
A Modular Approach
to Build Structured Event-based Systems

Ludger Fiege" Gero M0hl" Felix C. G rtner
{fiege,gmuehl} @ gkec.tu-darmstadt.de

felix @ informatik.tu-darmstadt.de
Department of Computer Science

Darmstadt University of Technology
D-64283 Darmstadt, Germany

Keywords
Event-based Cooperation, Notification Services, Publish-
Subscribe, Formal Specification

ABSTRACT
Event-based systems axe developed and used as a coordi-
nation model to integrate components in loosely coupled
systems. Research and product development focused so far
on efficiency issues but neglected methodological support
to build such systems. In this paper, we present the mod-
ular design and implementation of an event system which
supports scopes and event mappings, two new and pow-
erful structuring methods that facilitate engineering and
coordination of components in event-based systems. The
approach is based on a trace-based specification method
adapted from temporal logic.

1. INTRODUCTION
Proliferation of computer networks led to increasingly

complex information systems which are built out of hetero-
geneous, autonomous components. In such systems, com-
putations are physically and logically distributed and have
to be coordinated in order to reach a common goal. Differ-
ent coordination models have been proposed in the litera-
ture, all of which try to integrate a number of components,
but not all of them are scalable. For example, it was crit-
icized that race conditions are possible in Linda [11] and

*The authors' work w ~ supported by the Deutsche
Forschungsgemeinschaft (DFG) as part of the PhD pro-
gram "Enabling Technologies for Electronic Commerce"
at Darmstadt University of Technology.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or dislributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redislribute to lists, requires prior specific
permission and/or a fee.
SAC 2002, Madrid, Spain
Copyright 2002 ACM 1-511113-445-2/02/03 ...$5.00.

its variants, resulting from the inherent concurrency of the
model [2].

The model of event-bazed systems is increasingly often
used in order to achieve scalability. In this model, the inte-
grated components axe 0nly loosely coupled. Processes can
act both as producers and consumers of events. Produc-
ers publish notifications about internal events but do not
address any specific (set of) receivers. On the other hand,
consumers specify the kind of data they want to receive
by subscriptions, e.g., they subscribe by type or content of
the transmitted notification. Publish/subscribe techniques
directly implement this approach [17].

Specification of event-based systems.
There exist a considerable amount of work on event-based
systems, and many concrete systems have been designed
and implemented (e.g., SIENA [5], etc.). Unfortunately, it is
very difficult to compare these systems because of different
or informal semantics. For example, in the SIENA system
[5], Carzaniga, Rosenblum and Wolf make a good effort at
defining the semantics of subscription mechanisms. How-
ever, timing issues are explicitly excluded from the spec-
ification; delivery is °~best effort." Processes are required
to accommodate to race conditions; notifications may be
delivered after cancellation of the respective subscriptions.
No reasoning about any timing issues is possible according
to the given specification. In most other systems, practi-
tioner's approaches dominate and at most the formal se-
mantics of the subscription languages axe given [3], ne-
glecting the semantics of the event service itself.

In other related work which follows the Actors paradigm
[1], a pattern-oriented broadcasting mechanism is used,"
which is called implicit invocation in software engineer-
ing [10]. A formal specification of implicit invocation sys-
tems is presented in [7]. It may also be used to describe
event-based systems, but only a static, predetermined bind-
ing of messages/notifications to methods is used, and the
important aspect of dynamic subscriptions is excluded.

One of the contributions of this paper is that we provide
a completely formal specification of the semantics of differ-
ent types of event systems. The specifications are given us-
ing standard approaches from distributed algorithms, i.e.,
the specification language is adapted from temporal logic

385

[15] and the specification itself is divided into safety and
liveness conditions [14].

Struc tur ing o f even t -based systems.

The event paradigm is a special kind of coordination model
which is build around a shared da ta space, like Linda
[11]. In comparison with Linda, the components are more
loosely coupled, facilitating distr ibuted deployment of in-
dependent components, but on the other hand, also com-
plicating engineering of event-based systems. In order to
cope with the inherent complexity, efficient abstractions
are necessary like they axe known in other areas of com-
puter science. Former work on event-based systems, how-
ever, concentrated on the efficiency of implementat ion is-
sues, disregarding the needs to facilitate coordination and
engineering issues. The notion of visibility h ~ proven to
provide helpful abstractions in s t ructur ing complex sys-
tems. Informat ion hiding [lal and t ransact ion process-
ing [12] are good and accepted examples of how complexity
can be reduced by restricting the visibility of components
and their actions.

We introduce the notion of scopes in event-based sys-
tems. A scope bundles a set of producers and consumers
and delimits the visibility of published events. Scopes may
republish internal events and forward external events to its
members, and thus a scope may be viewed as a producer
and consumer. I t can recursively be a member of other
scopes, offering a powerful s t ructur ing mechanism.

Only a limited amount of initial work exists in the area of
s tructuring event-based systems. The R E A D Y event no-
tification service offers event zones as administrative do-
mains [13]. They axe used to bundle sets of 'specifica-
t ions ' (subscriptions and actions) or consumers in order to
provide an uniform management interface. Research on
Lind,-l ike systems investigated s tructures of components .
Agha and Callsen propose ActorSpaces to limit the dis-
t r ibution of messages [2]. The basic drawback of their
approach is that even though previously unknown objects
are intended to cooperate senders have to specify desti-
nat ion addresses. The sketched implementat ion is ra ther
limited. In [16], Merrick and Wood introduce scopes to
limit the visibility of tuples in Linda, bu t again, senders
have to specify destination scopes. Fuxthermore, nesting
of scopes is restricted to two levels.

In large systems, delimiting of the visibility of notifica-
tions may not be sufficient because of heterogeneity issues
and different administrat ive domains where syntax and se-
mantics of events differ. I t is most likely not possible to use
one event, model in the entire system. Different parts will
use different representations and semantics of the trans-
mi t ted events. The scoped event system model is extended
to include event m~ppings, i.e., a possibility to t ransform
events when crossing scope boundaries. Generalized scope
interfaces axe offered tha t leverage construct ion and main-
tenance of large systems.

The R E A D Y system [13] uses a similar mapping facil-
ity located in bounda ry touters connecting otherwise in-
dependent domains. However, in this way they operate on
a rat.her coarse and static granularity. There exist some
work on semantical mappings in the da ta management lit-
erature, which par t ly focuses on events [4, 6].

In this paper, we present the design of an event system
which supports scopes and event mappings. We proceed in
three steps: The first step (described in Section 2) presents
a precise specification of a simple event system and gives
a possible distr ibuted implementat ion. The offered se-
mantics axe similar to the basic functionali ty of existing
event systems like SIENA. In the second step (presented in
Section 3), we refine the specification of the simple event
sys tem to include scopes, and present an implementat ion
which is built a round a simple event system. In the third
and final step (detailed in Section 4), the semantics of a
scoped event system axe extended to deal with event map-
pings. We present an implementat ion, which exploits the
fact t ha t we have a]xeady implemented an event system
with scopes in the second step. The modular approach to
building event systems has many evident advantages. For
example, it makes the task of building a complex event
system much easier because different concerns are han-
dled separately in an incremental fashion. Furthermore,
in conjunction with exact specifications it allows to deal
with issues of correctness more easily. Due to lark of space
correctness proofs can be found elsewhere [9).

2. S I M P L E EVENT-BASED SYSTEMS
In this section, we specify a simple event-based systems

and show how to implement i t .

2.1 Specification
A simple e~ent system can be viewed as a t ranspor t

• mechanism for event notifications. Informally, componen t s
interacting with the event sys tem signal event occurrences
by invoking the pub operat ion of the system with the notifi-
cation da ta describing this event as parameter . We further
assume tha t notifications are unique in t ha t they ate dis-
t inguishable by s o m e identifier, i.e., two consecutive pub
operations with identical notification da ta result in send-
ing two different notifications. The notification is conveyed
by the event sys tem and delivered to all connected compo-
nents via an ou tpu t operat ion called not/fy. Components
register their interest in specific kinds of events by issuing
subscriptions via the sub operation. This operat ion takes
afilter (i.e., an event selector) as parameter , and every de-
livered event must ma tch such a subscription filter. Each
subscription must be revoked individually and separately
by using the ur~ub operation. Otherwise, computabi l i ty
issues arise concerning match ing and subtract ing of filters
in the specific subscription language.

Formally, the event-based sys tem is viewed as a black
box with an interface (see Figure 1). A set of clients inter-
act with the sys tem by invoking input operations pub, sub
and unsub. The system can asynchronously notify a client
by invoking an ou tpu t operat ion notify. All these opera-
tions take parameters from different domains: the set of
all clients e, the set of all notifications :N, and the set of
all filters 9=. Formally, a filter F E 3 ~ is a mapping from
:N to the boolean values true and raise. We say tha t a
notification n m~tches a filter F if[(if and only if) F (n) is
true, where N (F) denotes the set of all notifications tha t
match F : N (F) = {~ I F(n) = true} C :N.

We specify the behavior of the event system by solely
looking at its interface. We think of the interface as a

386

Interaction " ' , ",~i ~, ~ . . ~
I I

Event
System

F i g u r e 1: B l a c k b o x v i e w o f a n e v e n t s y s t e m .

set of variables. A state of the interface is an ass ignment
of values to these variables. Invoking operat ions at the
interface results in a tomic s ta te changes so that individual
behaviors of the system can be described as a sequence of
states interleaved with operat ion names. We call such a
sequence a trace of the system. For example, the trace

0"1 = S l , s u b (X , F) , s 2 , p~b(Y, n), sa, noti fy(X, n), s t , . - .

describes that in the init ial s ta te sx component X sub-
scribes to a filter F . After tha t , in the resul t ing s ta te s2,
component Y publishes a notif icat ion n, which in t u r n re-
sults in s tate as. The next s tate a4 results from componen t
X receiving the notif icat ion of n , and so on.

Note tha t the trace does no t say any th ing about the
exact '~real-time" instances of when the operat ions are in-
voked, so our model reduces t ime to the relative ordering
of operat ions wi thin a trace. Note also t ha t the trace does
not require tha t n matches F . In fact, we can define a lot
of useless traces. For example, the trace

,~ = s~, u , ~ , ~ b (X , F) , s2 , n o t ~ f y (r ' , ,-,), s.~, . . .

describes tha t X unsubscr ibes to a filter it has never sub-
scribed to emd tha t Y receives a notif icat ion al though it
never subscr ibed to anything. The task now is to find
sui table restr ict ions on the set of all traces tha t resemble
exactly what we expect an event sys tem to do (e.g., t ha t a
delivered notif ication mus t ma t ch a previous subscript ion).

Let ~r = Sl, opz,s~, op2,ss , . . • be a trace. For every op-
erat ion op of the event sys tem we define a predicate Op
on traces in the following way: Op(g) = true iff opl = op,
i.e., the predicate holds if the operat ion is the first one in
the trace. For example, the predicate Sub(X, F) holds for
example trace a l above. The formal language we use to
specify sets of traces is bui l t from the above predicates,
the logical operators V, A, =~, -1 and the "temporal" op-
erators [] ("always") and O ("eventual ly") which we bor-
row from tempora l logic [15]. For example, the formula
- ,Sub(X, F) is t rue for a t race a iff the first operat ion in
is not sub(X, F). The semantics of the temporal operators
is defined a.s follows: Let • be an a rb i t ra ry formula. T h e n

• O 9 is t rue for trace ~r iff there exists an i such tha t
is t rue for the trace a~, opt, si-l-1, opi.l . 1, Si-i-2, • • •

• D ~ is t rue for trace ~ iff for all i • is t rue for the
trace sl, o P i , ,Yi-[-1, o p i + x j Si-t-2, . . •

Intui t ively, O~ means tha t 9 will hold eventually, i.e.,
there exists a point in the trace at which ~ holds. For
example, ONoti fy(X, n) specifies all traces in which com-
ponen t X eventual ly is notified abou t n. On the other
hand, D ~ means t ha t • always holds, i,e., for all ~uture"
points in the t race ~ holds. For example, r~-~ Unsub(X, F)
specifies all traces in which X never unsubscr ibes to F .

In our formalizat ion we assume tha t a set of specifics.
tion variables is par t of the interface. Specification vari-
ables are fictitious devices which are sometimes necessary
to keep track of the in te rna l history of the system within
a specification. For example, i r a component should never
uusubscr ibe a filter to which it has no t subscr ibed before,
we need a way of tell ing what filters it is subscribing to in a
given state. We assume three sets of specification variables
at the interface: For every componen t X E 12 we postulate

1. a set ,.-qx of active subscriptions (i.e., filters to which
X has subscr ibed a~d not unsubscr ibed yet),

2. a set P x of published notifications (i.e., the subset
of :N conta in ing all notif icat ions previously published
by X) , and

3. a mul t i se t D x of delivered notifications (i.e., all noti-
fications which have been delivered to X) . A mult iset
is a set where identical e lements can occur more t han
once. A special operat ion ~ (M , e) is available giving
the n u m b e r of occurrences of element e in mult iset
M.

We assume tha t these specification variables are init ial ly
empty and tha t they are upda ted by the system faithfully,
e.g., whenever X subscribes to F i t adds F to Sx . This
makes it possible to formalize tr ivial well-formeciness prop-
erties like tha t a componen t ma y only unsubscr ibe a filter
to which it has cur rent ly subscribed, or tha t it may sub-
scribe only to a filter which it has no t current ly subscribed.

Now we are ready to specify the behavior of a simple
event system. Arguably, it captures only min imal require-
ments , however in tu i t ive semantics is covered and it rep-
resents a basis for fur ther refinements.

DEFINITION I. A simple event system is a s11Jtem that
e~hibits only traces so that every state satisfies the follow-
ing requirements:

s~Y~-tu- #(Dy, n) _< Z

3 X 3 F ~ S y : n ~ P x ^ n~N(F))

and

Livenes~: Sub(Y, P)

om (P~,b(X, ~,) ^ ,, • N (F) =~ OJVo¢ify(Y, n))
v (o g.~.b(Y, V))

The safety condi t ion states t ha t no "wrong" events are
notified to a component , i.e., events are delivered at most
once, have been publ ished somet ime in the past, and the
component mus t have an active subscr ipt ion for them.

3 8 7

T h i s c o n d i t i o n has a p p e a r e d in t h e s a m e sp i r i t in t h e l i t-
e r a t u r e [5] a n d is eas i ly jus t i f i ed .

T h e l iveness c o n d i t i o n de sc r ibe s p rec i se ly u n d e r which
cond i t i ons a no t i f i c a t i on m u s t b e de l ivered . T h e c o n d i t i o n
can b e r e p h r a s e d as follows: I f a c o m p o n e n t Y subsc r i be s
to F , t h e n t h e r e ex is t s a f u t u r e p o i n t in t i m e w h e r e t h e
p u b l i c a t i o n of a no t i f i c a t i on n t h a t m a t c h e s F will l e ad to
a de l ive ry of n to Y . T h i s can on ly b e c i r c u m v e n t e d b y Y
u n s u b s c r i h i n g to F .

Fo r e x a m p l e , t r a c e ~1 a b o v e sa t i s f ies b o t h s a f e ty a n d
l iveness c o n d i t i o n s whi le o i v io l a t e s t h e we l l fo rmedness
cond i t i ons s t a t e d above . As a d d i t i o n a l e x a m p l e s , cons ide r
t h e fo l lowing t r a c e s w h e r e F is a f i l te r a n d ~t~ are no t i f ica-
t ions m a t c h i n g F whi le n ~ is a no t i f i c a t i on n o t m a t c h i n g
F (the i n t e r m e d i a t e s t a t e s a re o m i t t e d for b r e v i t y) :

~a ---- 8ub(Y,F),pub(X , nl), no~ify(Y, n ~)

~4 = pub(X, n), sub(Y, F), unsub(Y, F), nol le(Y , n)
as = sub(Y, F) ,pub(X , n l) ;pub(X, n i) ,p~b(X, na) , . . .

"I~aces ~s a n d ~4 v io l a t e t h e sa fe ty r e q u i r e m e n t b e c a u s e a
no t i f i c a t i on is de l ive red to Y t h a t does no t m a t c h an ac t ive
subsc r ip t i on . I n t r a c e ~s c o m p o n e n t Y subsc r i be s to F a n d
c o m p o n e n t X s t a r t s to p u b l i s h a c o n t i n u o u s sequence of
no t i f i ca t i ons m a t c h i n g F . Since t h e r e is no no t i f i ca t ion
in cr.~ i t p e r f e c t l y sa t is f ies safety. However , i t v io la t e s t he
l iveness r e q u i r e m e n t (to s a t i s fy l iveness , t h e r e m u s t b e a
p o i n t in t h e t r a c e fo l lowing t h e s u b s c r i p t i o n w h e r e e i the r
Y u u s u b s c r i b e s to F or Y beg ins to rece ive no t i f i ca t ions) .

In tu i t i ve ly , t h e l iveness r e q u i r e m e n t s t a t e s t h a t any fi-
nite proces s ing de l ay o f a s u b s c r i p t i o n is a c c e p t a b l e . By
a b s t r a c t i n g away f rom rea l t i m e we o b t a i n a concise a n d
u n a m b i g u o u s c h a r a c t e r i z a t i o n of w h a t t y p e s of ac t ions m u s t
b e p r o d u c e d b y t h e s y s t e m u n d e r which cond i t i ons . Fo r
e x a m p l e , i f a c o m p o n e n t has s u b s c r i b e d to a f i l ter F a n d
l a t e r u n s u b s c r i b e s to i t , t h e s y s t e m does no t have to no-
t i fy t h e c o m p o n e n t a b o u t a n l / e v e n t s wh ich m a t c h F a n d
are p u b l i s h e d in t h e m e a n t i m e . I t m a y neve r the l e s s do so,
b u t on ly as long as t h e o t h e r r e q u i r e m e n t of De f in i t i on 1 is
me t . O n t h e o t h e r h a n d , de l i ve ry o f an even t is on ly nec-
e ssa ry if t h e c o m p o n e n t c o n t i n u o u s l y r e m a i n s s u b s c r i b e d
to F . Because t h e s y s t e m c a n n o t te l l t h e fu tu re , i t m u s t
s t i l l m a k e a g o o d effort to p r e p a r e d e l i v e r y even t h o u g h
t h e c o m p o n e n t m a y l a t e r u u s u b s c r i b e to F .

2.2 Implementation
W e now show how t o i m p l e m e n t t h e spec i f i ca t ion of a

s imp le even t s y s t e m f~om Sec t i on 2.1. W e base all our im-
p l e m e n t a t i o n s in th i s p a p e r on a s y s t e m m o d e l w h e r e a
se t of a s y n c h r o n o u s p rocesses c o m m u n i c a t e over m e s s a g e
pas s ing channe l s . T h e channe l s a re a s s u m e d to b e reli-
able , i.e., no messages a re los t or a l t e r e d a n d no s p u r i o u s
messages axe de l ive red , a n d i n c o m i n g d a t a is s e r v e d in a
fair m a n n e r . For s impl ic i ty , the c o m m u n i c a t i o n t o p o l o g y
is a s s u m e d t o b e acycl ic a n d c o n n e c t e d (see F i g u r e 2).

In t h e c o n t e x t of an even t s y s t e m , we cal l a p rocess an
event broker. To invoke the in t e r f ace o p e r a t i o n s of t h e
even t s y s t e m , eve ry c l ien t invokes a fo rm of loca l l i b r a r y
f u n c t i o n caus ing messages to be i n s e r t e d in to t h e sy s t em.
Th i s m e a n s t h a t t h e c l ien t p rocess can b e c o n s i d e r e d to b e
an event b r o k e r (see F i g u r e 2). F o r e v e r y c l ient (7 we call
th i s even t b r o k e r t h e local event broker of C.

W e n o t e t h a t t h e r e can b e m a n y di f ferent i m p l e m e n t a -
t ions of De f in i t i on 1, e spec i a l l y ones t h a t a re m o r e efi lcient
t h a n ours . T h e p u r p o s e of th i s s ec t i on is m e r e l y to show
t h e p o s s i b i l i t y of i m p l e m e n t i n g t h e spec i f i ca t ion a n d show-
ing t h a t our spec i f i ca t ion f ac i l i t a t e s co r r ec tnes s a r g u m e n t s .

2.2.1 Da ta S tructures
E v e r y loca l even t b r o k e r h o l d s two d a t a s t r u c t u r e s :

1. a t a b l e S of ac t ive s u b s c r i p t i o n s , a n d

2. a t a b l e D of p r e v i o u s l y d e l i v e r e d events .

B o t h axe i n i t i a l l y e m p t y .

2.2.2 Algorithm
I f a c l ien t invokes aub(X, F) , t h e loca l even t b roke r of X

a d d s F to S . Converse ly , if unsub(X, F) is invoked, F is
r e m o v e d f rom S. E v e n t s axe p r o c e s s e d w i t h i n t h e s y s t e m
b y a t e c h n i q u e ca l l ed flooding. A n i n v o c a t i o n o f pub(X, n)
causes s end ing a m e s s a g e c o n t a i n i n g n to t h e n e i g h b o r of
t h e loca l even t b r o k e r in t h e ne twork . I f any (non- loca l)
even t b r o k e r rece ives such a message , i t f o rwards i t t o all
n e i g h b o r s e x c e p t t h e one t h e m e s s a g e was r ece ived f rom.
A local even t b r o k e r (say of c l ien t Y) r ece iv ing such a
m e s s a g e checks if t h e r e ex i s t s a f i l te r F in S y such t h a t n
m a t c h e s F . I f so, i t checks w h e t h e r n is a l r e a d y p r e s e n t in
D y . I f one of t h e s e checks fails, i t d i s c a r d s n. O t h e r w i s e
n is a d d e d to D y a n d d e l i v e r e d to t h e c l ient v i a a cal l t o
not~fu(Y, ,~).

/ r ~ (, f - ~ C l i e n t

~ J / [. . . . L o c a l even t b roke r

--- Even t b roker

F i K u r e 2: A p o s s i b l e i m p l e m e n t a t i o n v i e w o f a s i m -
p l e e v e n t s y s t e m .

3. E V E N T - B A S E D S Y S T E M S W I T H
SCOPES

W e e x t e n d t h e spec i f i c a t i on of t h e s i m p l e even t s y s t e m
p r e s e n t e d in Sec t i on 2.1 a n d i n t r o d u c e t h e n o t i o n of scopes.
For p r e s e n t a t i o n p u r p o s e s , we r e s t r i c t our a t t e n t i o n to
static scopes, i .e., t h e s c o p e h i e r a r c h y a n d m e m b e r s h i p can-
n o t c h a n g e once t h e f i rs t even t has b e e n p u b l i s h e d . T h i s
r e s t r i c t i o n is s o f t e n e d in Sec t i on 3.2.

3.1 Specification
A scope b u n d l e s a se t of p r o d u c e r s a n d c o n s u m e r s in or-

de r to u t i l i ze loca l i ty , to h i d e " in te rna l" conf igura t ions , or
to de l im i t a d m i n i s t r a t i v e d o m a i n s . T h e v i s ib i l i t y of p u b -
l i shed even t s is r e s t r i c t e d b y the scopes a n d t h e i r c o m p o -
s i t ion .

388

X

S c o p e

Simple component

F i g u r e 3: A graph of c o m p o n e n t s

To deal wi th scopes, we need an addi t iona l specifica-
t ion var iable G which keeps t r ack of the current scopes in
the sys tem. Formally, G = (C, E) is a d i rec ted acyclic
g raph t h a t signifies the supe r scope / subecope re la t ionship
between components and scopes (see Figure 3). We ex tend
the not ion of a componen t to be e i ther a s imple compo-
nent from e or a scope from a set $ of all possible scopes
and define the set ~ of complez components to be ~ U e.
The nodes C of G are a subse t of ~ and the edges E are
a b ina ry re l a t ion over X. A n edge from node cl to c2 in
G s t ands for c2 being a superscope of cl . Next to being
acyclic, the re la t ion E mus t also sat isfy the p r o p e r t y tha t
a s imple componen t cannot be a superscope of any node in
G. As no ted above, we e .~ume here t h a t scopes are s ta t ic ,
i.e., the scope graph does not change once the first event
is publ ished.

Using (7, we define the vis ibi l i ty of componen t s as a re-
flexive, symmet r i c re la t ion v over ~IC Informally, compo-
nent X is visible to Y iff X and Y "share" a common
superscope. For a componen t X , let super(X) denote the
set of componen t s t h a t are superscopes of X. Formally,
we recurs ively define

v(X, Y) ¢~ X = Y
v , ,(Y,X)

V v (X ' , Y) wi th X ' E s u p e r (X)

In the graph in F igure 3 for example , v(X, Y) holds bu t
not v(X, g).

DEFINITION 2. A scoped event sys tem is a system that
ezhibits only traces so that e~ery state satisfies the follow-
ing requirements:

Safety: # (Dy , n) < 1

[Notib(Y, n) =~" A

~X. ~F~S,.. (~ ~ e x) ^ (n ~ N(F))

^.(x, r)]
I,i,,eness: Sub(Y, F)

O (n v (X , Y) =~ n[eub(X,n) A n • N(F)={~

V 0 Unsub(Y, F)

We e labora te on how Defini t ion 2 differs from Defini-
t ion 1. The safety requ i rement conta ins an add i t iona l con-

j u n c t v(X, Y). This means t h a t in add i t ion to the previous
condi t ions, the pub l i sher and the subscr iber mus t also be
visible to each o ther when a not i f ica t ion is delivered. The
livenees requ i rement has an add i t iona l precondi t ion t h a t
can be u n d e r s t o o d in the following way: I f componen t Y
subscr ibes to F , then the re is a fu ture po in t in the t race
such t h a t if X r ema ins visible to Y, every publ ishing of a
ma tch ing event will lead to the del ivery of the correspond-
ing not i f icat ion.

Note t h a t Def ini t ion 2 is a genera l iza t ion of DeFmition 1.
A s imple event sys t em can be viewed as a sys tem in which
all componen t s be long to the same "global" scope. This
implies a~ "global vis ibi l i ty" , i.e., v(X, Y) holds for all pairs
of componen t s (X, Y) and can be replaced by the logical
value true in the formulas of Defini t ion 2, resul t ing in Def-
ini t ion 1.

3.2 Dynamic Scopes
In Defini t ion 2 we have assumed a s t a t i c scope hierar-

chy. The case of dyna mic scopes is however not so different
• f rom the s t a t i c case. As in o ther open sys tems t ha t sup-

po r t reconf igura t ion at run t ime , we assume the role of a
manage r who is responsible for a r ranging scopes and com-
ponents . The ind iv idua l componen t s do not necessari ly
need to know a b o u t the i r scope membersh ip ; according to
t he event -bazed pa rad igm, they concent ra te on the tasks
they have to accomplish. To the manager , four addi t ional
opera t ions are offered: cscope(S) and dseope(8) to create
and des t roy a scope S, jseope(X, 8) and Iscope(X, S) are
used to jo in X to scope 8 or leave it, respectively. A sys-
tem wi th s t a t i c scopes ca,, t hen be s imula ted by having the
manage r set up the scope h ie ra rchy with the appropr i a t e
opera t ions before clients s t a r t to publ i sh and subscribe.

However, for the d y n a m i c case, a p rob lem arises when
t ry ing to imp lemen t Def in i t ion 2: A not i f icat ion n m a y
only be del ivered to Y if t he pub l i sher X of n is visible to
Y. But because X m a y "spontaneously" leave the scope
before delivery, Y mus t double check t h a t X is still visible
at this po in t to ensure safety. In the worst case, X has to
be blocked unt i l n is delivered, which is unfavorable.

There are two possibi l i t ies to solve ~.his problem. The
first is to pos tu l a t e t h a t a client m a y only leave a scope if
all of i ts pub l i shed not i f icat ions have been delivered. Un-
der th is a ssumpt ion , Def ini t ion 2 makes sense wi th dy-
namic scopes, too. The second poss ib i l i ty is to weaken the
defini t ion and allow the del ivery of a not if icat ion if pub-
l isher and receiver were visible at the t ime the notilqcation
~as published. Since this subs tan t i a l ly changes the sai 'ety
semant ics we have chosen not to pursue this direct ion here.
A discussion of the different possibi l i t ies is left for fu ture
work.

Note t h a t t he liveness pa r t of Defini t ion 2 is perfect ly
compl i an t to d y n a m i c scopes.

3.3 Implementation
We presen t a poss ible imp lemen ta t i on of the previous

specif icat ion which uses a s imple event sys tem as a basic
t r a n s p o r t mechanism. This m o d u l a r approach underl ines
t he sys tem ' s s t ruc tu re and shows the poss ib i l i ty of imple-
men t ing the specif icat ion, b u t again, i t does not concen-
t r a t e on efficiency issues.

389

C l i e n t L o c a l E v e n t B r o k e r

S i m p l e Even t S y s t e m

event system, the proxy then invokes pub(Prozx, (n, R)),
where R is set to the constant value Vx.

Cal l s to sub(X, F) and uns ub (X , F) are sen t in a s imi l a r
w a y t o Prozx. U s i n g F , t h e p r o x y de r ives a f i l ter /~ t h a t
m a t c h e s all n o t i f i c a t i o n s ~t ----- (n, R) for w h i c h n m a t c h e s
F , a n d s u b s e q u e n t l y cal ls s~tb(Proxx, ~').

W h e n e v e r t h e s i m p l e e v e n t s y s t e m not i f ies t h e p r o x y
of Y a b o u t a n o t i f i c a t i o n ~t ---- (I t , /~) , t h e p r o x y checks
w h e t h e r Vy f3 R ~ 0• I f t h e t e s t succeeds , a m e s s a g e is sen t
to t h e loca l b r o k e r of Y to invoke notify(Y, n). O t h e r w i s e
t h e n o t i f i c a t i o n is d i s ca rded•

F i g u r e 4: A p o s s i b l e i m p l e m e n t a t i o n o f a s c o p e d
e v e n t s y s t e m .

T h e a r c h i t e c t u r e o f t h e i m p l e m e n t a t i o n is s k e t c h e d in
F i g u r e 4. T h e i n t e r f ace o p e r a t i o n s of t h e s c o p e d even t sys-
t e m axe loca l l i b r a r y cal ls w h i c h a x e m a p p e d to a p p r o p r i a t e
messages of t h e u n d e r l y i n g d i s t r i b u t e d s y s t e m . A g a i n we
cal l t h e p a r t of t h e c l ien t p roce s s w h i c h h a n d l e s t h e s e cal ls
t he [ocnl event b roker of t h a t c l ient . F u r t h e r m o r e , for ev-
e ry c l ien t t h e r e is an a d d i t i o n a l p roce s s a t t h e i n t e r f ace of
t h e s i m p l e even t s y s t e m w h i c h we cal l t h e c l i en t ' s prozy .

A l t h o u g h we do n o t dea l w i t h d y n a m i c scopes here , t h e
p r e s e n t e d a l g o r i t h m c a n eas i ly b e e x t e n d e d to i n c l u d e d y -
n a m i c scopes as of S e c t i o n 3.2. T h i s r e s t r i c t i o n r e sem-
bles an o b j e c t - o r i e n t e d p r o g r a m m i n g a p p r o a c h w h e r e n e w
subc l a s se s a n d new m e t h o d s a re r e a d i l y a d d e d , b u t m o d -
i fy ing t h e i n h e r i t a n c e h i e r a r c h y is c o m p l i c a t e d (a n d for-
b i d d e n here) . To s i m p l i f y t h e i m p l e m e n t a t i o n , we r e s t r i c t
the changes which can be made to the graph G ~ (C, E)
of scopes: Only components with no incoming edges may
join or leave scopes. This restriction implies that individ-
ual brokers do not need to store G completely, aa we now
explain.

The scope hierarchy expressed by edges E describes a
t r a n s i t i v e p a r t i a l o r d e r <_ on C , w h e r e X _< X ' ¢# (X , X ') £
E . T h e m a x i m a l e l e m e n t s of C h a v e no o u t g o i n g edges ,
i.e., t h e y have no s u p e r s c o p e s . T h e s e e l e m e n t s a re t e r m e d
visibility roots b e c a u s e t h e r ecu r s ive de f i n i t i on of v(X, Y)
is t e r m i n a t e d b y c o m m o n s u p e r s c o p e s . T h e m a x i m a l ele-
m e n t s that are visible from a component are used to de-
termine visibility of events.

3.3.1 Data Structures
For e v e r y c l ien t X , i t s p r o x y Prozx h o l d s a l is t Vx of

i ts v i s ib i l i t y roo t s . I n a s y s t e m w i t h s t a t i c scopes~ Vx is
i n i t i a l i z ed to t h e se t o f i t s v i s ib i l i t y r o o t s in t h e g iven scope
g r a p h . W i t h d y n a m i c scopes w h e r e changes are l i m i t e d
to t h e a d d i t i o n o f n e w l e a v e s - - n o d e s w i t h no i n c o m i n g
e d g e s - - V x is se t a t t h e t i m e of a d d i t i o n . I n b o t h cases,
i t r e m a i n s c o n s t a n t a n d is n o t c h a n g e d un t i l t h e who le
s y s t e m s s t o p s or X is d e l e t e d , r e spec t ive ly .

3.3.2 A lgor i thm
If a client invokes pub(X, n) , a m e s s a g e (pub,X,n) is

sen t to t h e c l i en t ' s proxy• A t t h e i n t e r f ace of t h e s i m p l e

4. SCOPED EVENT-BASED SYSTEMS
WITH EVENT MAPPINGS

W e now p r o v i d e a spec i f i c a t i on a n d an i m p l e m e n t a t i o n
for a s c o p e d even t s y s t e m w i t h even t m a p p i n g s . T h e m a p -
p i n g s a re r e q u i r e d to b e s t a t i c in t h e s a m e sense as t h e
scopes are: C h a n g e s a r e l i m i t e d to c o m p o n e n t s w h o s e p u b -
l i shed even t s have a l r e a d y b e e n no t i f i ed to all v i s ib le peers .

4.1 Specification
Scopes a re c o m p o n e n t s a n d t h e y p u b l i s h a n d c o n s u m e

n o t i f i c a t i o n s a b o u t even t s j u s t as s i m p l e c o m p o n e n t s do.
B u t t h e i r b e h a v i o r s h o u l d n o t b e m e r e l y a s u m of t he i r
c o n s t i t u e n t c o m p o n e n t s . T h e exp re s s ivenes s of t h e g r a p h
of scopes is g r e a t l y e x t e n d e d i f s copes a r e ab le to in f luence
t h e se t of e v e n t s c o m m u n i c a t e d t h r o u g h t h e m . F o r t h i s
p u r p o s e , we def ine e v e n t m a p p i n g s w h i c h a re a t t a c h e d t o
i n d i v i d u a l s copes a n d wh ich fulfill two t a sks . F i r s t , t h e y
ac t as f i l ters t h a t e x p l i c i t l y a l low o n l y a specif ic se t of
even t s to b e p u b l i s h e d a n d c o n s u m e d , d e s c r i b i n g t h e in-
t e r f ace of t h e scope . Second , all even t s c ross ing a s cope
b o u n d a r y , w h i c h e n c a p s u l a t e s i t s s u b s c o p e s , m a y b e t r a n s -
f o r m e d to m a p b e t w e e n i n t e r n a l mad e x t e r n a l r e p r e s e n t a -
t ions . F o r e x a m p l e , m a p p i n g s m a y b e u s e d to a c c o m m o -
d a t e a p p l i c a t i o n - s p e c i f i c s y n t a c t i c a l or s e m a n t i c a l differ-
ences in d a t a r e p r e s e n t a t i o n s , l ike cu r r enc i e s in d a t a t y p e s
or c o n s t r a i n t v iews on p u b l i s h e d d a t a r e q u i r e d b y s e c u r i t y
issues.

W e c o m b i n e t h e t w o t a s k s a n d m a p an o u t e r n o t i f i c a t i o n
rt, wh ich c o m e s f r o m a s u p e r s c o p e j to an i n n e r n o t i f i c a t i o n
7t' w h i c h is f o r w a r d e d to t h e s u b s c o p e s . I f a m a p p i n g re-
su i t s in t h e e m p t y n o t i f i c a t i o n • ~ ~f, i t is n o t f o rwa rded .
T h e e m p t y e v e n t • is i n t r o d u c e d t o ach ieve a b l o c k i n g be -
h a v i o r of t h e m a p p i n g s . T h i s b l o c k i n g m e c h a n i s m m a y b e
u s e d to s u b s u m e f i l te rs i n to t h e m a p p i n g c o n c e p t . O u t g o -
ing even t s axe h a n d l e d v ice versa .

E v e n t m a p p i n g s a re f o r m a l l y de f ined as r e l a t i o n s on s c o p e
" b o u n d a r i e s . " B r i e f l y ' s p o k e n , s c o p e b o u n d a r i e s a re t h e
edges b e t w e e n t h e n o d e s in t h e s c o p e g r a p h G. W i t h ev-
e ry such edge we a s s o c i a t e t w o b i n a r y , a s y m m e t r i c re la -
t ions / ~ a n d ~ over t h e se t :N of no t i f i c a t i ons . L e t n l
a n d n~ be t w o n o t i f i c a t i o n s . Fo r any edge e a n d i ts as-
s o c i a t e d r e l a t i o n / ~ , t h e m a p p i n g nx , ~ ~ m e a n s t h a t
w h e n " t r ave l ing" u p w a r d s a long t h e edge (i.e., in d i r e c t i o n
of t h e s u p e r s c o p e) wl is t r a n s f o r m e d in to nz . T h e r e l a t i o n
~ e is de f ined a n a l o g o u s l y for t h e r eve r se d i r ec t ion .

U s i n g t h e r e l a t i o n s , we c a n n o w def ine a r e l a t i o n -~ over

3 9 0

x X that extends the visibility v(X, Y);

(hi, x) ~ (n~, r) **

(x = r ^ n, = n~)

v (3X ~ • super(X). 3n'.

V (3Y' • super(Y). 3n'.

n l ~ 7], p

^ [(~', x ') ~ (n~, r)])
t ~ n2

^ [(~ , x) ~ (n', r ')])

In the previous definition, /~ and ~ axe the relations as-
sociated with the edge which is referenced by super. The
recursive definition of ~ can be best understood by look-
ing at Figure 5. Intuitively, (nl, X) ~ (n2, Y) means that
notification nl can '~ow" from X to Y and is received as
notification n~ (which might be different from nl). The
path on which nl flows to n2 is similar to the visibility
relation defined in Section 3, i.e., it can be characterized
by a path from X up to a common superscope and then
down to Y. The visibility of n2 is additionally determined
by the event mappings along this path and their possibility
to block and discard notifications.

© s
.o

o" -o

X n 2 1 I Y

F i g u r e 5: l~ecursive def in i t ion o f t he r e l a t ion
(n,, X) ~ (n~, Y).

We axe now ready to define the semantics of a scoped
event system with event mappings. Like the graph of
scopes, the relations /~ and ' ~ are required to be static
in that a component's mappings axe not allowed to change
until all of its published events axe notified..

DEFINITION 3. A scoped event system with event map-
pings is a system that e~hibits only tr~eea so th,~t e~er~
state oatisfies the following requirements:

Safety: # (D r , n) _< 1

^ (JVot~MY, n') =~

~x. 3F ~ s~. (~ ~ P~) ^ (~' ~ N(F))

^ ~ (n,Y)])
Livenesa: Sub(Y, F) =~

o ([] [(,,, x) ~ (n', r)]

[3[Pub(X, n) ^ n • N(F) =~ ONotifly(Y, n ')])

V 0 Unsub(Y, F)

X

• s

X

• F i g u r e 6: T r a n s f o r m a t i o n o f m a p p i n g s in to c o m p o -
nen t s .

The difference between Definitions 3 and 2 is that the
term •(X, Y) is replaced by the term (n, X) ,,~ (n', Y) and
that the published event n is not necessarily the same as
the delivered event n'. Similar to the visibility, this formu-
lation captures the notion that in addition to being visible
with respect to scoping, the event mappings must addition-
ally allow the flow of notifications. Also, the notification
n ~ is the result of repetitive applications of the relations
/ z and ~ along the path implicitly defined by ~.

Note that Definition 3 is a generalization of Definition 2.
This is because a scoped event system can be regarded as
one with event mappings where all event mappings are the
identity relation (i.e., they do not change anything along
the way). In such a system, v(X, Y) is implied by the
existence of a notification n such that (n, X) -,- (n, Y).

4 . 2 I m p l e m e n t a t i o n
The implementation of a scoped event system with map-

pings Bb ~ is based on a scoped system Eb ~ and a trans-
formation of the graph of scopes G that essentially follows
the idea of adding activity to edges. Figure 6 sketches the
transformation that creates G' by exchanging every edge
(K, 6') that does not apply the identity mappings n / ~ n
and n "~ n for two extra mapping components K ~ and
K~. By inserting one K,~ we would be able to add some
form of activity to an edge. Two mapping components
are required to constrain the visibility of the transformed
notifications to the appropriate scopes.

1 2

Scoped Event System

F igu re T: A r c h i t e c t u r e o f s c o p e d even t s y s t e m w i t h
m a p p i n g s .

391

Figure 7 describes the archi tecture of the implementa-
t ion ' for the example sys tem in Figure 6. A componen t X
connected to E,q ~ is also directly connected to an underly-
ing scoped event sys tem Eft s. Cedis to pub(X, n) of E f t ~
are forwarded to ES s wi thout changes, and vice versa, calls
to notify(X, n) of Eb ~s are forwarded to Eb ~ .

In general, if a scope K is to be joined to a superscope S
by calling jscope(K, S), two m a p p i n g components K 1 and
K2m are created t h a t communica te directly via a point-
to-point connection. K ~ joins K , subscribes to all noti-
fications publ ished in K , t ransforms and forwards t h e m
to its peer. Fur thermore , subscr ipt ions in K have to be
t r ans formed before they are forwarded. The implemen-
ta t ion relies on external ly supplied functions t h a t m a p
notifications and f i l ters /subscr ipt ions between the internal
and external representa t ions in K and S, respectively. K ~
joins 5' and republishes all notifications it gets f rom its peer
K ~ . I t subscribes in 5 according to the subscript ions for-
warded by K ~ , t ransforms any notifications received out of
S, again wi th external ly supplied functions, and forwards
t h e m to K ~ which republishes t h e m into K .

5. C ONC L USIONS
We have in t roduced the not ion of scopes as a powerful

s t ruc tur ing mechan ism for event -based systems. Scopes
can help to hide internal configurations or de | imit admin-
is t rat ive domains. In conjunct ion with event mappings ,
scopes cam even provide suppor t for heterogeneous pro-
cessing environments . We have also shown how to design
and implement scoped event sys tems by providing modu la r
and unambiguous specifications and provably correct im-
plementat ions . In fu ture work we wish to s tudy the open
specification questions concerning sys tems with dynamic
scopes. Addit ional ly we will evaluate our design within
REaECA, our p ro to type event sys tem implementa t ion [8]-

6. R E FER E NCES
[1] Gul Agha. ACTORS: A Model of Concurrent

Computation in Distributed S~./stems. M I T Press,
Cambridge, Mass., USA, 1986.

[2] Gul Agha and Chris t ian J. CMlsen. ActorSpace: an
open d is t r ibuted p rog ramming paradigm. A C M
S IGPLAN Notices, 28(7):23-32, July 1993.

[3] Marcos Aguilera, l~obert Strom, Daniel S tu rman ,
Mark Astley, and Tushar Chandra . Matching events
in a content -based subscript ion system. In PODC:
ISth A C M SIGACT-SIGOPS Symposi~r~ on
Principles o] Distributed CoMputing, pages 53-61,
1999.

[4] C. B o r n h f v d and A.P. Buchmann . A p ro to type for
m e t a d a t a - b a s e d integrat ion of in ternet sources. In
11th International Co.nference on Advanced
Informa~ion Systems Engineering (CA iSE Tg),
volume 1626 of LNCS, Heidelberg, Germany , June
1999. Springer-Verlag.

[5] Antonio Carzaniga, David S. ~tosenblum, and
Alexander L. Wolf. Design and evaluation of a
wide-area event notification service. ACM
T~unsactions on Computer SlIstems, 19(3):332-383,
2001.

[6] Mariano Cilia, Chr is tof Bornhfivd, and Alejandro P.
Buchmann . Moving active funct ional i ty f rom
central ized to open d is t r ibuted heterogeneous
environments . In Proceedings of the 6th International
Conference on Cooperative Information Sgstems
(CoopIS), volume 2172 of LNCS. Springer, 2001.

[7] J. Dingel, D. Garlan, S. Jha, and D. Notkin.
l~easoning abou t implicit invocation. In Proceedings
of of the Siz~h International Symposium on the
Foundations of Software Engineerin9 (FSE-6), Lake
Buena Vista, Florida, November 1998. ACM.

[8] L. Fiege and G. Miihl. Rebeca Event -Based
Electronic Commerce Archi tecture , 2000.
h t tp : / /www.gkec . in fo rma t ik . tu -
da rms t ad t . de / r ebeca .

[9] Ludger Fiege, Gero Miih], and Felix C. G~rtner . A
modu la r approach to building event-based systems.
Technical repor t , T U D a r m s t a d t , 2002.

[10] David Garlem and David Notkin. Formalizing design
spaces: Implici t invocat ion mechanisms. In S t ren
P rehn and W- J. (HanR) Toetenel, editors, VDM '91:
Formal Boftumre Development Methods, volume 551
of Lecture Notes in Computer Science, pages 31--44.
Springer-Ver]ag, 1991.

[11] David Gelernter . Genera t ive communica t ion in
Linda. A CM Transactions on Programming
Languages and Systems, 7(1):80-112, J anua ry 1985.

[12] J im Gray and Andreas Reuter . Transaction
Processing: Concepts and Techniques. Morgan
Kaufmann , 1993.

[13] K.E. Gruher , B .Kr i shnaanur thy , and E. Panagos.
T h e archi tec ture of the R E A D Y event notification
service. In Proceedings of the lgth IEEE
International Conference on Distributed Computing
Spstems MiddleuJare Workshop, Austin, Texas, USA~
May 1999.

[14] Leslie Lampor t . Prov ing the correctness of
mult iprocess programs. IEEE Transactions on
Soflu~are Engineering, 3(2):125-143, March 1977.

[15] Z. Manna and A. Pnueli. The Temporal Logic of
Reactive and Concurrent Systems. Springer-Verlag,
1992.

[16] Iain Merrick and Alan Wood. Coordinat ion with
scopes. In Proceedings of the 2000 A CM Symposium
on Applied Computing 2000, pages 210-217, Como,
Italy, March 2000.

[17] Brian Oki, Manfred Pfiuegl, Alex Siegel, and Dale
Skeen. The informat ion b u s - - a n archi tecture for
extensible d is t r ibuted systems. In B a r b a r a Liskov,
editor, Proceedings of the l~th Symposium on
Operating Systems Principles, pages 58-68, New
York, N'Y, USA, December 1993. ACM Press.

[18] David L. Parnas. On the cr i ter ia to be used in
decomposing sys tems into modules. Communications
o.f the ACM, 15(12):1053-1058, December 1972.

392

