
CovaTM: A Transaction Model for Cooperative
Applications

t , h *

Jinlei Jiang Guangxin(Gavin) Vane
*Department of Computer Sciences, Tsinghua University,

Beijing, P. R. China 100084

0jlei,wyan,shi}@csnet4.cs.tsinghua.edu.cn

Yan Wu" Meilin Shi"
**Bell-Labs Research, Lucent Technologies,

600 Mountain Avenue, Murray Hill, NJ 07974, USA

gxyang@acm.org

Abstract
It has been widely recognized that traditional transaction models
with ACID(Atomicity, Consistency, Isolation and Durability)
properties generally are not applicable to cooperative applications.
Though many advanced transaction models have been proposed to
address the problems, they are too database-centered or too rigid
to be useful in real environments. This paper presents a new
transaction model named CovaTM, which provides sophisticated
but flexible control over cooperative process as well as support
for error recovery and exception handling. The most distinguished
feature of this model is that user intervention is explicitly
introduced into transaction processing. This paper details the
features and structural elements o f this model. An example is also
given to illustrate how it works in real world settings.

Keywords
Cooperation, advanced transaction model, ACID, recovery, Cova

1. INTRODUCTION
In modern organizations, especially those involving design and
product manufacturing, close cooperation between co-workers is
often needed in order to get the work done. New tools and
applications have been developed to enable such cooperation. The
most outstanding example would be workflow management where
a group o f people work together to achieve some common goal.
These applications are often of long duration and consist o f
multiple steps that are executed over possibly heterogeneous,
autonomous and distributed environment. As organizations
evolve, it is widely accepted that effectiveness or performance is
no longer the dominant factor to achieve their goals. Also,
reliability has been shown to be crucial Failure recovery and
exception handling in such applications are attracting more and
more attention.

In traditional database systems, the above issues have been widely
addressed by the concept o f transaction. Key to the success o f the
transaction model is the atomicity, consistency, isolation and
durability properties. Atomicity ensures that either all operations

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC 2002, Madrid, Spain
© 2002 ACM 1-58113-445-2/02/03...$5.00.

o f a transaction complete successfully or all o f its effects a r e

absent. Consistency ensures that a transaction when executed by
itself, without interference from other transactions, maps the
database from one consistent state to another consistent one.
Isolation ensures that no transaction ever views the partial effects
o f other transactions even when transactions execute concurrently.
Durability ensures the changes to the database are persistent even
when systems crash. However, this once successful concept is
unsuitable for cooperative applications. To view the whole
cooperative process just as a transaction will produce many
problems and some of them are listed below:

13 The work done during a long transaction will be lost when
failure occurs before the end of the transaction.
Unfortunately, failures arc common for long-running
applications and lose o f work is not acceptable for mission-
critical applications.
Message or control exchanges among transactions are not
supported. However, it is a common case for cooperative
applications to have some type of dependencies among them.

123 Lock mechanism reduces the throughput or concurrency. The
longer the duration, the larger the reduction.

To address the above problems, several extended transaction
models [i],1 1] have been proposed, including Sagas [10], long-
running activities [5,6], ASSET [3], multi-databases [9,16] and so
on. Usually, they are called advanced transaction models (ATM)
to distinguish from the traditional one. Many of these models are
developed from a database point o f view and are too database-
centric to provide adequate flexibility. In this paper, a transaction
model C o v a T M is proposed to support cooperative applications.

In CovaTM, we provide a way to describe cooperative
applications, where a transaction is treated as one execution o f a
cooperative process with its sub-transactions corresponding to
activities. By cooperative applications we mean applications or
tools developed to support cooperations between users such as
workflow management systems(WfTdS). An activity or sub-
transaction in C o v a T M may be reactivated after its submission.
Therefore, activities of a transaction form a graph other than a tree
like in long-running activities [5,6]. Based on the description o f
the application, the run-time system can guarantee the reliability
o f execution to its best.

The rest o f the paper is organized as follows. Section 2 presents a
brief review of ATMs, which provide a solid base for developing
new models. Then C o v a T M model is described in section 3 and
its implementation is introduced in section 4. Finally, we
conclude our work in section 5.

329

2. R E L A T E D W O R K
Till now, many advanced transaction models have been suggested.
For reasons of space we will only present the ones of most
interests. Similarly, for a specific model, literal description is used
instead of the formal one. The interested readers can find the
details in [8,11,13].

Nested Transactions As an important step in the evolution of a
basic transaction model, nested transactions extend the flat
transaction structure to a multi-level one. In a nested transaction, a
child transaction may start after its parent has started and may
commit locally. A parent transaction may terminate only after all
its children terminate. However, i f a child fails, the parent may
choose its own way for recovery. I f a parent transaction is aborted,
all its children are aborted. Although permitting increased
modularity and finer granularity of failure handling, nested
transactions provide full isolation (The committed local result is
released only when all of its parents up to the root have
successfully terminated.) at a global level that is not acceptable in
some cooperative applications such as co-design system.

Sagas Sagas were originally proposed as a way to solve the
problems related to long lived transactions[10]. The basic idea o f
Saga is to allow a transaction to release resources before
committing by using the concept o f compensating transactions. A
Saga is a transaction that consists of a sequence of ACID
sub/transactions and associated compensating ones. Each sub-
transaction is allowed to commit individually and its effect can be
explicitly undone by its compensating transaction. By allowing
sub-transactions to commit on their own, Sagas relax the full
isolation requirements and increase the inter-transaction
concurrency. However, Sagas demand every sub-transaction has
its counterpart, which makes its hard to be useful in some cases.
On the other hand, compensating a sub-transaction can be very
expensive and sometimes it is unnecessary. An example can be
found in [7] and other problems related to Saga can be found in
[13]. Nevertheless, the idea has been implemented in a workfiow
management system [1].

Flexible Transactions This model [9] is suitable for multi-
database environment where each local database acts
independently from others. In such environment, it is not possible
to enforce the commit semantics o f a global transaction [16]. A
flexible transaction uses functionally equivalent sub-transactions
as its alternative execution paths. It commits i f either the main
sub-transaction or their alternatives commit. To relax the isolation
requirement, a flexible transaction uses compensation and relaxes
global atomicity requirement by allowing the transaction designer
to specify the acceptable states for the termination of a flexible
transaction, in which some sub-transactions may be aborted. Time
factor is also taken into account. Sharing some features of
workflow management, flexible transactions can be easily
implemented within a workflow management system [1]. For this
reason, we base our model on it. However, sealability and access
control are not addressed in flexible transaction.

CoAet Cooperative Activity Model[14] provides the transactional
properties applicable to cooperative scenarios. Each user in CoAct
works in his/her own workspace (called private workspace) and
they cooperate through the controlled information exchange and
synchronization of their private workspaces. The model works
like this: a certain parametcrizcd CoAct is used to describe a

particular activity and by instantiating it we get a concrete
activity. Each participant o f a cooperative activity has his/her own
activity (called user activity). One final result is obtained by
merging the result of each user activity. This model is well suited
for building asynchronous cooperative applications. But because
o f the static description o f cooperative activity, it is not flexible
enough.

The above work has solved the problems faced by the cooperative
applications more or less from different perspectives. For
example, Sagas and Flexible transaction are around database
whereas CoAct faces the specific applications. But still a lot of
problems remain open. For example, the scalability and access
control have not been addressed. One big problem with these
models is that features required by one application might be
unacceptable in another one. In other words, they are not as
flexible as possible. Nevertheless, the ideas behind these models
are very helpful for designing new models.

3. C o v a T M M O D E L
In this section, we will give a detailed description of CovaTM.
Providing integrated exception handling and recovery as well as
access control, CovaTM can support reliable and flexible process
instance enactment, rollback and compensation.

3.1 F o r m a l Defini t ions
Sub-transactions within a CovaTM transaction are tightly
coupled, For instance, the equivalent sub-transaction can't be
executed until the preferred one has aborted. To specify this
execution dependency, we define the execution state o f a
transaction as follows:
D e f i n i t i o n 1 Execut ion State o f a Transact ion
For a C o v a T M transaction T with m sub-transactions, the
transaction execution state x is an m-tuple (xj, x2, -.., x~) where

ES i f cj is being executed

x i = i f t i has successfully completed

i f t i has aborted

i f t i has fo i led

Here N is called the initial state and S, A, the end state and E, F,
the intermediate state. The state transition is shown in Figure 1.

Execution state of a
transaction T is used to keep
track o f the execution o f the
sub-transactions. It is also
used to determine whether
the objectives o f T have
been achieved. At the
beginning of T, all xi's are
set to N. The value of xi is F igure 1 state transition diagram
set to E when ti is submitted. When t i completes the execution
state xi is set to S if it has successfully completed (or achieved its
objective), and to A, otherwise. During the execution, failures
and exceptions may occur and then x i is set to F. Afterwards,
exceptions are handled and xi can then be set to E, S and A
respectively according to the context. In the end, a sub-transaction
cart only be in state S or A. One major difference between our

330

model and the others is that in our model, a successfully finished
sub-transaction can be reactivated for further execution. This is
reflected by the state transition from S to E in Figure !. We
denote by X the set o f all possible execution states.

At a certain point of execution, the objectives of T may be
achieved. In this case, T is considered to be successfully
completed and can be committed. The corresponding execution
state is called an acceptable state. Usually, there is more than one
acceptable state for T because many ways can lead to the same
goal. We call the collection o f them as an acceptable state set
which is defined as follows.
Definition 2 Acceptable State Set
The acceptable state set, denoted by AS, o fa C o v a T M transaction
T is a subset of X, where

AS={x [x~X, and in state x, the objectives o f T are achieved.}

To determine the legal execution order o f sub-transactions, we
need to specify the execution dependencies among them. Two
basic dependencies are defined to express the general execution
dependencies. The first is positive dependency. A positive
dependency between sub-transaction tj and t2 exists if t I can' t be
executed until t2 succeeds. The second basic dependency is called
negative dependency, which is used to specify the alternative sub-
transactions. A sub-transaction tj negatively depends on t2 i f h has
to wait until t2 has aborted before it can start. This happens when
h and t2 implement the same task in a global transaction and t2 is
preferred to h- In order to express the execution dependencies, we
associate with each sub-transaction t i a precedence predicate PPi
defined as follows:
Definition 3 Precedence Predicate
A precedence predicate PPi for a sub-transaction ti is a boolean
function defined on X, where

ppi : X'-) {true, false}

To indicate that t i is positively depends on ti, we formulate the
precedence predicate ppj .'= (xi = S). We use the precedence
predicate ppj := (xi = A) to denote that t] negatively depends on t i.
Having the basic dependencies, we can express any execution
dependency in term of boolean combination of the basic
dependencies. The value o f the precedence predicate changes as
the global transaction is executed and is used to determine
whether the corresponding sub-transaction can be submitted for
execution at the current time. Different execution strategy can be
achieved by specifying different precedence predicate for each
sub-transaction.

In cooperative work, some tasks may be time-critical. To express
this requirement, we define temporal predicate.
Definition 4 Temporal Predicate
A temporal predicate tpi for a sub-transaction t i is a time
requirement oftl. It has the following format:

Operator Hour:Minute:Month:Daj,: Year

The Operator can be before, after or their combination, denoted
by between. For not all o f the sub-transactions have time
requirements and not all of the time fields are needed, a wild card
is also used to indicate "'don't care" condition. For example, the
predicate "before (17:*:*:*:*)" stands for the task should be
finished before 5 p.m.

A coordinator plays a very important role in achieving the
common goal of a cooperative application. A manager is also

needed to manipulate the executing process. So we define
transaction administrator as follows:
Definition 5 Transact ion Adminis t ra tor
A transaction administrator is an active entity, such as a person or
a program that is responsible for the execution o f the transaction,
i.e. it is up to the administrator to determine what to do when
exceptions occur.

Note that (l)Not all the exceptions ere reported to the
administrator. Instead, the administrator need only to handle such
exceptions as the system knows little about what to do.
(2)Transaction administrators are only responsible for their own
transaction(s). For instance, a global transaction administrator is
only 'responsible for the global transaction, while the
administrator o f sub-transaction t i just cares for t i.

Based on the above definitions, we can formulate a C o v a T M
transaction as:
Definition 6 C o v a T M Transaction
A CovaTM transaction T is a 6-tuple (ST, O, PP, TP, AS, M)
where
[] ST is the set o f all sub-transactions o f t
[] O is the partial order on ST
[] PP is the set o f all precedence predicates of ST
[] TP is the set ofa l l temporal predicates of ST
[] AS is the set o f all acceptable states o f t
[] M is the set o f administrators o f T

In order to specify a C o v a T M transaction, we have to specify the
set of sub-transactions. For each sub-transaction, we specify its
type and participants. The sub-transaction type can be one o f the
followings:
[] CP - i f the sub-transaction is compensable
1:3 UC - i f the sub-transaction is uncompcnsable
The above two are called simple types,
[] CT - i f the sub-transaction is compound, i.e. it has its own

sub-transactions, thus forming a transaction tree

We also specify the precedence predicate and the temporal
predicates o f the sub-transaction. At the global level, we specify
the partial order O, the set of acceptable states AS and the
transaction administrator. We can see from the above definitions
that the minimum schedule unit of our model is a simple sub-
transaction, which can be the composition of a series of traditional
transactions consisting of read and write operations. Each simple
sub-transaction can commit and release its resources before the
global transaction successfully completes and commits, so the full
isolation requirement is relaxed. When one sub-transaction fails,
an equivalent one will be executed instead o f aborting the global
transaction, thus the atomicity property is also relaxed. Now let's
look at an example to get an intuitive impression.

3.2 A n Example
The example used here is the well-lmown example from
transaction literature: planning a business trip. Consider "planning
a business trip from Beijing to Shanghai" as a CovaTM, which
consists of the following subtasks:
1. Customer reserves a business trip to an agency
2. Agent reserves a vehicle from Beijing to Shanghai
3. Agent reserves a hotel in Shanghai

Assume that we have two choices for task2 and three for task.3.
Let t r be the request from customer, say John, and t, ordering a

331

t rain ticket, t3 order ing a p lane ticket and t 4 , t5, t 6 reserv ing a room
at hotel H I , H2 and H3 respectively. W e say t2 and h are
a l te rnat ive /equivalent sub- t ransac t ions for order ing a ticket, so do
with t4, ts and tt. Obvious ly , tt is uncompensab le . Also assume tz
and h are u n c o m p e n s a b l e too. In addit ion, the t icket mus t be
before January 17, 2001. Let T o m be the adminis t ra tor for the
whole t ransact ion, John for q and Jack for all the o ther sub-
transactions. At last we assume that t2 is the first choice for task2
and h and t6 are the first and last choice for task3 respect ively.
T h e n the example can be formal ly specif ied as follows:

ST = { t t (UC,{John}) , tz(UC,{Jack}), t3(UC,{Jack}),
t4(CP, {Jack}), ts(CP, {Jack}), te(CP,{Jack}) }

O: is< tl, t l< h, t2 < q, tz < ts, t2 < tt, t3 < h, h < ts, h < ts

In fact, O gives out the process structure represented by di rected
graph.

P P l := t rue

PP2 ~ (xl = S)

p p :, PP3 := (xi = S) A (X 2 = A)

PP4 := (x2 = S) v (x 3 = S)

PP5 ~ (x2 = S v x 3 = S) A(X 4 = A)

PP6 TM (X4 = A) ̂ (X 5 = A)

For x4=A implies that e i ther t z or t 3 has been successful (because
there is no t ransi t ion f rom N to A), we omi t the condi t ion
(x2=Svx3=S) in pPt. Fo r the same reason, pp6 can also be wri t ten
as PP6 := (xs=A) - So do wi th ppj and PPs- I t is up to O and P P to
determine the execut ion order.

tpl "= *

tp2 := before(* : * : * : 1 : i 7 : 2001)

tp] := before(* : * : * : 1 : 17 : 2001)
TP :

tp4 ~ *

tp5 :=*

lp6 ~ *

AS = (S, S, N, S, N, N), (S, N, S, S, N, N), (S, S, N, N, S, N),
(S,N, S,N, S,N), (S, S, N, N, N, S), (S,N, S, N, N, S) }

M = {Tom}

3.3 Execut ion R u l e s
In this section, we wil l expla in execut ion rules tha t a C o v a T M
transact ion mus t abide by. At first, we will define the predecessor
and successor o f sub- t ransac t ion ti.

Def in i t i on 7 p r e d e c e s s o r s o f s u b - t r a n s a c t i o n
Predecessors o f a sub- t ransac t ion tl, denoted by pred(h), are those
sub- t ransact ions which precede t i in the partial order O, i.e.

pred(ti) = {tj]tjE ST and tj < t i in O}

Def in i t i on § s u c c e s s o r o f a s u b t r a n s a c t i o n
Successors o f a sub-transaction tl, denoted by succ(tJ, are those
sub- t ransact ions which fol low ti in the partial order O, i.e.

succ(ti) = {tj I tie ST and t i < tj in O)

A sub- t ransact ion ti is executable i f
(i) ti is not in state E or F; and

(2) hE pred(t0-succ(ti) , e i ther tv has been executed or the PPk is
false; and

(3) bo th the PPi and the tpi(t) are true.

From the above, we can see that a terminated sub-transaction can
be re-executed as long as the cond i t ion is satisfied.

W e can n o w formulate the execut ion rules as an a lgor i thm named
T r a n s a e t i o n S e h e d u l e r . T h e except ion hand l ing process will be
descr ibed in the next sect ion. The execut ion of T terminates w h e n
any o f the fo l lowing condi t ions or events occurs:

121 The current execut ion state is acceptable
[] None o f the sub- t ransac t ions is executable and no sub-

t ransac t ion is in state E or F.
El Transac t ion adminis t ra tor issues a terminat ion command.

A l g o r i t h m Transac t ionSchedu le r

In. A C o v a T M t ransac t ion T, to be executed

Out : Execut ion Resul t o f Tt

{
foreach (t i E TI)

xic.--N;
whi le (t r u e) / / L o o p forever unt i l te rminated
{

foreach (ti E T J
if (ti is executable)
(

xi ~- E;
start a new thread for ti;//Execute t i

}
//wait for the execution result
R ~ Wai tForExcResu l t (T0 ;

i~-- R . i d ; / / T h e name o f the re tu rned sub- t ransac t ion
swi tch(R.code) / /The re turn code o f sub- t ransac t ion
{

case SUCCESS://Objective ach ieved

x ~ - S; break;
case ABORT://Objective not ach ieved

x i t - A; break;
case EXCEPTION://Exception occurs

xiE--- F;
call ExceptionHandler;//Handle it
break;

}
/ /Check to see i f te rminat ion cond i t ion is met

i f (te rminated(T0)

re turn Tt . resu l t ; / / re turn execut ion result o f T

F iEure 2 Transact ion Schedu l ing Algor i thm

A c c o r d i n g to this a lgori thm, concur ren t execut ion o f sub-
t ransact ions is a l lowed i f they are executable at the same time.
W h e n the result o f the execu t ion is known, we modi fy the
t ransact ion execut ion accordingly. After the comple t ion o f a sub-
t ransact ion, we check i f the te rmina t ion condi t ion is satisfied, I f it
is not satisfied, we cont inue schedu l ing the sub- t ransact ions . I f
the global t ransact ion terminates and an acceptable state has been

332

reached, we can commit T; otherwise, it must be aborted.
Transaction administrator can terminate the transaction at any
time no matter what the execution state is.

3.4 Exceptions and Recovery
Exceptions are inevitable during the execution of cooperative
applications. Usually, the longer the duration lasts, the more
possible. Much work [2,4,12] has been done related to exception
handling in workfiow systems. As we all know, it is expensive for
a transaction to be aborted on every failure of a step, because
rolling back a transaction to its beginning could potentially undo a
lot of work. As an alternative to aborting, our model supports
exception handling and recovery.

In our model, twn levels of exception handling are provided. The
first one is for predictable exceptions and the second for
unpredictable ones. By predictable, we mean this type of
exception can be known before hand, e-g. trying to read a file that
does not exist, communication errors such as loss of information,
and hardware errors such as computer system crashes. For these
errors the designer can tell the system what to do in advance.
Unspecified exceptions are reported to transaction administrator
to determine what to do. Once an exception is captured during the
execution, the state of the corresponding sub-transaction is set to
F and then it is handled as algorithm ExceptionHandler .

Algori thm ExceptionHandler
In: Transaction t; Exception e
Out: none

look up a handling rule for e from RuleBase;
if (found)//Handled by the program
{

Handle exception e according to the rule;
Reset the state o f l accordingly;

}
else//Handled by the transaction administrator

Report exception e to administrator unit;
}

Figure 3 Exception Handling Algorithm

The process for above algorithm is illustrated in figure 4. When
exception occurs, the normal execution of sub-transaction is
suspended and the control logic is transferred to the exception
handler unit. After the exception has been handled, the control
logic is returned and the execution is resumed. The transaction
administrator handles exceptions via administrator interface,
which will be introduced in the next section.

Transaction I
Administrator

T Not I] [Finished
l] ExceptJ°n t EH: enPd~eO; ~

Finished
~" Control ~- Data

Figure 4 Exception Handling Process

The introduction of rule base promotes the system flexibility
enormously. By defining different handling rules on the same
process, we can implement various run-time controls. For
example, in the trip process, i f tj is aborted, the process will
terminate unsuccessfully. However, if we treat such a situation as
an exception, we can go on with the execution by simply adding a
new rule to Rule Base that makes PP4 true (the termination
condition should be changed accordingly.). This is very useful for
none mission-critical tasks, where even some steps fail, the others
can still run on. By this means, we can generate new child/sibling
transactions of the current one or even another global transaction.
Thus the coordination between different transactions becomes
possible. The transaction administrator can also alter the
execution strategy through the administrator interface. Also take
the trip process as an example. Task2 and task3 can be executed
in parallel in order to increase the system throughput. To achieve
this purpose, what the administrator need to do is merely to
change PP4 to pp4:=(xl=S). Thus, when tl finished successfully,
according to Transact ionScheduler algorithm, both t 2 and t 4 can
be started for PP2 and PP4 are true.

Related to exception, recovery is also very important in a
transaction model. In our model, we use mixed type of sub-
transactions. For compensable sub-transaction, its execution resuh
is saved immediately after it is submitted. While for
uncompensable one, its results are saved to a temporal file and
stored to the system permanently on success of the global
transaction. To cancel the execution effects of a transaction
(called backward recovery), we just execute the compensating
sub-transactions corresponding to compensable ones and reject
the temporal results of uncompensable one. For example, if task2
and task3 run in parallel, when task2 fails, the effect of
successfully finished task3 can be semantically undone by
executing its corresponding compensating activity (not presented
in the process). To go on with the execution upon exceptions
(called forward recovery), log file is used to keep the state of the
global transaction and the operation of each sub-transaction, Once
the system restarts after crash, the information is used to restore
the system state and data of the executing transaction.

However, not all activities need compensation. How to determine
the compensation scope is another interesting problem. Some
work has been done in [7], but it is assumed that the activities of a
workflow process are executed sequentially. In fact, many sub-
transactions can be executed concurrently, this may result in
unexpected states. To take this effect into account, a lot of work is
left to do. In our model, we adopt an alternative way currently, i.e.
transaction administrator is required to specify the compensation
scope before the recovery process starts. First, the self-generated
(according to the process definition) compensation process is
presented to the administrator. Then the administrator determines
which one to be compensated. At last the specified compensation
process is executed and the recovery is finished.

4. I M P L E M E N T A T I O N
To facilitate the design of cooperative applications, we develop a
high level language called Coua (Cooperative application), which
provides the facilities for describing both the coordination and the
computation parts of a cooperative application. Grounded on the
semantics of these descriptions, Cova runtime system provides the
services needed at various stages of a cooperation process[15].

3 3 3

Exploiting the description ability provided by Cova language, we
develop a transaction service in Cova runtime system to
implement CovaTM transactions.

4.1 P r o c e s s D e s i g n
To depict a cooperative application, we must adopt a proper
coordination model, which describes the properties ofaU stages of
a cooperation process as well as the control and data flow among
these stages. In Cova, a cooperation process is modeled as a set of
interrelated ocHvities. An activity is a stage or a step in a
cooperation process. It is a computing entity that has its lifecycle
and the rules guiding its state transition. Thus, implementing
C o v a T M in Cova rLmtime system is straightforward. The whole
cooperative process is treated as a CovaTM transaction with each
sub-transaction represented as an activity.

Triggers are used in [5,6] to offer data- or event-driven
specification of control flow, and thus provide a flexible
Framework. Due to its powerful functions, trigger is also adopted
by Corn. We associate each activity a trigger list Tr, which
describes which action should be triggered upon the occurrence of
specific events. The element of Tr has the format of (e, c, a),
which is similar to the well-known event-condition-action rule
developed for active DBMSs. Figure 5 shows how the previous
example can be described in Cova. Words in bold in figure 5 are
the keywords of Cova language,

In this program, startsat and startswhen are used to describe
precedence predicate with the former indicating the entrance of
the process (i.e. ppl) and the latter indicating the start condition of
other activities (i.e. pp2-pps). The keywords trigger, when and
where are exploited to specify the action, event and condition
respectively. The control flow of the process is also specified by
ECA rule. The transaction administrator is defined by word
administrator and the activity participants are defined by
receiver. Time is employed to depict time-critical activity while
type specifies the sub-transaction type.

We can get a process definition by compiling the program. During
this process, the elements of the CovaTM are specified. Roughly
speaking, O is constructed by analyzing the triggering events
complete and abort. PP, M and ST are given by the program
directly. TP can be obtained by analyzing the triggering time-
event and AS is implied by the triggering event complete plus the
corresponding conditions. For example, in the above program, the
completion of t4 activates no other activities~ so it is also the
completion of the cooperative process. In addition, execution of t4
implies that t2 or t3 finished successfully for the start condition of
t4 is (t2.state--Sl[t3.state~S). Thus, we get two acceptable states,
i.e. (S, S, N, S, N, N) and (S, N, S, S, N, N). Go on with the
process, at last AS is obtained. Once the construction completes,
the process is ready for execution in Cova runtime system• The
Transact ionSchednler and Except ionHandler consist of the
transaction service o f Cova runtime system.

Once a cooperative process is defined, it is fixed and stored in the
system permanently. Unfortunately, the environments or the
commercial rules are changing as the time goes on, which makes
it difficult for the predefined process to meet the changing needs•
To solve this problem, we provide run-time modification of
process by administrator interface. The system maintains a list of
transactions for each administrator-

public process TripReservation startsat ti
Tom;

);

administrator

activity tl type UC//transaction type
{

receiver John;//participant
tr igger t2.AcceptRequest(this)//action

w h e n after complete where true//event & condition
tr igger Exception.Handle(this.except)

w h e n after execute where t l .state=E

);
activity t2 type UC startswhen (tl.state==S)//condition

t
receiver Jack;
trigger t3 .AcceptRequest(request)

w h e n after abort w h e r e true
trigger t4•ReserveRoom0

when after complete where true
trigger Exception.Handle(TimeOut)

when after t ime (*:*:*: 1 : 17:200!) where true

}:

activity t4 type CP startswhen (t2 .s ta te~S II t3 .s ta te~S)
¢

receiver Jack;
tr igger tS. ReserveRoom0

w h e n after abort w h e r e true
trigger process.CommitO//Commit the transaction

w h e n after complete where true

);

Figure 5 An Example Process by Cova

4.2 A d m i n i s t r a t o r ' s I n t e r f a c e
Transaction administrators interact with the system through an
interface provided by Cova runtime system• Administrators can
control the execution process of transactions so that they can be
adapted to changing conditions. Commands provided by this
interface are similar to those in ASSET[3] and listed below•

r3 abort (t.~: abort sub-transaction t~ and set the state of t i to A.
Ifti has already committed, it does nothing.

[] commit(t0: commit the operation of sub-transaction ti and set
the state of tj to S. It does nothing if t i has been submitted
successfully•

[] farm_dependency(type, t., tj): form a dependency of the
specified type between ti and tj. The dependency type should
he positive or negative.

[] compensate(t): call the compensation process of transaction
t. After this is done, the transaction may be aborted and its
effects are canceled or it can be restarted from some point.

n delegate(ti, tj): transaction ti transfers to t i the responsibility
for all the operation.

334

5. DISCUSSIONS AND CONCLUSIONS
Cooperative applications, which are usually of long, uncertain
duration and consist of multiple steps that are executed over
possibly heterogeneous, autonomous and distributed environment,
impose new requirements on transaction models, i.e. to support
the cooperation of a group of people working together for a
common goal. In this paper, a transaction model named CovaTM
is proposed to guarantee the fulfillment of such applications and
make the sharing and exchange of information among co-workers
as natural as possible. Before giving remarks on the model, we
should make some points clear here.

(I) User intervention may violate the transparency of transaction
from the administrator point of view, but it doesn't hold for
general user, who only knows his/her own work to do. From
the experience of the real world, there are usually one or
more chargers for a project who are aware of the project
goal. Therefore, we argue that it is proper to define a
transaction administrator to handle unspecified exceptions or
failures for he/she is familiar with the common goal and can
make correct decisions under such conditions.

(2) The introduction of compound sub-transaction type makes it
possible to support subtasks. Subtasks are very useful in
flexible cooperative process. Due to the enormous
complexity of real-life application, it is impossible to identify
all control and correction steps a priori. For the same reason,
it is not possible to prescribe the sequence of control and
correction steps in detail. By suhtask we can decompose a
complex process into smaller ones and design respectively.
So it is necessary to introduce the compound sub-transaction
type.

(3) The model works as a system-level tool rather than a user-
level one. Although administrator interface is provided for
administrators to interact with the system, it is invisible to
most users. The main purpose of this interface is to improve
the system adaptability.

Now we can conclude CovaTM with the following assertions:

Q Sophisticated control of flow makes it possible to describe
the wide spectrum of cooperative activities from structured to
non-structured.

r3 User intervention enhances the system fexibility and ability.
ra Time predicate can be used to depict time-critical and none

time-critical activities uniformly.
r3 Mixed sub-transaction types make it more flexible.

All of the above make it appropriate for the cooperative
applications.

6. ACKNOWLEDGMENTS
This work was done at Bell-Labs Research China. It is co-
supported by National Natural Science Foundation of China under
grant No. 60073011 and 985 Project of Tsinghua University.

7. REFERENCES
i l l G. Alonso, D. Agrawal, A. E. Abbadi, M. Kamath, R.

Gunthor and C. Mohan, Advanced Transaction Models in
Workflow Context, IBM Research Report RJ9970, IBM
Almaden Research Center

[2] O. Alonso, C. Hagen, D. Agrawal, A. E. Abbadi and C.
Mohan, Enhancing the Fault Tolerance of Workflow
Management Systems, in IEEE Concurrency, July-September
2000

[3] A. Biliris, S. Dar, N. Gehani, H. V. Jagadish and K.
Ramarmitham, ASSET: A System for Supporting Extended
Transactions, in proceedings of SIGMOD'94, 44-54

[4] A. Borgida and T. Murata, Tolerating exceptions in
workflows: a unified framework for data and processes, in
proceedings of WACC'99, 59-68

[5] U. Dayal, M. Hsu and R. Ladin. A Transactional Model for
Long-Running Activities, in proceedings of
VLDB'91(Bareeiona, September 1991), 113-122

[6] U. Dayal, M. Hsu and R. Ladin. Organizing Long-running
Activities with Triggers and Transactions, in proceedings of
SIGMOD'90, 204-214

[7] W. Du, J. Davis and M. Shah, Flexible Specification of
Workflow Compensation Scopes, in proceedings of
GROUP'97, 309-316

[8] A. Elmagarmid (eds.), Database Transaction Models for
Advanced Applications, Morgan Kaufmann Publishers, 1992

[9] A. K. Elmagarmid, Y. Leu, W. Litwin and M. Rusinkiewiczt,
A Multidatabase Transaction Model for InterBase, in
proceedings of VLDB'90 (Brisbane, Australia 1990), 507-
518

[]0]H. Garcia-Molina and K. Salem. SAGAS, in proceedings of
SIGMOD'87, 249-259

[1 I]S. Jajodia and L. Kerschberg (eds.), Advanced Transaction
Models and Architectures, Kluwer, 1997

[12] M. Klein and C. Dellarocas, A Knowledge-based Approach
to Handling Exceptions in Workflow Systems, in Computer
Supported Cooperative Work (CSCW)" The Journal of
Collaborative Computing, 2000, 9(3/4):399.-412

[13] C. Mohan. Tutorial: Advanced Transaction Models - Survey
and Critique, in proceedings of SIGMOD'94.

[14] M. Rusinkiewicz, W. Klas, T. Tesch, J. Wasch and P. Muth,
Towards a Cooperative Transaction Model--The
Cooperative Activity Model--, VLDB'95

[15]G. X. 'gang and M. L. Shi, Cova: A Programming Language
for Cooperative Applications, in Science in China Series F,
2001,44(1):73-80

[16]A. Zhang, M. Nodine, B. Bhargava and O. Bukhres,
Ensuring Relaxed Atom/city for Flexible Multidatabase
Systems Transactions in Multidatabase Systems, in
proceedings of SIGMOD'94, 67-78

Biographical note: Jinlei Jiang is a Ph.D student in Depa~ment of
Computer Science and Technology at Tsinghua University,
Beijing, China. His research interests include Computer
Supported Cooperative Work(CSCW), Workflow Management
Systems(WfMS), Programming Language and Systems.

335

