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Abs t rac t  
Process modeling is a central topic o f  research on Computer  
Supported Cooperative Work  (CSCW).  Uniformity and 
flexibil i ty in work representation and process enacOnent are 
two primary goals. We  develop a novel meta-model  capable 
o f  model ing uniformly a wide range o f  cooperat ion scenarios. 
W e  will  discuss the key elements  o f  the model  and its 
computerized formalism, the Cova  programming language, 
and its runtime system. We will  describe in this language 
several typical  cooperation scenarios to illusUrate how 
integrated cooperation and other cooperat ion seenarios can 
be described and supported with our model.  
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1 I N T R O D U C T I O N  
Recent advances of  research on supporting cooperative work 
have resulted in numerous groupware ill  and meta- 
groupware [2, ,] systems, which have different runtime 
environments and application areas. Although these systems 
greatly facilitate interactions among widely distributed 
cooperators,  their separation and independence from each 
other hinder the cooperation among users o f  different 
systems. For  example, the artefact created in a synchronous 
co-authoring tool could hardly be used in any finely 
granulated manner by  an asynchronous message passing 
system because the latter usually has no semantic 
information o f  the artefact. 

The difficulty comes from the fact that each system is 
designed to support a specific type o f  cooperation. Litt le 
attention has been paid to how different  types o f  cooperation 
can be supported in a comprehensive way. However,  
cooperation in real world settings is usually a combination o f  
single user activities, s3mchronoua and/or asynchronous 
cooperation. For  example, even a s imple document review 
process may be decomposed into an authoring activity and a 
reviewing activity, which may be enacted sequentially. Either 
o f t h e m  may be carried out by only one user on his/her own, 
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or by a group of cooperators via synchronous editing or 
asynchronous authoring. 

We call this type o f  cooperation as integrated cooperation, 
which denotes a process that involves single-user, 
synchronous or  asynchronous mult i-user  a~tiv/tics, and other 
integrated cooperation. To the best  o f  our Imowlodge, there 
are only a few prototypes, e.g. WoTel  (tTj, that are capable o f  
supporting a specific type o f  integrated cooperation. 
Unfortunately, no meta-groupware system is capable  o f  
support ing the development o f  this type o f  applications. 

One may think thin integrated cooperat ion can be supported 
in a way similar to that o f  WoTel  by  defining a set o f  
interfaces among different groupware systems to bridge the 
islands so that they can be integrated into another. Though 
this seems to be a quick solution, it is not  a perfect one. The 
reason lies in the fact that each system has a different recta- 
model  for describing cooperation processes  it supports.  Even 
though some systems may have similar  meta-models,  the 
formalisms that are used to descr ibe them are different. 
These differences make it difficult for  one system to be fully 
and flexibly integrated into another one through interfaces. 
For  example, lacking the semantic information o f  the objects 
in the integrated system makes it difficult  for the integrating 
system to take full advantage o f  these objects.  

This paper addresses the chal lenge to support integrated 
cooperation from a more systematic  point  o f  view. Wc 
propose a novel recta-model for uniformly describing 
integrated cooperation processes as well as single-user, 
synchronous, and asynchronous processes. We show with 
several  examples how this meta-model  can be used to model  
a wide range o f  cooperat ion scenarios.  The  nmtime 
environment based on this model  wil l  also be discussed to 
show how the semantics o f  the key constructs o f  this recta- 
model  are implemented. 

Process modeling by i tself  is an old  yet  young research topic. 
By old, wc mean that there have been well-established 
concepts,  c.g. activities, triggers, roles, etc, which were 
developed in various fields, e.g. Computer Supported 
Cooperative Wor~ Software Engineering, Parallel and 
Concurrent Computing and so on. By young, we mean there 
arc still lots o f  basic challenges [q. Model ing  integrated 
cooperation is an important one o f  them. We will  use the 
aforementioned conventional terms as the basic conslructs o f  
our mcta-modcl.  However,  wc will  see that they will  be 
assigned with novel meanings and semantics.  We will also 
show that the mechanisms to implement  these semantics  are 
quite different from those used in other areas. 

Our recta-model is based on an abstract o f  groupware 
systems [91 The abstraction defines a f ramework within 
which various aspects o f  groupware  systems can be 
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investigated. The coming section is focused on the 
description o f  this meta-model. The 3 re section gives a brief 
introduction to its computerized formalism, the Cova 
programming language and system. Four examples will be 
given in the 4 'h section to illustrate how the recta-model can 
be used to describe uniformly different cooperation scenarios. 
Comparison with other related work, conclusions and 
directions for future work are presented in the last two 
sections. 

2 T H E  M E T A - M O D E L  
As we have stated, our recta-rondel is determined to be 
uniform in the sense that it should be able to model different 
cooperation scenarios, i.e. synchronous, asynchronous, 
integrated, even single user activities, in a uniform way and 
with great f lexibi l i ty .  Mathematically, a cooperation scenario 
described with our meta-model is a set, with each element 
describIng a piece of  work th,,t contributes to the cooperation. 
Among these described, there are what the piece o f  work is, 
how it is being done, what it will receive from and send to 
other elements, etc. As in other models, the scenario is called 
aproeez$ and the description aprocess definition, which will 
be  used to control the enactments o f  process instances An 
element in a process is called an activity, which is the basic 
conslruct o f  our recta-model. Though the terms seem to be 
quite ordinary, we will show how they are different from 
other definitions. 

2.1 U n i f o r m  Activities 
An activity in our model is defined as an active computing 
entity with a goal, a life cycle, and rules regarding how its 
state changes and how it interacts with its environment. It is 
a computing entity in the sense that it maintains a set o f  states 
which records the results o f  the piece o f  work it describes 
and has an execution thread, whose execution is driven by 
the /npu t  mes.~ges from the activity's external environment. 
The goal of  an activity is the desired state in which the piece 
o f  work is considered to be completed. By active, we mean 
the activity will, under certain conditions, generate output 
messages actively to its external environment, which are all 
the activities that communicate with it. 

Intuitively, an activity plays a role similar to a secretary that 
holds the information related to a particular piece o f  work 

Figure I. A uniform activity. What lies in its center is a set o f  
variables that can be accessed through different interfaces and 
in different modes. They record the progresses and the final 
results o f  the activity. The curved arrow lines indicate 
accessing threads, which may be either simultaneous or 
exclusive (different line styles). The block arrows with small 
shapes (messages) inside are the communication channels 
among activities. 

and enforces the roles that conlrol accesses to the information. 
These that could access the information are called ~ I iv i ty  
participant, who may be a (group of) human being(s) or 
computing process(s) capable o f  performing a certain action. 
Activity participants, under certain conswaints, will access 
the state variables maintained by the activity to make it 
change linle by little to the desired states. However, these 
accesses are not arbitrary, but under the guidance o f  the 
activity roles. Eventually participants will determine that the 
goal o f  the activity is reached. At this time, the activity may 
generate outputs for other activities to share the resuJts it 
produces. The computation model embodied by an activity is 
shown in Figure I. 

2.1.1 The  Life 07cle 
The concept o f  the life ~ i e  o r a n  activity is similar to that of  
a process or a thread in an operating system. An activity may 
navigate through different stages, each of  which may have 
diffenmt effects on how thc state variables it maintains can 
be accessed, in our model, there are six stages defined, i.e. 
initiated, active, suspended, stabilized, aborted end 
completed. 

initioted is a transient stage which becomes act/~e or 
suspended after an activity is initialia~:l. The difference 
between ac t i~  and suspended is whether the panicil~mts can 
access the state variables. Only the variables maintained by 
an active activity are accessible, either exclusively or 
simultaneously, by one or multiple cooperators fi'om one or 
multiple network sites. In this way, an activity is made 
capable o f  supporting both single user activity and 
synchronous cooperation. 

An a,-tivity becomes stabilized when the participants think 
the goal o f  this activity has been reached_ It is different from 
completed in that a stabilized activity can be rex~tivaled 
when the participants later realize that the goal is not actually 
reached or a new gold is raised. In either case they need to 
further access the variables to push them into new states. 
Since this often occurs in real-world settings, by introducing 
this new stage, the activity model is made more flexible. 

Figure 2. Transitions among different stages o f  an activity. 

The transition paradigm among different stages o f  an activity 
is shown in Figure 2. For simplicity, the actions that cause 
these transitions are not shown in the figure. These actions 
can be either internal or external. Internal actions arc 
generated by the runtime system. For example, the transition 
from initiated to active or suspended is done by the nmtime 
system according to the activation roles (see below) and the 
state variables. External actions are usually raised by  
participants. For  cxample, they may abort an active, 
suspended, stabilized activity. In all cases a transition to 
aborted will occur. 

2.1.2 Act iv i ty  Rules 

Rules are a widely adopted mechanism in many fields. 
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Generally they specify under what circumstances what will 
occur, what are allowed, what are denied, etc. Typical 
exmnples include the trigger definitions in an active database 
system tel, the access policies in a network node, the product 
roles in an AI system, etc. They differ in their purposes, the 
formalisms, the constructs and their semantics, how the 
semantics arc implcmcnted,  ctc. 

Our model uses rules for three purposes. The first one is to 
specify under  what conditions an activity will become active, 
thus makes its state variables accessible. Any state change of  
the activity causes the runtimc system to check this condit ion 
to see whether it needs to transit the activity into the active or 
suspended stage. 

The second propose is to define the ways in which state 
variables are accessed_ Details include who, under what 
cmsditions, can take some actions in an activity. For example, 
some o f  these rules may specify whether s imultaneous 
accr.sses to the state variables are allowed, while others may 
apecify something like access control policies. Actions 
include retrieving and updating the sta/c variables, transiting 
activity to a new stage, or a combination of them. Def in ing 
access manners  at the activity level allows a cooperator to 
play different rules in d i f f acn t  activities, thus provides more 
l]cxibility than other models where these policies arc defined 
gJobally. 

The third purpose is to define when and under what 
conditions an activity may send some messages to other 
activities. This  type of  rule is used to build the 
communicat ion channels  among activities for asynchronous 
information sharing and synchronizing the stages of  different 
activities. A message in our model is a parameterized action 
on the receiving activity, whose states may be changed after 
the action is executed. Since the activity knows all its 
semantics information, messages arc composed with the 
states of  the activity and some globally accessible 
information in a finely granulated manner.  With these 
semantics information,  more flexible and sophisticated rules 
can be formed, thus provides much more flexibility than 
these models where the semantics information is unavailable.  

While rules can be used to define the cooperation policies, 
they may impose some limitations on the cooperation, which 
will then lead to inflexibility. In our model, rules are optional, 
which means that an activity can have no rules or only some 
types o f  rules. Therefore., i f  there are no communicat ion rules 
defined, an activity alone can be used describe either a single 
user activity or synchronous cooperation. With the 
communicat ion rules, asynchronous cooperation can also be 
described. It is in this sense that we call the activity a 
uniform model. 

2.2 Integrated Processes 
Based on the uni form activity model, an integrated process is 
defined as a set o f  inter-related activities. The inter- 
relationship among activities is established by their 
communicat ion rules. We call it an integrated process model 
because it has the capability of  modeling integrated 
cooperation processes as discussed in the inWoduction. We  
will show how this is done in the forth section. 

The integrated process model has several distinct features. 
The first one is its loose mathematical structure. Compared 

with other models, e.g. the Petri Net -based 1,41, the 
specialized grammar 1201, the directed graph [2,1, which have 
more rigid logical structures, a loose logical structure 
imposes less limitations on how different activities arc 
related to each other while maintains equal, if not stronger, 
expressive power. For example, it should be easy to show 
that any process modeled with a directed graph can be 
modeled with our integrated process model. 

The second feature would be the fact that our meta-model is 
oriented to a cooperation process being enacted, not a 
process template in existing systems that is used to guide the 
enactment of  process instances. Based on this orientation, a 
lot o f  dynamic information that is generated during process 
enactment can be used in process modeling. With the 
dynamic information, we can get extra flexibility otherwise 
not  available. For example, based on the name of  the author 
of  a document, we may define the participant of  a review 
activity to be the author's supervisor in the system directory. 

The third feature would be its hierarchicalness. Similar to 
that each activity r~ re sen t s  a piece of  work, a process as a 
whole represents a l a rg~  piece of  work. The state of a 
process is natundly defined as the combination of  all the 
states of  its component  activities. It records how the process 
is progressing and what the latest results arc. In this sense, a 
process can also be regarded as an activity, which can then 
be used as a component  of  another process. Therefore, 
process definitions can be nested to form a hierarchical 
structure. 

3 Coy,4 L A N G U A G E  A N D  SYSTEM 
We have discussed the basic ideas and constructs of  our 
meta-model. However, without a formal method, it could 
hardly be used to model any cooperation processes for 
practical use. Our approach is to develop a programming 
language based on this meta-modcl and its mntimc system, 
which implements the semantics of  the language constructs 
and provides a set of  computation services for enacting 
cooperation processes. Due to page limitations, the 
discussions here will be kept as brief  as possible. 

3.1 A B r i e f  O v e r v i e w  
The language, CovA, ge~ its name from the bold letter in the 
phrase 'Cooperative Applications'. Similar to many 
coordination-or/ented languages and models 1,4t, Cot,4 also 
adopts the idea to separate the computation and coordination 
parts o f  a process. The first feature that distinguishes COFA 
from other languages is that its coordination pan  has full 
knowledge about the senumtics of  the computation part, e.g. 
how it is slructured, how it can be operated, etc. With this 
information, the runtim© system is able to do some advanced 
controls which otherwise is impossible. For example, it can 
be used for more flexible concurrency control when an object 
is accessed simultaneously by multiple cooperators Oo]. 

The second feature is that the computation part in our model 
is not an independent program that has its execution logic. 
Instead it provides only the descriptions on how a piece of  
data is structured and how the operations on it are 
implemented. How the operations are used is up to the 
cooperators. Generally, they can use an arbiu'ary combinat ion 
of these operations to access that piece of  data. If  the 
combinations are viewed as execution logic, then each 
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cooperator can "ouild' a virtual program that best fits his/her 
needs to finish his/her piece o f  work. Obviously,  this will 
greatly increase thc flexibility compared with other solutions 
where only some specific programs can be used. 

3.2 Object Description Language 
As we have mentioned, an activity maintains a set o f  stale 
variables. Thcrc are many design alternatives on how these 
variables are described. We have chosen to implement an 
enhanced version o f  ODMG's  Object  Model  [zs] for this 
purpose. The COYA Object Description Language or CODL 
in short, provides the language constructs for describing the 
s t r u c n n ~  o f  an object and implementing its methods, which, 
as we have mentioned above,, becomes part o f  the 
computation description o f  a cooperation process. Similar to 
other object-oriented progrmnming languages, these 
descriptions appear as class definitions. Due to page 
limitation& here wc will not list its syntax rules. We will give 
some examples o f  class definitions later. 

3.3 Coordination Description Language  
Based on CODL, the COVA Coordination Description 
Language or CCDL in short, provides the language 
constructs for describing the components  o f  the model 
outlined in the 2 4 section. It is basod on CODL in the sense 
that many descriptions in CCDL use the descriptions in 
CODL. In CCDL, a process description is defined with the 
following syntax: 

ProccssD~lm'ation ::= PROCESS QmdificdNmnc [EXTENDS 
QualifiedNmnc] ProccssBody 

ProecssBody ::= '[" [ClassDeclm~ons] 
[ProecssDeclarations] ActiviL3,Declaratiom '}' 

ActivilyDeclarations ::= ActivityDeclmuion [ActivityDeclarafioas] 

The first rule stales that a process definition begins with the 
kcyword process and a process name. Optionally,  it can have 
a super process, from which all definitions in the process 
body are inherited. Thus CCDL is also object-oriented. 
Besides a set o f  activity definitions, the process body may 
contain an optional set o f  class definitions (given in CODL) 
and an optional set o f  nested process definitions (given in 
CCDL), both o f  which may bc used in the activity definitions. 

Activity dcfinitions may havc two different forms. Thc first 
one is given with the following syntax: 

ActivizyD¢claration ::= ACTIVITY QualifiedName [HANDLES 
QualifiedName] [STARTSWHEN Expression] 
ActivityBody 

Each activity has a name, which is unique within a process. 
The optional HANDLES clause specifics the name o f  a class, 
whose definition is given in the ClassDeclarations section. 
The activity maintains an instance o f  this class as its state 
variables, which wc call it actrvity object. Participants can 
use its methods to access the activity object. The 
STARTSWHEN clause specifies with a Boolean expression 
under what condition thc activity may bccomc active, thus 
allows its activity object to bc accessed. 

The activity body is defined with the following rules: 

ActivityBody ::ffi" [' [ActivityAttribum:s] '}' 
ActivilyAIlributcs ::= AclivityAI2riboz= [ActivityAttribul~s] 

ActivilyAm.ibule : : -  PmticipantDeclaralion I Rolel~claralion l 
TriggerDeclmation 

TriggerDeclaration ::= TRIGGER CovaMethodCallList WHEN 
EventDeclmmion [WHERE Expression] ';' 

It conlains the rules on how the activity object can be 
accessed (given by PardcipantOeclarmion and 
RoleDecieration) and how the activity communications with 
other activities (given by TriggcrPeclaration). The common 
point of  these declarations is that they all may contain 
expressions composed with method calls to and am-ibutcs o f  
the activity objecss and the other two specialized object, 
p r o c e u  and activity,  which refer respectively to the process 
and activity. We will discuss how they arc used in the 
example sections. 

The second form of  activity dcfinition is given by the 
following syntax: 

AcLivityDeclarabon ::= ACTIVITY QtmlifiedName AS 
QualifiedName; 

The second QualifiedNamc is the nmnc o f  a process 
definition, whose activities become activities o f  this process. 
In this way, a process can be nested in another process. In 
this way the hierarchical ness o f  processes is achieved. 

3.4 Cova Runt ime System 
Process definitions alone are not enough for supporting 
cooperation. Based on the uniform recta-model, the Cova 
runtime system (CovaRT) implements the semantics o f  
process definitions and provides a set o f  computation 
services that are n e c ~  for enacting integrated 
cooperation. It adopts a hybrid architecture that consists o f  
centralized servers and fully replicated clients. Cooperalion 
processes are maintained as the first-class entity in Cova 
servers. The Activity ConlxoI service o f  CovaRT provides all 
the functions needed for process control, e.g. creation, 
cancellation, suspension, generating and executing messages 
for activities, flexible transaction management, and exception 
handling. These functions arc implemented as the Cova 
Transaction Management model  or CovaTM in short. More 
details about CovaTM can be found in [I !]. 

The fully replicated clients are the key component for 
participants to access activity objects. As part of  a process, 
activity objects are kept at a Cova server. When it becomes 
accessible, a participant may 'open' it through a Cova client, 
which runs at the participant's site. At this time, the Cova 
client gets the latest state and class definition of  the object 
and keeps them locally. It has an interface through which the 
application used by a participant can retrieve the slate o f  the 
object and execute an operation on it. 

The uniqueness o f  Cova clients lies in their capabilities in 
object replication and concurrency control. When an activity 
object is accessed simultaneously by multiple participants, 
the client for a late comer follows a procedure to work with 
other clients and the server to get the latest state o f  the 
activity object. At the end o f  this procedure, all clients have 
identical replicated copies o f  the object. Each cooperator 
accesses the locally replicated copy independently. 
Operations generated at each client are multicast to other 
clients for awareness. Concurrency control is needed to kccp 
the consistency o f  these replicas and the results produced by 
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executing an operation at different clients. We have 
developed a fully optimistic concurrency control model, 
CovaCM, which guarantees the consistency based on the 
semantics of  object structure and operations. Details about 
CovaCM can be found in [10]. 

Activity, replication, and concurrency control are the three 
core services provided by CoveRT. They are essential for 
supporting integrated processes. Several other services, such 
a system directory, access control, are also implemented to 
make CoveRT more practical for real applications tel 

4 EXANfPLES 
Now it is time for us to give several examples to show how 
our model, language, and runt!me satisfy the requirements 
outl ined in the introduction. Four examples, a single user 
application, a synchronous application, an asynchronous 
application, and  an integrated application will be discussed 
one by one. Our purpose in designing these examples is to 
show how our model, language, and runt!me work in verious 
cooperation scenarios. Therefore we will keep them as 
simple as possible. 

4.1 A Single User Application 
Let's begin with the simplest case. A user may work by 
him/herself  on a document,  e.g. a business report  a technical 
paper, etc. This  scenario is modeled as the process given in 
Figure 3. The class C D o c u m e n t  defines semantics o f  its 
structure and all possible operations. The activity 
A A u t h o r i n g  mainta ins  a C D o c u m e n t  object as its state 
variable_ The first activity rule defines a role thai has access 
to all the three operations. The second rule states that only 
the creator o f  the process can access the activity object, i.e. 
the document,  with a role defined by the first rule. 

After a P S i n g l e U s e r A u t h o r i n g  process is created at a 
CoveRT server, a C D o c u m e n t  object will be created for 
the activity and become accessible. With an UI application 

p ~ o ~ a e  PSingleUse rAuthoring 
[ 

class CDocument [ 

protect list<char> m IcText; 

public v o i d  Insert{char oh, in! pos) { 

insert ch ~to m icText mt pos; 
I; 

public voXd Delete(in! poe) | 

delete fze~ m_IcText at pos; 
}; 

public s t r i a  O G e t T e x t  () I 
zetu~-n string (m_icText) ; 

}; 

} 

activity AAuthoring h a r u d ~ e a  CDocument 
[ 

role Author as 

[cxe~ta on Insert,Delete,GetText}; 

users as process .GetCreator () 

metes Author; 
}; 

} 

Figure 3. Cove codes for model ing a Single User Application.  

p r o e m s  P C o A u t h o r i n g  
! 

c l a m s  CDoc~nen t  l l / s m n e  as  i n  F i g u r e  3 

I 
acl=kvktl::y RAuthoring h a n d l e s  CDocument 
! 

rclc Author am 

|exeoute c~ Insert,Delete,GetText}; 

a~mch~onouus  g r~urp  am a n y o n e  
&cram Author; 

}; 

I 

Figure  4. Cove codes for modeling a synchronous c ~  
au thonng  p ~ c ~ .  

buil t  on  the Cove Client, the process creator can get a copy 
of  the document  together with its class definit ion and work 
on i t  His/her operations are Iranslated into calls to the 
methods o f  the activity object, which may change its state. 
The new state can then be transferred to the server and kept 
there pets!steady for later accessing. The process models  a 
s ingle user activity in the sense that only one user, i.e. the 
process creator, can work on the document. 

4.2 A S y n c h r o n o u s  Process  
A synchronous  process is one in which multiple cooperators 
work together on a document to put it into a desired state. 
Figure  4 gives an example o f  this type o f  cooperation. The 
process defini t ion states that any user in the system can 
participate and work with others on a C D o c u m e n t  object. 

Compared with the definition given in Figure 3, we can see 
that the only modification is that the pear!it!pant declaration is 
changed from a user to a synchronous group. This  makes it 
possible for other users m access the C D o c u m e n t  object 
with Cova  client-based UI applications while the object is 
be ing accessed. In this case, the C D o c u m e n t  object and its 
class definit ion are equally replicated at these Cove clients. A 
jo in ing  Cova client works with the server and these clients 
accessing the same object to make sure they hold a 
reasonable identical state of  the object when the jo in ing  
procedure is over. Starting from this point, method calls 
passed to each Cova client will be su i t !cas t  with a reliable 
muir!cast transport service to all other related clients. Each 
Cova client follows the concurrency conlrol algorithms of  
CovaCM ImOl to make sure the requirements for the 
consistency model of  a replicated architecture are always 
satisfied. 

4.3 An Asynchronous Process 
This  example simulates a very simple workfiow. A user may 
wrin: a document  and send it to his/her supervisor for review. 
The supervisor may send back some comments  for revision. 
The  process may  loop a number  oft!rues unti l  a document  is 
approved. This scenario is described by the Cova codes in 
Figure 5. The process definition is inherited from the one 
defined for the single user application. A new class, 
C R e v i e w  is defined for the review activity. A A u t h o r i n g  
is enhanced by  adding a communicat ion rule, which will 
send the prepared document to the 2 "d activity A R e v i e w i n g  
when the author submits i t  
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p~oceam PDocumentReview utmr~lm PSingleUaerAuthoring 
( 

claem CReview utenda CDocument( 
public limt<char> m_icCom~nents; 
public void SubmitDocument(string dec) ( 

m lcText - dec; 
} 

public void WriteConnents(string torments) l 
m IcComments = coercers; 
i IcText m ""; 

} 

I 
eultend/ng act/v£ty AAuthoring 

t.t£~E AReviewing.Subm/tDocument(AAuthoring.GetText()) 
whmR eulDm~t; 

};  
ac~Lvity Agevlewing hmstdZee CReview 

mEaEtmwhe~1 (this.GetText() != ""} 

l 
zoZe Reviewer am [ m=u~ on WriteComnents}; 
ueoza eel~mJ Reviewer am 

~tem. Oirectory. GetSuperviaor( 
pro~ee.GetRctivity('AAuthoring").GetPazticipant()); 

tz£~ez AAuthoring.Append(AAuthoring.m_lcComments) 
when submit; 

l; 
! 

Figure 5. Cova description o f  an asynchronous document review l~'ocess. 

Upon receiving the document, AReviewing will become 
active. Thc supervisor o f  the author will be notified to open 
the document and write the comments.  AfLcr the supervisor's 
submission, the comments will be appended to the 
CDocument object maintained by AAuthoring.  Later, the 
author will see it and revise his/her document accordingly for 
another submission. 

This example shows two more language features, i.e. process 
inheritance and system objects. In our example, 
P D o c u m e n t R e v i e w  inherits all the class and activity 
definitions o f  PSingleUs erAuthoring. Several 
predefined system objects, e.g. system, process ,  and ael ivi ly  
(returned by Get,Activity(...)), are also used. They are 
implemented to provide some information about the runtime 
environment, which will make process modeling more 
flexible. 

4.4 An Integrated Process 
Our last example is a scenario where both synchronous and 
asynchronous cooperation exist. In this scenario, a 
department head asks his/her employees to write a report for 

pro~ee PInCegratedDocReview u t e n c l g  PCoAuthoring 

l 
//Everything is the same as PDocumentReview 

} 

Figure 6. Cove codes ~ r  modeling an i n , g r a t e d  review process. 

his/her review. They employees work 
on the report synchnmously as 
described by P C o A u t h o r i n g .  The 
report is sent asyochmmously to the 
department head for review and 
comments are sent back for revision. 
This scenario is modeled by the Cove 
codes in Figure 6. The only difference 
between this definition and the one in 
Figure 5 is that the super process is 
changed from 
PSingleUserAuthorlng to 
PcoAuthoring so that 
simulUmeous acceas to ~e report is 
supported. 

S COMPARISONS 
We Imvc described with examples a 
uniform recta-model for modeling a 
wide range o f  cooperation scenarios 
and its runtimc support. AI a first sight, 
one may wonder how it is diffm~'Int 
from many secminBly similar ones, 
such as the concurrent object model, 
the multi-agcnt model, CORBA, and 
many coordination models and 
langunges for parallel and dimibutod 
computing rT]. Due to page limitations, 
we can not give a detmlcd comparison 
here. Our g ~ a l  answer to the 
qucstioo is that our model is targeted at 
a different goal, i_c. modeling and 
supporting a wide range of scenarios of  
intexactions among coolxamo~, which 

arc usually human beings. Therefore, the semantics and 
mechanisms that implement thorn arc completely different. 

Many o f  the models  mentioned above, however, aim at the 
coordinating multiple computing entities. Basically these 
models provide mechanisms to facilitate the communication 
and coordination among multiple concurrent computing 
entities. Obviously,  these computing entities are quite 
different fi'om human beings. For  example, Ihcy arc more 
'patient ' ,  which mcans thal they won ' t  'mind '  Walling until 
the resources thcy need become available. Within this 
context, the semantics o f  coordination and the mechanisms 
that implement these semantics are totally different from the 
ones in our model. For  example, the cenwalized tuple space 
of  Linda provides a shared space for exchanging messages 
among multiple computing processes. A lock-based 
mechanism is used for synchronization, e.g. a process that 
retrieves a tuple that is not in the space will wait until the 
tuple becomes available. 

It has been extensively discussed in CSCW literature that the 
centralized architecture and lock-based mechanisms are 
generally not suited for supporting cooperation llg] 
Coordination and communication among computing entities 
aim mainly at increasing the speed and performance, not the 
flexibility of  interactions among cooperators. Despite their 
diversity in formalisms, platforms, and many other things, 
these models are targeted at an area that is completely 
different from the one targeted by our model. 

The second question that is often asked is bow our model is 
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different from other models and systems that are developed 
specifically for modeling and developing cooperative work, 
such as the process models for sultware engineering 1~], 
DCWPL [ISl COCA [Sl, GroupKit [ i q  COLA 1121, various 
WIMSs, etc. As we have slated, we aim at a uniform recta- 
model. Obviously, process models for solYwarc engineering 
are domain-specific. These models do capture some 
important elements that are useful for supporting cooperative 
work. However, due to their domain specific nature, many 
impovammt topics, such as advanced optimistic concurrency 
control, transaction management, are ignored or not well 
addressed. Systems such as DCWPL, COCA, etc. can be 
used to develop only a specific type of  cooperative 
applications, thus lack the uniformity of  our model. At the 
same time, since they only provide constructs for describing 
the coordination part o f  a process and have little knowledge 
about th© computation part, finely granulated controls basad 
on the senmntics of  the computation part are unavailable in 
these systems. 

6 C O N C L U S I O N S  AND FUTURE W O R K  
We bay= shown a meta-mod©l capable o f  modeling 
uniformly cooperation ~ in different mode~ We have 
also developed a computerized mechanism, the Cova 
language, for describing cooperation processes based on this 
model. Our approach is different from others by its capability 
of  uniform modeling, its clear separation and tight 
integration o f  the computation and coordination parts o f  a 
cooperation process, and its capability o f  introducing runtime 
information into process description. 

There arc, however, many topics for further research. For 
example, how good in practice the model and system will be 
when they are used to model and develop large-scale 
applications. Our concerns come from the fact that the codes 
o f  class methods are interpreted. This may result in low 
performance. Another interesting topic would be how our 
model could be used for process analyzing and optimizing. 
Based on our model, we arc developing a mathematical tool. 
CoAutn, which is a specialized automaton, for describing 
cooperative processes mathematically. Our basic idea to do 
the analyzing and optimizing according to a transition graph 
generated from the mathematical description of  a process. 
Details o f  this research will be reported in other publications. 
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