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ABSTRACT 
This paper presents Haskell#, a parallel functional language 
based on coordination. Hazkell# supports lazy atream com- 
mnnication and facilities, at coordination level, to the speci- 
fication of data parallel programs. Haskell~ supports a clean 
and complete, semantic and syntactic, separation between 
coordination and computation levels of programming, with 
several benefits to parallel program engineering. The imple- 
mentation of some well-known applications in Haskell# is 
presented, demonstrating its expressiveness, allowing for el- 
egant, simple, and concise specification of any static pattern 
of parallel, concurrent or distributed computation. 

Categories and Subject Descriptors 
D.I.1 [ P r o g r n m ~  Techniques] :  Concurrent Program- 
ming--Diatribnted programming, Parallel Programming; D.3.2 
[ P r o g r a m m i n g  Languages] :  Languages Cla-qsifw~ations-- 
Concurrent, diatributed and parallel languagea , Applicatiue 
(fitnctional) lan..qu, ag ea 

General Terms 
Languages 

Keywords 
Parallel Functional Programming, Coordination, Haskell, Par- 
allel Software Engineering 

1. INTRODUCTION 
Haakeil[27] is a general purpose, pure functional program- 
ming language incorporating recent innovations in program- 
ruing language design. I t  has now become de facto standard 
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for the non-strict (or lazy) functional programming commu- 
nity, with several compilers available. 

The idea of parallel functional programming dates back to 
1975 [23, 12] when Burge [5] suggested the technique of 
evaluating function arguments in parallel, with the possi- 
bility of functions absorbing unevaluated arguments and 
perhaps also exploiting speculative evaluation. In general, 
parallelism obtained from referential transparency in pure 
functional languages is of too fine granularity, not yielding 
good performance. The search for ways of controlling the 
degree of parallelism of functional programs by means of 
automatic mechanisms, either static or dynamic, had little 
success [15, 26, 18]. Compilers tha t  exploit implicit paral- 
lelism have been facing difficulty to promote good load bal- 
ancing amongst processors and to keep commu=ication costs 
low. On the other hand, explicit parallelism with annota- 
tions to control the demand of evaluation of expressions, 
creation/termination of processes, sequential and parallel 
composition of tasks, and mapping of these tasks onto spe- 
cific processors have been proposed by many authors [6, 16, 
28, 32] with good performance results. But, in general, in 
those approaches computation and communication are in- 
terwinded, not allowing reasoning about these elements in 
isolation. 

The coordination paradigm [11] is an a t tempt  to separate 
concurrent programs in two components: coordination and 
computation. There is a consensus that  the abstraction of 
concurrent programming in these two levels provides higher 
degrees of modularity, compoJabillty, generality, portability, 
poasibilit9 oJ formal analpais of parallel programs, and sup- 
port [or heterogeneous computing [11, 10]. The relation of 
this new paradigm to parallel functional programming can 
be seen from two perspectives. In the first one, coordination 
is an important tool for facing the main ditticulties of parallel 
functional programming [3, 19]. In the second one, higher- 
order and non-strictness turn functional languages adequate 
to the specification of coordination of tasks [8, 24]. 

Ha~kell#[7, 21] is a general concurrent extension to Haskell 
be~ed on coordination aimed at distributed memory parallel 
architectures t. Haskell# offers a clean and complete sepa- 

ZAt present, Haskell# ha~ been implemented for SP2 and 
CoP's (clusters of PC's) architectures. 
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ration between sequential computat ion and coordination, at 
semantic and syntactic levels, by the use of an orthogonal 
configuration language (HCL) for coordination of H a s k e l l  
sequential processes. The non-strict nature of H~ske l l  is 
essential to allow generality and total t ransparency between 
coordination and computation, a property known as process 
hierarchy. Memy benefits of Haskell# parallel programming 
engineering axe due to this property. Process hierarchy al- 
lows for independent development of program components,  
reusing of existing and tested Haske l l  modules, formal anal- 
ysis of parallel prograrn~ based on Petri net forrn~|ism, effi- 
cient implementation over virtually any distributed memory 
parallel arc2dtecture, etc. Haskell# model of concurrency is 
inspired by Occam [17], a language based on Hoare's CSP 
(Calculus of Sequential Processes)[14]. The decision for fol- 
lowing the Occam computational  model had  as goal to make 
possible the automatic  analysis of formal properties and, 
thus, to help the programmer to reason about  the applica- 
tion under development. An environment to analyze form~l 
properties of Haskell# applications using Petri nets is de- 
scribed in [21]. 

The structure of this paper comprises six sections. Section I 
is this introduction. In  Section 2, the l-Iaslmll# parallel pro- 
gr~rnrn~ng environment is described. In Section 3, Haskell# 
is compared to other parallel functional languages based on 
coordination. In Section 4, some Haskell# programs are pre- 
sented to demonstrate its expressiveness. Conclusions and 
lines for further work are discussed in Section 5. Bibliogra- 
phy is presented in the Section 6. 

2. THE HASKELL# LANGUAGE 
Haskell# provides an integrated coordination environment 
for developing, simulating and analyzing formal properties of 
generic concurrent systems. Applications axe structured in 
two layers. The sequential one relates to fimc~iona[ modules, 
sequential Haske l i  programs. The communication level (HCL, 
or Haskell# Coordination Language) ~glues" functional mod- 
ules together forming a network of processes, later mapped 
onto processors of a distributed parallel architecture. Fig- 
ure 1 depicts the  Haskell# programming environment. Affair 
writing a Haskell# program, there are two possibilities: ei- 
ther to generate its executable code, or to translate it into 
Petri nets. In the former case, the system executes in a 
distributed memory environment. In the later case, it is 
possible to analyze formal properties of the topology of the 
network structure using INA [29], a Petri net simulator and 
analyser, helping programmers to r e a ~ n  about  the system. 

In what  follows, we show how HaskelI# programs are spec- 
ified at coordination level, presenting informally the syntax 
and semantics of the  HCL constructors. At the computa-  
tional level, s tandard H a s k e l l  programming is used. 

2.1 The Structure of HCL Configurations 
A HCL program is composed by four sections, which re- 
spectively declares modu/e interfaces, channels, disfribution 
of proc,~saea onto processors, and actieations of f~nctional 
processes. Each kind of HCL declaration is described be- 
low. An application has also a header in which its name 
and interface are declared. The declaration below shows 
an example of a header: 

F i g u r e  1: I-Iaakeli~# P r o g r a m m i n g  E n v i r o n m e n t  

a p p l i c a t i o n  App < p l , ' ' "  ,Pk > ( t l , t2 , . . .  ,Z,z) --+ 
( ~  ,',,2,... ,,,,,,) 

It  specifies tha t  an application, called App, has n dynamic 
arguments (tl to ~,,) and m outputs  (ul to u~n). Applica- 
tion interfaces will permit, in the near future, to include in 
Haskell# support  for hierarchical composition of Haskeil# 
programs. The idea is to generalize the notion of instan- 
tiation of processes, allowing them to be instantiated from 
configurations, similarly to the one implemented in K2[1], 
providing new opportunities for reuse, now at coordination 
level. Static parameters (pl to pn) allow support  for pzk- 
rameterized applications. The compiler must  replace actual 
values, provided at compile time, far the formal parameters 
in the HCL code. 

2 . 2  I n s t a n t i a t i n g  F u n c t i o n a l  P r o c e s s e s  
In Haskell#, functional processes are instances of functional 
modules. Module abstractions must configure the interface 
of processes being instantiated from a functional module. 
Input  and output  ports enable processes to communicate 
amongst themselves. Ports  are strongly typed  and of ground 
type, either basic (integer, floating points etc.) or s tructured 
over basic ones (lists of integers, trees of booleans, etc.). A 
module abstraction is defined as following: 

m o d u l e  i n t e r f a c e  I f r o m  M 
i n p u t  ipa :: ~x 
i n p u t  ip~,ipa[1..~] :: t2 
i n p u t  y (ip4,ip~,~pe) :: ts 
o u t p u t  op1 :: Zt 
o u t p u t  op2,ops :: ts 
o u t p u t  .q (op4[1. .n] )  :: f;~ 
i n s t a n c e s  m[1. .8]  

Here, the module interface I defines an intedaco for func- 
tional module M. This module declares a function main 
with the  following i n t e d a ~ :  

main:: ~t "-+ t~ .-.t t '  s -+ IO(t4, ts , ts)  
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Note t ha t  tx, t2, t '  q, t4, ts ,  re, and  t~ axe Haskeli types .  Each 
process m[s], for ~ from i to  8, ins temtiated from M using the  
i n t e r f a ~  I ,  has n 4" 5 inpu t  por ts ,  associa ted  with  the  th ree  
arguments  of i ts  main funct ion (one input  po r t  dec lara t ion  
for each argument) ,  and  n + 3  ou tpu t  por te  associa ted with  
the  th ree  e lements  of t h e  tup le  re tuxned by  main (one out-  
pu t  declarat ion for each tup le  element) .  The  input  p o r t  ipt 
is associated wi th  the  first a rgument .  The  input  por ts  ip2 
and ip3[i], for i from 1 to  n, where n is a parameter ,  asso- 
c ia ted with the  second argument ,  yields a non-determinis t ic  
choice. The  actual  value of  the  a rgument  comes from the  
first por t  to be  r eady  to receive a value 2 . Funct ion  f receives 
a list of values of t y p e  ts  ([t_~]), whose elements  are  received 
f ~ m  por ts  ip4, ips and ips, and  t ransforms it  into a single 
value of t ype  t's, which is passed to  t he  t h i rd  a rgument  of  
main. The output port opx sends the  value of  the  first t up le  
element.  Por t s  op2 and  spa model  non-determinis t ic  o u t p u t  
ports .  The  value is sent  th rough  one of the  ports ,  chosen 
non-determinist ical iy,  t ha t  are connected  to  an input  po r t  of 
another  process t h a t  is r eady  to receive a value. Por ts  op411] 
to  op4[n] send the  value of the  t h i rd  e lement  of the  tuple .  
The  function g receives as a rgument  this  value and  the  hum- 
her of por ts  th rough  which the  value mus t  be distributed. 
I ts  result  t ype  is a list of values of t y p e  [t~]. Each element  of 
this  list is then sent th rough  a port .  Dur ing  process execu- 
tion, the  lazy semant ics  of funct ional  processes guarantees  
t ha t  an input  po r t  is r ead  only when its associated argu- 
ment  value is required for compu ta t ion  of  some expression. 
A process remains  blocked unti l  a value is available on the  
channel ( sl/nchronou8 communication). 

2.3 Communication Channels 
Similar ly  to  Occam[17], Haskel i#  channels are point-to-point, 
unidirectional and synchronous. Strict communication se- 
mantics restr icts  values exchaaged  between processes to  those  
a l ready evaluated.  Using the  HCL c o n n e c t  constructor ,  a 
channel is s ta t ica l ly  declared th rough  the  connection of two 
por ts  from different processes, of  t he  same t y p e  and oppo- 
site direction. For instance,  observe the  following piece of 
HCL code: 

c o n n e c t  po.a t o  p ]  .b 
c o n n e c t  master.c[i] t o  slave~].c stream 100, 

fo r  i = l . . n ,  j = l . . m  s u c h  t h a t  i < =  j 

There  are two channel declarat ions.  The  ftrst one defines a 
channel t ha t  connects o u t p u t  por t  a of process p0 to  input  
por t  b of  the  process pt-  The  channel t y p e  is the  type  of  
the  involved ports .  The  second one uses an indexed form to 
declare m x n r~p.nneis which connect ou tpu t  por ts  c[i] of  
process master to  input  por ts  c of  t he  processes elaves~'], 
for i from 1 to  n and  j from 1 to  m, such tha t  i is less 
than  j .  These  por ts  are connected  th rough  a lazy stream 
channel,  which m a y  t r a n s m i t  elements of a list one a t  a 
t ime,  whenever it  is evaluated.  Lazy stream channels are  
implemented  using Haakell lazy lists and  allow t r anspa ren t  
process interact ion dur ing computa t ion .  The  number  100, 
in the  declara t ion above, specifies t h a t  the  list mus t  be sent  
in blocks of t h a t  size, controll ing communica t ion  overheads 

2The sern:Lntic of  input  por t s  non-de terminis t ic  choice is in- 
spi red  in the  P H I  ALT cons t ruc tor  semant ic  in OCCAM.  

and granulari ty.  I f  the  block size is omi t ted ,  size one is 
a ssamed  by default .  

Haskell# nei ther  al/ows dynamic  channel creat ion nor full- 
duplex  communicat ion.  One could argue t h a t  this  is too  
restrictive.  However, our emphasis  is to  provide a model  
of channel t h a t  makes possible to  s ta t ica l ly  analyze formal 
proper t ies  of  t he  process network. Besides tha t ,  s t r ic t  rules 
force p rogrammers  to  have a be t t e r  undez-~;.anding of  the  
sys tem and  to specify precisely wha t  they  want  to do. 

Non-determinism and Streams 
If  strp~m c h i n - s i s  connect  n por t s  (ei ther input  or out-  
put )  involved in ~ non-determinis t ic  communicat ion,  i t  is 
impor t an t  to  note  tha t  a non-determinis t ic  choice is made  
for each element  in the  list to  be  t r a n s m i t t e d  or received non- 
determinist ical ly.  This  allows the  merge of several s t reams 
into a single list on input  side, or t he  spl i t  of a list in sev- 
eral s t reams  on the  ou tpu t  side. In  the  program descr ibed 
in Section 4, we use this  fea ture  to model  management  of 
demands  and  responses in a c l ient /server  appl icat ion.  

Indexing and Parameterization 
The  parameter iea t ion  and suppor t  for indexed referencing of 
processes and ports ,  possibly using variables in conjunct ion 
with fo r  and s u c h  t h a t  clauses, allow the  management  of 
HCL code of a large number  of processes and  the easier 
representa t ion  of complex network topologies. 

2.4 Initialization, Execution, and Termination 
Haskell# programs s t a r t  by the  explici t  act ivat ion of all of 
its processes in s t a r t  declarat ions.  Execut ion is demand  
driven by the  a rguments  on inpu t  ports .  Values may  be 
passed expl ic i t ly  to  processes. E~amples  of  s t a r t  declara- 
tions follow: 

s t a r t  f p l  ? ? 
s t a r t  fp2 [1,2,3,4] ? b ? ? 
s t a r t  r e p e t i t i v e  fp2 ? f, where f in even_values 

The  first declara t ion  act ivates  process fp l ,  which will re- 
ceive the  value from its two input  ports .  The  Krst and  th i rd  
por ts  of  process fp2 receive values explicitly. They  axe not  
connected to  a channel.  The  th i rd  s t a r t  declarat ion is an 
example  of a r epea t ed  act ivat ion.  Process fp2 will be ac- 
t iva ted  repea ted ly  until  the  hole program ends. On each 
act ivat ion,  it  demands  arguments  on i ts  first port ,  while, on 
the  second one, values are expl ici t ly  given from an infinite 
list, generated by funct ion e~en_~alues. In the  w h e r e  clause 
of repet i t ive  processes, i t  is a necessary condit ion t ha t  the  
list or lists declared be infinite. The  use of the  symbol  ? as 
a list e lement  means  t h a t  the  corresponding value must  he 
o b t ~ n e d  th rough  communica t ion  I i.e., not  explicitly. I f  an 
element  of  the  list is ?, i t  must  be  received from the  port .  
This  feature  makes possible to  avoid deadlocks on cyclic net-  
works by  explici t  act ivat ion of some processes in the  cycle. 
The  solution of t he  dining philosophers problem presented 
in Section 4.1 use th is  a p p r o a ~ .  

Haskell code can be wr i t t en  inside HCL code using # ' s  de- 
l imiters.  For instance, the  function evert_~alues is declared 
in the  following way: 

395 



# 
even_values :: ~ l t ]  
even_values 3, . . ]  

# 

Stream communication and Repetitive Processes 
In  Haske l l# ,  a p o r t  of  t y p e  [t] of  a non repetitive process  
can b e  connec t ed  to  a p o r t  of  t y p e  t of  a repetitive process .  
O n  each acti~r~tion, t h e  r e p e t i t i v e  process  wil l  consume  an 
e lement  of  t h e  n ~ n m .  

Termination Condition 
A Haske l l#  a p p l i c a t i o n  t e r m i n a t e s  wheneve r  all of  i ts  non  
r epe t i t i ve  processes  t e r m i n a t e .  Thus ,  a p r o g r a m  wi th  only  
r e p e t i t i v e  processes  never  t e r m i n a t e .  

2_~ Placement of Functional Processes 
T h e  execu t ion  e n v i r o n m e n t  of Haskell# app l i ca t ions  is a ne t -  
work  of  process ing  node~, onto  which func t iona l  processes  
a re  s t a t i ca l ly  m a p p e d .  P r o g r a m m e r s  a l loca te  processes  in  
groups,  in which  processes  execu te  concurren t ly .  Before t a s k  
a l loca t ion ,  nodes  are  classif ied at .cording to  the i r  lectures, 
such as node processor speed (fast or slow), amoun~ of mem- 
or~ 3 available (large or thin) or  eommunic6~ion speed (high 
or low), in file n o d e .  c l a s s e s .  In  t h e  node .  £d file, each node  
m u s t  be  ass igned  to  a t  m o s t  one f ea tu r e  of  eadx class.  T h e  
m a i n  goal  of c lass i f icat ion is to  m o d e l  he t e rogene i t y  of  t h e  
execu t ion  env i ronmen t ,  al lowing t h e  H C L  Compi l e r  to  de-  
t e r m i n e  t h e  be s t  a l loca t ion  of  processes  to  nodes .  Func t i ona l  
processes  rem~iu  m a p p e d  onto  a node  du r ing  all the i r  life. 
T h e  a l l o c  c o n s t r u c t o r  used  to  def ine  t h e  m a p p i n g  scheme is 
exempl i f ied  below: 

a ] l o e  (wide ,  f a s t )  pO, pL, P2 
a l l o c  (s low)  ps[i'], for  i = 1..n 
a l l oc  (sto~) (p4[i], for i=l . .n)  

Processes  Po, p l ,  a n d  p2 are  a l l oca t ed  on a processor  wi th  
fea tu res  f,~st and wide f rom da.sees speed ~nd memory, 
respect ively ,  whi le  n processes  p~[i] axe m a p p e d  on to  d i s t inc t  
nodes  w i th  fea tu re  s low of  class speed. T h e r e  is no  reference 
to  t h e  class memorTI, al lowing a ~vide or th in  n o d e  to  be  
a l loca ted  for ps .  In  t h e  l as t  dec la ra t ion ,  t h e  n processes  p4[| ~] 
a re  m a p p e d  on to  t h e  s~me node .  

2.6 A Brief History of Haskell ,  Evolution 
Haskell~t is st i l l  an  evolv ing  language .  In  i t s  f i rs t  version[22], 
message  pass ing  pr imi t ives ,  send (!) a n d  receive (? -----), 
were defmed in Haskel l ,  on t o p  of  t h e  I O  monad .  In  o rder  
to  allow t h e  analys is  of  t h e  H a s k e i l ~  p r o g r a m s  us ing  Pe t r i  
nets ,  message  pass ing  p r imi t i ve s  were  e l i m i n a t e d  fxom the  
c o m p u t a t i o n  l anguage  IT, 21]. Th i s  kep t  process hier,~rcht/ 
b u t  dec reased  t h e  express ive  power  of  Haske l l#  in  specify-  
ing  some c o m m o n  s t a t i c  p a t t e r n s  of  pa ra l l e l  a n d  concur ren t  
c o m p u t a t i o n .  T h e  use of  s t r eam c o m m u n i c a t i o n  m a d e  pos-  
s ible for Haske l l#  to  b e  as express ive  as in i t s  or ig ina l  version 
w i t h o u t  any loss of  p rocess  h ierarchy.  T h e  Haske l l#  version 
p r e sen t ed  here  is t h e  f i rs t  t o  inc lude  streams~ and also now 
faci l i t ies  to  bu i ld  d a t a  pa ra l l e l  progr~m-q a n d  a r ev i sed  no t ion  
of initialization and finalization of program-~. 

3. R E L A T E D  W O R K  
T h e  r e l a t ion  be tween  c oo rd ina t i on  a n d  para l l e l  func t iona l  
p r o g r a m m i n g  can  be  seen f rom two perspec t ives .  In  t h e  first  
one, coo rd ina t i on  is cons ide red  ~n i m p o r t a n t  tool  for par -  
allel func t iona l  l anguages  ~ud models ,  be c a us e  of  i ts  ab i l i t y  
to  a b s t r a c t  pa ra l l e l  concerns  f rom speci f ica t ion  of  c o m p u t a -  
t ion .  Eden[2] a n d  Cal iban[19,  31] a re  e J a m p l e s  of  languages  
focused on these  ideas.  In  t h e  l a s t  one,  h igher -o rder  a n d  
non-s t r i c t  s ty le  of func t iona l  p r o g r a m m i n g  has  been  seen 
as an  powerful l  w~y to  speci fy  c oo rd ina t i on  amongs t  tasks .  
SCLI8] a n d  Delbium[24]  a re  e y a m p l e s  of  l anguages  t h a t  use 
t h e  func t iona l  p a r a d i g m  a t  c o o r d i n a t i o n  level. Haske l l#  be-  
longs to  t h e  first  c.~tegory. Likewise  E d e n  a n d  Ca l iban ,  i t  
uses Haskel l  for spec i fy ing  c o m p u t a t i o n ,  a s suming  a s t a t i c  
ne twork  where  func t iona l  processes  c o m m u n i c a t e  t h r o u g h  
p o i n t - t o - p o i n t  a n d  un id i r ec t iona l  channels .  Below, we dis- 
cuss t h e  m o s t  i m p o r t a n t  p o i n t s  which  d i s t ingu i sh  Haske l l#  
f rom t h e  o t h e r  known  para l le l  func t iona l  l anguages  b a s e d  on  
coord ina t ion :  

• The adoption of a configuration basedS[~.O] coordina- 
tion language fHGL} prov ides  c o m p l e t e  s e p a r a t i o n  on 
t h e  cons t ruc t i on  of  c o m p u t a t i o n a l  code (pure Haskel l )  
f rom c oo rd ina t i on  one (HCL) .  In  Eden  and Caliben, 
examples  of  e m b e d d e d  c oo rd ina t i on  languages ,  p r imi -  
t ives  e x t e n d  Haskel l  s y n t a x  for "gluing ~ processes  to  
t h e  c oo rd ina t i on  m e d i u m ,  while,  in Haske i l# ,  H C L  is 
o r thogona l  to  I faskell ,  This  H~-qkell# f ea tu re  allows 
t h e  pa ra i l e l i za t ion  of  sequent ia l  p re -ex i s t en t  Haskel l  
program-q a n d  y ie lds  i n d e p e n d e n t  spec i f ica t ion  and  de- 
v e l o p m e n t  of  c o m p u t a t i o n a l  a n d  coo rd ina t i on  code,  re-  
duc ing  d e v e l o p m e n t  cos ts  b y  code  reuse.  T h e  ab i l i ty  
for c o m p o s i n g  p r o g r a m s  f rom p a r t s  also makes  Ha~kel l#  
m o r e  su i t ab l e  for la rger  scale para l l e l  p r o g r a m m i n g  
t h a n  Eden  and Caliban [10, 9] a n d  forces p r o g r a m -  
mer s  to  a d o p t  a coarse grain view of  para l le l i sm,  use- 
ful in high-latenet/ d i s t r i b u t e d  a rch i t ec tu res ,  such as 
e /as ters  o f  P C ' s .  

• The modelling of parallel architectures. I t  is a wide ly  
acknowledged  fac t  t h a t  gener ic  mapping of processes  
to  p rocessors  is a diff icult  p r o b l e m  to  b e  t r e a t e d  au- 
tomat i ca l ly .  T h e  mech~n l sms  for th is  purpose ,  e i ther  
d y n a m i c  or s ta t ic ,  a r e  no t  e ~ c i e n t  a t  all  ins tances .  
W e  dec ided  to  follow a static and ezpIicit a p p r o a c h  in 
Haske l l#  for a / loca t ion  o f  processes ,  s imi la r ly  to  Cal-  
iban .  T h e  on ly  difference is t h a t  Haske l l#  makes  pos-  
s ib le  to  m o d e l  b o t h  processes  needs  for o p t i m a l  exe- 
cu t ion  a n d  a r c h i t e c tu r e  charac te r i s t i c s .  T h e  p r o g r a m -  
m e r  is t h e n  r e spons ib l e  t o  f ind  exp l i c i t ly  t h e  be s t  m a p -  
p ing  be tween  func t iona l  processes  a n d  processors  us ing  
these  in fo rmat ion .  

• The analgsia of formal properties using Petri nets. W h e n  
deve lop ing  Haske l l# ,  one  of o u r  m a i n  concerns  was to  
s u p p o r t  t h e  ana lys i s  of  fo rmal  p rope r t i e s  of progr~m~. 
A compi le r  t h a t  t r a n s l a t e s  H C L  in to  INA[29],  a Pe t r i  
ne t  analys is  tool ,  was  d e v e l o p e d  b y  Lima[21].  

• The east/ and eJ~icient implementations. Unfike Eden  
and Caliban, Haske i l#  needs  no  r u n - t i m e  s y s t e m  sup-  
po r t .  I t  can  be  easi ly  i m p l e m e n t e d  by  gluing a fas t  

a T h e  conf igura t ion  p a r a d i g m  was deve loped  in t h e  con tex t  
of  specifics. l ion of  d i s t r i b u t e d  systems[20].  
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message passing l ibrary  to a s ta te .o f - the .a r t  sequential  
ttaske|l functional  compiler  4. Assuming t ha t  Haskell# 
appl icat ions are coarse grain, one can take  advantage  
of the  best  technology for compila t ion of sequential  
functional  programs.  

Gener~Zi~/. Haskel l#  was developed to  give appropr i -  
a te  suppor t  to t he  specification of  general concttrrent 
systems in a unified way. Caliban, Delirium e SCL 
are well su i ted  for paral lel  applicat ions,  bu t  t u rn  dif- 
ficult to specify some kinds of ,~gaZ/nchronous applica- 
tions, such as client/server ones, for e ~ m p l e .  Eden  
has features for implementa t ion  of react/~e systems, 
like non-determinis t ic  operat ions and d~amic reply 
channels, but  has  no explici t  concerns about  distr i-  
bution.  

4. HASKELL# EXAMPLES 
Following the  terminology defined in [30], we dist inguish be- 
tween two kinds of concurrent  systems: b'ansformationaZ 
and react/ue. The  first one relates  to systems t ha t  receive 
some input  and yield an ou tpu t  a t  i ts  end, while the  second 
one relates to systems where the  central  task  is not  to com- 
pu te  a result ,  bu t  to main ta in  some interact ion with its envi- 
ronment.  In  general, react ive sys tems never te rminate .  Op-  
erat ing systems and some kinds  of control appl icat ions are 
e~nrnples of them. Paral le l  syetRr-~ can be seen as concur- 
rent systems with  t ransformat ional  behaviour.  In general, 
appl icat ions belonging to this  subset  of concurrent  systems 
have requirements  of efficiency, because of  their  t ime con- 
straints ,  while the  others have requirements  of s t ruc tur ing  
sol, ware or dis t r ibut ion.  Dis t r ibu ted  systems are concur- 
rent  systems where processes are d i s t r ibu ted  across a net-  
work of  computers .  Recently, t he  emerging of  c/aster com- 
puting technology has inspired a new d i s t r ibu ted  view of 
parallelism. This is one of t he  impor t an t  facts which let  us 
to  believe t ha t  Haskell# is a useful tool  for p rogramming  on 
ci~stera. 

For building paral lel  programs,  HaskeIl# offers a general 
functional view of parallel ism. Using this approach,  data 
parallelism s can be easily implemented  by ins tant ia t ion  of  
severed processes tha t  perform the  same task  for process- 
ing of par ts  from some large d a t a  s t ructure .  The  d a t a  can 
be d is t r ibuted  amongst  processes and jo ined  after paral lel  
computa t ion  using special user-defined d a t a  paral le l  oper-  
ators, p rog rammed  in Haakeli, specified a t  configuration 
level (HCL) (see the  syntax  of declarat ion of por t s  in Sec- 
t ion 2.2). We in tend to  define, in the  near  future,  a set 
of pre .defmed d a t a  parallel  operators  to  be used in HCL 
programs.  Indexing nota t ion  allows referencing several pro- 
ceases concisely, a requirement  of d a t a  paral lel  progrAmm Lug 
environments.  

The  explicit  and s ta t ic  notion of processes communicat ing  
through a network is well su i ted  to  specification of general 

4We have successfully used M P I  and  GHC,  respectively,  in 
our implementa t ions  
eData Parallelism is considered the  most  common and  effi- 
cient form of  parallel ism, providing high scalabili~, because 
the  amount  of paral lel ism exploi ted depends  on the  amount  
of d a t a  to be processed. However, it is less general t han  
f~nctional pgr~llelisn~ in which i t  can be  p~-~;ly s imulated.  

concurrent  systems.  Several languages,  no tab ly  based on 
configuration, use th is  approach to deal wi th  d is t r ibuted  sys- 
tems[20], bu t  not  dealing with  requirements  of paral lel  ones. 
In  this  section, we present  the  implementa t ion  of some com- 
mon concurrent  appl icat ions in Haskell~.  Our goal here is 
to  demons t ra te  how expressive is Haskell# to  express well- 
known pa t te rns  of  general s ta t ic  concurrent systems. 

The  Haskell# code far the  ey~mples presented in this paper  
can be found at  ram. c i n . u f p e  . b r \ -  fhcj\~ac2002_ao~urcea.  

4.1 The Dining Philosophers Problem 
T h e  Dining Philosophers is a Common synchronization prob-  
lem from concurrency theory,  s t a t ed  as follows: a number  of 
phiZosophers are seated a round  a tab le  forming a circle, each 
one with  a p la te  of spaghet t i  and  two forks to  eat it. Each 
fork is shared by  two adjacent  philosophers. The  philoso- 
pher  can only eat after get t ing the  two forks in a certain 
order (left to  r ight) .  Thus, if a philosopher is eating, the  
two adjacent  ones must  be  thinking.  I f  all the  philosophers 
get their  leit  forks at  the  same t ime,  they  will wait  forever 
for the  r ight  one. This  s i tuat ion models  deadlock, a s ta te  
where all processes belong to a communicat ing group in a 
system are wait ing for another  process in the  group. 

The  Haskell# solution is very simple. Assume n philosopher 
processes connected in a ring, each one with two input  por ts  
for receiving the left and r ight  forks and two output  ones to 
give the  forks to i ts left and r ight  neighbours (See Figure 2). 
Philosophers are th inking when they  have no forks or eat ing 
when they  have bo th  lei~ and r ight  forks. In  s t a r t  declara- 
tion, we dis t r ibute  the  forks amongst  philosophers, such tha t  
the  maximal  number  of philosophers will ini t ia te  eating. If  
there  is an even number  of  philosophers,  the  remaining fork 
is given to  the  last  one. The  other  philosophers will ini t iate 
th inking and  will t r y  to  receive forks from their  neighbours. 
I t  is not  dimcul t  to verify t h a t  this  solution thereaf ter  never 
deadlocks. 

E hill, 

~-~ 

~,~ phil[O] F~k 

T 

I 

~il[ 

,I 
Fa~k 

1 

F i g u r e  2: D i n i n g  P h i l o s o p h e r s  H a s k e l l #  N e t w o r k  

The  code for the  functional  module  P h i l o s o p h e r . h e  is: 

- -  M O D U L E  F I L E :  P h i l o s o p h e r . b e  
module Ph i loaopher (ma. in )  where 
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d a t a  F o r k  ffi F o r k  
main  : : F o r k  --k F o r k  --k IO ( F o r k ,  F o r k )  
main rf If = eat rf If >> t~4.k >> (rf,lf) 

T h e  H C L  conf igu ra t ion  code  to  t h e  ne twork  is: 

a p p l i c a t i o n  D i n i n g P h i  1 o s o p h e r  e <n> 
module  P h i l o s o p h e r  

i n p u t  r f o r k / n  : : F o r k  
i n p u t  l f o r k / n  : : F o r k  
o u t p u t  r f o r k o u t  : : F o r k  
o u t p u t  l f o r k o u t  : : F o r k  
i n s t e m c e  p h i l  [ O . . n - l ]  

f o r  i f 0 . . n - 1  
c o n n e c t  phil[i] .Ifork t o  phil[(i+l) nod  n] 
c o n n e c t  p h i l [ ( i + l )  nod  n]  . r f o r k  t o  p h i l [ i ]  

allot phil[i], for ifO..n-i 
s t a r t  ~ e p e t i t i v e  p h i l [ i ]  ? ? ,  

fo~ ifO..n-2 k (i nod 2 = I) 
start repetitive phil[i] f f, 

for i=O..n-2 & (i nod 2 = 0), 
w h e r e  f i n  F o r k : [ ? , ? , , ]  

s t a r t  r e p e t i t i v e  p h / l [ n - 1 ]  f ? ,  
for n mod 2=0, wh~e f i n  F o r k : [ ? . ? . . ]  

4.2 The Alternating Bit Protocol 
T h e  Al~erna~ng Bit Protocol ( A B P )  is a s imp le  y e t  e l e c -  
t ive  p ro toco l  for m a n a g i n g  r e t r a n e m i s s i o n  of  los t  messages  
on  low-level  i m p l e m e n t a t i o n s  of  messag ing-pa~s ing  mode l .  
Cons ide r ing  a rece iver  p rocess  A a n d  a s e n d e r  process  B 
c o n n e c t e d  by  two stream channels, t h e  p r o t o c o l  ensures  
t h a t  wheneve r  a message  t r a n s m i t t e d  f rom B t o  A is lost ,  i t  
is r e t r a n s m i t t e d .  

~- b m O ~ t  

b b 1 0  b 

~ h 

F i g u r e  3: A l t e r n a t i n g  B i t  P r o t o c o l  N e t w o r k  

F i g u r e  ~ shows t h e  process  ne twork  of  t h e  A B P  a p p l i c a t i o n  
specif ied in H a s k e l i # .  P rocesses  abp_send and abp_,,oait 
m o d e l  t h e  sender while  p rocesses  ~pb_out and epb_-c~ 
m o d e l  t h e  receiver. P rocesses  cor~pt_aend and corrupt_ack 
m o d e l  two un re l i ab l e  v i r t u a l  channel~ t h a t  l ink t h e  sender 
and receiver. T h e  apb.~send process  sends  a s t r e a m  of  
messages  t o  apb_out t h r o u g h  i t s  s t r e a m  p o r t  as ,  P roc e s s  
apb_awnit g u a r a n t e e s  t h a t  each  message ,  r ece ived  f rom s t r e a m  
p o r t  a s ,  will b e  t r a n s m i t t e d  correc t ly ,  t h r o u g h  s t r e a m  p o r t  
, Is ' ,  a~suming an  un re l i ab l e  m e d i u m  for c o m m u n i c a t i o n ,  m o d -  
e l led  by  corrupLaend process ,  w h i c h  receives  each  message ,  
f rom s t r e a m  p o r t  a s ,  a n d  verif ies i f  i t  is c o r r u p t e d  or  n o t  
us ing an o rac le  s t r e a m  of  b i t s  (oso) .  N o n  c o r r u p t e d  mes -  
sages a r e  sent  f rom corrupt_send, f rom s t r e a m  p o r t s  bat and 
be2, t o  apb_out and to apb_~ck processes  respec t ive ly ,  wh ich  
receives  messages  f rom i ts  s t r e a m  p o r t s  n a m e d  ba. P roc e s s  
apb_ack sends  bank an  a c / ~ o w l e d g e m e n t  b i t  t o  abp_-w-it 

for each  message  us ing  its s t r e a m  of  b i t s  p o r t  ca, t h r o u g h  
an  un re l i ab l e  m e d i u m ,  m o d e l l e d  b y  c o r r ~ p t _ - e k  T h e  o rde r  
o f  t h i s  s t r e a m  of  b i t s  is u sed  by  apb_a~ait for ver i fy ing  i f  t h e  
message  w'as cor rec t ly  sen t  or not .  I f  t h e  message  wa~ incor-  
r ec t l y  t r a .~smi t t ed ,  t h e y  a r e  re t ran-qmi t ted  b y  ,pb_-~ait. W e  
prove  t h e  co r rec tness  a n d  fo rma l  p r o p e r t i e s  of  t h i s  p r o g r a m  
us ing  P e t r i  nets .  

4.3 Generic Client/Server System 

[ server[I] [ I server[2] I 
~ q  ~ n u  I romp 

F i g u r e  4:  C l l e n t / S e r v e r  S y s t e m  H a s k e l l #  N e t w o r k  

Now, a t y p i c a l  e ~ m p l e  of  a r eac t ive  s y s t e m  is p r e sen t ed :  
a C l i e n t / S e r v e r  app l i ca t i on ,  i n s p i r e d  b y  t h e  gener ic  one  de-  
s c r i b e d  in [4]. Here ,  seruers process  d e m a n d s  f rom clienf~ 
processes  ( requis i t ions) .  O u r  p u r p o s e  is to  show how ex- 
press ive  is H a s k e l l #  for r e p r e s e n t i n g  r eac t i ve  sy s t ems  a n d  to  
d e m o n s t r a t e  use  of  n o n - d e t e r m i n i s m .  Cl ien t s  m a k e  an  au-  
t o m a t i c  choice a m o n g s t  free servers  w h e n  m a k i n g  a d e m a n d  
f rom t h e i r  req[i] por t s ,  each  one  a s s o c i a t e d  to  a server .  T h e y  
a u t o m a t i c a l l y  rece ive  r e sponses  f rom servers ,  t h r o u g h  t h e i r  
resp[~ por t s ,  one for each  server  too .  Al l  quer ies  m u s t  iden-  
t i fy  t h e  source  c l ient .  O bse rve  t h a t  t h e r e  is no  n e e d  for  a 
m a n a g e r  p rocess  to  dec ide  in  which  server  to  p rocess  each  
query,  a~ n e e d e d  in t h e  so lu t ion  p r e s e n t e d  for  Eden[4]. W e  
m o d e l  th i s  us ing  on ly  t h e  s u p p o r t  for  n o n - d e t e r m i n i s m  of 
H a s k e l l # .  

4.4 Matrix Multipl ication on the Mesh 

F i g u r e  5: M a t r i x  M u l t i p l i c a t i o n  o n  t h e  M e s h :  
I - I a s k e l l #  N e t w o r k  f o r  a 2 X 2 G r i d  

T h e  m a t r i x  m u l t i p l i c a t i o n  on  t h e  mesh  p r o b l e m  was  e x -  
t r a c t e d  f rom [25]. T h i s  p r o b l e m  is s t a t e d  as follows: given 
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t~o n X n matrices A and B,  such that ini~i61l# A[i,j] and 
B[i,j] reside in processor P[i,j],  compute U = A .B ,  such 
that C[i, j~ resides in processor P[i, j~. The solution consists 
of shifting of values between processes on the grid at each 
step until the final result is obtained. In its simple form, this 
solution has too fine granularity for obtaining good speedup, 
but it is very interesting for demonstrating how expressive 
Haskell# is to specify a systolic pattern of parallel compu- 
tation on a grid. Many parallel algorithms use this scheme. 
Figure 5 presents part of the network of processes of this 
application, emphasizing the grid of processes. 

4.5 Photon Transport Simulation 
MCP-Haskell# is a parallel version of MCP-Hnakeil[13], a 
program that implements a simplified form of the Monte 
Carlo Particle T~ansport Problem, which involves simulat- 
ing statistical behavior of particles (photons, neutrons, elec- 
trons, etc.) while they travel through objects of specified 
shapes and materials. MCP-Haskel l  is based on a For- 
tran code developed at Los Alamos over many years, called 
MCNP (Monte Carlo N-Particle)J33]. 

m b  

m~mb Ibis 

t m b  

mlsm ~ma ~ I ~  il/il~ 

tatil. 

| | , 

Figure  O: M C P - H a s k e l l #  P roce s s  N e t w o r k  

MCP-HaskeU# makes use of the Haskeli# way to implement 
data parallel and pipeline parallelism. The experience with 
MCP-Haskell# specification demonstrates how easy is to 
parallelize pre-existent Haskel l  code with Haskell#. There 
was no need for code rewritting or modification. It was 
only necessary some restructuring of the original programs 
in functional modules. 

Datg parallelism allows processing of particles in parallel, 
because each photon is independent and can be tracked and 
tallied independently. Each track and tally process compo- 
sition computes a disjoint set of photons. The process stat/#- 
tics collects information yielded from tallying and computes 
statistical information about the simulation. A pipeline con- 
nects processes prob_defs, gracka and tallies for allowing them 
to operate in parallel. Stream communication is essential for 

this purpose, but the performance benchmark has shown 
that the gain in performance obtained from use of the pipe 
line is very poor, because almost all computation is per- 
formed by the track processes. 

Figure 7 compares the speedup obtained for a problem in- 
stance of this application (solid line) to the linear (opti- 
mal) speedup (dashed line), when executing over a cluster of 
Linux PC's (6 Pentiam II MMX 350MHz and 2 Pentium III  
550MHz interconnected by Fast Ethernet (100Mbs) network 
interface). Here, Haskell# uses MPI for process communi- 
cation and GHC for compilation of functional processes. 

~ B  

3.9 i ~ 
2 . 9  . . . .  ~ ' "  . . . .  3 

2.4 

1.7 "~" ' "  

0 .9  

1 2 3 4 B 
m m b e r  o f  P r a = e l a o r J  

Figure  7: Speedup  For M C P - H a s k e l l #  execu t ing  on 
a C lus te r  of  L inux  P C ' s  

5. CONCLUSIONS 
In this paper, we presented Huskell#, a parallel extension to 
Haskel[ based on coordination. Its ability to compose par- 
allel programs from sequential parts in a transparent way 
makes it suitable for the definition of the most important 
patterns of parallel, concurrent and distributed computa- 
tion in a unified way. We showed the specifir~tion of some 
applications using Haskell# to demonstrate its expressive- 
ness. Our goal now is to implement large-scale applications 
of practical interest, for making performance benchmarking 
on clusters, and for improving Hnskell# model of coordi- 
nation and its environment for program construction. At 
present, we started to develop an integrated environment 
fur graphical specification of parallel and general concurrent 
systems, to be used in education (teaching of pasallelism and 
concurrency in undergraduate courses) and also for practi- 
cal development and management of complex applications. 
We also continue to investigate the applicability of Petri net 
formalism to the analysis of formal properties of Haskell# 
parallel programs. At present, a new specification for trans- 
lation of Ha-qkell# applications to Petri nets has been pro- 
duced, now dealing with stream communication. 
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