
A Uniform Meta-Model for Modeling Integrated Cooperation
Guangxin(Gavin) Yang

Bell-Labs Research, Lucent Technologies
600 Mountain Avenue, Murray Hill, NJ 07974, USA

gxyang @ acm.org

Abs t rac t
Process modeling is a central topic o f research on Computer
Supported Cooperative Work (CSCW). Uniformity and
flexibil i ty in work representation and process enacOnent are
two primary goals. We develop a novel meta-model capable
o f model ing uniformly a wide range o f cooperat ion scenarios.
W e will discuss the key elements o f the model and its
computerized formalism, the Cova programming language,
and its runtime system. We will describe in this language
several typical cooperation scenarios to illusUrate how
integrated cooperation and other cooperat ion seenarios can
be described and supported with our model.

Keywords
Process Modeling. CSCW, Groupware, Cova

1 I N T R O D U C T I O N
Recent advances of research on supporting cooperative work
have resulted in numerous groupware ill and meta-
groupware [2, ,] systems, which have different runtime
environments and application areas. Although these systems
greatly facilitate interactions among widely distributed
cooperators, their separation and independence from each
other hinder the cooperation among users o f different
systems. For example, the artefact created in a synchronous
co-authoring tool could hardly be used in any finely
granulated manner by an asynchronous message passing
system because the latter usually has no semantic
information o f the artefact.

The difficulty comes from the fact that each system is
designed to support a specific type o f cooperation. Litt le
attention has been paid to how different types o f cooperation
can be supported in a comprehensive way. However,
cooperation in real world settings is usually a combination o f
single user activities, s3mchronoua and/or asynchronous
cooperation. For example, even a s imple document review
process may be decomposed into an authoring activity and a
reviewing activity, which may be enacted sequentially. Either
o f t h e m may be carried out by only one user on his/her own,

Permission to make digital or hard copies o f all or part o f
this work for personal or classroom use is granted without
fee provided that copies arc not made or disO-ibuted for
profit or commercial advantage, and that copies bear this
notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permiss ion and/or a fee.

SAC 2002, Madrid, Spain G 2002 A C M 1-58113-445-
2/02/03 .._$5.00

or by a group of cooperators via synchronous editing or
asynchronous authoring.

We call this type o f cooperation as integrated cooperation,
which denotes a process that involves single-user,
synchronous or asynchronous mult i-user a~tiv/tics, and other
integrated cooperation. To the best o f our Imowlodge, there
are only a few prototypes, e.g. WoTel (tTj, that are capable o f
supporting a specific type o f integrated cooperation.
Unfortunately, no meta-groupware system is capable o f
support ing the development o f this type o f applications.

One may think thin integrated cooperat ion can be supported
in a way similar to that o f WoTel by defining a set o f
interfaces among different groupware systems to bridge the
islands so that they can be integrated into another. Though
this seems to be a quick solution, it is not a perfect one. The
reason lies in the fact that each system has a different recta-
model for describing cooperation processes it supports. Even
though some systems may have similar meta-models, the
formalisms that are used to descr ibe them are different.
These differences make it difficult for one system to be fully
and flexibly integrated into another one through interfaces.
For example, lacking the semantic information o f the objects
in the integrated system makes it difficult for the integrating
system to take full advantage o f these objects.

This paper addresses the chal lenge to support integrated
cooperation from a more systematic point o f view. Wc
propose a novel recta-model for uniformly describing
integrated cooperation processes as well as single-user,
synchronous, and asynchronous processes. We show with
several examples how this meta-model can be used to model
a wide range o f cooperat ion scenarios. The nmtime
environment based on this model wil l also be discussed to
show how the semantics o f the key constructs o f this recta-
model are implemented.

Process modeling by i tself is an old yet young research topic.
By old, wc mean that there have been well-established
concepts, c.g. activities, triggers, roles, etc, which were
developed in various fields, e.g. Computer Supported
Cooperative Wor~ Software Engineering, Parallel and
Concurrent Computing and so on. By young, we mean there
arc still lots o f basic challenges [q. Model ing integrated
cooperation is an important one o f them. We will use the
aforementioned conventional terms as the basic conslructs o f
our mcta-modcl. However, wc will see that they will be
assigned with novel meanings and semantics. We will also
show that the mechanisms to implement these semantics are
quite different from those used in other areas.

Our recta-model is based on an abstract o f groupware
systems [91 The abstraction defines a f ramework within
which various aspects o f groupware systems can be

322

investigated. The coming section is focused on the
description o f this meta-model. The 3 re section gives a brief
introduction to its computerized formalism, the Cova
programming language and system. Four examples will be
given in the 4 'h section to illustrate how the recta-model can
be used to describe uniformly different cooperation scenarios.
Comparison with other related work, conclusions and
directions for future work are presented in the last two
sections.

2 T H E M E T A - M O D E L
As we have stated, our recta-rondel is determined to be
uniform in the sense that it should be able to model different
cooperation scenarios, i.e. synchronous, asynchronous,
integrated, even single user activities, in a uniform way and
with great f lexibi l i ty . Mathematically, a cooperation scenario
described with our meta-model is a set, with each element
describIng a piece of work th,,t contributes to the cooperation.
Among these described, there are what the piece o f work is,
how it is being done, what it will receive from and send to
other elements, etc. As in other models, the scenario is called
aproeez$ and the description aprocess definition, which will
be used to control the enactments o f process instances An
element in a process is called an activity, which is the basic
conslruct o f our recta-model. Though the terms seem to be
quite ordinary, we will show how they are different from
other definitions.

2.1 U n i f o r m Activities
An activity in our model is defined as an active computing
entity with a goal, a life cycle, and rules regarding how its
state changes and how it interacts with its environment. It is
a computing entity in the sense that it maintains a set o f states
which records the results o f the piece o f work it describes
and has an execution thread, whose execution is driven by
the /npu t mes.~ges from the activity's external environment.
The goal of an activity is the desired state in which the piece
o f work is considered to be completed. By active, we mean
the activity will, under certain conditions, generate output
messages actively to its external environment, which are all
the activities that communicate with it.

Intuitively, an activity plays a role similar to a secretary that
holds the information related to a particular piece o f work

Figure I. A uniform activity. What lies in its center is a set o f
variables that can be accessed through different interfaces and
in different modes. They record the progresses and the final
results o f the activity. The curved arrow lines indicate
accessing threads, which may be either simultaneous or
exclusive (different line styles). The block arrows with small
shapes (messages) inside are the communication channels
among activities.

and enforces the roles that conlrol accesses to the information.
These that could access the information are called ~ I iv i ty
participant, who may be a (group of) human being(s) or
computing process(s) capable o f performing a certain action.
Activity participants, under certain conswaints, will access
the state variables maintained by the activity to make it
change linle by little to the desired states. However, these
accesses are not arbitrary, but under the guidance o f the
activity roles. Eventually participants will determine that the
goal o f the activity is reached. At this time, the activity may
generate outputs for other activities to share the resuJts it
produces. The computation model embodied by an activity is
shown in Figure I.

2.1.1 The Life 07cle
The concept o f the life ~ i e o r a n activity is similar to that of
a process or a thread in an operating system. An activity may
navigate through different stages, each of which may have
diffenmt effects on how thc state variables it maintains can
be accessed, in our model, there are six stages defined, i.e.
initiated, active, suspended, stabilized, aborted end
completed.

initioted is a transient stage which becomes act/~e or
suspended after an activity is initialia~:l. The difference
between ac t i~ and suspended is whether the panicil~mts can
access the state variables. Only the variables maintained by
an active activity are accessible, either exclusively or
simultaneously, by one or multiple cooperators fi'om one or
multiple network sites. In this way, an activity is made
capable o f supporting both single user activity and
synchronous cooperation.

An a,-tivity becomes stabilized when the participants think
the goal o f this activity has been reached_ It is different from
completed in that a stabilized activity can be rex~tivaled
when the participants later realize that the goal is not actually
reached or a new gold is raised. In either case they need to
further access the variables to push them into new states.
Since this often occurs in real-world settings, by introducing
this new stage, the activity model is made more flexible.

Figure 2. Transitions among different stages o f an activity.

The transition paradigm among different stages o f an activity
is shown in Figure 2. For simplicity, the actions that cause
these transitions are not shown in the figure. These actions
can be either internal or external. Internal actions arc
generated by the runtime system. For example, the transition
from initiated to active or suspended is done by the nmtime
system according to the activation roles (see below) and the
state variables. External actions are usually raised by
participants. For cxample, they may abort an active,
suspended, stabilized activity. In all cases a transition to
aborted will occur.

2.1.2 Act iv i ty Rules

Rules are a widely adopted mechanism in many fields.

323

Generally they specify under what circumstances what will
occur, what are allowed, what are denied, etc. Typical
exmnples include the trigger definitions in an active database
system tel, the access policies in a network node, the product
roles in an AI system, etc. They differ in their purposes, the
formalisms, the constructs and their semantics, how the
semantics arc implcmcnted, ctc.

Our model uses rules for three purposes. The first one is to
specify under what conditions an activity will become active,
thus makes its state variables accessible. Any state change of
the activity causes the runtimc system to check this condit ion
to see whether it needs to transit the activity into the active or
suspended stage.

The second propose is to define the ways in which state
variables are accessed_ Details include who, under what
cmsditions, can take some actions in an activity. For example,
some o f these rules may specify whether s imultaneous
accr.sses to the state variables are allowed, while others may
apecify something like access control policies. Actions
include retrieving and updating the sta/c variables, transiting
activity to a new stage, or a combination of them. Def in ing
access manners at the activity level allows a cooperator to
play different rules in d i f f acn t activities, thus provides more
l]cxibility than other models where these policies arc defined
gJobally.

The third purpose is to define when and under what
conditions an activity may send some messages to other
activities. This type of rule is used to build the
communicat ion channels among activities for asynchronous
information sharing and synchronizing the stages of different
activities. A message in our model is a parameterized action
on the receiving activity, whose states may be changed after
the action is executed. Since the activity knows all its
semantics information, messages arc composed with the
states of the activity and some globally accessible
information in a finely granulated manner. With these
semantics information, more flexible and sophisticated rules
can be formed, thus provides much more flexibility than
these models where the semantics information is unavailable.

While rules can be used to define the cooperation policies,
they may impose some limitations on the cooperation, which
will then lead to inflexibility. In our model, rules are optional,
which means that an activity can have no rules or only some
types o f rules. Therefore., i f there are no communicat ion rules
defined, an activity alone can be used describe either a single
user activity or synchronous cooperation. With the
communicat ion rules, asynchronous cooperation can also be
described. It is in this sense that we call the activity a
uniform model.

2.2 Integrated Processes
Based on the uni form activity model, an integrated process is
defined as a set o f inter-related activities. The inter-
relationship among activities is established by their
communicat ion rules. We call it an integrated process model
because it has the capability of modeling integrated
cooperation processes as discussed in the inWoduction. We
will show how this is done in the forth section.

The integrated process model has several distinct features.
The first one is its loose mathematical structure. Compared

with other models, e.g. the Petri Net -based 1,41, the
specialized grammar 1201, the directed graph [2,1, which have
more rigid logical structures, a loose logical structure
imposes less limitations on how different activities arc
related to each other while maintains equal, if not stronger,
expressive power. For example, it should be easy to show
that any process modeled with a directed graph can be
modeled with our integrated process model.

The second feature would be the fact that our meta-model is
oriented to a cooperation process being enacted, not a
process template in existing systems that is used to guide the
enactment of process instances. Based on this orientation, a
lot o f dynamic information that is generated during process
enactment can be used in process modeling. With the
dynamic information, we can get extra flexibility otherwise
not available. For example, based on the name of the author
of a document, we may define the participant of a review
activity to be the author's supervisor in the system directory.

The third feature would be its hierarchicalness. Similar to
that each activity r~ re sen t s a piece of work, a process as a
whole represents a l a rg~ piece of work. The state of a
process is natundly defined as the combination of all the
states of its component activities. It records how the process
is progressing and what the latest results arc. In this sense, a
process can also be regarded as an activity, which can then
be used as a component of another process. Therefore,
process definitions can be nested to form a hierarchical
structure.

3 Coy,4 L A N G U A G E A N D SYSTEM
We have discussed the basic ideas and constructs of our
meta-model. However, without a formal method, it could
hardly be used to model any cooperation processes for
practical use. Our approach is to develop a programming
language based on this meta-modcl and its mntimc system,
which implements the semantics of the language constructs
and provides a set of computation services for enacting
cooperation processes. Due to page limitations, the
discussions here will be kept as brief as possible.

3.1 A B r i e f O v e r v i e w
The language, CovA, ge~ its name from the bold letter in the
phrase 'Cooperative Applications'. Similar to many
coordination-or/ented languages and models 1,4t, Cot,4 also
adopts the idea to separate the computation and coordination
parts o f a process. The first feature that distinguishes COFA
from other languages is that its coordination pan has full
knowledge about the senumtics of the computation part, e.g.
how it is slructured, how it can be operated, etc. With this
information, the runtim© system is able to do some advanced
controls which otherwise is impossible. For example, it can
be used for more flexible concurrency control when an object
is accessed simultaneously by multiple cooperators Oo].

The second feature is that the computation part in our model
is not an independent program that has its execution logic.
Instead it provides only the descriptions on how a piece of
data is structured and how the operations on it are
implemented. How the operations are used is up to the
cooperators. Generally, they can use an arbiu'ary combinat ion
of these operations to access that piece of data. If the
combinations are viewed as execution logic, then each

3 2 4

cooperator can "ouild' a virtual program that best fits his/her
needs to finish his/her piece o f work. Obviously, this will
greatly increase thc flexibility compared with other solutions
where only some specific programs can be used.

3.2 Object Description Language
As we have mentioned, an activity maintains a set o f stale
variables. Thcrc are many design alternatives on how these
variables are described. We have chosen to implement an
enhanced version o f ODMG's Object Model [zs] for this
purpose. The COYA Object Description Language or CODL
in short, provides the language constructs for describing the
s t r u c n n ~ o f an object and implementing its methods, which,
as we have mentioned above,, becomes part o f the
computation description o f a cooperation process. Similar to
other object-oriented progrmnming languages, these
descriptions appear as class definitions. Due to page
limitation& here wc will not list its syntax rules. We will give
some examples o f class definitions later.

3.3 Coordination Description Language
Based on CODL, the COVA Coordination Description
Language or CCDL in short, provides the language
constructs for describing the components o f the model
outlined in the 2 4 section. It is basod on CODL in the sense
that many descriptions in CCDL use the descriptions in
CODL. In CCDL, a process description is defined with the
following syntax:

ProccssD~lm'ation ::= PROCESS QmdificdNmnc [EXTENDS
QualifiedNmnc] ProccssBody

ProecssBody ::= '[" [ClassDeclm~ons]
[ProecssDeclarations] ActiviL3,Declaratiom '}'

ActivilyDeclarations ::= ActivityDeclmuion [ActivityDeclarafioas]

The first rule stales that a process definition begins with the
kcyword process and a process name. Optionally, it can have
a super process, from which all definitions in the process
body are inherited. Thus CCDL is also object-oriented.
Besides a set o f activity definitions, the process body may
contain an optional set o f class definitions (given in CODL)
and an optional set o f nested process definitions (given in
CCDL), both o f which may bc used in the activity definitions.

Activity dcfinitions may havc two different forms. Thc first
one is given with the following syntax:

ActivizyD¢claration ::= ACTIVITY QualifiedName [HANDLES
QualifiedName] [STARTSWHEN Expression]
ActivityBody

Each activity has a name, which is unique within a process.
The optional HANDLES clause specifics the name o f a class,
whose definition is given in the ClassDeclarations section.
The activity maintains an instance o f this class as its state
variables, which wc call it actrvity object. Participants can
use its methods to access the activity object. The
STARTSWHEN clause specifies with a Boolean expression
under what condition thc activity may bccomc active, thus
allows its activity object to bc accessed.

The activity body is defined with the following rules:

ActivityBody ::ffi" [' [ActivityAttribum:s] '}'
ActivilyAIlributcs ::= AclivityAI2riboz= [ActivityAttribul~s]

ActivilyAm.ibule : : - PmticipantDeclaralion I Rolel~claralion l
TriggerDeclmation

TriggerDeclaration ::= TRIGGER CovaMethodCallList WHEN
EventDeclmmion [WHERE Expression] ';'

It conlains the rules on how the activity object can be
accessed (given by PardcipantOeclarmion and
RoleDecieration) and how the activity communications with
other activities (given by TriggcrPeclaration). The common
point of these declarations is that they all may contain
expressions composed with method calls to and am-ibutcs o f
the activity objecss and the other two specialized object,
p r o c e u and activity, which refer respectively to the process
and activity. We will discuss how they arc used in the
example sections.

The second form of activity dcfinition is given by the
following syntax:

AcLivityDeclarabon ::= ACTIVITY QtmlifiedName AS
QualifiedName;

The second QualifiedNamc is the nmnc o f a process
definition, whose activities become activities o f this process.
In this way, a process can be nested in another process. In
this way the hierarchical ness o f processes is achieved.

3.4 Cova Runt ime System
Process definitions alone are not enough for supporting
cooperation. Based on the uniform recta-model, the Cova
runtime system (CovaRT) implements the semantics o f
process definitions and provides a set o f computation
services that are n e c ~ for enacting integrated
cooperation. It adopts a hybrid architecture that consists o f
centralized servers and fully replicated clients. Cooperalion
processes are maintained as the first-class entity in Cova
servers. The Activity ConlxoI service o f CovaRT provides all
the functions needed for process control, e.g. creation,
cancellation, suspension, generating and executing messages
for activities, flexible transaction management, and exception
handling. These functions arc implemented as the Cova
Transaction Management model or CovaTM in short. More
details about CovaTM can be found in [I !].

The fully replicated clients are the key component for
participants to access activity objects. As part of a process,
activity objects are kept at a Cova server. When it becomes
accessible, a participant may 'open' it through a Cova client,
which runs at the participant's site. At this time, the Cova
client gets the latest state and class definition of the object
and keeps them locally. It has an interface through which the
application used by a participant can retrieve the slate o f the
object and execute an operation on it.

The uniqueness o f Cova clients lies in their capabilities in
object replication and concurrency control. When an activity
object is accessed simultaneously by multiple participants,
the client for a late comer follows a procedure to work with
other clients and the server to get the latest state o f the
activity object. At the end o f this procedure, all clients have
identical replicated copies o f the object. Each cooperator
accesses the locally replicated copy independently.
Operations generated at each client are multicast to other
clients for awareness. Concurrency control is needed to kccp
the consistency o f these replicas and the results produced by

325

executing an operation at different clients. We have
developed a fully optimistic concurrency control model,
CovaCM, which guarantees the consistency based on the
semantics of object structure and operations. Details about
CovaCM can be found in [10].

Activity, replication, and concurrency control are the three
core services provided by CoveRT. They are essential for
supporting integrated processes. Several other services, such
a system directory, access control, are also implemented to
make CoveRT more practical for real applications tel

4 EXANfPLES
Now it is time for us to give several examples to show how
our model, language, and runt!me satisfy the requirements
outl ined in the introduction. Four examples, a single user
application, a synchronous application, an asynchronous
application, and an integrated application will be discussed
one by one. Our purpose in designing these examples is to
show how our model, language, and runt!me work in verious
cooperation scenarios. Therefore we will keep them as
simple as possible.

4.1 A Single User Application
Let's begin with the simplest case. A user may work by
him/herself on a document, e.g. a business report a technical
paper, etc. This scenario is modeled as the process given in
Figure 3. The class C D o c u m e n t defines semantics o f its
structure and all possible operations. The activity
A A u t h o r i n g mainta ins a C D o c u m e n t object as its state
variable_ The first activity rule defines a role thai has access
to all the three operations. The second rule states that only
the creator o f the process can access the activity object, i.e.
the document, with a role defined by the first rule.

After a P S i n g l e U s e r A u t h o r i n g process is created at a
CoveRT server, a C D o c u m e n t object will be created for
the activity and become accessible. With an UI application

p ~ o ~ a e PSingleUse rAuthoring
[

class CDocument [

protect list<char> m IcText;

public v o i d Insert{char oh, in! pos) {

insert ch ~to m icText mt pos;
I;

public voXd Delete(in! poe) |

delete fze~ m_IcText at pos;
};

public s t r i a O G e t T e x t () I
zetu~-n string (m_icText) ;

};

}

activity AAuthoring h a r u d ~ e a CDocument
[

role Author as

[cxe~ta on Insert,Delete,GetText};

users as process .GetCreator ()

metes Author;
};

}

Figure 3. Cove codes for model ing a Single User Application.

p r o e m s P C o A u t h o r i n g
!

c l a m s CDoc~nen t l l / s m n e as i n F i g u r e 3

I
acl=kvktl::y RAuthoring h a n d l e s CDocument
!

rclc Author am

|exeoute c~ Insert,Delete,GetText};

a~mch~onouus g r~urp am a n y o n e
&cram Author;

};

I

Figure 4. Cove codes for modeling a synchronous c ~
au thonng p ~ c ~ .

buil t on the Cove Client, the process creator can get a copy
of the document together with its class definit ion and work
on i t His/her operations are Iranslated into calls to the
methods o f the activity object, which may change its state.
The new state can then be transferred to the server and kept
there pets!steady for later accessing. The process models a
s ingle user activity in the sense that only one user, i.e. the
process creator, can work on the document.

4.2 A S y n c h r o n o u s Process
A synchronous process is one in which multiple cooperators
work together on a document to put it into a desired state.
Figure 4 gives an example o f this type o f cooperation. The
process defini t ion states that any user in the system can
participate and work with others on a C D o c u m e n t object.

Compared with the definition given in Figure 3, we can see
that the only modification is that the pear!it!pant declaration is
changed from a user to a synchronous group. This makes it
possible for other users m access the C D o c u m e n t object
with Cova client-based UI applications while the object is
be ing accessed. In this case, the C D o c u m e n t object and its
class definit ion are equally replicated at these Cove clients. A
jo in ing Cova client works with the server and these clients
accessing the same object to make sure they hold a
reasonable identical state of the object when the jo in ing
procedure is over. Starting from this point, method calls
passed to each Cova client will be su i t !cas t with a reliable
muir!cast transport service to all other related clients. Each
Cova client follows the concurrency conlrol algorithms of
CovaCM ImOl to make sure the requirements for the
consistency model of a replicated architecture are always
satisfied.

4.3 An Asynchronous Process
This example simulates a very simple workfiow. A user may
wrin: a document and send it to his/her supervisor for review.
The supervisor may send back some comments for revision.
The process may loop a number oft!rues unti l a document is
approved. This scenario is described by the Cova codes in
Figure 5. The process definition is inherited from the one
defined for the single user application. A new class,
C R e v i e w is defined for the review activity. A A u t h o r i n g
is enhanced by adding a communicat ion rule, which will
send the prepared document to the 2 "d activity A R e v i e w i n g
when the author submits i t

3 2 6

p~oceam PDocumentReview utmr~lm PSingleUaerAuthoring
(

claem CReview utenda CDocument(
public limt<char> m_icCom~nents;
public void SubmitDocument(string dec) (

m lcText - dec;
}

public void WriteConnents(string torments) l
m IcComments = coercers;
i IcText m "";

}

I
eultend/ng act/v£ty AAuthoring

t.t£~E AReviewing.Subm/tDocument(AAuthoring.GetText())
whmR eulDm~t;

};
ac~Lvity Agevlewing hmstdZee CReview

mEaEtmwhe~1 (this.GetText() != ""}

l
zoZe Reviewer am [m=u~ on WriteComnents};
ueoza eel~mJ Reviewer am

~tem. Oirectory. GetSuperviaor(
pro~ee.GetRctivity('AAuthoring").GetPazticipant());

tz£~ez AAuthoring.Append(AAuthoring.m_lcComments)
when submit;

l;
!

Figure 5. Cova description o f an asynchronous document review l~'ocess.

Upon receiving the document, AReviewing will become
active. Thc supervisor o f the author will be notified to open
the document and write the comments. AfLcr the supervisor's
submission, the comments will be appended to the
CDocument object maintained by AAuthoring. Later, the
author will see it and revise his/her document accordingly for
another submission.

This example shows two more language features, i.e. process
inheritance and system objects. In our example,
P D o c u m e n t R e v i e w inherits all the class and activity
definitions o f PSingleUs erAuthoring. Several
predefined system objects, e.g. system, process , and ael ivi ly
(returned by Get,Activity(...)), are also used. They are
implemented to provide some information about the runtime
environment, which will make process modeling more
flexible.

4.4 An Integrated Process
Our last example is a scenario where both synchronous and
asynchronous cooperation exist. In this scenario, a
department head asks his/her employees to write a report for

pro~ee PInCegratedDocReview u t e n c l g PCoAuthoring

l
//Everything is the same as PDocumentReview

}

Figure 6. Cove codes ~ r modeling an i n , g r a t e d review process.

his/her review. They employees work
on the report synchnmously as
described by P C o A u t h o r i n g . The
report is sent asyochmmously to the
department head for review and
comments are sent back for revision.
This scenario is modeled by the Cove
codes in Figure 6. The only difference
between this definition and the one in
Figure 5 is that the super process is
changed from
PSingleUserAuthorlng to
PcoAuthoring so that
simulUmeous acceas to ~e report is
supported.

S COMPARISONS
We Imvc described with examples a
uniform recta-model for modeling a
wide range o f cooperation scenarios
and its runtimc support. AI a first sight,
one may wonder how it is diffm~'Int
from many secminBly similar ones,
such as the concurrent object model,
the multi-agcnt model, CORBA, and
many coordination models and
langunges for parallel and dimibutod
computing rT]. Due to page limitations,
we can not give a detmlcd comparison
here. Our g ~ a l answer to the
qucstioo is that our model is targeted at
a different goal, i_c. modeling and
supporting a wide range of scenarios of
intexactions among coolxamo~, which

arc usually human beings. Therefore, the semantics and
mechanisms that implement thorn arc completely different.

Many o f the models mentioned above, however, aim at the
coordinating multiple computing entities. Basically these
models provide mechanisms to facilitate the communication
and coordination among multiple concurrent computing
entities. Obviously, these computing entities are quite
different fi'om human beings. For example, Ihcy arc more
'patient ' , which mcans thal they won ' t 'mind ' Walling until
the resources thcy need become available. Within this
context, the semantics o f coordination and the mechanisms
that implement these semantics are totally different from the
ones in our model. For example, the cenwalized tuple space
of Linda provides a shared space for exchanging messages
among multiple computing processes. A lock-based
mechanism is used for synchronization, e.g. a process that
retrieves a tuple that is not in the space will wait until the
tuple becomes available.

It has been extensively discussed in CSCW literature that the
centralized architecture and lock-based mechanisms are
generally not suited for supporting cooperation llg]
Coordination and communication among computing entities
aim mainly at increasing the speed and performance, not the
flexibility of interactions among cooperators. Despite their
diversity in formalisms, platforms, and many other things,
these models are targeted at an area that is completely
different from the one targeted by our model.

The second question that is often asked is bow our model is

3 2 7

different from other models and systems that are developed
specifically for modeling and developing cooperative work,
such as the process models for sultware engineering 1~],
DCWPL [ISl COCA [Sl, GroupKit [i q COLA 1121, various
WIMSs, etc. As we have slated, we aim at a uniform recta-
model. Obviously, process models for solYwarc engineering
are domain-specific. These models do capture some
important elements that are useful for supporting cooperative
work. However, due to their domain specific nature, many
impovammt topics, such as advanced optimistic concurrency
control, transaction management, are ignored or not well
addressed. Systems such as DCWPL, COCA, etc. can be
used to develop only a specific type of cooperative
applications, thus lack the uniformity of our model. At the
same time, since they only provide constructs for describing
the coordination part o f a process and have little knowledge
about th© computation part, finely granulated controls basad
on the senmntics of the computation part are unavailable in
these systems.

6 C O N C L U S I O N S AND FUTURE W O R K
We bay= shown a meta-mod©l capable o f modeling
uniformly cooperation ~ in different mode~ We have
also developed a computerized mechanism, the Cova
language, for describing cooperation processes based on this
model. Our approach is different from others by its capability
of uniform modeling, its clear separation and tight
integration o f the computation and coordination parts o f a
cooperation process, and its capability o f introducing runtime
information into process description.

There arc, however, many topics for further research. For
example, how good in practice the model and system will be
when they are used to model and develop large-scale
applications. Our concerns come from the fact that the codes
o f class methods are interpreted. This may result in low
performance. Another interesting topic would be how our
model could be used for process analyzing and optimizing.
Based on our model, we arc developing a mathematical tool.
CoAutn, which is a specialized automaton, for describing
cooperative processes mathematically. Our basic idea to do
the analyzing and optimizing according to a transition graph
generated from the mathematical description of a process.
Details o f this research will be reported in other publications.

ACKNOW~ELEDGES
The work on which this paper is based was done at Tsinghua
University during the author's PhD study, which was
supervised by Prof. Shi, Meilin and supported by several
grants from China National Science Foundation and China
High-Tech Kcscarch and Development Plan. The author is
greatly grateful to the anonymous reviewers for their
valuable comments.

R E F E R E N C E
i. B Curtis, M I Keliner, and J Over. Process modeling.

Cumin o f the ACM, 1992, 35(9):75-90
2. C A Ellis, J Wainer. A Conceptual Model of C~roupware.

in: Proc o f A C M Confon CSCW, Chapel Hill, 1994, 79-
88

3. C A Ellis, S J Gibbs, G L Rein_ Groupwarc: some issues
and e~pe, rienc=s. Cumin o f ACM, 1991, 34(i):39-$8

4. C Z Sun, C A Ellis. Operational transformation in real-
time group editors: issues, algorithms, and achievements.
In: Proc o f ACM Conf on CSCW, Seanle, 1998, $9~8

5. D Li, R Muntz. COCA: Collaborative Objec~
Coordination Architecture. In: Proe o f A C M Conj" on
CSCW, Seanle, 1998, 179-188

6. D R McCarthy, U DayaL The architecture of an active
database management system. In: Proc o f A C M $1GMOD
Conf on Mgmt o f Dam, Portland, 1989, 215-224

7. G A Papadopoulos, F Arbab. Coordination models and
languages. CWi Report, 1998. Available at: hnp:://www.
cwi.nl/1tp/CWlreports/SEN/SEN-R9834.ps.Z

8. G YanK, M Shi. CmJa: An object-oriented programming
language for cooperative applications. Science in Chino,
5cries F, 2001, 44(i):73-80

9. G Yang. Modeling cooperative work: towards a uniform
recta-model. Bell-Labs Technical Memo, 200 I.

10. G Yang. On semantics-based concurrency conurol in
fully-replicated architecture. Bell-Labs Technical Memo,
2001.

! 1. J flanK, G YanK. W Yah et a t CovaTM: a transaction
model for cooperative applications. In: Proc o f A C M
SAC. Madrid, 2002,

12.] Trevor, T R o d d e n , G Blair. COLA: A lightweight
platform for CSCW. In: Proc o f European Conf on
CSCW, Milan, 1993, 15-30

13. K Salimifard, M Wright. PeU'i net-based modelling of
work.flow systems: An overview. European Journal of
Operational l~csearch, 2001, 134(3):604-676

14. N Carriero, D Geleroter. Coordination Languages and
their Signicance. Cumin o f lhe ACM, 35 (2), 1992 : 97 -

1 0 7 .

! 5. M Cortes, P Mishra. DCWPL: A programming language
for dcscribing collaborative work. In: Proc o f A C M Conf
on CSCW, Cambridge, i 996, 21-29

16. M Roseman, S Greenberg. Groupkit: A groupware
toolkit for building real-time conferencing applications.
In: Pro¢ o f ACM Conf on CSCW, Toronto, 1992, 43-50

17. M Weber, G Partsch, S Hock, et al. Integrating
synchronous multimedia collaboration into workflow
management. In: Proc o f A C M SIGGROUP Conf on
Supporting Group Work, Phoenix, ! 997, 28 !-290

18. R G G Catteil, D Barry, D Bartels, et a]. The Object
Database Standard: ODMG 2.0. San Marco: Morgan
Kaufmann Publishers, 1997

19. S GrcenberK. D Marwood. Real time groupware as a
distributed system: concurrency control and its effect on
the interface_ In: Proc o f A C M Conf on CSCW, Chapel
Hill, 1994, 207-217

20. S G Natalie, S P Daniele, and P Remo. Generalized
process stl"ucture grammars (GPSG) for flexible
representations of work_ In: Proc o f A C M Conf on CSCW,
Boston, 1996, 180-189

21. W Du, J Davis, M Shan. Flcxiblc specification of
workflow compensation scopes. In: Proc o f A C M
•IGGROUP Conf on Supporting Group Work,, Phoenix,
1997, 309-316

Guangxim Yaag got his bachelor, master, and doctor 's degrees
in Computer Science all from Tsinghua University, BeijinK,
P.R.C. He is currently a Member of Technical Staffwith Bell-
labs Research located in Murray Hill, New Jersey. His
research interests include CSCW, Programming Language and
System, Database, and Workflow, Next Generation Interact,
Networking Protocols, etc. He is a member of ACM.

3 2 8

