
Coordinating Functional Processes with HaskelL

F. H. Carvalho Jr.
Centro de Infom~tica

Universidade Federal de
Pernambuco

R. Prof. Luiz Freire, sin
Recife, Brazil

fhcj@cin.ufpe.br

R. M. F. Lima
Associa(;Ao de Ensino

Superior de Olinda
Av. Transamaz6nica, 405

O]inda, Brazil
ricardo@cs.chalmers.se

R. D. Lins t
Depto. de EletrOnica e

Sistemas
Universidade Federal de

Pernambuco
R. Acad. H(Hio Ramos, sin

Recil'e, Brazil
rdl@ee.ufpe.br

ABSTRACT
This paper presents Haskell#, a parallel functional language
based on coordination. Hazkell# supports lazy atream com-
mnnication and facilities, at coordination level, to the speci-
fication of data parallel programs. Haskell~ supports a clean
and complete, semantic and syntactic, separation between
coordination and computation levels of programming, with
several benefits to parallel program engineering. The imple-
mentation of some well-known applications in Haskell# is
presented, demonstrating its expressiveness, allowing for el-
egant, simple, and concise specification of any static pattern
of parallel, concurrent or distributed computation.

Categories and Subject Descriptors
D.I.1 [P r o g r n m ~ Techniques] : Concurrent Program-
ming--Diatribnted programming, Parallel Programming; D.3.2
[P r o g r a m m i n g Languages] : Languages Cla-qsifw~ations--
Concurrent, diatributed and parallel languagea , Applicatiue
(fitnctional) lan..qu, ag ea

General Terms
Languages

Keywords
Parallel Functional Programming, Coordination, Haskell, Par-
allel Software Engineering

1. INTRODUCTION
Haakeil[27] is a general purpose, pure functional program-
ming language incorporating recent innovations in program-
ruing language design. I t has now become de facto standard

*Also at Departamento de Estatistica e Inform~tica, Uni-
versidade Catdlica de Pernambuco, Recife, Brazil.
tSponsored by CNPq grants 463858/00-0 and 523974/96-5.

2002 ACM Symposium on Applied Computalion Madrid, Spain
Permission to make digital or herd copies of all part of this work for
pe~onal or classroom use is grant~ without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy othe~visc, to
republish, to post on servers or to redistribute to lists, requires prior spccific
permission and/or a fee.

SAC 2602, Madrid, Spain
(~) ACM 1-58113-445-2/02/03...|5.00

for the non-strict (or lazy) functional programming commu-
nity, with several compilers available.

The idea of parallel functional programming dates back to
1975 [23, 12] when Burge [5] suggested the technique of
evaluating function arguments in parallel, with the possi-
bility of functions absorbing unevaluated arguments and
perhaps also exploiting speculative evaluation. In general,
parallelism obtained from referential transparency in pure
functional languages is of too fine granularity, not yielding
good performance. The search for ways of controlling the
degree of parallelism of functional programs by means of
automatic mechanisms, either static or dynamic, had little
success [15, 26, 18]. Compilers tha t exploit implicit paral-
lelism have been facing difficulty to promote good load bal-
ancing amongst processors and to keep commu=ication costs
low. On the other hand, explicit parallelism with annota-
tions to control the demand of evaluation of expressions,
creation/termination of processes, sequential and parallel
composition of tasks, and mapping of these tasks onto spe-
cific processors have been proposed by many authors [6, 16,
28, 32] with good performance results. But, in general, in
those approaches computation and communication are in-
terwinded, not allowing reasoning about these elements in
isolation.

The coordination paradigm [11] is an a t tempt to separate
concurrent programs in two components: coordination and
computation. There is a consensus that the abstraction of
concurrent programming in these two levels provides higher
degrees of modularity, compoJabillty, generality, portability,
poasibilit9 oJ formal analpais of parallel programs, and sup-
port [or heterogeneous computing [11, 10]. The relation of
this new paradigm to parallel functional programming can
be seen from two perspectives. In the first one, coordination
is an important tool for facing the main ditticulties of parallel
functional programming [3, 19]. In the second one, higher-
order and non-strictness turn functional languages adequate
to the specification of coordination of tasks [8, 24].

Ha~kell#[7, 21] is a general concurrent extension to Haskell
be~ed on coordination aimed at distributed memory parallel
architectures t. Haskell# offers a clean and complete sepa-

ZAt present, Haskell# ha~ been implemented for SP2 and
CoP's (clusters of PC's) architectures.

393

ration between sequential computat ion and coordination, at
semantic and syntactic levels, by the use of an orthogonal
configuration language (HCL) for coordination of H a s k e l l
sequential processes. The non-strict nature of H~ske l l is
essential to allow generality and total t ransparency between
coordination and computation, a property known as process
hierarchy. Memy benefits of Haskell# parallel programming
engineering axe due to this property. Process hierarchy al-
lows for independent development of program components,
reusing of existing and tested Haske l l modules, formal anal-
ysis of parallel prograrn~ based on Petri net forrn~|ism, effi-
cient implementation over virtually any distributed memory
parallel arc2dtecture, etc. Haskell# model of concurrency is
inspired by Occam [17], a language based on Hoare's CSP
(Calculus of Sequential Processes)[14]. The decision for fol-
lowing the Occam computational model had as goal to make
possible the automatic analysis of formal properties and,
thus, to help the programmer to reason about the applica-
tion under development. An environment to analyze form~l
properties of Haskell# applications using Petri nets is de-
scribed in [21].

The structure of this paper comprises six sections. Section I
is this introduction. In Section 2, the l-Iaslmll# parallel pro-
gr~rnrn~ng environment is described. In Section 3, Haskell#
is compared to other parallel functional languages based on
coordination. In Section 4, some Haskell# programs are pre-
sented to demonstrate its expressiveness. Conclusions and
lines for further work are discussed in Section 5. Bibliogra-
phy is presented in the Section 6.

2. THE HASKELL# LANGUAGE
Haskell# provides an integrated coordination environment
for developing, simulating and analyzing formal properties of
generic concurrent systems. Applications axe structured in
two layers. The sequential one relates to fimc~iona[modules,
sequential Haske l i programs. The communication level (HCL,
or Haskell# Coordination Language) ~glues" functional mod-
ules together forming a network of processes, later mapped
onto processors of a distributed parallel architecture. Fig-
ure 1 depicts the Haskell# programming environment. Affair
writing a Haskell# program, there are two possibilities: ei-
ther to generate its executable code, or to translate it into
Petri nets. In the former case, the system executes in a
distributed memory environment. In the later case, it is
possible to analyze formal properties of the topology of the
network structure using INA [29], a Petri net simulator and
analyser, helping programmers to r e a ~ n about the system.

In what follows, we show how HaskelI# programs are spec-
ified at coordination level, presenting informally the syntax
and semantics of the HCL constructors. At the computa-
tional level, s tandard H a s k e l l programming is used.

2.1 The Structure of HCL Configurations
A HCL program is composed by four sections, which re-
spectively declares modu/e interfaces, channels, disfribution
of proc,~saea onto processors, and actieations of f~nctional
processes. Each kind of HCL declaration is described be-
low. An application has also a header in which its name
and interface are declared. The declaration below shows
an example of a header:

F i g u r e 1: I-Iaakeli~# P r o g r a m m i n g E n v i r o n m e n t

a p p l i c a t i o n App < p l , ' ' " ,Pk > (t l , t2 , . . . ,Z,z) --+
(~ ,',,2,... ,,,,,,)

It specifies tha t an application, called App, has n dynamic
arguments (tl to ~,,) and m outputs (ul to u~n). Applica-
tion interfaces will permit, in the near future, to include in
Haskell# support for hierarchical composition of Haskeil#
programs. The idea is to generalize the notion of instan-
tiation of processes, allowing them to be instantiated from
configurations, similarly to the one implemented in K2[1],
providing new opportunities for reuse, now at coordination
level. Static parameters (pl to pn) allow support for pzk-
rameterized applications. The compiler must replace actual
values, provided at compile time, far the formal parameters
in the HCL code.

2 . 2 I n s t a n t i a t i n g F u n c t i o n a l P r o c e s s e s
In Haskell#, functional processes are instances of functional
modules. Module abstractions must configure the interface
of processes being instantiated from a functional module.
Input and output ports enable processes to communicate
amongst themselves. Ports are strongly typed and of ground
type, either basic (integer, floating points etc.) or s tructured
over basic ones (lists of integers, trees of booleans, etc.). A
module abstraction is defined as following:

m o d u l e i n t e r f a c e I f r o m M
i n p u t ipa :: ~x
i n p u t ip~,ipa[1..~] :: t2
i n p u t y (ip4,ip~,~pe) :: ts
o u t p u t op1 :: Zt
o u t p u t op2,ops :: ts
o u t p u t .q (op4[1. .n]) :: f;~
i n s t a n c e s m[1. .8]

Here, the module interface I defines an intedaco for func-
tional module M. This module declares a function main
with the following i n t e d a ~ :

main:: ~t "-+ t~ .-.t t ' s -+ IO(t4, ts , ts)

394

Note t ha t tx, t2, t ' q, t4, ts , re, and t~ axe Haskeli types . Each
process m[s], for ~ from i to 8, ins temtiated from M using the
i n t e r f a ~ I , has n 4" 5 inpu t por ts , associa ted with the th ree
arguments of i ts main funct ion (one input po r t dec lara t ion
for each argument) , and n + 3 ou tpu t por te associa ted with
the th ree e lements of t h e tup le re tuxned by main (one out-
pu t declarat ion for each tup le element) . The input p o r t ipt
is associated wi th the first a rgument . The input por ts ip2
and ip3[i], for i from 1 to n, where n is a parameter , asso-
c ia ted with the second argument , yields a non-determinis t ic
choice. The actual value of the a rgument comes from the
first por t to be r eady to receive a value 2 . Funct ion f receives
a list of values of t y p e ts ([t_~]), whose elements are received
f ~ m por ts ip4, ips and ips, and t ransforms it into a single
value of t ype t's, which is passed to t he t h i rd a rgument of
main. The output port opx sends the value of the first t up le
element. Por t s op2 and spa model non-determinis t ic o u t p u t
ports . The value is sent th rough one of the ports , chosen
non-determinist ical iy, t ha t are connected to an input po r t of
another process t h a t is r eady to receive a value. Por ts op411]
to op4[n] send the value of the t h i rd e lement of the tuple .
The function g receives as a rgument this value and the hum-
her of por ts th rough which the value mus t be distributed.
I ts result t ype is a list of values of t y p e [t~]. Each element of
this list is then sent th rough a port . Dur ing process execu-
tion, the lazy semant ics of funct ional processes guarantees
t ha t an input po r t is r ead only when its associated argu-
ment value is required for compu ta t ion of some expression.
A process remains blocked unti l a value is available on the
channel (sl/nchronou8 communication).

2.3 Communication Channels
Similar ly to Occam[17], Haskel i# channels are point-to-point,
unidirectional and synchronous. Strict communication se-
mantics restr icts values exchaaged between processes to those
a l ready evaluated. Using the HCL c o n n e c t constructor , a
channel is s ta t ica l ly declared th rough the connection of two
por ts from different processes, of t he same t y p e and oppo-
site direction. For instance, observe the following piece of
HCL code:

c o n n e c t po.a t o p] .b
c o n n e c t master.c[i] t o slave~].c stream 100,

fo r i = l . . n , j = l . . m s u c h t h a t i < = j

There are two channel declarat ions. The ftrst one defines a
channel t ha t connects o u t p u t por t a of process p0 to input
por t b of the process pt- The channel t y p e is the type of
the involved ports . The second one uses an indexed form to
declare m x n r~p.nneis which connect ou tpu t por ts c[i] of
process master to input por ts c of t he processes elaves~'],
for i from 1 to n and j from 1 to m, such tha t i is less
than j . These por ts are connected th rough a lazy stream
channel, which m a y t r a n s m i t elements of a list one a t a
t ime, whenever it is evaluated. Lazy stream channels are
implemented using Haakell lazy lists and allow t r anspa ren t
process interact ion dur ing computa t ion . The number 100,
in the declara t ion above, specifies t h a t the list mus t be sent
in blocks of t h a t size, controll ing communica t ion overheads

2The sern:Lntic of input por t s non-de terminis t ic choice is in-
spi red in the P H I ALT cons t ruc tor semant ic in OCCAM.

and granulari ty. I f the block size is omi t ted , size one is
a ssamed by default .

Haskell# nei ther al/ows dynamic channel creat ion nor full-
duplex communicat ion. One could argue t h a t this is too
restrictive. However, our emphasis is to provide a model
of channel t h a t makes possible to s ta t ica l ly analyze formal
proper t ies of t he process network. Besides tha t , s t r ic t rules
force p rogrammers to have a be t t e r undez-~;.anding of the
sys tem and to specify precisely wha t they want to do.

Non-determinism and Streams
If strp~m c h i n - s i s connect n por t s (ei ther input or out-
put) involved in ~ non-determinis t ic communicat ion, i t is
impor t an t to note tha t a non-determinis t ic choice is made
for each element in the list to be t r a n s m i t t e d or received non-
determinist ical ly. This allows the merge of several s t reams
into a single list on input side, or t he spl i t of a list in sev-
eral s t reams on the ou tpu t side. In the program descr ibed
in Section 4, we use this fea ture to model management of
demands and responses in a c l ient /server appl icat ion.

Indexing and Parameterization
The parameter iea t ion and suppor t for indexed referencing of
processes and ports , possibly using variables in conjunct ion
with fo r and s u c h t h a t clauses, allow the management of
HCL code of a large number of processes and the easier
representa t ion of complex network topologies.

2.4 Initialization, Execution, and Termination
Haskell# programs s t a r t by the explici t act ivat ion of all of
its processes in s t a r t declarat ions. Execut ion is demand
driven by the a rguments on inpu t ports . Values may be
passed expl ic i t ly to processes. E~amples of s t a r t declara-
tions follow:

s t a r t f p l ? ?
s t a r t fp2 [1,2,3,4] ? b ? ?
s t a r t r e p e t i t i v e fp2 ? f, where f in even_values

The first declara t ion act ivates process fp l , which will re-
ceive the value from its two input ports . The Krst and th i rd
por ts of process fp2 receive values explicitly. They axe not
connected to a channel. The th i rd s t a r t declarat ion is an
example of a r epea t ed act ivat ion. Process fp2 will be ac-
t iva ted repea ted ly until the hole program ends. On each
act ivat ion, it demands arguments on i ts first port , while, on
the second one, values are expl ici t ly given from an infinite
list, generated by funct ion e~en_~alues. In the w h e r e clause
of repet i t ive processes, i t is a necessary condit ion t ha t the
list or lists declared be infinite. The use of the symbol ? as
a list e lement means t h a t the corresponding value must he
o b t ~ n e d th rough communica t ion I i.e., not explicitly. I f an
element of the list is ?, i t must be received from the port .
This feature makes possible to avoid deadlocks on cyclic net-
works by explici t act ivat ion of some processes in the cycle.
The solution of t he dining philosophers problem presented
in Section 4.1 use th is a p p r o a ~ .

Haskell code can be wr i t t en inside HCL code using # ' s de-
l imiters. For instance, the function evert_~alues is declared
in the following way:

395

even_values :: ~ l t]
even_values 3, . .]

Stream communication and Repetitive Processes
In Haske l l# , a p o r t of t y p e [t] of a non repetitive process
can b e connec t ed to a p o r t of t y p e t of a repetitive process .
O n each acti~r~tion, t h e r e p e t i t i v e process wil l consume an
e lement of t h e n ~ n m .

Termination Condition
A Haske l l# a p p l i c a t i o n t e r m i n a t e s wheneve r all of i ts non
r epe t i t i ve processes t e r m i n a t e . Thus , a p r o g r a m wi th only
r e p e t i t i v e processes never t e r m i n a t e .

2_~ Placement of Functional Processes
T h e execu t ion e n v i r o n m e n t of Haskell# app l i ca t ions is a ne t -
work of process ing node~, onto which func t iona l processes
a re s t a t i ca l ly m a p p e d . P r o g r a m m e r s a l loca te processes in
groups, in which processes execu te concurren t ly . Before t a s k
a l loca t ion , nodes are classif ied at .cording to the i r lectures,
such as node processor speed (fast or slow), amoun~ of mem-
or~ 3 available (large or thin) or eommunic6~ion speed (high
or low), in file n o d e . c l a s s e s . In t h e node . £d file, each node
m u s t be ass igned to a t m o s t one f ea tu r e of eadx class. T h e
m a i n goal of c lass i f icat ion is to m o d e l he t e rogene i t y of t h e
execu t ion env i ronmen t , al lowing t h e H C L Compi l e r to de-
t e r m i n e t h e be s t a l loca t ion of processes to nodes . Func t i ona l
processes rem~iu m a p p e d onto a node du r ing all the i r life.
T h e a l l o c c o n s t r u c t o r used to def ine t h e m a p p i n g scheme is
exempl i f ied below:

a] l o e (wide , f a s t) pO, pL, P2
a l l o c (s low) ps[i'], for i = 1..n
a l l oc (sto~) (p4[i], for i=l . .n)

Processes Po, p l , a n d p2 are a l l oca t ed on a processor wi th
fea tu res f,~st and wide f rom da.sees speed ~nd memory,
respect ively , whi le n processes p~[i] axe m a p p e d on to d i s t inc t
nodes w i th fea tu re s low of class speed. T h e r e is no reference
to t h e class memorTI, al lowing a ~vide or th in n o d e to be
a l loca ted for ps . In t h e l as t dec la ra t ion , t h e n processes p4[| ~]
a re m a p p e d on to t h e s~me node .

2.6 A Brief History of Haskell , Evolution
Haskell~t is st i l l an evolv ing language . In i t s f i rs t version[22],
message pass ing pr imi t ives , send (!) a n d receive (? -----),
were defmed in Haskel l , on t o p of t h e I O monad . In o rder
to allow t h e analys is of t h e H a s k e i l ~ p r o g r a m s us ing Pe t r i
nets , message pass ing p r imi t i ve s were e l i m i n a t e d fxom the
c o m p u t a t i o n l anguage IT, 21]. Th i s kep t process hier,~rcht/
b u t dec reased t h e express ive power of Haske l l# in specify-
ing some c o m m o n s t a t i c p a t t e r n s of pa ra l l e l a n d concur ren t
c o m p u t a t i o n . T h e use of s t r eam c o m m u n i c a t i o n m a d e pos-
s ible for Haske l l# to b e as express ive as in i t s or ig ina l version
w i t h o u t any loss of p rocess h ierarchy. T h e Haske l l# version
p r e sen t ed here is t h e f i rs t t o inc lude streams~ and also now
faci l i t ies to bu i ld d a t a pa ra l l e l progr~m-q a n d a r ev i sed no t ion
of initialization and finalization of program-~.

3. R E L A T E D W O R K
T h e r e l a t ion be tween c oo rd ina t i on a n d para l l e l func t iona l
p r o g r a m m i n g can be seen f rom two perspec t ives . In t h e first
one, coo rd ina t i on is cons ide red ~n i m p o r t a n t tool for par -
allel func t iona l l anguages ~ud models , be c a us e of i ts ab i l i t y
to a b s t r a c t pa ra l l e l concerns f rom speci f ica t ion of c o m p u t a -
t ion . Eden[2] a n d Cal iban[19, 31] a re e J a m p l e s of languages
focused on these ideas. In t h e l a s t one, h igher -o rder a n d
non-s t r i c t s ty le of func t iona l p r o g r a m m i n g has been seen
as an powerful l w~y to speci fy c oo rd ina t i on amongs t tasks .
SCLI8] a n d Delbium[24] a re e y a m p l e s of l anguages t h a t use
t h e func t iona l p a r a d i g m a t c o o r d i n a t i o n level. Haske l l# be-
longs to t h e first c.~tegory. Likewise E d e n a n d Ca l iban , i t
uses Haskel l for spec i fy ing c o m p u t a t i o n , a s suming a s t a t i c
ne twork where func t iona l processes c o m m u n i c a t e t h r o u g h
p o i n t - t o - p o i n t a n d un id i r ec t iona l channels . Below, we dis-
cuss t h e m o s t i m p o r t a n t p o i n t s which d i s t ingu i sh Haske l l#
f rom t h e o t h e r known para l le l func t iona l l anguages b a s e d on
coord ina t ion :

• The adoption of a configuration basedS[~.O] coordina-
tion language fHGL} prov ides c o m p l e t e s e p a r a t i o n on
t h e cons t ruc t i on of c o m p u t a t i o n a l code (pure Haskel l)
f rom c oo rd ina t i on one (HCL) . In Eden and Caliben,
examples of e m b e d d e d c oo rd ina t i on languages , p r imi -
t ives e x t e n d Haskel l s y n t a x for "gluing ~ processes to
t h e c oo rd ina t i on m e d i u m , while, in Haske i l# , H C L is
o r thogona l to I faskell , This H~-qkell# f ea tu re allows
t h e pa ra i l e l i za t ion of sequent ia l p re -ex i s t en t Haskel l
program-q a n d y ie lds i n d e p e n d e n t spec i f ica t ion and de-
v e l o p m e n t of c o m p u t a t i o n a l a n d coo rd ina t i on code, re-
duc ing d e v e l o p m e n t cos ts b y code reuse. T h e ab i l i ty
for c o m p o s i n g p r o g r a m s f rom p a r t s also makes Ha~kel l#
m o r e su i t ab l e for la rger scale para l l e l p r o g r a m m i n g
t h a n Eden and Caliban [10, 9] a n d forces p r o g r a m -
mer s to a d o p t a coarse grain view of para l le l i sm, use-
ful in high-latenet/ d i s t r i b u t e d a rch i t ec tu res , such as
e /as ters o f P C ' s .

• The modelling of parallel architectures. I t is a wide ly
acknowledged fac t t h a t gener ic mapping of processes
to p rocessors is a diff icult p r o b l e m to b e t r e a t e d au-
tomat i ca l ly . T h e mech~n l sms for th is purpose , e i ther
d y n a m i c or s ta t ic , a r e no t e ~ c i e n t a t all ins tances .
W e dec ided to follow a static and ezpIicit a p p r o a c h in
Haske l l# for a / loca t ion o f processes , s imi la r ly to Cal-
iban . T h e on ly difference is t h a t Haske l l# makes pos-
s ib le to m o d e l b o t h processes needs for o p t i m a l exe-
cu t ion a n d a r c h i t e c tu r e charac te r i s t i c s . T h e p r o g r a m -
m e r is t h e n r e spons ib l e t o f ind exp l i c i t ly t h e be s t m a p -
p ing be tween func t iona l processes a n d processors us ing
these in fo rmat ion .

• The analgsia of formal properties using Petri nets. W h e n
deve lop ing Haske l l# , one of o u r m a i n concerns was to
s u p p o r t t h e ana lys i s of fo rmal p rope r t i e s of progr~m~.
A compi le r t h a t t r a n s l a t e s H C L in to INA[29], a Pe t r i
ne t analys is tool , was d e v e l o p e d b y Lima[21].

• The east/ and eJ~icient implementations. Unfike Eden
and Caliban, Haske i l# needs no r u n - t i m e s y s t e m sup-
po r t . I t can be easi ly i m p l e m e n t e d by gluing a fas t

a T h e conf igura t ion p a r a d i g m was deve loped in t h e con tex t
of specifics. l ion of d i s t r i b u t e d systems[20].

3 9 6

message passing l ibrary to a s ta te .o f - the .a r t sequential
ttaske|l functional compiler 4. Assuming t ha t Haskell#
appl icat ions are coarse grain, one can take advantage
of the best technology for compila t ion of sequential
functional programs.

Gener~Zi~/. Haskel l# was developed to give appropr i -
a te suppor t to t he specification of general concttrrent
systems in a unified way. Caliban, Delirium e SCL
are well su i ted for paral lel applicat ions, bu t t u rn dif-
ficult to specify some kinds of ,~gaZ/nchronous applica-
tions, such as client/server ones, for e ~ m p l e . Eden
has features for implementa t ion of react/~e systems,
like non-determinis t ic operat ions and d~amic reply
channels, but has no explici t concerns about distr i-
bution.

4. HASKELL# EXAMPLES
Following the terminology defined in [30], we dist inguish be-
tween two kinds of concurrent systems: b'ansformationaZ
and react/ue. The first one relates to systems t ha t receive
some input and yield an ou tpu t a t i ts end, while the second
one relates to systems where the central task is not to com-
pu te a result , bu t to main ta in some interact ion with its envi-
ronment. In general, react ive sys tems never te rminate . Op-
erat ing systems and some kinds of control appl icat ions are
e~nrnples of them. Paral le l syetRr-~ can be seen as concur-
rent systems with t ransformat ional behaviour. In general,
appl icat ions belonging to this subset of concurrent systems
have requirements of efficiency, because of their t ime con-
straints , while the others have requirements of s t ruc tur ing
sol, ware or dis t r ibut ion. Dis t r ibu ted systems are concur-
rent systems where processes are d i s t r ibu ted across a net-
work of computers . Recently, t he emerging of c/aster com-
puting technology has inspired a new d i s t r ibu ted view of
parallelism. This is one of t he impor t an t facts which let us
to believe t ha t Haskell# is a useful tool for p rogramming on
ci~stera.

For building paral lel programs, HaskeIl# offers a general
functional view of parallel ism. Using this approach, data
parallelism s can be easily implemented by ins tant ia t ion of
severed processes tha t perform the same task for process-
ing of par ts from some large d a t a s t ructure . The d a t a can
be d is t r ibuted amongst processes and jo ined after paral lel
computa t ion using special user-defined d a t a paral le l oper-
ators, p rog rammed in Haakeli, specified a t configuration
level (HCL) (see the syntax of declarat ion of por t s in Sec-
t ion 2.2). We in tend to define, in the near future, a set
of pre .defmed d a t a parallel operators to be used in HCL
programs. Indexing nota t ion allows referencing several pro-
ceases concisely, a requirement of d a t a paral lel progrAmm Lug
environments.

The explicit and s ta t ic notion of processes communicat ing
through a network is well su i ted to specification of general

4We have successfully used M P I and GHC, respectively, in
our implementa t ions
eData Parallelism is considered the most common and effi-
cient form of parallel ism, providing high scalabili~, because
the amount of paral lel ism exploi ted depends on the amount
of d a t a to be processed. However, it is less general t han
f~nctional pgr~llelisn~ in which i t can be p~-~;ly s imulated.

concurrent systems. Several languages, no tab ly based on
configuration, use th is approach to deal wi th d is t r ibuted sys-
tems[20], bu t not dealing with requirements of paral lel ones.
In this section, we present the implementa t ion of some com-
mon concurrent appl icat ions in Haskell~. Our goal here is
to demons t ra te how expressive is Haskell# to express well-
known pa t te rns of general s ta t ic concurrent systems.

The Haskell# code far the ey~mples presented in this paper
can be found at ram. c i n . u f p e . b r \ - fhcj\~ac2002_ao~urcea.

4.1 The Dining Philosophers Problem
T h e Dining Philosophers is a Common synchronization prob-
lem from concurrency theory, s t a t ed as follows: a number of
phiZosophers are seated a round a tab le forming a circle, each
one with a p la te of spaghet t i and two forks to eat it. Each
fork is shared by two adjacent philosophers. The philoso-
pher can only eat after get t ing the two forks in a certain
order (left to r ight) . Thus, if a philosopher is eating, the
two adjacent ones must be thinking. I f all the philosophers
get their leit forks at the same t ime, they will wait forever
for the r ight one. This s i tuat ion models deadlock, a s ta te
where all processes belong to a communicat ing group in a
system are wait ing for another process in the group.

The Haskell# solution is very simple. Assume n philosopher
processes connected in a ring, each one with two input por ts
for receiving the left and r ight forks and two output ones to
give the forks to i ts left and r ight neighbours (See Figure 2).
Philosophers are th inking when they have no forks or eat ing
when they have bo th lei~ and r ight forks. In s t a r t declara-
tion, we dis t r ibute the forks amongst philosophers, such tha t
the maximal number of philosophers will ini t ia te eating. If
there is an even number of philosophers, the remaining fork
is given to the last one. The other philosophers will ini t iate
th inking and will t r y to receive forks from their neighbours.
I t is not dimcul t to verify t h a t this solution thereaf ter never
deadlocks.

E hill,

~-~

~,~ phil[O] F~k

T

I

~il[

,I
Fa~k

1

F i g u r e 2: D i n i n g P h i l o s o p h e r s H a s k e l l # N e t w o r k

The code for the functional module P h i l o s o p h e r . h e is:

- - M O D U L E F I L E : P h i l o s o p h e r . b e
module Ph i loaopher (ma. in) where

397

d a t a F o r k ffi F o r k
main : : F o r k --k F o r k --k IO (F o r k , F o r k)
main rf If = eat rf If >> t~4.k >> (rf,lf)

T h e H C L conf igu ra t ion code to t h e ne twork is:

a p p l i c a t i o n D i n i n g P h i 1 o s o p h e r e <n>
module P h i l o s o p h e r

i n p u t r f o r k / n : : F o r k
i n p u t l f o r k / n : : F o r k
o u t p u t r f o r k o u t : : F o r k
o u t p u t l f o r k o u t : : F o r k
i n s t e m c e p h i l [O . . n - l]

f o r i f 0 . . n - 1
c o n n e c t phil[i] .Ifork t o phil[(i+l) nod n]
c o n n e c t p h i l [(i + l) nod n] . r f o r k t o p h i l [i]

allot phil[i], for ifO..n-i
s t a r t ~ e p e t i t i v e p h i l [i] ? ? ,

fo~ ifO..n-2 k (i nod 2 = I)
start repetitive phil[i] f f,

for i=O..n-2 & (i nod 2 = 0),
w h e r e f i n F o r k : [? , ? , ,]

s t a r t r e p e t i t i v e p h / l [n - 1] f ? ,
for n mod 2=0, wh~e f i n F o r k : [? . ? . .]

4.2 The Alternating Bit Protocol
T h e Al~erna~ng Bit Protocol (A B P) is a s imp le y e t e l e c -
t ive p ro toco l for m a n a g i n g r e t r a n e m i s s i o n of los t messages
on low-level i m p l e m e n t a t i o n s of messag ing-pa~s ing mode l .
Cons ide r ing a rece iver p rocess A a n d a s e n d e r process B
c o n n e c t e d by two stream channels, t h e p r o t o c o l ensures
t h a t wheneve r a message t r a n s m i t t e d f rom B t o A is lost , i t
is r e t r a n s m i t t e d .

~- b m O ~ t

b b 1 0 b

~ h

F i g u r e 3: A l t e r n a t i n g B i t P r o t o c o l N e t w o r k

F i g u r e ~ shows t h e process ne twork of t h e A B P a p p l i c a t i o n
specif ied in H a s k e l i # . P rocesses abp_send and abp_,,oait
m o d e l t h e sender while p rocesses ~pb_out and epb_-c~
m o d e l t h e receiver. P rocesses cor~pt_aend and corrupt_ack
m o d e l two un re l i ab l e v i r t u a l channel~ t h a t l ink t h e sender
and receiver. T h e apb.~send process sends a s t r e a m of
messages t o apb_out t h r o u g h i t s s t r e a m p o r t as , P roc e s s
apb_awnit g u a r a n t e e s t h a t each message , r ece ived f rom s t r e a m
p o r t a s , will b e t r a n s m i t t e d correc t ly , t h r o u g h s t r e a m p o r t
, Is ' , a~suming an un re l i ab l e m e d i u m for c o m m u n i c a t i o n , m o d -
e l led by corrupLaend process , w h i c h receives each message ,
f rom s t r e a m p o r t a s , a n d verif ies i f i t is c o r r u p t e d or n o t
us ing an o rac le s t r e a m of b i t s (oso) . N o n c o r r u p t e d mes -
sages a r e sent f rom corrupt_send, f rom s t r e a m p o r t s bat and
be2, t o apb_out and to apb_~ck processes respec t ive ly , wh ich
receives messages f rom i ts s t r e a m p o r t s n a m e d ba. P roc e s s
apb_ack sends bank an a c / ~ o w l e d g e m e n t b i t t o abp_-w-it

for each message us ing its s t r e a m of b i t s p o r t ca, t h r o u g h
an un re l i ab l e m e d i u m , m o d e l l e d b y c o r r ~ p t _ - e k T h e o rde r
o f t h i s s t r e a m of b i t s is u sed by apb_a~ait for ver i fy ing i f t h e
message w'as cor rec t ly sen t or not . I f t h e message wa~ incor-
r ec t l y t r a .~smi t t ed , t h e y a r e re t ran-qmi t ted b y ,pb_-~ait. W e
prove t h e co r rec tness a n d fo rma l p r o p e r t i e s of t h i s p r o g r a m
us ing P e t r i nets .

4.3 Generic Client/Server System

[server[I] [I server[2] I
~ q ~ n u I romp

F i g u r e 4: C l l e n t / S e r v e r S y s t e m H a s k e l l # N e t w o r k

Now, a t y p i c a l e ~ m p l e of a r eac t ive s y s t e m is p r e sen t ed :
a C l i e n t / S e r v e r app l i ca t i on , i n s p i r e d b y t h e gener ic one de-
s c r i b e d in [4]. Here , seruers process d e m a n d s f rom clienf~
processes (requis i t ions) . O u r p u r p o s e is to show how ex-
press ive is H a s k e l l # for r e p r e s e n t i n g r eac t i ve sy s t ems a n d to
d e m o n s t r a t e use of n o n - d e t e r m i n i s m . Cl ien t s m a k e an au-
t o m a t i c choice a m o n g s t free servers w h e n m a k i n g a d e m a n d
f rom t h e i r req[i] por t s , each one a s s o c i a t e d to a server . T h e y
a u t o m a t i c a l l y rece ive r e sponses f rom servers , t h r o u g h t h e i r
resp[~ por t s , one for each server too . Al l quer ies m u s t iden-
t i fy t h e source c l ient . O bse rve t h a t t h e r e is no n e e d for a
m a n a g e r p rocess to dec ide in which server to p rocess each
query, a~ n e e d e d in t h e so lu t ion p r e s e n t e d for Eden[4]. W e
m o d e l th i s us ing on ly t h e s u p p o r t for n o n - d e t e r m i n i s m of
H a s k e l l # .

4.4 Matrix Multipl ication on the Mesh

F i g u r e 5: M a t r i x M u l t i p l i c a t i o n o n t h e M e s h :
I - I a s k e l l # N e t w o r k f o r a 2 X 2 G r i d

T h e m a t r i x m u l t i p l i c a t i o n on t h e mesh p r o b l e m was e x -
t r a c t e d f rom [25]. T h i s p r o b l e m is s t a t e d as follows: given

3 9 8

t~o n X n matrices A and B, such that ini~i61l# A[i,j] and
B[i,j] reside in processor P[i,j], compute U = A .B , such
that C[i, j~ resides in processor P[i, j~. The solution consists
of shifting of values between processes on the grid at each
step until the final result is obtained. In its simple form, this
solution has too fine granularity for obtaining good speedup,
but it is very interesting for demonstrating how expressive
Haskell# is to specify a systolic pattern of parallel compu-
tation on a grid. Many parallel algorithms use this scheme.
Figure 5 presents part of the network of processes of this
application, emphasizing the grid of processes.

4.5 Photon Transport Simulation
MCP-Haskell# is a parallel version of MCP-Hnakeil[13], a
program that implements a simplified form of the Monte
Carlo Particle T~ansport Problem, which involves simulat-
ing statistical behavior of particles (photons, neutrons, elec-
trons, etc.) while they travel through objects of specified
shapes and materials. MCP-Haskel l is based on a For-
tran code developed at Los Alamos over many years, called
MCNP (Monte Carlo N-Particle)J33].

m b

m~mb Ibis

t m b

mlsm ~ma ~ I ~ il/il~

tatil.

| | ,

Figure O: M C P - H a s k e l l # P roce s s N e t w o r k

MCP-HaskeU# makes use of the Haskeli# way to implement
data parallel and pipeline parallelism. The experience with
MCP-Haskell# specification demonstrates how easy is to
parallelize pre-existent Haskel l code with Haskell#. There
was no need for code rewritting or modification. It was
only necessary some restructuring of the original programs
in functional modules.

Datg parallelism allows processing of particles in parallel,
because each photon is independent and can be tracked and
tallied independently. Each track and tally process compo-
sition computes a disjoint set of photons. The process stat/#-
tics collects information yielded from tallying and computes
statistical information about the simulation. A pipeline con-
nects processes prob_defs, gracka and tallies for allowing them
to operate in parallel. Stream communication is essential for

this purpose, but the performance benchmark has shown
that the gain in performance obtained from use of the pipe
line is very poor, because almost all computation is per-
formed by the track processes.

Figure 7 compares the speedup obtained for a problem in-
stance of this application (solid line) to the linear (opti-
mal) speedup (dashed line), when executing over a cluster of
Linux PC's (6 Pentiam II MMX 350MHz and 2 Pentium III
550MHz interconnected by Fast Ethernet (100Mbs) network
interface). Here, Haskell# uses MPI for process communi-
cation and GHC for compilation of functional processes.

~ B

3.9 i ~
2 . 9 ~ ' " 3

2.4

1.7 "~" ' "

0 .9

1 2 3 4 B
m m b e r o f P r a = e l a o r J

Figure 7: Speedup For M C P - H a s k e l l # execu t ing on
a C lus te r of L inux P C ' s

5. CONCLUSIONS
In this paper, we presented Huskell#, a parallel extension to
Haskel[based on coordination. Its ability to compose par-
allel programs from sequential parts in a transparent way
makes it suitable for the definition of the most important
patterns of parallel, concurrent and distributed computa-
tion in a unified way. We showed the specifir~tion of some
applications using Haskell# to demonstrate its expressive-
ness. Our goal now is to implement large-scale applications
of practical interest, for making performance benchmarking
on clusters, and for improving Hnskell# model of coordi-
nation and its environment for program construction. At
present, we started to develop an integrated environment
fur graphical specification of parallel and general concurrent
systems, to be used in education (teaching of pasallelism and
concurrency in undergraduate courses) and also for practi-
cal development and management of complex applications.
We also continue to investigate the applicability of Petri net
formalism to the analysis of formal properties of Haskell#
parallel programs. At present, a new specification for trans-
lation of Ha-qkell# applications to Petri nets has been pro-
duced, now dealing with stream communication.

6. R E F E R E N C E S
[1] C. Abmann. Coordinating Functional Processes Using

Petri Nets. Implementatio~ of l~netional Languages,
Springer-Vedag, LNUS 1£68, pages 162-183, Sept.
1997.

[2] S. Breitinger, R. Loogen, Y. Ortega Malign, and
R. Pefia. The Eden Coordination Model for

399

Distributed Memory Systems. In High-Level Parallel
Programming Models and Supportive Environments
(HIPS), 1997.

[3] S. Breitinger, It. Loogen, Y. Ortega M~lln, and
It. Pefia. High-level Parallel and Concurrent
Programming in Eden. In Proceedings of
A P P I A - G U L P - P R O D E Joint Conference on
Declarative Programming, pages 213-224, June 1997.

[4] S. Briesmeister, It. Loogen, Y. Ortega MaJl~n, and
It. Pe ha. Eden: Language Definition and Operational
Semantics. Technical report , FB Mathematik,
Universit~t Maxburg, 1998.

[5] W. H. Buxge. Recuzsive Programming Techniques.
Addison-Wesle~l Publishers Ltd., 1975.

[6] F. Burton. Functional Programming for Concurrent
and Distributed Computing. Computer Journal,
30(5):437-450, 1987.

[7] F. H. Carvalho Jr. H,=akell#: Uma Extens~o Paralela
pa rs Haske]L Master 's thesis, Centro de Inform(~tic~,
Universidade Federal de Pernambuco, Jan. 200O.

[8] J. Darlingt.on, Y. Guo, H. To, and J. Yang. FUnctional
Skeletons for Parallel Coordination. Lec~re Notes in
Computer Science, 966:55--68, 1995.

[9] F. DeRemer and H. H. Kxon.
Prograznming-in-the-Large versus
Programming-in-the-small. I E E E Transactions on
Soflluare Engineering, pages 80-86, June 1976.

[1(3] I. Foster. Compositional Parallel Programming
Languages. A G M ~t-anaact/or~ on Programming
Languages ~nd Sllatems~ 18(4):454-476, 1985.

[11] D. Gele~xter and N. Carriero. Coordln~tion Languages
and Their Significance. Communications o] the A CM,
35(2):97-107, Feb. 1992.

[12] K. H~mmond emd G. Michaelson. Reseaxch Directions
in Parallel Functional Programming. Springer-Verlag,
1999.

[13] J. H/cks, D. Chiou, B. S. Ang, and Arvind.
Perform~-ce Studies of Id on the Monsoon D~ta~ow
System. Journal of Parallel and Distributing
Computing, 18:273-300, 1993.

[14] C. A. It. Hoare. Communicating Sequential Processes.
Prentice-Hall, G.A.R. tlo~re Series Editor, 1985.

[15] P. Hudak. Serial Combine.tars: "Optimed" Grains of
Parallelism. FPCA'85 , pages 382-399, Sept. 1985.

[16] P. Hudak. Pars-FUnctional Programming in Ha~keli.
P~rallel Functional Languages and Compilers, B. K.
Szymansld, Ed. A C M Press, N e ~ Yorl~ pages
159-196, 1991,

[17] Inmos. Occam 2 Reference Mamuad. Prentice-Hall,
C.A.R. Hoare Series Editor, 1988.

[18] O. Kaser, C. Raana~ishnam, I. V. Razna]~ishnan, and
It. C. Sekax. Equeds - A Fast Parallel Implementation
of a Lazy Language. Journal of Functional
Programming, 7(2):183-217, Mar. 1997.

[19] P. Kelly. FunctionaJ Programming for Loosely-coupled
Multiprocessors. Rese~reh Monographs in Parallel and
Distributed Gomput~rtg, M I T Press, 1989.

[20] J. Krammer. Distr ibuted So~wexe Engineering. In
IEEE Computer Society Press, editor, Proc. 16th
I E E E International Conlerence on Software, 1994.

[21] K. M. F. Lima. Haakell# - Urea L iner -gem Funcional
Parolela - Ambiente de Progrmaf~o, Implementaf~o e
Ot/m/za~do. PhD thesis, Centro de Inform~tica,
UFPE, July 2000.

[22] It. M. F. Lima, F. H. Carvalho Jr., and It. D. Lins.
Haske l l# : A Message Passing Extension to Haakell.
CLAPF'99 - 8rd Latin American Conference on
k3mctional Programming, pages 93-108, Mar. 1999.

[23] R. D. Lins. Functional Programming and Pars/lei
Processing. ~.nd International Conference on Vector
and Parallel Processing - VEGPAR "96 - L N C S I~15
Springer-Verlag, pages 429-457, Sept. 1996-

[24] S. Lucca and O. Sharp. Delirium: An Embedding
Coordination LaaJguage. In ACM Press, editor,
Proceedings of Supoereomputing '90, 1990.

[25] U. Manber. Introduction to Algorithms: A C'~eative
Approach, chapter 12, pages 375-409. Addison-Wesley,
Reading, Massachusetts, Oct. 1999.

[26] S. L. Pey ton Jones, C. Clack, a~d J. Salkild. GRIP -
A High-Performance Architecture for Parallel Graph
l~eduction. FPCA '87." Conference on P'tunctional
Progr,~mming Languages and Computer Architecture -
Springer- Verlag L N C S ~74, p~ges 98-112, 1987.

[27] S. L. Pey ton Jones and J. Hughes. Report on the
Progreanming La-=guage Haakell 98, A Non-strict,
Purely Functional Language. Feb. 1999.

[28] M. J. Plaameijer and M. veax Eekelen. Functional
Programming and Parallel Graph Rewriting.
Addison-Weale# Publishers Ltd., 1993.

[29] S. Koch and P. Starke. Manue/: Integrated Net
Anedyzer Version 2.2. Humboldt-Uni~erait~t ru Berlin,
lnatihtt f~r Informatik, Lehrstuhl flir Automaten- und
Sgstemtheorie, 1999.

[30] E. Shapiro. Th e f~r-tly of concurrent logic
programming languages. A C M Compu~in9 =qurvet/s,
21:413-510, 1989.

[31] F. T~ylor. Parallel Functional Programming by
Partitioning. Phi) Thesis, Depar~nent of Computing,
Imperial College of Science, Technalog~ and Medicine,
University of London, Jan. 1997.

[32] P. Trinder, K. Hammond, J. S. Mattson Jr., A. S.
Partridge, and S. P. L. Jones. GUM: A Portable
Parallel Implementat ion of Haskell. PLDI '96 -
Programming Languages Design and Implementation,
pages 7~ 88, 1996.

[33] D. J. Whalen, D. E. Hollowell, and J. S. Hendriks.
MCNP: Photon Benchmark Problems. Technics/
Report LA-12196, Los Alamos N~tional Labor- tory,
1991.

400

