
An Infrastructure Language for Open Nets*

Lorenzo Bettini Michele Loreti Rosario Pugliese
Dipartimento di Sistemi e Inforrnatica, Universit~ di Firenze

Via Lombroso 6/17, 50134 Firenze, Italy
{ b e t t i n i , l o r e ¢ i , p u g l i e s e } e d s i , u n i f i , i¢

Abstract
The structure of open nets, like the lnteroet, is highly dynamic, as
the topology of component networks continuously evolves. In this
context, node connectivity is a key aspect and a language for dis-
Iributed network-aware mobile applications should provide explicit
mechanisms to handle it. In this paper, we address the problem of
expressing dynamic changes of node connectivity at linguistic level
and, in particular, we focus on a slight extension of the language
KLAIM, that is targeted to this aim. The extension consists of the
introduction of a new category of processes that, in addition to the
standard process operations, can execute a few new coordination
operations for establishing new connections, accepting connection
requests and removing connections. Our extension puts forward a
clean separation between the coordinator level and the user level
and, hence, it is modular enough to be easily applicable also to
other network-aware languages. We will also show that our ap-
proach can be used as a guide for actual distributed (i.e. without a
single centralized server) implementations of mobile systems.

Keywords
Open Nets, Distributed Applications, Mobility, Coordination Lan-
guages.

1. Introduction
Open nets are, by their own nature, dynamically evolving struc-

tures, since new nodes can get connected or existing nodes can dis-
connect. Connections and disconnections can be temporary and un-
expected. For instance, temporary connections can be established
"on the fly" among terminals equipped with wireless devices and
ad-hoc paths to services and remote resources can be built dynam-
ically among components. In these scenarios, mobile devices such
as laptops, PDAs and cellular phones highly rely on a dynamically
evolving communication infrastructure, which is able to reconfig-
ttre itself. Thus, the assumption that the underlying communica-
tion network will always be available is too strong. Moreover, the

*This work has been partly supported by MURST Projects SAL-
ADIN and TOSCA and by Microsoft Research Ltd.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC 2002, Madrid, Spain
(~)2002 ACM 1-58113-445-2/02/03 . . . $5.00.

373

knowledge of node addresses may not suffice to establish connec-
tions or to perform migrations, since network routes may be af-
fected by restrictions (such as temporary failures or firewall poli-
cies).

From the point of view of the programming language design,
the need arises to extend languages for distributed network-aware
mobile applications (see, e.g., [g, 16, 13, 17]) with constructs for
explicitly handling changes in the network topology. Thereby, for
instance, mobile clients can explicitly express the intention of en-
tering a specific server domain or that of exiting from a particu-
lar subnet and, conversely, servers can easily manage clients in
their own subnets. With respect to solutions based on, e.g., mid-
dlcware extensions, using an enriched language model will permit
expressing real scenarios more naturally, thus facilitating debug-
ging and property checking of distributed network-aware mobile
applications.

In this paper, we present a family of constructs specifically de-
signed for expressing the dynamic evolution of open nets. These
constructs are largely independent of any application programming
language. However, to put it in a concrete form, we will focus on
the integration of such constructs with the language KLAIM [9], an
experimental kernel programming language specifically designed
to model and to program distributed concurrent applications with
code mobility. The obtained language can be used to model, to an-
alyze and to drive the implementation of distributed applications.

The extension exploits the notion of node connectivity and, syn-
tactically, consists of the introduction of a new category of pro-
cesses, called NodeCoordinators, that, in addition to the standard
process operations, can execute a few new privileged operations.
Such operations will permit establishing new connections, accept-
ing connection requests and removing connections. However, they
can also be interpreted as movement operations: entering a new ad-
ministrative domain, accepting incoming nodes and exiting from an
administrative domain, respectively. As such, the new operations
can be used for expressing the physical mobility of a device, e.g. a
PDA crossing some wireless network cells. Of course, the new op-
erations represent a core extension: other powerful constructs for
typical client-server applications in open nets can be derived from
them (see the example of Section 4).

Our approach puts forward a clean separation between the co-
urdinator level (made up by NodeCoordinator processes) and the
user level (made up, in this paper, by standard KLAIM processes).
This separation makes a considerable impact. From an abstract
point of view, the coordinator level may represent the network op-
elating system running on a specific computer and the user level
may represent the processes running on that computer. The new
privileged operations are then system calls supplied by the network
operating system. From a more implementative point of view, the

coordinator level may represent the part of a distributed applica-
tion that takes care of the connections to a remote server (if the
application is a client) or that manages the connected clients (if the
application is a server). The user level then represents the remain-
ing parts of the application that can interact with the coordinator by
means of some specific protocols. Finally, the separation makes our
approach easily applicable also to other languages/calculi for dis-
tributed network-aware mobile applications such as, e.g., Dx [12]
and DJoin [10], in order to get an infrastructure language for open
systems.

A further benefit of our approach, as we shall see, is that it is
suitable for guiding actual distributed implementations of mobile
systems, while the most mobile system implementations heavily
rely on a single centralized server that manages the distributed sys-
tem components. Typically, there is a server running on a known
machine, that acts as a sort of name server for the other nodes.

The rest of the paper is organized as follows. Section 2 infor-
mally summarizes the main features of the language KLAIM, while
Section 3 presents our KLAIM-based infrastructure language for
open nets. Section 4, by means of a simplified chat system, illus-
trates how the new linguistic features can be advantageously used.
Finally, Section 5 concludes the paper with a few comments.

2. The language Klaim
KLAIM i (Kernet Language for A gent Interaction and Mobility),

is inspired by the Linda coordination model l11, 7], hence it relies
on the concept of tuple space. A tuple space is a multiset of tuples;
these are containers of information items (called fields). There can
be actual fields (i.e. expressions, processes, localities, constants,
identifiers) and formal fields (i.e. variables). Syntactically, a formal
field is denoted with fide, where ide is an identifier. For instance,
the sequence ('~-oo","bar", !Price) is a tuple with three fields: the
first two fields are string values while the third one is a formal field.

Tuples are anonymous and content-addressable. Pattern-
matching is used to select tuples in a tuple space. Two topics match
if they have the same number of fields and corresponding fields
match: a formal field matches any value of the same type, and two
actual fields match only if they are identical (but two formals never
match). For instance, tuple ('~oo", "bar", 100 + 200) matches with
('~foo","bar", !Val). After matching, the variable of a formal field
gets the value of the matched field: in the previous example, after
matching, Val (an integer variable) will contain the integer value
300.

In Linda there is only one global shared tuple space; KLAIM ex-
tends Linda by handling multiple distributed tuple spaces. Tuple
spaces are placed on nodes that are part of a net. Each node con-
tains a single tuple space and processes in execution; a node can
be accessed through its address. There are two kinds of addresses:
Sites are the identifiers through which nodes can be uniquely iden-
tified within a net; Localities are symbolic names for nodes. A
reserved locality, s e l f , can be used by processes to refer to their
execution node. Sites have an absolute meaning and can be thought
of as IP addresses, while localities have a relative meaning depend-
ing on the node where they are interpreted and can be thought of
as aliases for network resources. Localities are associated to sites
through allocation environments, represented as partial functions.
Each node has its own environment that, in particular, associates
s e l f to the site of the node.

KLAIM processes may run concurrently, both at the same node

IThe requirements and the design philosophy of the language are
presented in [9]; KLAIM prototype implementation is described in
[2].

3 7 4

or at different nodes, and can perform five basic operations over
nodes, in(t) @£ evaluates the tuple t and looks for a matching tuple
t t in the tuple space located at l . Whenever the matching tuple f
is found, it is removed from the tuple space. The corresponding
values of f are then assigned to the formal fields of t and the op-
eration terminates. If no matching tuple is found, the operation is
suspended until one is available, read(t)@£ differs from in(t)@£
only because the tuple t ~, selected by pattern-matching, is not re-
moved from the tuple space located at £. out(t)@£ adds the tuple
resulting from the evaluation of t to the tuple space located at ~.
eval(P) @£ spawns process P for execution at node £. newloc(s)
creates a new node in the net and binds its site ms . The node can be
considered a "private" node that can be accessed by the other nodes
only if the creator communicates the value of variable s, which is
the only way to access the fresh nod~. Finally, KLAIM processes
can be built from the basic operations by using standard operators
borrowed from process algebras [14], such as, e.g., action prefixing
and parallel composition.

We now show how to program in KLAIM a news gatherer,
namely a mobile agent that retrieves information on remote sites.
We assume that each node of a database distributed over a KLAIM
net contains a tuple of the form ("item",data), where the suing
"item" is the search key and data is the associated data, or a tu-
pie of the form ("item",£), where £ is a locality where more data
associated to "'item" can be searched.

NewsGatherer(searchKey , retLoc) =
in(aearchKey, !dataVal)@aelf_out(dataVal)@rerLoc.nil
I
rud(aearchKey,]nexILoc) @a ol~.

goal (NewaGalherer (,vearchKey, retLoc)) @ nexrLoc.nil

The agent NewsGatherer works as follows: it tries to remove data
locally associated to searchKey and to forward them to the return
location retLoc, and, concurrently, tries to send a copy of itself to
the locality denoted by nextLoc that may contain further data asso-
ciated to searchgey.

KLAIM provides many useful features for programming dis-
tributed network-aware systems with mobile code (we refer the
interested reader to [9] for an overview of possible applications).
However, its underlying model is not quite satisfactory when deal-
ing with open nets. For instance, a process P, running at node
sl) that knows the site s2, is able to perform actions at s2. Ab-
stractly, we can think of as nodes st and s2 are connected. Now,
if P migrates to node s3 then it is still able to perform actions at
s2: it is as if s3 and s2 get connected while s t and 42 can possi-
bly get diseormected 2 (if P was the only process in sl that knew
s2). In the Internet, however, the knowledge of the address of a
remote host may not be sufficient to communicate with it, because
there might be no route to the host. Moreover, the model isflat in
that nodes cannot embody other nodes, thus subnets and hierarchi-
cal nets cannot be directly modeled. Finally, while the separation
between concrete and symbolic addresses of nodes implements a
sort of dynamism, still this dynamism does not suit open networks
well. Indeed, the model has a static flavor that leads to a sort of
"closed world": apart from the creation of new nodes, the topol-
ogy of KLAIM networks does not change and all system localities
must be known and mapped to sites in advance. The extension we
present in the next section will overcome such limitations.

3. A Kiaim-based infrastructure language
In this section we will present an infrastructure language for

modeling and driving the implementation of large scale mobile

2This mechanism is reminiscent of "link mobility" in the
•:-calculus [15].

systems whose structure can dynamically evolve in an unpre-
dictable way. Our starting point will be the language presented
in Section 3.1, obtained by providing KLAIM with a few mech-
anisms for dynamically updating nodes' allocation environments
and with suitable notations for explicidy expressing node connec-
tivity. Then, our infrastructure language, defined in Section 3.2,
will be obtained by integrating the KLAIM dialect of Section 3.]
with a new category of processes, called NodeCoordinawr$ that, in
addition to the KLAIM operations, can execute coordination oper-
ations for establishing new connections, for accepting connection
requests and for removing connections.

Any node will now play a double role: it is a computational en-
vironment for processes and a gateway that nodes can use for con-
necting to the net by means of explicit login operations. Moreover,
nodes can act both as clients (belonging to a specific subne0 and as
servers (taking in charge of, possibly private, subnets). Localities
represent the names with which client nodes log in server nodes,
and allocation environments, that can be dynamically updated with
such information, actually represent dynamic tables mapping logi-
cal names (possibly not known in advance) into physical addresses
(that likely change during the evolution). The client-server rela-
tion among nodes smoothly leads to a hierarchical model, also due
to the way the resolution of logical names takes place: in order to
find the mapping for a locality, allocation environments of nodes
in this hierarchy are now inspected from the bottom upwards. This
resembles name resolution within DNS servers.

Due to lack of space, in this paper we do not illustrate the oper-
ational semantics of our language. The semantics can be found in
the full paper [4].

3.1 A Klaim dialect
The formal syntax of KLAIM processes is presented in Table 1.

It slightly differs from previous KLAIM presentations in three re-
spects.

• When tuples are evaluated, locality names resolution does
not take place automatically anymore. Instead, it has
to be explicitly required by putting the operator • in
front of the locality that has to be evaluated. For in-
stance, (3,1) and (s, out(sl)@s2.nil) are fully-evaluated
while (*l, out(I) @ se:l.:f.nil) is not.

• Operation newloc cannot be performed by user processes
anymore. It is now part of the syntax of Nod@Coordinator
processes (see Table 3) because, when a new node is created,
it is necessary to install one such process at it and, for secu-
rity reasons, user processes cannot be allowed to do this.

• Operation bind has been added in order to enable user pro-
cesses to enhance local allocation environments with new
aliases for sites. For instance, bind(/,s) enhances the local
allocation environment with the new alias l for s.

The formal syntax of KLAIM nets is presented in Table 2. A node
is a 4-tuple of the form (s ::~ P), where s is the site of the node (i.e.
its physical address in the net), p is the local allocation environ-
ment, P is a set of concurrent processes running at s and Sis the set
of sites connected to s. In general, P is the parallel composition of
many processes, among which processes of the form out(et), each
representing an evaluated tuple of the local tuple space (namely, a
tuple space is implcmented as the parallel composition of evaluawA
tuples). A net can be an empty net 0, a single node or the parallel
composition of two nets Nt and N2 with disjoint sets of node sites.

I f s ::~ P is a node in the net, then we will say that the nodes in
S are logged in s and that s is a gateway for those nodes. A node

375

P

a C t

t

t

f

I
I
I
I
I

I
7 . =

: "..~.

- - .

nil (null process)

aa.P (action prefixing)
out(el) (evaluated tuple)

P|] P2 (parallel composition)
X (process variable)

A (P, t, e-') (pmo-.ss invocation)

eut(t)@l] in(t)@l I read(t)e t [eva](P)et
bimd(:,s)
f l f , t
t l s
el Pl el , l] !xl !x] !t

Table l :P rooessSyn tax

N ::----- 0

I , : $ P
I N~ II N2

(empty net)

(sin#e node)

(net composition)

Table 2: Net syntax

can be logged in more than one node, that is it can have more than
one gateway. Moreover, if st is logged in s2 and s2 is logged in s3
then s3 is a gateway for sz too. Gateways are essential for commu-
nication: two nodes can interact only if there exists a node that acts
as gateway for both. Moreover, to evaluate locality names, when-
ever st is logged in s2, if a locality cannot be resolved by just using
the allocation environment of st, then the allocation environment
of s2 (and possibly that of nodes to which s2 is logged in) is also
inspected.

3.2 The infrastructure language
The syntax of Nod@Coordinator processes, that are ranged over

by P, is given in Table 3. In addition to the standard KLAIM opera-
tions, a Nod@Coordinator process can also perform four operations:
newloc(s,P), loon(e), logout(e) and accept(s). Notice that all
these operations are not indexed with a locality, since they always
act locally at the node where they are executed.

P ::= P (process)

] sact.P (action prefixing)
[PI [P2 (parallel composition)

[A(P, !, e- ') (Nod@Coordinator invocation)
~'O t " f : ." ~.~- O C t

I newloc(s,P) I iogin(t) [iogout(l) I aeeept(s)

Table 3: NodeCoordinator Syntax

NodeCoordinators are special processes that cannot migrate and
cannot be used as tuple fields. They are installed at a node either
when the node is initially configured or when the node is dynam-
ically created by performing newloc(s,P). The NodeCoonlinator
process of a node can be thought of as the coordinator of that node
or, more abstractly, as a network operating system that lies at the
node; conversely, standard KLAIM processes can be thought of as
the user programs that can invoke system calls in the node. In order
to integrate Nod@Coordinators with the KLAIM dialect of the pre-
vious section, we have to extend the syntax of nets so that a Node-
Coordinator process can be installed at a node. Thus, the clause for

a single node, in the syntax of nets presented in Table 2, is replaced
by the following one:

s :is p

Informally, the meaning of the coordination primitives is the fol-
lowing. Operation newloc(s, P) creates a new node in the net, binds
the site of the new node to s and installs the NodeCoordinator P at
the new node. Notice that a newloe does not automatically log the
new node in the generating one. This can be done by installing a
NodeCoordinator in the new node that performs a login. Differ-
ently from the standard KLAIM newloc operation, the environment
is not explicitly inherited by the created node, instead it is sub-
sumed by using the "logged in" relationships among nodes. Oper-
ation Io0n (e) logs the executing node, say s, in ? but only if at i
there is a NodeCoordinator process willing to accept a connection,
namely a NodeCoordinator process of the form accept(~ J) .P. As a
consequence of this synchronization, s is added to the set S of nodes
logged in I and s ~ is replaced with $ within P. Operation Iogout(1)
disconnects the executing node, say $, from £. As a consequence, s
is removed from the set $ of nodes logged in I and any alias for s is
removed from the allocation environment of £.

4. A C h a t S y s t e m
In this Section we show how our KLAIM-based infrastructure

language can be fruitfully used for modeling a simplified chat sys-
tem. The chat system is made of a server that dispatches the mes-
sages to all the clients connected to it. The system is dynamic
because new clients can enter the chat and existing clients may
disconnect. The server represents the gateway through which the
clients can communicate, and the clients logs in the chat server by
specifying their "nickname", represented here by a locality. In the
following we will use some syntactical shortcuts, such as if and
while instructions and some meta language constructs on lists of
data (our language is Turing powerful).

First of all, we introduce two derived operations, subscr ibe and
register, that permit clients to specify the nicknames with which
they want to log in the chat server. Both these operations are en-
dowed with two different continuations, in order to be able to han-
dle also failures. Notice that register(s, l)[Pi , P2] acts as a binder
for [and s in the continuations Pi and P2-

sabseribe(s,l)[Pi,P2] ~ x~lister(s,t)Ir~,P2] ~=
ioginCs), accept(s).
out ("register', !) @s. in("registet", !l)@sel~.
in(l, !ok) @ s. i f ! not already registered then
if ok then out(I, true) @ se l f .

P l bind(I, s).P I
else else

Iogout(s) .P2 out(l, false) @ s • If .P2
endif endif

Moreover, we introduce two derived operations, unsubscr ibe
and unregis ter , that are useful to keep track of disconnections
(indeed, |@gin has a complementary operation, while logout has
not). Both operations will be used as action prefixes and unregis ter
hinds ! in the continuation process.

tmsubscr/he(s,/) a
out('~subscribe", I) @s.
Iogout(s).
in('~msubscrihed", l) @ s

ur~ster(I)
In("unsubs cribe", !!) @ s e l f .
out("unsubscribed", l) @ • • 3.f

Basically, all these derived operations are implemented by means
of simple client-server protocols, of course, the protocols could be

3 7 6

made more complex in order to handle other situations such as, e.g.,
unsubscription of unexisting localities.

Now, in order to enter and exit the chat system, a client node will
execute the following NodeCoordinator processes:

EnterChatO ~I
in ("enter", !server, !nickname) @ n • i f .
subscribe(server, nickname)
[out("connected" ,true) @ • • 3.Z.
F~lChat (server, nickname),

F~'tChat(server, nidmame) de/
in ("exit", sen , e r , n i ckname) @ e e ~ ~ l

in("connected", true) @ a e l f .
u n s u b s c r i b e (server , n i ckname)_

En:erChat 0

In these processes, the first operations are synchronization points
with user processes and the tuples involved can be considered as
system call exported interfaces.

Additionally, to receive messages from and deliver messages to
the chat server, a client node will execute the following standard
processes:

ReceiveMessages 0 clef
while true do

in(!m, rg, .Ifrvm) @self .
print the message msg on the screen

enddo

5endMessages (server, nickname)
while true do

read ("connected", true) @ s u lX.
input the message msg

out('`mes,sage", nts g, nickname) @server
enddo

Conversely, to handle clients that enter and exit from the chat
system, the server will execute the NodeCoordinator processes
HandleEnter and HandleExi t , and to dispatch messages to all
the clients logged in, it will execute the standard process Broad-
castMessages.

HandleEnter() ¢e=f
while true do

register(s, l)
[add I to the list of clients,nil]

enddo

HandleF..xit 0 ~1
while true do

unregister(/).
remove I from the list of clien~

enddo

BroadcastMessages() ~=
while true do

in (''mess age", !message, '.from) @ s • 1£.
for every ! in the list of clients

out(message jfrom) @ I
enddo

Like in real chat systems, the chat server could also inform
clients of the nicknames of every client logged in, thus clients
can also implement "private chat rooms". Moreover, the server
could store the nicknames of clients that have disconnected, for en-
abling them to recover their old settings whenever they reconnect.
Of course, these and many other features can be programmed in
KLAIM with the presented extensions, but due to lack of space, we
omit them.

5. Conclusions and Related Work
We have presented an infrastructure language for open nets. The

language has been obtained by integrating the language KLAIM
for agent interaction and mobility with coordination primitives for
node connectivity. Such new coordination primitives can also be
interpreted as mobility operations for nodes, because they allow
nodes to enter and exit from (the administrative domains of) other
nodes. This kind of mobility is reminiscent of Ambient [6] mo-
bility, because a single node migrates as a "whole", i.e. with the
entire computational environment. However, differently from Am-
bient, in our language there is a clean separation between user pro-
cesses, that can migrate from node to node but cannot change node
connectivity, and coordination processes, that can also change net
topology but cannot migrate.

The framework presented in this paper generalizes that presented
in [5], because now the notion of node and of cluster do coincide,
therefore nodes can be naturally nested. Moreover, it simplifies
that presented in [3], because the allocation environment hierarchy
of nested nodes is directly implemented in the semantics without
resorting to the use of routing functions and of ordering relations
over sites as in [3].

Although in this paper we have concentrated on KLAIM, the
same coordination primitives can be integrated with other lan-
guages/calculi for distributed network-aware mobile applications.
However, while such integration should be smooth for program-
ming notations like, e.g., the D~ [12] and D Join [10], that are not
endowed with explicit primitives for node mobility, we expect it to
be more difficult for notations like, e.g., Ambient [6], because of
the possible interplay between the new mobility operations and the
language primitives" ones. We plan to investigate such integration
and other coordination primitive in the near future.

We also want to extend the current implementation of KLAIM
with the coordination primitives introduced in this paper. The exist-
ing implementation consists of](LAVA, a Java [1] package that sup-
plies the run-time system for KLAIM operations, and of X-KLAIM
[2], a programming language that extends KLAIM with a high level
syntax for processes: it provides programmers with variable dec-
larations, KLAIM operations, assignments, conditionals, sequential
and iterative process composition. A compiler, that translates X-
KLAIM programs into Java programs that use KLAVA, is also sup-
plied. X-KLAIM syntax and software can be found on-line at the
KLAIM site http://music, d e i .unif : i . . "it. In the existing im-
plementation, a KLAIM net is implemented through a server where
nodes must register by using their site. The server allows registered
nodes to communicate both directly and indirectly (i.e. messages
pass through the server). We believe that the primitives introduced
in this paper can be smoothly accommodated in the existing imple-
mentation. For this, it should suffice to use more than one server
in the same net and to allow a node to register in more than one
server. Indeed, as we have pointed out in the Introduction, while
the most mobile system implementations heavily rely on a single
centralized server that acts as a sort of name server for the other
nodes, our computation model suggests, and requires, the use of
multiple distributed servers.

Acknowledgements. We thank the anonymous referees for their
helpful comments.

6. R E F E R E N C E S
[1] K. Arnold, J. Gosling, and D. Holmes. The Java

Programming Language. Addisnn-Wesley, 3rd edition, 2000.
[2] L. Bettini, R. De Nicola, G. Ferrari, and R. Pugliese.

Interactive Mobile Agents in X-KLAIM. In P. Ciancarini and

R. Tolksdorf, editors, Proc. of the 7th Int. IEEE Workshops
on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE), pages 110--115. IEEE Computer
Society Press, 1998_

[3] L. Bettini, M. Loreti, and R. Pugliese. Structured Nets in
KLAIM. In J. Carroll, E. Damiani, H. Haddad, and
D. Oppenheim, editors, Proc. of ACM SAC 2000, Special
Track on Coordination Models, Languages and Applications,
volume I, pages 174-180. ACM Press, 2000.

[4] L. Bettini, M. Loreti, and R. Pugliese. An Infrastructure
Language for Open Nets, 2001. Draft, available at
http://music, d a i . u n i : f i . ~t /papers . html .

[5] L. Bettini, M. Loreti, and R. Pugliese. Modelling Node
Connectivity in Dynamically Evolving Networks. In Proc. of
CONCOORD, Int. Workshop on Concurrency and
Coordination, volume 54 of ENTCS, 2001.

[6] L. Cardelli and A. Gordon. Mobile ambients. In Foundations
of Software Science and Computation Structures
(FoSSaCS'98), number 1378 in LNCS, pages 140-155.
Springer, 1998.

[7] N. Carriero and D. Gelemter. Linda in Context. Comm. of the
ACM, 32(4):4~. A. A.58, 1989.

[8] G. Cugola, C. Gbezzi, G. Picco, and G. Vigna. Analyzing
Mobile Code Languages, In J. Vitek and C. Tschudin,
editors, Mobile Object Systems, number 1222 in LNCS.
LNCS, 1997.

[9] R. De Nicola, G. Ferraxi, and R. Pugliese. KLAIM: a Kernel
Language for Agents Interaction and Mobility. IEEE
Transactions on Software Engineering, 24(5):315-330, 1998.

[10] C. Fournet, G. Gvnthier, J. J. Levy, L. Maranget, and
D. Remy. A Calculus of Mobile Agents. In U. Montanari and
V. Sassone, editors, Proc. of Tth Int. Conf. on Concurrency
Theory (CONCUR'96), volume 1119 of LNCS, pages
406-421. Springer-Verlag, 1996.

[1 I] D. Gelernter. Generative Communication in Linda. ACM
Transactions on Programming Languages and Systems,
7(1):80--112, 1985.

[12] M. Hennessy and J. Riely. Resource Access Control in
Systems of Mobile Agents. In U. Nestmann and B. C. Pierce,
editors, Proc. of HLCL '98: High-Level Concurrent
Languages, volume 16.3 of ENTCS, pages 3-17. Elsevier,
1998. Full version available as CogSci Report 2/9g,
University of Sussex, Brighton.

[13] E Knabe. An overview of mobile agent programming. In
Proceedings of the Fifth LOMAPS workshop on Analysis and
Verification of Multiple - Agent Languages, number 1192 in
LNCS. Springer-Verlag, 1996.

[14] R. Milner. Communication and Concurrency. Prentice Hall,
1989.

[15] R. Milner. The polyadic x-calculus: a tutorial. Technical
Report ECS-LFCS-91-180, Dep. of Comp. Sci., Edinbm'gh
Univ., 1991.

[16] T. Thorn. Programming Languages for Mobile Code. ACM
Computing Surveys, 29(3):213-239, 1997. Also Technical
Report 1083, University of Rennes IRISA.

[17] J. E. White. Mobile Agents. In J. Bradshaw, editor, Software
Agents. AAAI Press and MIT Press, 1996.

3 7 7

