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ABSTRACT

This paper presents Haskelly, a parallel functional language
based on coordination. Haskelly supports lazy stream com-
munication and facilities, at coordination level, to the speci-
fication of data parallel programs. Haskelly supports a clean
and complete, semantic and syntactic, separation between
coordination and computation levels of programming, with
several benefits to parallel program engineering. The imple-
mentation of some well-known applications in Haskelly is
presented, demonstrating its expressiveness, allowing for el-
egant, simple, and concise specification of any static pattern
of parallel, concurrent or distributed computation.

Categories and Subject Descriptors
D.1.1 [Programming Techniques]: Concurrent Program-

ming—Distributed programming, Parallel Programming; D.3.2

[Programming Languages]: Languages Classifications—
Concurrent, distributed and parallel languages, Applicative
(functional) longuages

General Terms
Languages

Keywords

Parallel Functional Programming, Coordination, Haskell, Par-

allel Software Engineering

1. INTRODUCTION

Haskell[27] is a general purpose, pure functional program-
ming language incorporating recent innovations in program-
ming language design. It has now become de facto standard
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for the non-strict (or lazy) functional programming commu-
nity, with several compilers available.

The idea of parallel functional programming dates back to
1975 [23, 12] when Burge [5] suggested the technique of
evaluating function arguments in parallel, with the possi-
bility of functions absorbing unevaluated arguments and
perhaps also exploiting speculative evaluation. In general,
parallelism obtained from referential transparency in pure
functional languages is of too fine granularity, not yielding
good performance. The search for ways of controlling the
degree of parallelism of functional programs by means of
automatic mechanisms, either static or dynamic, had little
success [15, 26, 18]. Compilers that exploit implicit paral-
lelism have been facing difficulty to promote good load bal-
ancing amongst processors and to keep communication costs
low. On the other hand, explicit parallelism with annota-
tions to control the demand of evaluation of expressions,
creation /termination of processes, sequential and parallel
composition of tasks, and mapping of these tasks onto spe-
cific processors have been proposed by many authors |6, 16,
28, 32] with good performance results. But, in general, in
those approaches computation and communication are in-
terwinded, not allowing reasoning about these elements in
isolation.

The coordination paradigm [11] is an attempt to separate
concurrent programs in two components: coordination and
computation. There is a consensus that the abstraction of
concurrent programming in these two levels provides higher
degrees of madularity, composability, generality, portability,
possibility of formal analysis of parallel programs, and sup-
port for heterogeneous computing [11, 10]. The relation of
this new paradigm to parallel functional programming can
be seen from two perspectives. In the first one, coordination
is an important tool for facing the main difficulties of parallel
functional programming [3, 19]. In the second one, higher-
order and non-strictness turn functional languages adequate
to the specification of coordination of tasks [8, 24].

Haskelly (7, 21] is a general concurrent extension to Haskell
based on coordinafion aimed at distributed memory parallel
architectures'. Haskelly offers a clean and complete sepa-

1At present, Haskelly has been implemented for SP2 and
CoP’s (clusters of PC’s) architectures.



ration between sequential computation and coordination, at
semantic and syntactic levels, by the use of an orthogonal
configuration language (HCL) for coordination of Haskell
sequential processes. The non-strict nature of Haskell is
essential to allow generality and total transparency between
coordination and computation, a property known as process
hierarchy. Many benefits of Haskelly parallel programming
engineering are due to this property. Process hierarchy al-
lows for independent development of program components,
reusing of existing and tested Haskell modules, formal anal-
ysis of parallel programs based on Petri net formalism, effi-
cient implementation over virtually any distributed memory
parallel architecture, etc. Haskellx model of concurrency is
inspired by Occam [17], a language based on Hoare’s CSP
(Calculus of Sequential Proceases)[14]. The decision for fol-
lowing the Occam computational model had as goal to make
possible the automatic analysis of formal properties and,
thus, to help the programmer to reason about the applica-
tion under development. An environment to analyze formal
properties of Haskell; applications using Petri nets is de-
scribed in [21].

The structure of this paper comprises six sections. Section 1
is this introduction. In Section 2, the Haskelly parallel pro-
gramming environment is described. In Section 3, Haskell
is compared to other parallel functional languages based on
coordination. In Section 4, some Haskelly programs are pre-
sented to demonstrate its expressiveness. Conclusions and
lines for further work are discussed in Section 5. Bibliogra-
phy is presented in the Section 6.

2. THE HASKELL, LANGUAGE

Haskell, provides an integrated coordination environment
for developing, simulating and analyzing formal properties of
generic concurrent systems. Applications are structured in
two layers. The sequential one relates to functional modules,
sequential Haskell programs. The communication level (HCL,
or Haskelly Coordination Language) “glues” functional mod-
ules together forming a network of processes, later mapped
onto processors of a distributed parallel architecture. Fig-
ure 1 depicts the Haskell; programming environment. After
writing a Haskell; program, there are two possibilities: ei-
ther to generate its executable code, or to translate it into
Petri nets. In the former case, the system executes in a
distributed memory environment. In the later case, it is
possible to analyze formal properties of the topology of the
network structure using INA [29], a Petri net simulator and
analyser, helping programmers to reason about the system.

In what follows, we show how Haskell; programs are spec-
ified at coordination level, presenting informally the syntax
and semantics of the HCL constructors. At the computa-
tional level, standard Haskell programming is used.

2.1 The Structure of HCL Configurations

A HCL program is composed by four sections, which re-
spectively declares module interfaces, channels, distribution
of processes onto processors, and activations of functional
processes. Each kind of HCL declaration is described be-
low. An application has also a header in which its name
and interface are declared. The declaration below shows
an example of a header:
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Figure 1: Haskelly Programming Environment

application App < p1, - ,px > (f1,t2, - ,ta) 2
(‘Ul yU2, lu’m-)

It specifies that an application, called App, has n dynamic
arguments (3 to ¢,) and m outputs (u1 to um,). Applica-
tion interfaces will permit, in the near future, to include in
Haskelly support for hierarchical composition of Haskell,
programs. The idea is to generalize the notion of instan-
tiation of processes, allowing them to be instantiated from
configurations, similarly to the one implemented in K2[1],
providing new opportunities for reuse, now at coordination
level. Static parameters (p; to p,) allow support for pa-
rameterized applications. The compiler must replace actual
values, provided at compile time, for the formal parameters
in the HCL code.

2.2 Instantiating Functional Processes

In Haskelly, functional processes are instances of functional
modules. Module absiractions must configure the interface
of processes being instantiated from a functional module.
Input and output ports enable processes to communicate
amongst themselves. Ports are strongly typed and of ground
type, either basic (integer, fioating points etc.) or structured
over basic ones (lists of integers, trees of booleans, etc.). A
module abstraction is defined as following:

madule interface I from M
input ip; :: &
input ips,ipa[l..n] == £2
input f (ip4,sps,ips) :: ta
output op; :: ta
output opz2,0p3 :: is
output g (opa[l..n]) =: £
instances m(1..8]

Here, the module interface I defines an interface for func-
tional module M. This module declares a function main
with the following interface:

main:: £, — i3 — t3 — 10(i4,ls,te)
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Note that ¢1, i3, t3, L4, L5, te, and tg are Haskell types. Each
process ml[i], for i from 1 to 8, instantiated from M using the
interface I, has n + 5 input ports, associated with the three
arguments of its main function (one input port declaration
for each argument), and n + 3 output ports associated with
the three elements of the tuple returned by main (one out-
put declaration for each tuple element). The input port ip;
is associated with the first argument. The input ports ips
and ips[i], for i from 1 to n, where n is a parameter, asso-
ciated with the second argument, yields a non-deterministic
choice. The actual value of the argument comes from the
first port to be ready to receive a value?. Function f receives
a list of values of type t3 ([t3]), whose elements are received
from ports ip4, ips and ipe, and transforms it into a single
value of type t3, which is passed to the third argument of
main. The output port op; sends the value of the first tuple
element. Ports opz and opa model non-deterministic output
ports. The value is sent through one of the ports, chosen
non-deterministically, that are connected to an input port of
another process that is ready to receive a value. Ports opa[1]
to op4[n] send the value of the third element of the tuple.
The function g receives as argument this value and the num-
ber of ports through which the value must be distributed.
Its result type is a list of values of type [t§]. Each element of
this list is then sent through a port. During process execu-
tion, the lazy semantics of functional processes guarantees
that an input port is read only when its associated argu-
ment value is required for computation of some expression.
A process remains blocked until a value is available on the
channel (synchronous communication).

2.3 Communication Channels

Similarly to Occam[17], Haskell channels are point-to-point,

unidirectional and synchronous. Sirict communication se-

mantics restricts values exchanged between processes to those
already evaluated. Using the HCL connect constructor, a

channel is statically declared through the connection of two

ports from different processes, of the same type and oppo-

site direction. For instance, observe the following piece of

HCL code:

connect po.a to p;.b
connect master.cli] to slave[j).c stream 100,
for i=1..n, j=1..m such that i <=j

There are two channel declarations. The first one defines a
channel that connects output port a of process po to input
port b of the process p,. The channel type is the type of
the involved ports. The second one uses an indexed form to
declare m x n channels which connect output ports c[i] of
process master to input ports c of the processes slaves(j],
for i from 1 to n and j from 1 to m, such that i is less
than j. These ports are connected through a lazy stream
channel, which may transmit elements of a list one at a
time, whenever it is evaluated. Lazy strearn channels are
implemented using Haskell lazy lists and allow transparent
process interaction during computation. The number 100,
in the declaration above, specifies that the list must be sent
in blocks of that size, controlling communication overheads

?The semantic of input ports non-deterministic choice is in-
spired in the PRI ALT constructor semantic in OCCAM.
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and granularity. If the block size is omitted, size one is
assumed by default.

Haskelly neither allows dynamic channel creation nor full-
duplex communication. One could argue that this is too
restrictive. However, our emphasis is to provide a model
of channel that makes possible to statically analyze formal
properties of the process network. Besides that, strict rules
force programmers to have a better understanding of the
system and to specify precisely what they want to do.

Non-determinism and Streams

If stream channels connect n ports (either input or out-
put) involved in a non-deterministic communication, it is
important to note that a non-deterministic choice is made
for each element in the list to be transmitted or received non-
deterministically. This allows the merge of several streams
into a single list on input side, or the split of a list in sev-
eral streams on the output side. In the program described
in Section 4, we use this feature to model management of
demands and responses in a client/server application.

Indexing and Parameterization

The parameterization and support for indexed referencing of
processes and ports, possibly using variables in conjunction
with for and such that clauses, allow the management of
HCL code of a large number of processes and the easier
representation of complex network topologies.

2.4 Initialization, Execution, and Termination
Haskell, programs start by the explicit activation of all of
its processes in start declarations. Execution is demand
driven by the arguments on input ports. Values may be
passed explicitly to processes. Examples of start declara-
tions follow:

start fpl 7 7
start fp2 [1234]7b? 7
start repetitive fp2 7 f, where f in even_values

The first declaration activates process fpl, which will re-
ceive the value from its two input ports. The first and third
ports of process fp; receive values explicitly. They are not
connected to a channel. The third start declaration is an
example of a repeated activation. Process fp2 will be ac-
tivated repeatedly until the hole program ends. On each
activation, it demands arguments on its first port, while, on
the second one, values are explicitly given from an infinite
list, generated by function even_values. In the where clause
of repetitive processes, it is a necessary condition that the
list or lists declared be infinite. The use of the symbol ? as
a list element means that the corresponding value must be
obtained through communication, i.e., not explicitly. If an
element of the list is ?, it must be received from the port.
‘This feature makes possible to avoid deadlocks on cyclic net-
works by explicit activation of some processes in the cycle.
The solution of the dining philosophers problem presented
in Section 4.1 use this approach.

Haskell code can be written inside HCL code using #’s de-
limiters. For instance, the function even_values is declared
in the following way:



even_values :: [Int]
even_values = [1,3,..]

Stream communication and Repetitive Processes

In Haskelly, a port of type [t] of a non repetitive process
can be connected to a port of type ¢t of a repetitive process.
On each activation, the repetitive process will consume an
element of the siream.

Termination Condition

A Haskeliy application terminates whenever all of its non
repetitive processes terminate. Thus, a program with only
repetitive processes never terminate.

2.5 Placement of Functional Processes

The execution environment of Haskell; applications is a net-
work of processing nodes, onto which functional processes
are statically mapped. Programmers allocate processes in
groups, in which processes execute concurrently. Before task
allocation, nodes are classified according to their fegtures,
such as node processor speed (fast or slow), amount of mem-
ory available (large or thin) or cornmunication speed (high
or low), in file node.classes. In the node.id file, each node
must be assigned to at most one feature of each class. The
main goal of classification is to model heterogeneity of the
execution environment, allowing the HCL Compiler to de-
termine the best allocation of processes to nodes. Functional
processes remain mapped onto 2 node during all their life.
The alloc constructor used to define the mapping scheme is
exemplified below:

alloc (wide, fast) po, p1, P2
alloc {s[ow; pg[lil, fori=1n
alloc (slow) (pali], for i=1..n)

Processes po, p1, and pa are allocated on a processor with
features fast and wide from classes speed and memory,
respectively, while n processes pali] are mapped onto distinct
nodes with feature slow of class speed. There is no reference
to the class memory, allowing a wide or thin node to be
allocated for ps. In the last declaration, the n processes pa[i]
are mapped onto the same node.

2.6 A Brief History of Haskell, Evolution

Haskelly is still an evolving language. In its first version[22],
message passing primitives, send () and receive (7 =),
were defined in Haskell, on top of the IO monad. In order
to allow the analysis of the Haskell# programs using Petri
nets, message passing primitives were eliminated from the
computation language (7, 21]. This kept process hierarchy
but decreased the expressive power of Haskellx in specify-
ing some common static patterns of parallel and concurrent
computation. The use of strearn communication made pos-
sible for Haskelly to be as expressive as in its original version
without any loss of process hierarchy. The Haskell version
presented here is the first to include streams, and also new
facilities to build data parallel programs and a revised notion
of initialization and finalization of programs.

3. RELATED WORK

The relation between coordination and parallel functional
programming can be seen from two perspectives. In the first
one, coordination is considered an important tool for par-
allel functional languages and models, because of its ability
to abstract parallel concerns from specification of computa-
tion. Eden(2] and Caliban(19, 31] are examples of languages
focused on these ideas. In the last one, higher-order and
non-strict style of functional programming has been seen
as an powerfull way to specify coordination amongst tasks.
SCL][8] and Delirium[24] are examples of languages that use
the functional paradigm at coordination level. Haskellx be-
longs to the first category. Likewise Eden and Caliban, it
uses Haskell for specifying computation, assuming a static
network where functional processes communicate through
point-to-point and unidirectional channels. Below, we dis-
cuss the most important points which distinguish Haskell 4
from the other known parallel functional languages based on
coordination:

e The adoption of a configuration based®[20] coordina-
tion language (HCL) provides complete separation on
the construction of computational code (pure Haskell)
from coordination one (HCL). In Eden and Caliben,
examples of embedded coordination languages, primi-
tives extend Haskell syntax for “gluing” processes to
the coordination medium, while, in Haskell, HCL is
orthogonal to Haskell. This Haskelly feature allows
the parallelization of sequential pre-existent Haskell
programs and yields independent specification and de-
velopment of computational and coordination code, re-
ducing development costs by code reuse. The ability
for composing programs from parts also makes Haskell
more suitable for larger scale parallel programming
than Eden and Caliban [10, 9] and forces program-
mers to adopt a coarse grain view of parallelism, use-
ful in high-latency distributed architectures, such as
clusters of PC’s.

e The modelling of parallel architectures. It is a widely
acknowledged fact that generic mapping of processes
to processors is a difficult problem to be treated au-
tomatically. The mechanisms for this purpose, either
dynamic or static, are not efficient at all instances.
‘We decided to follow a siatic and ezplicit approach in
Haskell; for allocation of processes, similarly to Cal-
iban. The only difference is that Haskelly makes pos-
sible to model both processes needs for optimal exe-
cution and architecture characteristics. The program-
mer is then responsible to find explicitly the best map-~
ping between functional processes and processors using
these information.

e The analysis of formal properties using Petri nets. When
developing Haskelly, one of our main concerns was to
support the analysis of formal properties of programs.
A compiler that translates HCL into INA[29], a Petri
net analysis tool, was developed by Lima[21].

e The easy and efficient implementations. Unlike Eden
and Caliban, Haskell 3 needs no run-time system sup-
port. It can be easily implemented by gluing a fast

3The configuration paradigm was developed in the context
of specification of distributed systems[ZOf
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message passing library to a state-of-the-art sequential
Haskell functional compiler®. Assuming that Haskell,
applications are coarse grain, one can take advantage
of the best technology for compilation of sequential
functional programs.

Generality. Haskelly was developed to give appropri-
ate support to the specification of general concurrent
systems in a unified way. Caliban, Delirium e SCL
are well suited for parallel applications, but turn dif-
ficult to specify some kinds of assynchronous applica-
tions, such as client/server ones, for example. Eden
has features for implementation of resctive aystemns,
like non-deterministic operations and dynamic reply
channels, but has no explicit concerns about distri-
bution.

4. HASKELL, EXAMPLES

Following the terminology defined in [30], we distinguish be-
tween two kinds of concurrent systems: transformational
and reactive. The first one relates to systems that receive
some input and yield an output at its end, while the second
one relates to systems where the central task is not to com-
pute a result, but to maintain some interaction with its envi-
ronment. In general, reactive systems never terminate. Op-
erating systems and some kinds of control applications are
examples of them. Parallel systems can be seen as concur-
rent systems with transformational behaviour. In general,
applications belonging to this subset of concurrent systems
have requirements of efficiency, because of their time con-
straints, while the others have requirements of structuring
software or distribution. Distributed systems are concur-
rent systems where processes are distributed across a net-
work of computers. Recently, the emerging of cluster com-
puting technology has inspired a new distributed view of
parallelism. This is one of the important facts which let us
to believe that Haskell 4 is a useful tool for programming on
clusters.

For building parallel programs, Haskelly offers a general
functional view of parallelism. Using this approach, data
parallelism® can be easily implemented by instantiation of
several processes that perform the same task for process-
ing of parts from some large data structure. The data can
be distributed amongst processes and joined after parallel
computation using special user-defined data parallel oper-
ators, programmed in Haskell, specified at configuration
level (HCL) (see the syntax of declaration of ports in Sec-
tion 2.2). We intend to define, in the near future, a set
of pre-defined data parallel operators to be used in HCL
programs. Indexing notation allows referencing several pro-
cesses concisely, a requirement of data parallel programming
environments.

The explicit and static notion of processes communicating
through a network is well suited to specification of general

“We have successfully used MPI and GHC, respectively, in
our implementations

® Data Parallelism is considered the most common and effi-
cient form of parallelism, providing high scalability, because
the amount of parallelism exploited depends on the amount
of data to be processed. However, it is less general than
Junctional parallelism, in which it can be easily simulated.

concurrent systems. Several languages, notably based on
configuration, use this approach to deal with distributed sys-
tems([20], but not dealing with requirements of parallel ones.
In this section, we present the implementation of some com-
mon concurrent applications in Haskelly. Our goal here is
to demonstrate how expressive is Haskelly to express well-
lmown patterns of general static concurrent systems.

The Haskelly code for the examples presented in this paper
can be found at wvww.cin.ufpe.br\~ fhcj\sac2002_sources.

4.1 The Dining Philosophers Problem
‘The Dining Philosophers is a common synchronization prob-
lem from concurrency theory, stated as follows: a number of
philosophers are seated around a table forming a circle, each
one with a plate of spaghetti and two forks to eat it. Each
fork is shared by two adjacent philosophers. The philoso-
pher can only eat after getting the two forks in a certain
order (left to right). Thus, if a philosopher is eating, the
two adjacent ones must be thinking. If all the philosophers
get their left forks at the same time, they will wait forever
for the right one. This situation models deadlock, a state
where all processes belong to a communicating group in a
system are waiting for another process in the group.

The Haskell4 solution is very simple. Assume n philosopher
processes connected in a ring, each one with two input ports
for receiving the left and right forks and two output ones to
give the forks to its left and right neighbours (See Figure 2).
Philosophers are thinking when they have no forks or eating
when they have both left and right forks. In start declara-
tion, we distribute the forks amongst philosophers, such that
the maximal number of philosophers will initiate eating. If
there ig an even number of philosophers, the remaining fork
is given to the last one. The other philosophers will initiate
thinking and will try to receive forks from their neighbours.
It is not difficult to verify that this solution thereafter never
deadlocks.

Fork

hil[0
p []

< < <
hil[3
Leniis [ ]

Figure 2: Dining Philosophers Haskelly Network

The code for the functional module Philosopher.hs is:

-- MODULE FILE: Philosopher.hs
module Philosopher(main) where
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data Fork = Fork
main :; Fork — Fork — I0 (Foxrk, Fork)
main rf 1f = eat rf 1f >> think > (rf,1f)

The HCL configuration code to the network is:

application DiningPhilosophers<n>
module Philosopher

input rforkin ::Fork
input lforkin ::Fork
output rforkout ::Fork

output lforkout ::Fork
instamnce phill[0..n-1]
for i=0..:n-1
conmect phil[i]l.lfork to phill(i+1) mod n]
connect phil[(i+1) mod mn].rfork to phill[il
alloc phil[ig. for i=0..m-1
start repetitive philli]l 7 7,
for i=0..n-2 & (i med 2 = 1)
start repetitive philli] £ £,
for i=0..n-2 & (i mod 2 = 0),
where f in Fork:[?7,7..]
start repetitive philln-1] £ ?,
for n mod 2=0, vhere f im Fork:[?,7..]

4.2 The Alternating Bit Protocol

The Alternating Bit Protocol (ABP) is a simple yet effec-
tive protocol for managing retransmission of lost messages
on low-level implementations of messaging-passing model.
Considering a receiver process A and a sender process B
connected by two stream channels, the protocol ensures
that whenever a message transmitted from B to A is lost, it
is retransmitted.

o)
&

Figure 3: Alternating Bit Protocol Network

Figure 3 shows the process network of the ABP application
specified in Haskell;. Processes abp_send and abp_await
model the sender while processes apb_out and apb_ack
moaodel the receiver. Processes corrupt_send and corrupt_ack
model two unreliable virtual channels that link the sender
and receiverr The apb_send process sends a stream of
messages to apb_out through its stream port as. Process
apb_await guarantees that each message, received from stream
port as, will be transmitted correctly, through stream port
as’, assuming an unreliable medium for communication, mod-
elled by corrupt_send process, which receives each message,
from stream port as, and verifies if it is corrupted or not
using an oracle stream of bits (0sp). Non corrupted mes-
sages are sent from corrupt_send, from stream ports bs; and
bss, to apb_out and to apb_ack processes respectively, which
receives messages from its stream ports named bs. Process
apb_ack sends back an acknowledgement bit to abp_await
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for each message using its stream of bits port cs, through
an unreliable medium, modelled by corrupt_ack. The order
of this stream of bits is used by apb_swait for verifying if the
message was correctly sent or not. If the message was incor-
rectly transmitted, they are retransmitted by apb_await. We
prove the correctness and formal properties of this program
using Petri nets.
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Generic Client/Server System

Figure 4: Client/Server System Haskelly Network

Now, a typical example of a reactive system is presented:
a Client/Server application, inspired by the generic one de-
scribed in [4]. Here, servers process demands from clients
processes (requisitions). Our purpose is to show how ex-
pressive is Haskelly for representing reactive systems and to
demonstrate use of non-determinism. Clients make an au-
tomatic choice amongst free servers when making a demand
from their reg[i] ports, each one associated to a server. They
automatically receive responses from servers, through their
respli] ports, one for each server too. All queries must iden-
tify the source client. Observe that there is no need for a
manager process to decide in which server to process each
query, as needed in the solution presented for Eden[4]. We
model this using only the support for non-determinism of
Haskelly.

4.4 Matrix Multiplication on the Mesh

mm|2][2]

al
ai2.2), bi2.2)

Figure 5: Matrix Multiplication on the Mesh:
Haskelly Network for a 2 X 2 Grid

The matrix multiplication on the mesh problem was ex-
tracted from [25). This problem is stated as follows: given



two n X n matrices A and B, such that initially A[i, §] and
Bli, j} reside in processor P[i,j), compute C = A.B, such
that CJi, j] resides in processor P[i, j]. The solution consists
of shifting of values between processes on the grid at each
step until the final result is obtained. In its simple form, this
solution has too fine granularity for obtaining good speedup,
but it is very interesting for demonstrating how expressive
Haskelly is to specify a systolic pattern of parallel compu-
tation on a grid. Many parallel algorithms use this scheme.
Figure 5 presents part of the network of processes of this
application, emphasizing the grid of processes.

4.5 Photon Transport Simulation

MCP-Haskelly is a parallel version of MCP-Haskell[13], a
program that implements a simplified form of the Monte
Carlo Particle Transport Problem, which involves simulat-
ing statistical behavior of particles (photons, neutrons, elec-
trons, etc.) while they travel through objects of specified
shapes and materials. MCP-Haskell is based on a For-
tran code developed at Los Alamos over many years, called
MCNP (Monte Carlo N-Particle)([33].

events B tallies 1
r* tracks 1] ol ’
’-. e
] events s tallies ZFP&

tracks 2 tah

; T
[

tallies 4

é i i stats 1 stats 2
i 9 9 '
prob_def e entries

Figure 6: MCP-Haskell; Process Network

MCP-Haskellx males use of the Haskelly way to implement
data parallel and pipeline parallelism. The experience with
MCP-Haskellx specification demonstrates how easy is to
parallelize pre-existent Haskell code with Haskell,. There
was no need for code rewritting or modification. It was
only necessary some restructuring of the original programs
in functional modules.

Data parallelissn allows processing of particles in parallel,
because each photon is independent and can be tracked and
tallied independently. Each track and tally process compo-
sition computes a disjoint set of photons. The process statis-
tics collects information yielded from tallying and computes
statistical information about the simulation. A pipeline con-
nects processes prob_defs, tracks and tallses for allowing them
to operate in parallel. Stream communication is essential for

this purpose, but the performance benchmark has shown
that the gain in performance obtained from use of the pipe
line is very poor, because almost all computation is per-
formed by the track processes.

Figure 7 compares the speedup obtained for a problem in-
stance of this application (solid line) to the linear (opti-
mal) speedup (dashed line), when executing over a cluster of
Linux PC’s (6 Pentium II MMX 350MHz and 2 Pentium III
550MHz interconnected by Fast Ethernet (100Mbs) network
interface). Here, Haskelly uses MPI for process communi-
cation and GHC for compilation of functional processes.
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Figure 7: Speedup for MCP-Haskell; executing on
a Cluster of Linux PC’s

5. CONCLUSIONS

In this paper, we presented Haskelly, a parallel extension to
Haskell based on coordination. Its ability to compose par-
allel programs from sequential parts in a transparent way
makes it suitable for the definition of the most important
patterns of parallel, concurrent and distributed computa-
tion in a unified way. We showed the specification of some
applications using Haskelly to demonstrate its expressive-
ness. Our goal now is to implement large-scale applications
of practical interest, for making performance benchmarking
on clusters, and for improving Haskelly model of coordi-
nation and its environment for program construction. At
present, we started to develop an integrated environment
for graphical specification of parallel and general concurrent
systems, to be used in education (teaching of parallelism and
concurrency in undergraduate courses) and also for practi-
cal development and management of complex applications.
‘We also continue to investigate the applicability of Petri net
formalism to the analysis of formal properties of Haskelly
parallel programs. At present, a new specification for trans-
lation of Haskelly applications to Petri nets has been pro-
duced, now dealing with stream communication.
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