
Coordination Middleware for XML-centric Applications

Paolo Ciancar in i
Dipartimento di Scienze

dell'lnformazione
University of Bologna

Mura Anteo Zamboni - 40126
Bologna - Italy

c i a n c a @ c s . u n i b o . i t

Robert Tolksdorf
Technische UniversitSt Berlin

Fakult&t IV- Elektrotechnik
und Informatik

FR 6 -10 Franklinstr. 28129
D-10587 Berlin, Germany

to lk@cs . tu -ber l in .de

Franco Zambonel l i
Dipartimento di Scienze e

Metodi dell'lngegneda
Univ. Modena & Reggio Emilia
Via Allegri 13 - 42100 Reggio

Emi l ia- Italy

f r a n c o . z a m b o n e l l i @ u n i m o . i t

A B S T R A C T
This paper focuses on coordination middleware for distributed ap-
plications based on active documents and XML technologies. It in-
troduces the main concepts underlying active documents and XML
Then, the paper goes into details about the problem of defining a
suitable middleware architecture to effectively support coordina-
tion activities in applications including active documents and mo-
bile agents, by specifically focusing on the role played by XML
technologies in that context. According to a simple taxonomy,
the characteristics of several middleware systems are analyzed and
evaluated. This analysis enables us to identify the advantages and
the shortcoming of the different approaches, and to identify the ba-
sic requirements of a middleware for XML-centric applications.

1. I N T R O D U C T I O N
The convergence of Information and Communication Technologies
offers new opportunities for industry, research, and teaching, and it
is pushing the development of novel appliances, applications, and
services. People who are using these technologies are mostly inter-
ested in communicating or accessing contents, that is information
transmitted and stored in form of electronic documents. There is
a wide, ever-increasing range of Internet-based applications and
services that are document-centric, meaning that they are made
of components which agree on some document ontology to ex-
change structured data in form of documents complying with such
an ontology. Several Internet applications deal with document ex-
changes: for instance, CSCW systems typically deal with accesses
to shared workplaces or document spaces.

From a software design viewpoint, people are actively developing
novel methods, tools and infrastructures for document-centric ap-
plications, because it is still unclear how they should be designed
at a world-wide scale. Document-centric computing models are
needed in order to study, compare and design these applications.
In this context, we envision a trend toward computing models cen-
tered around the concept of active and mobile documents. On the
one hand, documents may be not only the passive part of a software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the fu|i citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC 2002, Madrid, Spain
(~)2002 ACM 1-58113-445-2/02/03...$5.00

system but, instead, can integrate active behaviors and can be able
to handle themselves and to coordinate with other application com-
ponents. On the other hand, such behaviors can include the capa-
bility of moving themselves over a network. The success of XML
technologies concur to accelerate this trend by providing easy doc-
ument processing and data portability, that is, by facilitating the
shift towards active document. However, for such a shift to become
viable it necessary to clarify the role and the characteristics of the
middleware that should support active document applications.

Since several applications are multi-components and multi-documents,
there is the need of suitable middleware to support the related co-
ordination activities. Interestingly, the definition of a coordina-
tion middleware offers the possibility for the exploitation of XML-
based active documents in the framework at different levels. While
the role of XML for defining documents can be either purely pas-
sive, namely structuring data, or behavioral, namely defining its
rendering, it is also possible to exploit XML in middleware as an
integral part of the underlying coordination framework and, say,
use it to define the coordination space as well as the coordination
laws in terms of active XML documents.

Our goal in this paper is analyzing the role that XML can play in
modem coordination middleware for document agent applications.
A very simple taxonomy is introduced to identify the possible ex-
ploitations of XML in that context. Several systems are analyzed
and evaluated according to this taxonomy. By this, we identify the
advantages and the drawback of the different approaches and iden-
tify several questions and problems that are currently unanswered
by these systems and remain as future research challenges.

The remainder of this paper is organized as follows. Section 2 in-
l~oduces active documents as document-agents. Section 3 describes
some XML-based coordination middlewarc supporting the ontolo-
gies of document-agents. Section 4 discusses some open research
issues. Section 5 draws our conclusions.

2. D O C U M E N T S AS A G E N T S
What are active documents? From a software designer pvrsp©c-
tire an elecU:onic document (e-document for short) is a kind of data
structure that applications can exchange and process. By definition
a documents must have some kind of contents: Data, text, images,
music, money, etc. In addition, any document has a representa-
tion and a structure. These are defined by codes like ASCII, tags,
formatting commands, etc. Thus, we can say that a (passive) docu-
ment = content + representation.

336

E-documents can contain recta-level or structural information used
by external, document-processing entities (e.g., humans, search en-
gines, or printers) to index or even "understand" its contents. A
glossary in a book, or a a header of a BMP file are examples of
meta-levei information. Instead, some tags in HTML files or in
Tex documents are used to define structural information. It is quite
important to distinguish the declarative power of structural infor-
mation from the procedural interpretation that is necessary to ren-
der or generically process a document according to its structure.
For instance, the rendering rides of HTML documents are built in
the browser: there is no specific behavior associated to a docu-
ment, thus different browsers can handle differently different tags.
In contrast, XML tags are not associated to any predefined behavior
of external applications, thus they are purely declarative [24].

The above characteristic - together with its intrinsic portability
- is one of the main driving forces in the increasing success of
XML, intrinsicaly promoting a shift from passive to active doc-
ument. In fact, the computational code associated to the render-
ing/manipulation of XML documents (or to XML document type)
can be associated to the XML document using a companion XSL
stylesheet [25]. The XSL-T language component of XSL allows to
define by rules the tree-based manipulation of a document, whereas
using the XSL-FO language components we can define the render-
ing behaviors. It is also possible to use a fully fledged programming
language instead of XSL-FO: in this way a document can be associ-
ated to any kind of behavior expressable using a Truing-equivalent
language. For instance, a document representing a program could
be associated to some way of animating its own symbolic execu-
tion. We define such e-ducuments carrying their own behaviors as
"active", in contrast with passive documents which rely upon ap-
plications to be manipulated. More precisely, an active document
is defined as (active) document = content + structure + behaviors.

2.1 Towards Document Agents
When a document encaspulate document-specific behavior, deter-
mining how the document itself has to be handled (for instance by
specifying document-specific behaviors related to rendering or to
its structural manipulation), it cannot be longer considerd simply
a document. Instead, such an active document can rather be as-
similated to a software component or - in some cases - even to a
software agent [13]. There are two different classes of documents
that can be considered active.

When the internal behavior of a document is intended as a service,
to be used by external applications or components to handle the
document, the document can be assimilated to an object and, as
that, is nature is simply reactive. For this class of active docu-
ments, of which a large number of examples can be found both in
the literature [12, 10] and in commerce, the internal activity of the
document is triggered by requests of accessing the document;

When, instead, the document integrate autonomous threads of con-
trol, the document can exhibi tproact iv¢ behavior and, as that. it can
be somehow assimilated to a software agent. For this class of doc-
uments, we use the term "'document agents" to characterize their
twofulds nature of documents and of software agents.

Several research works recently suggest interesting applications of
document agents. For instance, a proactive agenda can be able of
alerting users and re-organizing the schedule of a meeting by in-
teracting with the proactive agendas of the other users involved in

the meeting [I 8]. A proactive Web-based document can look in the
Web for further related documents of potential interest to a user [7].

2.2 Mobility and Coordination
If active documents can be assimilated to software componen t s -
whether objects or software agents - then they can be used as a
building blocks for the development of complex distributed appli-
cations. However, this may require providing documents with two
additional features: the capability of wansferring themselves over
the nodes of a network, and the capability of coordinating their ac-
lions with other active document.

The first feature, mobility, is intrinsic in the very concept of in-
formation and, so, of documents: a document is created to trans-
fer/move information. By adopting open data formats, like XML,
mobility of passive documents is automatically achieved. How-
ever, when the document, other than data, may inclmie behaviors
and threads of execution, to enable it to move from one place to an-
o t h e r - as a mobile agent [4] - requires also code portability as well
as the presence of a software infrastructure - i.e., of a middleware

- enabling and supporting active document mobility [18].

The second feature, coordination, is necessary for the buldlng of
complex multi-component (or, better, multi-document) applications.
When only reactive documents are involved in an application, co-
ordination between documents often assume the form of simple
client-server interactions. However, as soon as the application is
built by making use of document agents, interactions and coordina-
tion activities are likely to express more complex and dynamic pat-
terns, as it can be the case of an active agenda laying to re-schedule
a meeting. Again, a suitable infrastructure is necessary to support
coordination activities of document agents.

3. C O O R D I N A T I O N M I D D L E W A R E & XML
Middleware is conceived as a software layer that abstracts from
the heterogenous characteristics of different architectures, operat-
ing systems, programming languages and networks in distributed
systems. It integrates these into one system by providing services
that provide functionality based on the given common abstraction
and that are implemented on top of the named heterogeneous com-
ponents. Among the various services typically offered by middle-
ware, we are most interested in facilities for the coordination of
documant-centa-ic activities. Coordination is usually considered to
be the management of dependencies amongst activities [15]. As
such, coordination middleware is intended to integrate functionali-
ties to enable and rule the coordination activities of heterogeneous

Coordination middleware is difficult to design. The provided ab-
straction has to deal with the central issues of how data is com-
municated, how activities are started and synchronized. The bet-
erogeneity found is very broad, ranging from RPCs, object invo-
cations, component usage to agent interaction with different char-
acteristics such as one-to-one or one-to-many communication and
synchronization. In addition, modern middleware has to support
mobility of application components, users, and devices.

3.1 Document-centric Middleware
With the beginning of the 90ies, several companies tried to estab-
lish standards for middleware architectures supporting active doc-
uments and their coordination ([1]).

These middleware architectures - grounded in the works of dis-
tributed object applications and middIeware, like CORBA - estab-

337

. t . J . , . 1

. [. .

. J i:::::::;:
. .J ~ a L E ":

Figure 1: Doeument-centric Middleware

l ished a not ion of documents into w h i c h " c o m p o n e n t s " or "objec ts"
were included. The components contained data or software to ma-
nipulate that data. They were displayed to the user and accepted
input for direct manipulat ion. Some control infrastructure offered
services to coordinate v ia cl ient-server interactions the interwork-
ing of different components . As the components could be of differ-
ent source, these component software integrated different services
into one application represented as a document .

The two major players in the middle of the 90ies were OpertDoc
f rom Componen t Integration Laboratories, a consort ium supported
by Apple, IBM, Taligent, NoveU, and SunSoR, and OLE2 f rom Mi-
crosoit . Both offered similar functionality with some differences in
the object models used. In contrast to todays X M L or/ented mid-
dleware, objects and data were represented in a binary format in
both and the frameworks were rather heavy. Whi le OpenDoc was
not able to gain wider acceptance, OLE2 is a grandfather of Mi-
crosofts C O M and .NET frameworks. With CORBA, a component-
and object-standard was established at the same time that found
great acceptance which however did not incorporate a stxong docu-
ment metaphor.

With XML, document-centr ic abstractions are revitalized, and sev-
eral interesting middleware systems for coordinat ion have been re-
cently proposed in which X M L and document agents play a central
role. We discuss in the fol lowing what rote X M L can play in mid-
dleware for m o d e m document--centric applications, with a specific
focus on coordination. The systems under review fall into three
main categories (Figure l) . They can offer services not based on
X M L for the use of XM.L-based document agents; at the other ex-
treme, they can offer coordinat ion services based on X M L tech-
nologies and X M L active document ; or they can adopt a fully int-
grated approach for XML-based coordinat ion services in a world
of X M L document agents.

As a case study for the comparat ive analysis of these middleware
systems, we use a small scenario f rom financial services which is
motivated by [2]. Assume that a person has two bank accounts A
and B. If he or she wants to withdraw an amount from account A
which is larger than the current balance there, the banking system
shall automatical ly try to transfer the missing sum from B and pro-
ceed with the transaction. If A and B together hold lesser money
than requested, the transaction fails. Aside f rom those data and
services needed to represent and handle accounts A and B, an ad-
ditional coordinator service has to offer the functional interface for
the user and, more relevant to our purposes, it has to be able to co-
ordinate (or support) actions such as: evaluating whether a transfer
is necessary f rom different account and providing for these with-
drawal operations. Central issues for the coordinat ion middleware
used here is to provide its service in a rather transparent manner
and to integrate A and B which might be located at different banks
possibly using different systems.

3.2 M i d d l e w a r e for X M L D o c u m e n t Agents
The first category we look at concerns middleware that offers ser-
vices for agents that are specified using X M L and " run" in an XI~IL
environment. The world the agents l ive in is complete ly X M L ori-
ented and the middlcware under study offers services to make doc-
uments become active and to let them coordinate wi th the outside
world, al though the middleware in i tself is implemented outside the
X M L world, i.e., wi thout exploi t ing X M L technologies.

3.2.1 Displets
The basic idea of the D£splet approach ([8]) is to provide an ac-
tive document environment, where X M L documents can be en-
r iched wi th applicat ion-specif ic behavior in order to, say, let them
be effect ively rendered or transferred over a network. Specifically,
Displets are software modules that are attached to an X M L docu-
ment and activated w h e n some pre-declared tags axe parsed during
the manipulat ion of the document : in short, a displet supports the
specification of the treatment of either existing or new tags, A dis-
pier may print text strings, display images or make use of graph-
ical primitives, or do any needed action in the context of a multi-
document application.

The first release of Displets was p roposed mainly for creating H T M L
extensions in a principled, general way. The idea was to be able to
support new tags on a per -document basis, wi thout any expl ici t sup-
port f rom commerc ia l browsers, and to provide the document wi th
the procedural rendering support needed to create in a document
and visual ize any kind of graphical object wi th styles, font, images,
and graphical primitives. With X.ML, the displet approach has been
adopted as a tool for the rendering of XM_L documents. Now, Dis-
plets are going to become a general-purpose environment for the
definit ion and the execut ion of X M L document agents.

The central idea of Displets is to attach behaviors , in terms of Java
classes, to X M L documents . A n X M L transformation stylesheet
can be defined to transform a "normal" X M L document into an ac-
tive one. The Displets parser transforms the document into a D O M
~'ee, that the X M L stylesheet can t ransform into a different tree,
also by attaching to the tree specification of Java classes devoted
to associated specific behaviors to specific port /on of the tree. The
new X M L document obtained f rom this t ransformation can thus
have become an active document . There, Java classes determine
the behavior of the document when manipula ted by external appli-
cations (e.g., browsers and printers), and runnable threads can de-
termine the autonomous behavior of the document when executed.

Displets document agents can have associated a private internal be-
havior, devoted to determine the behavior of the document itself, as
a stand-alone entity. However , it is also possible to think attaching
to a document a behavior related to the interaction of a document
wi th other document , in the context of a mul t i -component applica-
tion. Figure 2 illustrates the Displets approach to coordination: in
addition to the behaviors related to the internal handling of a doc-
ument, a set of document can share and have attached the behav-
ior devoted to implement and control the execut ion of coordinat ion
patterns among the set.

In the case study, i t is possible to think at having a cl ient docu-
ment agents, in charge of receiv ing inputs f rom the client, storing
it internally in X M L format, and of rendering back to the cl ient the
X M L data report ing the results of the account operations to it. All
these operat ions are being handled v ia proper behavior attached to
the document agent. In addition, it is possible to attach to the client

3 3 8

Virttm[Coord~nml~on Medium ~'~:~~" " "~ ~

Figure 2: The Displets Approach

document agent the behavior needed to coordinate - i.e., to negoti-
ate withdrawal - with the document agents devoted to manage bank
accounts. The document agents handling bank account, then, can
integrate the coordination policies needed to handle the situation
in which a client requests a sum which is not locally available, by
making it start a negotiation with the document agents handling the
other accounts of a user.

The main problem of the Displet approach is that document be-
haviors, which include the behaviors devoted to the implemen-
tation of coordination patterns, are hardwired into documents at
compile time. This can make it hard to exploit Displets in open
environments and in mobile setting, where a document can move
across different sites and needs to interact with different documents
according to different coordination patterns. For the case study,
changes to the policies adopted by the banks to handle accounts and
withdrawal would require a change in the coordination behavior at-
tached to an applet, and would require rebuilding the document.

3.2.2 Other Approaches
Other proposals aim at providing frameworks for making XML
documents active by enriching it with behavior, e.g., JXML [11].
However, most of this frameworks arc quite limited with regard
to multi-document coordination. In most of the cases, coordination
between documents simply amount at enabling client-server object-
oriented interactions, and there is no possibility of expressing more
complex coordination patterns and coordination laws.

An interesting approach is adopted in the Adlets system for infor-
mation retrieval [7]. There, the basic idea is to enrich Web-based
documents (XML, but not necessarily) with a proactive declarative
behavior. The goal is to make a document able to autonomously
look in the network for related documents. To this end, the Adlets
middleware enable a document to proactively move across the In-
teract (as if it were a mobile agent) and to coordinate itself with
other documents to discover relations between documents and, even-
tually, to return to users clusters of related documents.

3.3 X M L Middleware for Document Agents
The coordination middleware described in this subsection exploit
XML at the middleware level in itself. In particular, they assume
that the coordination activities of application agents occur and are
ruled via accesses to shared XML information spaces, in which the
laws ruling coordination reside and are enacted. To some extent,
these systems make the inlbrmation space in itself become an active

document agent, which is able to determine the laws according to
which its data can be accessed and modified by application agents.

3.3.1 XMLSpaces
In the coordination language Linch, tuples are primitive data with-
out higher order values such as nested tuples, or mechanisms to
express the intention of typing fields such as names etc. For Web-
based systems, a richer form of data is needed. R has to be able
to capture application specific higher data-structures easily without
the need to encode them into primitive fields. The format has to
be open so that new types of data can be specified. And it has to
be standardized in some way, so that data-items can be exchanged
between entities that have different design-origins. XML fulfills all
those criteria.

XMLSpaces ([22]) is an extension to the Linda model which serves
as middleware for XML. In XMLSpacos, XML documents are fields
within the coordination space. Thus, ordinary tuples are supported,
while XML documents can be represented as one-fielded tuples.

Relation Meaning
Exact equality
Restricted equality

DTD
DOCTYPE
XPath
XQL
AND
NOT
OR
XOR

Exact textual equality
Textual equality ignoring comments,
processing instructions, etc.
Valid towards a DTD
Uses specific DOCTYPE name
Fulfills an XPath expression
Fulfills an XQL expression
Fulfills two matching relations
Does not fulfill matching relation
Fulfills one or two matching relations
Fulfills one matching relation

Table 1: Match ing relat ions in XMLSpaces

A multitude of relations amongst X M L documents can be used for
matching. While the ones show in table 1 are supplied, the sys-
tem is open for extension with further relations. XMLSpaces is
distributed so that multiple dataspace servers at different locations
form one logic dataspace. A clearly separated distribution policy
can easily be tailored to different network restrictions. Distributed
events are supported so that clients can be notified when a tuple is
added or removed somewhere in the dataspace.

The case study above would facilitate XMLSpaces to represent the
state of the accounts in some X M L representation. It would be very
likely that some secure representation mechanism, ie. XML Signa-
ture, would be used and that a specific additional matching mech-
anism would ensure that account information is protected. The ac-
tual coordinator component would be implemented in some lan-
guage running on the Java Virtual Machine. It would explicitly en-
code the rules for transferring money between the accounts using
the respective mechanisms of the chosen programming language.

3.3.2 M_dRS-X
The MARS-X coordination architecture ([5]), implemented as an
extension of the MARS architecture ([3]), defines a Linda-like mid-
dieware model to enable agent (specifically, mobile Java agents) to
coordinate their activities via Linda-like access to shared spaces of
XML documents.

339

Unlike XMLSpaces, which operates at the granularity of XML doc-
uments, MARS-X adopts a more fine-grained approach, and con-
siders any XML document in terms of unstructured sets of tuples.
For instance, the records of an XML document describing bank ac-
counts with data values tagged as name, number, amount, canbe in-
terpreted as a bag of mples in the form accoun t(name, number, amount).
Accordingly to this perspective, a document and its data can be ac-
cessed and modified by exploiting the associative operation typical
of the Linda model, and agents can coordinate with each other via
exchange of document tuples, and via synchronization over tuple
occurrences. Specifically, MARS-X provides agents a JavaSpace
interface to access to a set of XML documents in terms of Java
object tuples. This choice forces agents to be Java agents.

To suppor t wide-area computation, MARS-X promotes an arch i tec-
ture based on a multiplicity of independent XML dataspaces, each
to be considered as a local resource of an Interact node or of a local
domain of nodes (see figure 3). By moving across the Internet, mo-
bile agents can access to different XML dataspaces: when an agent
arrives in a node, it is automatically provided with the reference to
a MARS-X tuple space interface associated to the XML dataspace.

A peculiar characteristic of MARS-X dataspaces it that their behav-
ior in response to agent accesses can be programmed to implement
specific access methods and specific synchronization and coordina-
tion patterns. Both administrators and mobile agents (the latter in a
quite restricted way) can install in an XML dataspace reactions as-
sociated to spec i f ic access opera t ions , performed b y speci f ic agents,
with specific parameters. These reactions override the default be-
havior of the performed operations and, for instance, can modify
the result of the operations they are associated with, can manipu-
late the content of the XML data.space, and can access whatever
kind of external entity they need to access.

The programmability of MARS-X dataspaces makes the XML data-
space in itself become an active document. In fact, although agent
can access the data,space always with the same limited set of oper-
ations, the dataspace itself can react to this accesses by behaving in
different ways. The reaction in the dataspaee can decide who and
when can read and/or modifies which XML documents. In addi-
tion, since coordination between agents occur via data exchanged
by mean of the dataspace, the behavior of the dataspace can be used
to globally rule the activities of multiagent applications.

Coming back to the case study with the availability of the MARS-X
middleware, one can think that each bank makes available to agents
an XML dataspace with data account. When in need of withdrawal,
the client can send his personal agent to account A first, to query
the dataspace for his own data, to check the needed availability. On
availability, the client agent can eventually withdraw the required
amount by putting a specific tuple in a specific XML document.
The insertion of that tuple can tr/gger the activity of the object de-
voted to manage account data, that will take care of actually per-
forming the transaction and sending back the result to the client
agent, again in terms of a tuple inserted in the dataspace.

The programmability of the tuple space can be effectively exploited
in the case study to orchestrate, Iransparently to client agents, the
cross-checking for availability in different accounts, and the pos-
sible need for withdrawing portion of the total sum from different
accounts. For instance, when the client agent request a total amount
to account A, and that amount is not locally available, the reactions
in the dataspace can trigger the activities of another agent, which

Localy N o d " I Loca l Domain
o f Nodes

. .o?~=,~,~.~ ~,~,~. ~.., ~.=~.,~=~ ~.~,... ~ : ~ : ~ ~ . ~ : ~ : ..;
• ~.~!~=:~ji,..~= ~i~'.==~:p~=~ ~,~.:i~i.~. =.~.~, <:..'=: ,=:.::~::-~,=~;::~ -. =.=,. =.= ~ : ~ , .

• = . = = ~ == = . : / . . . • : . : ~ - ~ . = ~ • . . ~ : . . = r . ~

R e a d l a n s : m~:Pi ievel bJple space

Figure 3: The M A R S - X A r c h i t e c t u r e

is in charge of going to account B dataspace to check if enough
further money is available there, and let account A dataspaee reply
to client agent accordingly to the total distributed amount that can
be withdrawn. In a similar way, when the client eventually decides
to withdraw, the XML dataspaces can coordinate the activities of
the agents that will actually perform the partial withdraws from the
different account. The possibility of controlling the execution of
complex coordination patterns via specific behavior of the XML
dataspace and transparently to agent is, beyond the case study, a
general advantage of the MARS-X approach.

A drawback of the MARS-X approach is that it introduces a big
mismatch between the format of the data in the dataspace and the
format of the data privately managed by the agent: the former be-
ing XML documents, the latter Java objects. Let us suppose that
the client agent of the case study has to report back to the client its
results via a XML page. In MARS-X, this activity report is fully in
charge of the client agent, while there is no possibility of directly
reporting in terms of XML documents the information that the
agent has retrieved from the accessed data,spaces. This would re-
quire the client agent to directJy manipulate and represent its world
in XML terms. This would require agent to be not Java agents but,
instead, XML document agents, e.g., Displets.

3 . 3 . 3 A T t 4 1 D D L E
The XMIDDLE middleware ([16]) implements a coordination ar-
chitecture somewhat similar to the MARS-X one: coordination be-
tween agents occurs via accesses to shared XML documents, and
a limited form of programmability is made possible to rule these
accesses, However, XMIDDLE implements a specific architectural
solutions to make it a suitable middleware for mobile computing
and ad-hoc network.

The basic idea of X_MIDDLE is to make coordination among agents
(or, in general, among the processes of a distributed computation)
occur b y access ing a shared X M L tree, v i a a spec i f ic l anguage f o r
querying and manipulating semi-stTuctured data_ However, in mo-
bile set t ing, w h e r e processes /agent can d i sconnec t and m-connec t
at any time, this introduces peculiar problems related to the ac-
cesses to the tree. In fact, in XMIDDLE, an agent can access and
modify the data on an XML tree, as well as its structure (see figure
4). When that process disconnects from the network or becomes
out of reach in the case of an ad-hoc network, it is provided with a
local replica of the tree (or of one of its sub-tree). When the agent
re-connects, or is in reach again, the global tree has to be recon-
structed, as it could have been possibly independently modified by
different agents. To handle this situation, XMIDDLE enables the
programmability, in the tree, of specific event handlers, in charge of

3 4 0

I~aconne~on
~ Pmc~s A

RKmmecllan o [~
Procms A wilh m-condJ]aSon

Figure 4: Connections and Disconnections on XMIDDLE Trees

implementing application-specific reconciliation policies, devoted
to coherently reconstruct the structure of a tree.

In the case study, it is possible to conceive that a bank makes avail-
able one or more XML trees with the bank account data, to be ac-
cessed, as in MARS-X, by client agents. In addition, unlike in
MARS-X, these client agents could also be PDA and mobile de-
vices, and XMIDDLE could automatically handle the problems re-
lated to mobility. In addition, since agents can directly manipulate
the XML tree (while in MARS this manipulation occurred in the
form of Java tuple objects), XMIDDLE can facilitate agents in di-
rectly reporting back XML data. However, XMIDDLE has only a
limited form of programmability of the XML tree, devoted to the
handling of connection events. This makes it difficult to implement
in terms of transparent coordination policies any complex coordi-
nation pattern, which include the one required to withdraw partial
amounts of money from different account. In XMIDDLE, this co-
ordination pattern has to be directly implemented by the agent code.

3.3.4 Other Approaches
There are some other approaches for XML Middleware. Most promi-
nently, this is the current XML Protocol activity by the World Wide
Web consortium ([24]). XML Protocol is an approach to follow up
on SOAP and XML-RPC in order to have distributed peers com-
municate by using XML as the communication language. For the
communication amongst objects, for example, this boils down to
represent a method invocation with name and parameters in a sim-
ple XML document. The XML Protocol approach offers only a
low-level abstraction for coordination and currently supports only
client/server style interactions. It is unclear whether this activity
will aim at providing such a higher-level model, or puts the techni-
cal integration of several existing solutions into its center.

3.4 Self-contained XML Middleware
XML is a standard for representing data in networked documents.
However, as seen in the previous subsection, the specification of ac-
tivity can also be expressed as a document. Thus, if scripts etc. can
be XML documents, a complete system can be based on XML rep-
resentation and even activity and its coordination can be expressed
within that framework. Thus, the agents are represented as some
XML documents as well as the data they operate on and the laws
ruling their coordination activities. The main effect of this self-
containment is 1he uniformity of the language used - for program-
ming one does not have to switch to an external language like Java.

3.4.1 WorkSpaces
WorkSpa~es ([20]) combines workflow concepts with standard In-
ternet technology. The documents involved in the workflow axe
assumed to use application specific markup languages expressed
in XML. A workfiow is composed of steps which are represented

WorkYpacm
. engJne

l Jig i 41

5: out

s~p

Figure S: Access to documents in WorkSpaces

as XSL rules that are executed by an extended XSL processor, the
WorkSpaces engine. It reads such a step, tries retrieve the respec-
tive input document and to apply transformations on the match that
generate the output document. The medium used to store all XML
documents is XMLSpaces described in section 3.3.1. Figure 5
shows the flow of XML documents in the system.

There are several classes of steps. Automatic steps are pure doc-
ument transformations and require only activity of some transfor-
mation component within the system. External steps involve ap-
plications that take a document as input, let the user perform some
activity on it, and generate an output document. User steps are
performed by a user without any support by a system. Coordina-
n'on steps only coordinate the flow of work. Workflow procedures
describe temporal and causal dependencies among activities rep-
resented as steps. The management of these dependencies is the
central issue for any workflow system.

Steps are not specified individually. The whole work-flow is rep-
resented as a graph of steps using the Work,~paces CoordiNation
Language, WSCL. WSCL is, again, an XML language an is based
on the Workflow Process Description Language as defined by the
WfMC in the Interface 1 of the Reference Model ([23]).

341

In a meta step, a set of individual steps is generated from this pro-
cess description. While the workflow graph can be considered the
"program" written in a higher level language, the execution of a
workflow is the execution of individual steps, which resemble "in-
structions" in microprocessors. The "compilation" is performed by
meta steps in WorkSpaces. XSL rule sets are by definition repre-
sented as XML documents following a syntax defined in the XSL
standard. Thus, the compilation of the graph into steps is the trans-
formation of one XML document into a set of XML documents,
each containing an XSL rule for one step.

The unique distinction of this approach from other worldiow man-
agement systems with proprietary workflow engines is universal
accessibility and ease of deployment due to Internet standards, and
support for distribution and uncoupled operation due to coordina-
tion technology. It also shows the power of XML and XSL as a
fundament for a complex application, and enjoys characteristics
such as universal access and distributed execution, thus being much
more advanced than todays server-centric Web-services.

The case study above would be implemented in WorkSpaces as a
workflow. The documents considered would represent the respec-
tive accounts in some XML-grammar, just as with the XMLSpa~es
case study. The coordinator component, however, would be "imple-
mented" by a series of steps that access the accounts by matching
the account documents in a suited manner and by the selection of
one of three branches in a so called SPLIT-step (which is a coordi-
nation step) of the workflow depending on the current balances.

3.4.2 O t h e r A p p r o a c h e s
There are not many fully XML-integrated middlewares such as
WorkSpaces. With some limitations, one could consider XML-
based scripting languages as middleware. Currently, two script-
ing languages with beth the script and the data manipulated repre-
sented as XML are offered: XSL by the World Wide Web Consor-
tium ([25]) and XML Script ([9]). While XSL is a transformation
language for XML trees with strong declarative influences, XML
Script is a rather traditional imperative scripting language. Both
take an XML document as input and generate an output document
as the result of the computation. However, both offer no support
for coordinating multiple activities. Thus, their middleware service
capabilities are most limited.

The Agent Definition Format ADF ([14]) is slightly more powerful.
It offers a way to specify agents in a XML representation. Agents
have their own state and coordinate with others using call encoded
into agent references in URLs. The underlying model of coordi-
nation is again client/server. Also, the coordination behavior of
document agents is mixed with their computational behavior, thus
providing no separation between computation and coordination.

3.5 D i s c u s s i o n
The above analysis has identified the main features and limita-
tions - of several middleware systems for XML-centric applica-
tions. The results of the analysis can be summarized as follows:

Displets is the most suitable system for the definition and
implementation of document agent applications, in that it en-
able to embed behavior in XML documents and enable this
behaviors to directly manipulate the XML data they repre-
sent. Unfortunately, the displet approach is too static to meet
the needs of open coordinated applications, in that it does not

enable dynamic definition of coordination patterns, which
have to be statically hardwired into documents.

MARS-X is very suited for complex coordination patterns to
be defined, even dynamically, in the access and manipulation
of shared XML documents by mobile agents. However, it re-
stricts the application to use Java agents, and therefore limits
the possibility of defining coordinable document agents di-
rectly manipulating XML data.

XMJDDLE is more suitable for document agents, and its ar-
chitecture seems very suitable for mobility, but the possibil-
ity of defining suitable coordination laws is very limited.

WorkSpaces provides more uniformity, by exploiting XML
both at the level of application agents and at the coordina-
tion level: XML document agents execute in the context of
a common XMLSpaces, where also the definition of the co-
ordination patterns (i.e., of the workflow rules) can be ex-
pressed in terms XML documents. Still, Workspace lacks
explicit support for mobility and - being mainly oriented to
workfiow applications - may not be general-purpose for any
kind of application.

The ideal scenario we envision is the one in which a suitable mid-
dleware is available integrating the best features of all the sys-
tems analyzed in this paper. These include the capabilities of: di-
rectly handling, at the application level, the activities XML docu-
ment agents, as in Displets: making coordination activities occur in
terms of manipulation of (portions of) shared XML documents, as
in MARS-X, XMIDDLE, and XMLSpaces; being flexible to sup-
port user-defined XML grammars and relations amongst them as in
XMLSpaces; effectively handling mobility and associated issues,
as in XMIDDLE; enabling the ruling the coordination activities
between application-level document agents in a dynamic way, as
in MARS-X; expressing not only document agents behavior but
also the laws ruling their coordination activities in term of XML
documents and XML rules, as in WorkSpaces.

4 . O P E N R E S E A R C H D I R E C T I O N S
In addition to the need of defining a suitable coordination middle-
ware, as from subsection 3.5, there are several other issues that,
in our opinion, need to find suitable solution for XML document
agent application to be effectively engineered and developed.

First of all, there is the need to define new computational models,
able to take into account and somehow formally analyse properties
of coordinated applications based on XML document agents. A
promising approach in that direction is represented by the work
of Luca CardeUi on semi-structured computation ([6]). The basic
intuition is that not only manipulations of XML documents can be
represented in terms of a few basic tree transformation, but also
the execution of a mobile computation can be modeled as that, thus
leading to a uniform model of X1VIL document agents computations
in a mobile setting.

The presence of mobility, in general, requires facing other impor-
tant issues to enable and engineered approach to application design
and development. One the one hand, there is need of clarifying the
differences and the similarities between logical mobility of soft-
ware components and physical mobility of devices ([17]). On the
other hand, the concept of "'context", intrinsic in mobility, must

3 4 2

be properly explored and its impact in modeling coordination ac-
tivities must be clarified, and possibly taken into account in the
definition of a suitable middleware ([4]).

A further promising research issue relates to the fact that, more and
more, Web-based applications - and so document agent applica-
tions - tend to resemble, in their architecture, human and social
organizations. This is mainly due to the fact that (~) often, appli-
cations support the activities of some real-world organizations, and
mimic them accordingly; (ii) autonomy of application components
invites considering them in terms of individuals playing specific
roles in an ensemble rather them in terms of components providing
functionalities. Therefore, those soRware engineering approaches
exploiting the research results of organizational management may
provide, in the near future, effective methodologies for the design
and development of Web-based document agent applications and
of coordination middleware ([26]).

As a final note, we think that the dramatic increase of embed-
ded computer-based and software components, envisioning a fu-
ture where uncountable multitudes of interconnected autonomous
and mobile components will be always executing and interact with
each other, will challenge most of today's approaches to software
development as well as today's model of coordination and associ-
ated middleware ([I 9, 21]).

5. C O N C L U S I O N S
XML as a suitable technology for representing not only data but
also computations, leading to the concept of XML document agents.
However, for complex applicat/ons to be developed in terms of
XML document agents, suitable middleware is needed to enable
and rule the coordination activities of application components.

This paper has analyzed several middleware systems that, m dif-
ferent extents and with different architectural solutions, aim at pro-
viding a coordination framework for a world of XML document
agents. The analysis, performed with the help of a simple case
study, has outlined the main features and limitations of these sys-
tems, and has permitted us to sketch the requirements for an "ideal"
coordination middloware for XML document agents.

Our current research focus deals with understanding how to make
the identified ideal middleware an implemented system, although
these may require facing further design and implementation issues
such as the one related to the proper modeling and handling of mo-
bility ([6, 17]) and openness ([26]) and to the effective engineering
very-large scale and embedded applications ([I 9]).

Acknowledgements
Work partially supported by a grant of Microsoft Research Europe,
by Italian M1LIR project SALADIN, by Italian M U R S T Project
MUSIQUE, and by a grant from Nokia Research Center.

6. R E F E R E N C E S
[1] Richard M. Adler. Emerging standards for component software.

IEEE Computer, 280):68-77 , March 1995.

[2] Luis Fi[ipe Andrade and Jose Luis Fiadeiro. Interconnecting Objects
via Contracts. In Proceedings 2rid International Conference on the
Unified Modeling Language (UML'99), volume 1723 of LNCS. pages
566-583. Springer, 1999.

[3] G. Cabri, L. Leonardi, and F. Zambonelli. MARS: A Programmable
Coordination Architecture for Mobile Agents. IEEE lnternet
Computing, 4(4):26-35, July/August 2000.

[4] O. Cabri, L. Leonardi, and E Zambonelli. Engineering Mobile Agent
Applications via Con~ct-Dependent Coordination. In Proceedings o f
the 23nd International Conference on Soflu, are Engineering ([CgE
2001), 2001.

[5] G. Cabri, L. Lennardi, and F. Zambonelli. XML Dataspemes for
Mobile Agent Coordination. Journal o f Applied Artificiai
Intelligence, January 2001.

[6] L. Cardeili. Semislructured Computation. In Praceed/nga of DBLP
99. 1999.

[7] S. Chang and T. Znati. Adlet: an Active Document Abstraction for
Multimedia Information Fusion. IEEE ~,ansactions on Knowledge
and Data Engineering, 13(1), 2001.

[8] P. Ciancarini, F. Vitali, and C. Masoolo. Managing complex
documents over the WWW: a case study for XML. IEF~
Transactions on Knowledge and Data Engineering, 11(4):629-638,
July/August i 999.

[9] DocisienSoft Limited. XML Script. http://www.amlsoript.org/. Last
checked Aug. 29 2001.

[10] P. Dourish et al. A Programming Model for Active Documents. In
Proceedings o f the ACM ~ympozium on Uzer Interface and Software
Technology. 2000.

[! 1] B. La Forge. Thejaml home page. wv~u.jxml.com, 2001.

[12] B. Gaines and M. Shaw. Embedding Formal Knowledge Models in
Active Documents. Communications of the ,4CM, 42(1):57-74, 1999.

[13] N. Jennings and M. Wooldridge. Intelligents Agents: Theory and
Practice. The Knowledge Engineering Review, 10(2), 1999.

[14] D. Lange, T. Hill, and M. Oshima. A New Internet Agent Soripting
Language Using XML. In Prac of AAAI-99 Workshop on Alia
Electronic Commerce, 1999.

[15] T.W. Malone and K. Crowston. The interdisciplinary study of
coordination. ACM Computing Surveys, 26(1):87-119, 1994.

[16] Cecilia Maseolo, Licia Capra, Ste/anos Zachariadis, and Wolfgang
Emmerich. XMIDDLE: A Dam-Sharing Middlewa~ for Mobile
Computing. Personal and I~reless Communications, To appear.

[17] G. P. Pi©co, G. C. Roman, and A. Murphy. Software Engineering and
Mobility: A Roadmap. In Proceedings of the 22nd lnternational
Conference on Software Engineering ([C~VE 2000), 2000.

[18] 1. Satoh. MobiDoc: A Framework for Building Mobile Compound
Documents. In Proceedingz of tile 2rid Internalinnal b~/mpoxiuTn on
Agent ,~ystem, Applications, and Mobile ,4gentz (A,gAMA 2000).
2000.

[19] David Tennenhouse. Embedding the Intemet: pmactive computing.
Communications of the ACM, 43(5).'43, May 2000.

[20] Robert Tolksdorf. Coordination Technology for Workflows on the
Web: Workepaces. In Prooeed/ngs of the Fourth International
Conference on Coordination Models and Languages
COORDINATION 2000, LNCS, pages 36-50. Springer-Verlag, 2000.

[21] Robert Tolksdorf. Models of coordination. In Andrea Omicini,
Robert Tolksdorf, and France Zambonelli, editors, Engineering
Societies in the Agent World Firzt International Workshop, E, SdW
2000, Berlin, Germany, August 21, 2000, number LNAI 1972, pages
78--92. Springer Verlag, 2000.

[22] Robert Tolksdorf and Dirk Glaubitz. Coordinating Web-based
Systems with Documents in XMLSpaces. In Proceedings of the Sixth
IFCIS International Conference on Cooperative Information @stems
(CooplS 2000, 2001.

[23] Workflow Management Coalition. Interface 1 : Process Definition
Interchange Process Model, 1998. http://www.wfmc.org.

[24] World Wide Web Consortium. XML Protocol Activity.
http:l/wvcw.w3.org/2OOOIxpL Last checked Aug. 29 2001.

[25] Word Wide Web Consortium. XSL Transformations (XSLT) Version
1.0. htlp:Hwww.w3.org/TR/xalt. Last checked Aug. 29 2001.

[26] E Zambonelli, N. R. Jennings, and M. Wooldridge. Organizational
Abstraction for the Analysis and Design of Multiagent Systems. In
P. Ciancarini and M. Wooldridge, editors, Agent-Or~entedSoflware
Engineering. Springer-Verlag: Heidelbelg, Germany, 2000.

343

