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Abstract 
It has been widely recognized that traditional transaction models 
with ACID(Atomicity, Consistency, Isolation and Durability) 
properties generally are not applicable to cooperative applications. 
Though many advanced transaction models have been proposed to 
address the problems, they are too database-centered or too rigid 
to be useful in real environments. This paper presents a new 
transaction model named CovaTM,  which provides sophisticated 
but flexible control over cooperative process as well as support 
for error recovery and exception handling. The most distinguished 
feature of  this model is that user intervention is explicitly 
introduced into transaction processing. This paper details the 
features and structural elements o f  this model. An example is also 
given to illustrate how it works in real world settings. 
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1. INTRODUCTION 
In modern organizations, especially those involving design and 
product manufacturing, close cooperation between co-workers is 
often needed in order to get the work done. New tools and 
applications have been developed to enable such cooperation. The 
most outstanding example would be workflow management where 
a group o f  people work together to achieve some common goal. 
These applications are often of  long duration and consist o f  
multiple steps that are executed over possibly heterogeneous, 
autonomous and distributed environment. As organizations 
evolve, it is widely accepted that effectiveness or performance is 
no longer the dominant factor to achieve their goals. Also, 
reliability has been shown to be crucial  Failure recovery and 
exception handling in such applications are attracting more and 
more attention. 

In traditional database systems, the above issues have been widely 
addressed by the concept o f  transaction. Key to the success o f  the 
transaction model is the atomicity, consistency, isolation and 
durability properties. Atomicity ensures that either all operations 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
SAC 2002, Madrid, Spain 
© 2002 ACM 1-58113-445-2/02/03...$5.00. 

o f  a transaction complete successfully or all o f  its effects a r e  

absent. Consistency ensures that a transaction when executed by 
itself, without interference from other transactions, maps the 
database from one consistent state to another consistent one. 
Isolation ensures that no transaction ever views the partial effects 
o f  other transactions even when transactions execute concurrently. 
Durability ensures the changes to the database are persistent even 
when systems crash. However, this once successful concept is 
unsuitable for cooperative applications. To view the whole 
cooperative process just as a transaction will produce many 
problems and some of  them are listed below: 

13 The work done during a long transaction will be lost when 
failure occurs before the end of  the transaction. 
Unfortunately, failures arc common for long-running 
applications and lose o f  work is not acceptable for mission- 
critical applications. 
Message or control exchanges among transactions are not 
supported. However, it is a common case for cooperative 
applications to have some type of  dependencies among them. 

123 Lock mechanism reduces the throughput or concurrency. The 
longer the duration, the larger the reduction. 

To address the above problems, several extended transaction 
models [i],1 1] have been proposed, including Sagas [10], long- 
running activities [5,6], ASSET [3], multi-databases [9,16] and so 
on. Usually, they are called advanced transaction models (ATM) 
to distinguish from the traditional one. Many of  these models are 
developed from a database point o f  view and are too database- 
centric to provide adequate flexibility. In this paper, a transaction 
model C o v a T M  is proposed to support cooperative applications. 

In CovaTM,  we provide a way to describe cooperative 
applications, where a transaction is treated as one execution o f  a 
cooperative process with its sub-transactions corresponding to 
activities. By cooperative applications we mean applications or 
tools developed to support cooperations between users such as 
workflow management systems(WfTdS). An activity or sub- 
transaction in C o v a T M  may be reactivated after its submission. 
Therefore, activities of  a transaction form a graph other than a tree 
like in long-running activities [5,6]. Based on the description o f  
the application, the run-time system can guarantee the reliability 
o f  execution to its best. 

The rest o f  the paper is organized as follows. Section 2 presents a 
brief  review of  ATMs,  which provide a solid base for developing 
new models. Then C o v a T M  model is described in section 3 and 
its implementation is introduced in section 4. Finally, we 
conclude our work in section 5. 
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2. R E L A T E D  W O R K  
Till now, many advanced transaction models have been suggested. 
For reasons of  space we will only present the ones of  most 
interests. Similarly, for a specific model, literal description is used 
instead of  the formal one. The interested readers can find the 
details in [8,11,13]. 

Nested Transactions As an important step in the evolution of  a 
basic transaction model, nested transactions extend the flat 
transaction structure to a multi-level one. In a nested transaction, a 
child transaction may start after its parent has started and may 
commit locally. A parent transaction may terminate only after all 
its children terminate. However, i f  a child fails, the parent may 
choose its own way for recovery. I f a  parent transaction is aborted, 
all its children are aborted. Although permitting increased 
modularity and finer granularity of  failure handling, nested 
transactions provide full isolation (The committed local result is 
released only when all of  its parents up to the root have 
successfully terminated.) at a global level that is not acceptable in 
some cooperative applications such as co-design system. 

Sagas Sagas were originally proposed as a way to solve the 
problems related to long lived transactions[10]. The basic idea o f  
Saga is to allow a transaction to release resources before 
committing by using the concept o f  compensating transactions. A 
Saga is a transaction that consists of  a sequence of  ACID 
sub/transactions and associated compensating ones. Each sub- 
transaction is allowed to commit individually and its effect can be 
explicitly undone by its compensating transaction. By allowing 
sub-transactions to commit on their own, Sagas relax the full 
isolation requirements and increase the inter-transaction 
concurrency. However, Sagas demand every sub-transaction has 
its counterpart, which makes its hard to be useful in some cases. 
On the other hand, compensating a sub-transaction can be very 
expensive and sometimes it is unnecessary. An example can be 
found in [7] and other problems related to Saga can be found in 
[13]. Nevertheless, the idea has been implemented in a workfiow 
management system [ 1 ]. 

Flexible Transactions This model [9] is suitable for multi- 
database environment where each local database acts 
independently from others. In such environment, it is not possible 
to enforce the commit semantics o f  a global transaction [16]. A 
flexible transaction uses functionally equivalent sub-transactions 
as its alternative execution paths. It commits i f  either the main 
sub-transaction or their alternatives commit. To relax the isolation 
requirement, a flexible transaction uses compensation and relaxes 
global atomicity requirement by allowing the transaction designer 
to specify the acceptable states for the termination of  a flexible 
transaction, in which some sub-transactions may be aborted. Time 
factor is also taken into account. Sharing some features of  
workflow management, flexible transactions can be easily 
implemented within a workflow management system [1]. For this 
reason, we base our model on it. However, sealability and access 
control are not addressed in flexible transaction. 

CoAet  Cooperative Activity Model[14] provides the transactional 
properties applicable to cooperative scenarios. Each user in CoAct 
works in his/her own workspace (called private workspace) and 
they cooperate through the controlled information exchange and 
synchronization of  their private workspaces. The model works 
like this: a certain parametcrizcd CoAct is used to describe a 

particular activity and by instantiating it we get a concrete 
activity. Each participant o f  a cooperative activity has his/her own 
activity (called user activity). One final result is obtained by 
merging the result of  each user activity. This model is well suited 
for building asynchronous cooperative applications. But because 
o f  the static description o f  cooperative activity, it is not flexible 
enough. 

The above work has solved the problems faced by the cooperative 
applications more or less from different perspectives. For 
example, Sagas and Flexible transaction are around database 
whereas CoAct faces the specific applications. But still a lot of  
problems remain open. For example, the scalability and access 
control have not been addressed. One big problem with these 
models is that features required by one application might be 
unacceptable in another one. In other words, they are not as 
flexible as possible. Nevertheless, the ideas behind these models 
are very helpful for designing new models. 

3. C o v a T M  M O D E L  
In this section, we will give a detailed description of  CovaTM.  
Providing integrated exception handling and recovery as well as 
access control, CovaTM can support reliable and flexible process 
instance enactment, rollback and compensation. 

3.1 F o r m a l  Defini t ions 
Sub-transactions within a CovaTM transaction are tightly 
coupled, For instance, the equivalent sub-transaction can't  be 
executed until the preferred one has aborted. To specify this 
execution dependency, we define the execution state o f  a 
transaction as follows: 
D e f i n i t i o n  1 Execut ion State o f  a Transact ion 
For a C o v a T M  transaction T with m sub-transactions, the 
transaction execution state x is an m-tuple (xj, x2, -.., x~) where 

ES i f  cj is being executed 

x i = i f t  i has successfully completed 

i f  t i has aborted 

i f  t i has fo i led 

Here N is called the initial state and S, A, the end state and E, F, 
the intermediate state. The state transition is shown in Figure 1. 

Execution state of  a 
transaction T is used to keep 
track o f  the execution o f  the 
sub-transactions. It is also 
used to determine whether 
the objectives o f  T have 
been achieved. At the 
beginning of  T, all xi's are 
set to N. The value of  xi is F igure  1 state transition diagram 
set to E when ti is submitted. When t i completes the execution 
state xi is set to S if it has successfully completed (or achieved its 
objective), and to A, otherwise. During the execution, failures 
and exceptions may occur and then x i is set to F. Afterwards, 
exceptions are handled and xi can then be set to E, S and A 
respectively according to the context. In the end, a sub-transaction 
cart only be in state S or A. One major difference between our 
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model and the others is that in our model, a successfully finished 
sub-transaction can be reactivated for further execution. This is 
reflected by the state transition from S to E in Figure !. We 
denote by X the set o f  all possible execution states. 

At a certain point of  execution, the objectives of  T may be 
achieved. In this case, T is considered to be successfully 
completed and can be committed. The corresponding execution 
state is called an acceptable state. Usually, there is more than one 
acceptable state for T because many ways can lead to the same 
goal. We call the collection o f  them as an acceptable state set 
which is defined as follows. 
Definition 2 Acceptable State Set 
The acceptable state set, denoted by AS, o fa  C o v a T M  transaction 
T is a subset of  X, where 

AS={x [x~X, and in state x, the objectives o f T  are achieved.} 

To determine the legal execution order o f  sub-transactions, we 
need to specify the execution dependencies among them. Two 
basic dependencies are defined to express the general execution 
dependencies. The first is positive dependency. A positive 
dependency between sub-transaction tj and t2 exists if  t I can' t  be 
executed until t2 succeeds. The second basic dependency is called 
negative dependency, which is used to specify the alternative sub- 
transactions. A sub-transaction tj negatively depends on t2 i f  h has 
to wait until t2 has aborted before it can start. This happens when 
h and t2 implement the same task in a global transaction and t2 is 
preferred to h- In order to express the execution dependencies, we 
associate with each sub-transaction t i a precedence predicate PPi 
defined as follows: 
Definition 3 Precedence Predicate 
A precedence predicate PPi for a sub-transaction ti is a boolean 
function defined on X, where 

ppi : X'-) {true, false} 

To indicate that t i is positively depends on ti, we formulate the 
precedence predicate ppj .'= (xi = S). We use the precedence 
predicate ppj := (xi = A) to denote that t] negatively depends on t i. 
Having the basic dependencies, we can express any execution 
dependency in term of boolean combination of  the basic 
dependencies. The value o f  the precedence predicate changes as 
the global transaction is executed and is used to determine 
whether the corresponding sub-transaction can be submitted for 
execution at the current time. Different execution strategy can be 
achieved by specifying different precedence predicate for each 
sub-transaction. 

In cooperative work, some tasks may be time-critical. To express 
this requirement, we define temporal predicate. 
Definition 4 Temporal  Predicate 
A temporal predicate tpi for a sub-transaction t i is a time 
requirement oftl. It has the following format: 

Operator Hour:Minute:Month:Daj,: Year 

The Operator can be before, after or their combination, denoted 
by between. For not all o f  the sub-transactions have time 
requirements and not all of  the time fields are needed, a wild card 
is also used to indicate "'don't care" condition. For example, the 
predicate "before (17:*:*:*:*)" stands for the task should be 
finished before 5 p.m. 

A coordinator plays a very important role in achieving the 
common goal of  a cooperative application. A manager is also 

needed to manipulate the executing process. So we define 
transaction administrator as follows: 
Definition 5 Transact ion Adminis t ra tor  
A transaction administrator is an active entity, such as a person or 
a program that is responsible for the execution o f  the transaction, 
i.e. it is up to the administrator to determine what to do when 
exceptions occur. 

Note that ( l )Not  all the exceptions ere reported to the 
administrator. Instead, the administrator need only to handle such 
exceptions as the system knows little about what to do. 
(2)Transaction administrators are only responsible for their own 
transaction(s). For instance, a global transaction administrator is 
only 'responsible for the global transaction, while the 
administrator o f  sub-transaction t i just cares for t i. 

Based on the above definitions, we can formulate a C o v a T M  
transaction as: 
Definition 6 C o v a T M  Transaction 
A CovaTM transaction T is a 6-tuple (ST, O, PP, TP, AS, M)  
where 
[] ST is the set o f  all sub-transactions o f t  
[] O is the partial order on ST 
[] PP is the set o f  all precedence predicates of  ST 
[] TP  is the set ofa l l  temporal predicates of  ST 
[] AS is the set o f  all acceptable states o f t  
[] M is the set o f  administrators o f T  

In order to specify a C o v a T M  transaction, we have to specify the 
set of  sub-transactions. For each sub-transaction, we specify its 
type and participants. The sub-transaction type can be one o f  the 
followings: 
[] CP - i f  the sub-transaction is compensable 
1:3 UC - i f  the sub-transaction is uncompcnsable 
The above two are called simple types, 
[]  CT - i f  the sub-transaction is compound, i.e. it has its own 

sub-transactions, thus forming a transaction tree 

We also specify the precedence predicate and the temporal 
predicates o f  the sub-transaction. At the global level, we specify 
the partial order O, the set of  acceptable states AS and the 
transaction administrator. We can see from the above definitions 
that the minimum schedule unit of  our model is a simple sub- 
transaction, which can be the composition of a series of  traditional 
transactions consisting of  read and write operations. Each simple 
sub-transaction can commit and release its resources before the 
global transaction successfully completes and commits, so the full 
isolation requirement is relaxed. When one sub-transaction fails, 
an equivalent one will be executed instead o f  aborting the global 
transaction, thus the atomicity property is also relaxed. Now let's 
look at an example to get an intuitive impression. 

3.2 A n  Example 
The example used here is the well-lmown example from 
transaction literature: planning a business trip. Consider "planning 
a business trip from Beijing to Shanghai" as a CovaTM,  which 
consists of  the following subtasks: 
1. Customer reserves a business trip to an agency 
2. Agent reserves a vehicle from Beijing to Shanghai 
3. Agent reserves a hotel in Shanghai 

Assume that we have two choices for task2 and three for task.3. 
Let t r be the request from customer, say John, and t, ordering a 
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t rain ticket, t3 order ing a p lane  ticket and t 4 ,  t5, t 6 reserv ing  a room 
at hotel  H I ,  H2 and  H3 respectively.  W e  say t2 and  h are 
a l te rnat ive /equivalent  sub- t ransac t ions  for order ing a ticket, so do 
with t4, ts and tt. Obvious ly ,  tt is uncompensab le .  Also assume tz 
and h are u n c o m p e n s a b l e  too. In addit ion,  the  t icket  mus t  be  
before  January  17, 2001.  Let  T o m  be the adminis t ra tor  for the 
whole  t ransact ion,  John  for  q and  Jack for all the o ther  sub- 
transactions.  At  last  we assume that t2 is the first choice  for  task2 
and h and t6 are the first and  last  choice for task3 respect ively.  
T h e n  the example  can be  formal ly  specif ied as follows: 

ST = { t t (UC,{John}) ,  tz(UC,{Jack}),  t3(UC,{Jack}), 
t4(CP, {Jack}), ts(CP, {Jack}),  te(CP,{Jack}) } 

O: is< tl, t l< h,  t2 < q, tz < ts, t2 < tt, t3 < h, h < ts, h < ts 

In fact, O gives out  the process  structure represented by  di rected 
graph. 

P P l  := t rue 

PP2 ~ (xl = S )  

p p  :, PP3 := (xi = S )  A (X 2 = A) 

PP4 := (x2 = S)  v (x 3 = S)  

PP5 ~ (x2 = S v x 3 = S)  A(X 4 = A) 

PP6 TM (X4 = A) ̂  (X 5 = A) 

For  x4=A implies that e i ther  t z or t 3 has been  successful  (because  
there is no t ransi t ion f rom N to A), we omi t  the condi t ion  
(x2=Svx3=S) in pPt. Fo r  the  same reason, pp6 can also be wri t ten  
as PP6 := (xs=A) - So do wi th  ppj  and  PPs- I t  is up to O and P P  to 
determine the  execut ion  order. 

tpl "= * 

tp2 := before(* : * : * : 1 : i 7 : 2001) 

tp] := before(* : * : * : 1 : 17 : 2001) 
TP : 

tp4 ~ * 

tp5 :=*  

lp6 ~ * 

AS = (S, S, N, S, N, N), (S, N, S, S, N, N), (S, S, N, N, S, N), 
(S,N, S,N, S,N), (S, S, N, N, N, S), (S,N, S, N, N, S) } 

M = {Tom} 

3.3 Execut ion  R u l e s  
In  this  section,  we wil l  expla in  execut ion rules tha t  a C o v a T M  
transact ion mus t  abide by. At  first, we will  define the predecessor  
and successor  o f  sub- t ransac t ion  ti. 

Def in i t i on  7 p r e d e c e s s o r s  o f  s u b - t r a n s a c t i o n  
Predecessors  o f  a sub- t ransac t ion  tl, denoted  by  pred(h),  are those  
sub- t ransact ions  which  precede  t i in the partial order  O,  i.e. 

pred(ti) = {tj ]tjE ST  and tj < t i in O} 

Def in i t i on  § s u c c e s s o r  o f  a s u b t r a n s a c t i o n  
Successors o f  a sub-transaction tl, denoted by succ(tJ, are those 
sub- t ransact ions  which  fol low ti in the partial  order  O, i.e. 

succ(ti) = {tj I tie ST  and t i < tj in O) 

A sub- t ransact ion  ti is executable i f  
( i )  ti is not  in state E or F; and 

(2) hE pred(t0-succ(ti) ,  e i ther  tv has been  executed or the PPk is 
false; and 

(3) bo th  the PPi and the tpi(t) are true.  

From the above, we can see that a terminated sub-transaction can 
be re-executed as long as the cond i t ion  is satisfied. 

W e  can n o w  formulate  the execut ion  rules  as an a lgor i thm named  
T r a n s a e t i o n S e h e d u l e r .  T h e  except ion  hand l ing  process  will be  
descr ibed in the next  sect ion.  The  execut ion  of  T terminates  w h e n  
any o f  the fo l lowing condi t ions  or  events  occurs:  

121 The  current  execut ion  state is acceptable  
[]  None  o f  the sub- t ransac t ions  is executable  and no  sub- 

t ransac t ion  is in state E or  F. 
El Transac t ion  adminis t ra tor  issues a terminat ion command.  

A l g o r i t h m  Transac t ionSchedu le r  

In.  A C o v a T M  t ransac t ion  T, to be executed 

Out :  Execut ion  Resul t  o f  Tt 

{ 
foreach (t i E TI) 

xic.--N; 
whi le  ( t r u e ) / / L o o p  forever  unt i l  te rminated  
{ 

foreach (ti E T J  
if  (ti is executable)  
( 

xi ~- E; 
start a new thread for ti;//Execute t i 

} 
//wait for the execution result 
R ~  Wai tForExcResu l t (T0 ;  

i~-- R . i d ; / / T h e  name  o f  the re tu rned  sub- t ransac t ion  
swi tch(R.code) / /The  re turn  code o f  sub- t ransac t ion  
{ 

case SUCCESS://Objective ach ieved  

x ~ -  S; break; 
case ABORT://Objective not  ach ieved  

x i t -  A; break;  
case EXCEPTION://Exception occurs 

xiE--- F; 
call ExceptionHandler;//Handle it 
break; 

} 
/ /Check  to see i f  te rminat ion  cond i t ion  is met  

i f  ( te rminated(T0)  

re turn Tt . resu l t ; / / re turn  execut ion  result  o f T  

F iEure  2 Transact ion  Schedu l ing  Algor i thm 

A c c o r d i n g  to this a lgori thm, concur ren t  execut ion  o f  sub- 
t ransact ions  is a l lowed i f  they are executable  at the  same time. 
W h e n  the result  o f  the execu t ion  is known,  we modi fy  the 
t ransact ion execut ion  accordingly.  After  the comple t ion  o f  a sub- 
t ransact ion,  we check i f  the te rmina t ion  condi t ion  is satisfied, I f  it 
is not  satisfied, we cont inue  schedu l ing  the sub- t ransact ions .  I f  
the global t ransact ion terminates  and an acceptable  state has  been  
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reached, we can commit T; otherwise, it must be aborted. 
Transaction administrator can terminate the transaction at any 
time no matter what the execution state is. 

3.4 Exceptions and Recovery 
Exceptions are inevitable during the execution of cooperative 
applications. Usually, the longer the duration lasts, the more 
possible. Much work [2,4,12] has been done related to exception 
handling in workfiow systems. As we all know, it is expensive for 
a transaction to be aborted on every failure of a step, because 
rolling back a transaction to its beginning could potentially undo a 
lot of  work. As an alternative to aborting, our model supports 
exception handling and recovery. 

In our model, twn levels of  exception handling are provided. The 
first one is for predictable exceptions and the second for 
unpredictable ones. By predictable, we mean this type of 
exception can be known before hand, e-g. trying to read a file that 
does not exist, communication errors such as loss of information, 
and hardware errors such as computer system crashes. For these 
errors the designer can tell the system what to do in advance. 
Unspecified exceptions are reported to transaction administrator 
to determine what to do. Once an exception is captured during the 
execution, the state of  the corresponding sub-transaction is set to 
F and then it is handled as algorithm ExceptionHandler .  

Algori thm ExceptionHandler 
In: Transaction t; Exception e 
Out: none 

look up a handling rule for e from RuleBase; 
if (found)//Handled by the program 
{ 

Handle exception e according to the rule; 
Reset the state o f l  accordingly; 

} 
else//Handled by the transaction administrator 

Report exception e to administrator unit; 
} 

Figure  3 Exception Handling Algorithm 

The process for above algorithm is illustrated in figure 4. When 
exception occurs, the normal execution of  sub-transaction is 
suspended and the control logic is transferred to the exception 
handler unit. After the exception has been handled, the control 
logic is returned and the execution is resumed. The transaction 
administrator handles exceptions via administrator interface, 
which will be introduced in the next section. 

Transaction I 
Administrator 

T Not I ] [Finished 
l ] ExceptJ°n t EH: enPd~eO; ~ ........... 

Finished 
~" Control ....... ~- Data 

Figure 4 Exception Handling Process 

The introduction of rule base promotes the system flexibility 
enormously. By defining different handling rules on the same 
process, we can implement various run-time controls. For 
example, in the trip process, i f  tj is aborted, the process will 
terminate unsuccessfully. However, if we treat such a situation as 
an exception, we can go on with the execution by simply adding a 
new rule to Rule Base that makes PP4 true (the termination 
condition should be changed accordingly.). This is very useful for 
none mission-critical tasks, where even some steps fail, the others 
can still run on. By this means, we can generate new child/sibling 
transactions of  the current one or even another global transaction. 
Thus the coordination between different transactions becomes 
possible. The transaction administrator can also alter the 
execution strategy through the administrator interface. Also take 
the trip process as an example. Task2 and task3 can be executed 
in parallel in order to increase the system throughput. To achieve 
this purpose, what the administrator need to do is merely to 
change PP4 to pp4:=(xl=S). Thus, when tl finished successfully, 
according to Transact ionScheduler  algorithm, both t 2 and t 4 can 
be started for PP2 and PP4 are true. 

Related to exception, recovery is also very important in a 
transaction model. In our model, we use mixed type of sub- 
transactions. For compensable sub-transaction, its execution resuh 
is saved immediately after it is submitted. While for 
uncompensable one, its results are saved to a temporal file and 
stored to the system permanently on success of the global 
transaction. To cancel the execution effects of a transaction 
(called backward recovery), we just execute the compensating 
sub-transactions corresponding to compensable ones and reject 
the temporal results of  uncompensable one. For example, if task2 
and task3 run in parallel, when task2 fails, the effect of 
successfully finished task3 can be semantically undone by 
executing its corresponding compensating activity (not presented 
in the process). To go on with the execution upon exceptions 
(called forward recovery), log file is used to keep the state of the 
global transaction and the operation of  each sub-transaction, Once 
the system restarts after crash, the information is used to restore 
the system state and data of the executing transaction. 

However, not all activities need compensation. How to determine 
the compensation scope is another interesting problem. Some 
work has been done in [7], but it is assumed that the activities of  a 
workflow process are executed sequentially. In fact, many sub- 
transactions can be executed concurrently, this may result in 
unexpected states. To take this effect into account, a lot of work is 
left to do. In our model, we adopt an alternative way currently, i.e. 
transaction administrator is required to specify the compensation 
scope before the recovery process starts. First, the self-generated 
(according to the process definition) compensation process is 
presented to the administrator. Then the administrator determines 
which one to be compensated. At last the specified compensation 
process is executed and the recovery is finished. 

4. I M P L E M E N T A T I O N  
To facilitate the design of cooperative applications, we develop a 
high level language called Coua (Cooperative application), which 
provides the facilities for describing both the coordination and the 
computation parts of a cooperative application. Grounded on the 
semantics of these descriptions, Cova runtime system provides the 
services needed at various stages of a cooperation process[15]. 
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Exploiting the description ability provided by Cova language, we 
develop a transaction service in Cova runtime system to 
implement CovaTM transactions. 

4.1 P r o c e s s  D e s i g n  
To depict a cooperative application, we must adopt a proper 
coordination model, which describes the properties ofaU stages of 
a cooperation process as well as the control and data flow among 
these stages. In Cova, a cooperation process is modeled as a set of 
interrelated ocHvities. An activity is a stage or a step in a 
cooperation process. It is a computing entity that has its lifecycle 
and the rules guiding its state transition. Thus, implementing 
C o v a T M  in Cova rLmtime system is straightforward. The whole 
cooperative process is treated as a CovaTM transaction with each 
sub-transaction represented as an activity. 

Triggers are used in [5,6] to offer data- or event-driven 
specification of control flow, and thus provide a flexible 
Framework. Due to its powerful functions, trigger is also adopted 
by Corn. We associate each activity a trigger list Tr, which 
describes which action should be triggered upon the occurrence of 
specific events. The element of Tr has the format of (e, c, a), 
which is similar to the well-known event-condition-action rule 
developed for active DBMSs. Figure 5 shows how the previous 
example can be described in Cova. Words in bold in figure 5 are 
the keywords of Cova language, 

In this program, startsat  and startswhen are used to describe 
precedence predicate with the former indicating the entrance of 
the process (i.e. ppl) and the latter indicating the start condition of 
other activities (i.e. pp2-pps). The keywords trigger, when and 
where  are exploited to specify the action, event and condition 
respectively. The control flow of the process is also specified by 
ECA rule. The transaction administrator is defined by word 
administrator  and the activity participants are defined by 
receiver.  Time is employed to depict time-critical activity while 
type specifies the sub-transaction type. 

We can get a process definition by compiling the program. During 
this process, the elements of the CovaTM are specified. Roughly 
speaking, O is constructed by analyzing the triggering events 
complete and abort. PP, M and ST are given by the program 
directly. TP can be obtained by analyzing the triggering time- 
event and AS is implied by the triggering event complete plus the 
corresponding conditions. For example, in the above program, the 
completion of t4 activates no other activities~ so it is also the 
completion of the cooperative process. In addition, execution of t4 
implies that t2 or t3 finished successfully for the start condition of 
t4 is (t2.state--Sl[t3.state~S). Thus, we get two acceptable states, 
i.e. (S, S, N, S, N, N) and (S, N, S, S, N, N). Go on with the 
process, at last AS is obtained. Once the construction completes, 
the process is ready for execution in Cova runtime system• The 
Transact ionSchednler  and Except ionHandler  consist of the 
transaction service o f  Cova runtime system. 

Once a cooperative process is defined, it is fixed and stored in the 
system permanently. Unfortunately, the environments or the 
commercial rules are changing as the time goes on, which makes 
it difficult for the predefined process to meet the changing needs• 
To solve this problem, we provide run-time modification of 
process by administrator interface. The system maintains a list of 
transactions for each administrator- 

public process TripReservation startsat  ti 
Tom; 

); 

administrator  

activity tl type UC//transaction type 
{ 

receiver John;//participant 
tr igger t2.AcceptRequest(this)//action 

w h e n  after complete  where  true//event & condition 
tr igger Exception.Handle(this.except) 

w h e n  after execute  where  t l .state=E 

); 
activity t2 type UC startswhen (tl.state==S)//condition 

t 
receiver Jack; 
trigger t3 .AcceptRequest(request) 

w h e n  after abort  w h e r e  true 
trigger t4•ReserveRoom0 

when after complete where true 
trigger Exception.Handle(TimeOut) 

when  after t ime (*:*:*: 1 : 17:200! ) where true 

}: 

activity t4 type CP startswhen ( t2 .s ta te~S II t3 .s ta te~S)  
¢ 

receiver Jack; 
tr igger tS. ReserveRoom0 

w h e n  after abort  w h e r e  true 
trigger process.CommitO//Commit the transaction 

w h e n  after complete  where  true 

); 

Figure  5 An Example Process by Cova 

4.2  A d m i n i s t r a t o r ' s  I n t e r f a c e  
Transaction administrators interact with the system through an 
interface provided by Cova runtime system• Administrators can 
control the execution process of transactions so that they can be 
adapted to changing conditions. Commands provided by this 
interface are similar to those in ASSET[3] and listed below• 

r3 abort  (t.~: abort sub-transaction t~ and set the state of t i to A. 
Ifti  has already committed, it does nothing. 

[] commit(t0: commit the operation of sub-transaction ti and set 
the state of tj to S. It does nothing if t i has been submitted 
successfully• 

[] farm_dependency(type,  t., tj): form a dependency of the 
specified type between ti and tj. The dependency type should 
he positive or negative. 

[]  compensate(t):  call the compensation process of transaction 
t. After this is done, the transaction may be aborted and its 
effects are canceled or it can be restarted from some point. 

n delegate(ti, tj): transaction ti transfers to t i the responsibility 
for all the operation. 
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5. DISCUSSIONS AND CONCLUSIONS 
Cooperative applications, which are usually of long, uncertain 
duration and consist of multiple steps that are executed over 
possibly heterogeneous, autonomous and distributed environment, 
impose new requirements on transaction models, i.e. to support 
the cooperation of a group of people working together for a 
common goal. In this paper, a transaction model named CovaTM 
is proposed to guarantee the fulfillment of such applications and 
make the sharing and exchange of information among co-workers 
as natural as possible. Before giving remarks on the model, we 
should make some points clear here. 

(I) User intervention may violate the transparency of transaction 
from the administrator point of view, but it doesn't hold for 
general user, who only knows his/her own work to do. From 
the experience of the real world, there are usually one or 
more chargers for a project who are aware of the project 
goal. Therefore, we argue that it is proper to define a 
transaction administrator to handle unspecified exceptions or 
failures for he/she is familiar with the common goal and can 
make correct decisions under such conditions. 

(2) The introduction of compound sub-transaction type makes it 
possible to support subtasks. Subtasks are very useful in 
flexible cooperative process. Due to the enormous 
complexity of real-life application, it is impossible to identify 
all control and correction steps a priori. For the same reason, 
it is not possible to prescribe the sequence of control and 
correction steps in detail. By suhtask we can decompose a 
complex process into smaller ones and design respectively. 
So it is necessary to introduce the compound sub-transaction 
type. 

(3) The model works as a system-level tool rather than a user- 
level one. Although administrator interface is provided for 
administrators to interact with the system, it is invisible to 
most users. The main purpose of this interface is to improve 
the system adaptability. 

Now we can conclude CovaTM with the following assertions: 

Q Sophisticated control of flow makes it possible to describe 
the wide spectrum of cooperative activities from structured to 
non-structured. 

r3 User intervention enhances the system fexibility and ability. 
ra Time predicate can be used to depict time-critical and none 

time-critical activities uniformly. 
r3 Mixed sub-transaction types make it more flexible. 

All of the above make it appropriate for the cooperative 
applications. 

6. ACKNOWLEDGMENTS 
This work was done at Bell-Labs Research China. It is co- 
supported by National Natural Science Foundation of China under 
grant No. 60073011 and 985 Project of Tsinghua University. 

7. REFERENCES 
i l l  G. Alonso, D. Agrawal, A. E. Abbadi, M. Kamath, R. 

Gunthor and C. Mohan, Advanced Transaction Models in 
Workflow Context, IBM Research Report RJ9970, IBM 
Almaden Research Center 

[2] O. Alonso, C. Hagen, D. Agrawal, A. E. Abbadi and C. 
Mohan, Enhancing the Fault Tolerance of Workflow 
Management Systems, in IEEE Concurrency, July-September 
2000 

[3] A. Biliris, S. Dar, N. Gehani, H. V. Jagadish and K. 
Ramarmitham, ASSET: A System for Supporting Extended 
Transactions, in proceedings of SIGMOD'94, 44-54 

[4] A. Borgida and T. Murata, Tolerating exceptions in 
workflows: a unified framework for data and processes, in 
proceedings of WACC'99, 59-68 

[5] U. Dayal, M. Hsu and R. Ladin. A Transactional Model for 
Long-Running Activities, in proceedings of 
VLDB'91(Bareeiona, September 1991), 113-122 

[6] U. Dayal, M. Hsu and R. Ladin. Organizing Long-running 
Activities with Triggers and Transactions, in proceedings of 
SIGMOD'90, 204-214 

[7] W. Du, J. Davis and M. Shah, Flexible Specification of 
Workflow Compensation Scopes, in proceedings of 
GROUP'97, 309-316 

[8] A. Elmagarmid (eds.), Database Transaction Models for 
Advanced Applications, Morgan Kaufmann Publishers, 1992 

[9] A. K. Elmagarmid, Y. Leu, W. Litwin and M. Rusinkiewiczt, 
A Multidatabase Transaction Model for InterBase, in 
proceedings of VLDB'90 (Brisbane, Australia 1990), 507- 
518 

[]0]H. Garcia-Molina and K. Salem. SAGAS, in proceedings of 
SIGMOD'87, 249-259 

[1 I]S. Jajodia and L. Kerschberg (eds.), Advanced Transaction 
Models and Architectures, Kluwer, 1997 

[12] M. Klein and C. Dellarocas, A Knowledge-based Approach 
to Handling Exceptions in Workflow Systems, in Computer 
Supported Cooperative Work (CSCW)" The Journal of 
Collaborative Computing, 2000, 9(3/4):399.-412 

[13] C. Mohan. Tutorial: Advanced Transaction Models - Survey 
and Critique, in proceedings of SIGMOD'94. 

[14] M. Rusinkiewicz, W. Klas, T. Tesch, J. Wasch and P. Muth, 
Towards a Cooperative Transaction Model--The 
Cooperative Activity Model--, VLDB'95 

[15]G. X. 'gang and M. L. Shi, Cova: A Programming Language 
for Cooperative Applications, in Science in China Series F, 
2001,44(1 ):73-80 

[16]A. Zhang, M. Nodine, B. Bhargava and O. Bukhres, 
Ensuring Relaxed Atom/city for Flexible Multidatabase 
Systems Transactions in Multidatabase Systems, in 
proceedings of SIGMOD'94, 67-78 

Biographical note: Jinlei Jiang is a Ph.D student in Depa~ment of 
Computer Science and Technology at Tsinghua University, 
Beijing, China. His research interests include Computer 
Supported Cooperative Work(CSCW), Workflow Management 
Systems(WfMS), Programming Language and Systems. 

335 


