, and each
generated constraint is stored in this memory.

By tagging constraints with port names (that are unique),
a component can easily find in the store which constraint it
can use. Thus, we consider CHR constraints of the form
get(port,D). Depending on the type of component, D is a
constraint problem or a control; port is a unique identi-
fier which corresponds to the name of the port. For a
component, getting data on an input port corresponds to
getting a get constraint in the shared memory. The in-
struction put(port, D) corresponds to adding the constraint
get(port,D) in the store.

Firing a rule is the usual CHR mechanism: if the rule
matches, then the body of the rule is executed and the con-

straints of the head are removed from the store. This behav-
ior is the same as the one of our components for which mes-
sages are removed from ports when they are used. Different
functions (such as solvers, filters, . . . ) are implemented as
Prolog predicates. Note that these predicates can call some
external solvers.

Creating a channel between two ports is performed by the
connect(a, b) component which is implemented by the rule:

get(a,C) <=> put(b,C).

The shortcut that consists in removing channels between an
input and an output port can be kept with our implemen-
tation. This is done by sharing the name of the port. One
component will be allowed to put problems on this port, the
other one to get problems.

We now illustrate our implementation with a simple ex-
ample. A transformer is stated as transformer(In, Out, S).
The call transformer(a, b, s) creates the rule

get(a,C) <=> s(C,CC), put(b,CC).

A cooperation is built as a list of components. A predi-
cate enables one to automatically create the corresponding
components as a set of rules. To use these rules, one has
to just put a message on the input port (put(input port,

problem)). The cooperation executes, and the result is
stored on the output port that can be read or connected
to a print component.

6. APPLICATIONS
In this section, we present the implementation of some of

the primitives of the cooperation language of [9, 8]. We also
present some executions of our components for constraint
propagation, a standard method for constraint solving [1].

We now present a simple structure for problems that we
use in the following applications. We consider atomic con-
straints; a conjunction is a list (denoted as [. . .]) of atomic
constraints; a disjunction is a list of conjunctions. Compu-
tational choice points are also represented by lists of candi-
dates. We consider finite domain variables and two types of
atomic constraints: in(a, [la, ua]) determining the domain
of a (the values v that a can take are la ≤ v ≤ ua), and
leq(a, b) meaning a ≤ b.

We consider a solver narrow leq which given a problem
leq(a, b), in(a, [la, ua]), in(b, [lb, ub]) reduces the domain of
a and b in order to make the problem locally consistent [16]
(i.e., using a single constraint leq(a, b), no more value can
be removed from the domain of a and b).

Basic primitives The implementation of the basic prim-
itives of [8] is straightforward with our components. The
sequence consists of connecting the output of a cooperation
to the input of the next one. The don’t care of [8] is a simple
pattern where the dc component is a synchronizer compo-
nent with a don’t care function to randomly choose one of
the inputs (dc(d1, d2) = d1 or dc(d1, d2) = d2). The fixed-
point primitive corresponds to our fixed-point pattern (see
Section 4).

Best apply In [8], the semantics of this primitive is: given
a problem p, make the best (w.r.t. some criteria given as
parameters) possible application of a cooperation coop on



a part (defined by some criteria given as parameters) of p

such that p is effectively modified. In other words, w.r.t. our
framework: there is a computational choice point defining
several candidates on which coop can be applied; coop is
applied on one of them only; and this candidate is the best
one (w.r.t. some criteria) that coop will really modify.

The operational semantics of this primitive is rather com-
plex. Thus, we divide the problems into sub-problems, each
of them corresponding to a pattern. At the end, these pat-
terns are grouped in a pattern whose operational semantics
is equivalent to the one of the best apply primitive.

We do not detail all the patterns, but only some of them.
The csolve pattern takes as input a problem p, applies a
pattern coop (corresponding to the solver cooperation of
best apply) on p and has three output ports: if coop really
modifies p, then true is put on the success port, p is put on
the old port, and the result of applying coop is put on the
new port. Otherwise, false is put on success, and nothing
on old and new.

The cselect pattern creates a computational choice point
(using a filter function). As long as it reads true on a more
input port, it sends candidates on the outC output port.
When false is read on more, or when there is no more can-
didate (i.e., p is empty), cselect stops.

The solba pattern is responsible for replacing transformed
constraints in the initial problem.

The declaration of the fully generic bestApply pattern is
the following:

bestApply(In, Out,
F ilter, Selector, IsEmpty,SubList, SubC, AddC,Equal,

(Coop : inc, outc))

where In and Out are the input and output ports of the pat-
tern. IsEmpty, SubList, SubC, AddC, and Equal are func-
tions related to constraint problem representation 2, Coop is
the cooperation to apply, and inc, outc are its input and
output ports. Filter and Selector are parameters to cre-
ate the candidates, and then to determine which one is best
(they represent the criteria given as the parameters of the
best apply primitive). Here is an example of use of our pat-
tern:

bestApply(i, o,
filter ldd, firstList, isEmpty, subList, subC, addC, equal,
transformer(ii, oo, narrow leq))

where filter ldd filters a leq constraint and the related do-
main constraints (i.e., a suitable input for the narrow leq
solver); firstList is a strategy that performs depth first
search (first in the list with our constraint problem repre-
sentation); the other functions are related to problem struc-
ture: isEmpty is true when there is no more computational
choice point, subList removes a computational choice point,
subC and addC removes and adds constraints in a problem,
and equal checks whether two problems are equal.

When sending the problem [in(a,[2,8]), leq(a,b), in(b,[3,6])]
on port i, filter ldd finds one candidate [leq(a,b), in(a,[2,8]),

2Patterns can be simplified by fixing the problem structure.
On the best apply pattern, this would fix all functions re-
lated to problem structure; thus, this would significantly
reduce the number of parameters. However, the definition
would remain the same, calling some fixed functions instead
of function parameters.

in(b,[3,6])] which is obviously chosen by the firstList se-
lector, and then solved by narrow leq. The final result of
the bestApply pattern, can be found on o and is [leq(a,b),
in(a,[2,6]), in(b,[3,6])].

On the problem [leq(c,d), in(c,[1,1]), in(d,[3,6]), leq(a,b),
in(a,[1,10]), in(b,[3,6])], filter ldd finds 2 candidates. The
selector sends the candidate [leq(c,d), in(c,[1,1]), in(d,[3,6])]
to the solver. This candidate cannot be modified by the
solver. Thus, the selector sends the next candidate [leq(a,b),
in(a,[1,10]), in(b,[3,6])] which is effectively reduced by the
narrow leq solver. The answer on o is finally [leq(a,b),
in(a,[1,6]), in(b,[3,6], leq(c,d), in(c,[1,1]), in(d,[3,6])].

As in the best apply primitive, we can change the strategy
for applying cooperation by changing the Filter and Selector
given as parameters. Note that one of the main difficulties
in defining the bestApply pattern is that there should not
remain any message in any component after applying it.
Otherwise, we could not use it in a fixed-point as shown
later.

Other primitives Implementing the dc apply primitive of
[8] is rather simple: we can just reuse the bestApply pattern
with a selector that makes a random choice. The paral-
lel best apply primitive consists in adding a multiDuplicate
pattern in front of several bestApply patterns, and then to
connect these bestApply patterns with some synchronizers
components with combiner functions. With our framework,
the parallel concurrent apply primitive of [8] is implemented
as a parallelBestApply pattern in which combiners of the syn-
chronizers (after the bestApply’s) are replaced by the don’t
care function (see its definition in the don’t care pattern).

We can easily imagine new patterns to complete the lan-
guage of [8]: for example, an allApply pattern which would
apply a solver on every candidate. To this end, we just have
to change the csolve pattern (used in a bestApply pattern)
such that 1) it always sends true on the more port of the
cselect pattern; and 2) it always sends the old problem and
new problem on old and new output ports.

Fixed-point of a best apply We now use the bestAp-
ply example we had before (with the narrow leq solver, the
filter ldd filter, and the firstList selector) as the pattern
parameter of a fixed-point pattern. In terms of cooperation,
we compute the full reduction of a problem (the problem is
locally consistent w.r.t. each constraint), and this requires
a fixed-point.

When flattened, this pattern is composed of 45 compo-
nents. When we send on in fp the problem [leq(a,b), leq(b,c),
in(a,[7,8]), in(b,[1,9]), in(c,[2,7])] the system reduces domains
of a, b, and c. We obtain on out fp the answer [leq(a,b),
in(a,[7,7]), in(b,[7,7]), leq(b,c), in(c,[7,7])]. The trace of exe-
cution shows that the bestApply pattern was called 4 times:
3 times successfully (i.e., the solver really modified the prob-
lem), and once unsuccessfully (no modification of the prob-
lem); this determines that the fixed point is reached. The
narrow leq solver was called 7 times, and among them, 3
times successfully (this corresponds to the 3 successes of the
bestApply). The other 4 times are tries that do not reduce
the domains, i.e., either a candidate that fails in the bestAp-
ply, or the reach of the fixed-point.

7. CONCLUSION



We have presented a set of basic components to design
and implement solver cooperations. The advantage is to
provide a clear separation between computation and control,
and thus, to ease design and implementation of cooperations
and cooperation languages as well. The notion of pattern al-
lows for incremental realization of cooperations by consider-
ing some kinds of complex components: patterns have more
complex skeletons and behaviors than components. More-
over, constraint problem structure is free, and thus cooper-
ation and coordination can be reused for other domains, or
other constraint representations. Languages implemented
with our framework can thus evolve and progress.

The goal of our first implementation was to test the capac-
ity of our framework to design cooperations and cooperation
languages. To go further and produce some more results, we
now need an implementation that allows distributed compu-
tation, and that can easily call bigger and complex external
solvers. With all its coordination features, a language such
as Manifold [4] will be a good candidate for the next imple-
mentation.

We also plan to extend the work of [19] using our frame-
work in order to be able to deduce more properties about
constraints and cooperations, and finally, to automatically
create cooperations w.r.t. to the problems to be solved.
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