Unstructured Agent Matchmaking: Experiments in Timing
and Fuzzy Matching

Eith Ogston
Computer Engineering Laboratory, ITS
Delft University of Technology

elth@ce.et.tudelft.nl

ABSTRACT

We investigate distributed matchmaking within an multi-
agent system in which agents communicate in a peer-to-peer
fashion with a limited set of neighbors. We compare the
performance of a system with synchronized time to that of
systems using several different models of continuous time.
We find little difference between the two, indicating that
the ordering of events does not play a part in computation.
We also compare a system in which matches are made deter-
ministically between discrete task categories to one in which
task matches are made non-deterministically between con-
tinuous task categories. We consider several possible match-
ing functions and show that their support is proportional to
the spread of categories tolerable. This holds for match-
ing probabilities as low as 0.01. We further show that the
matching function’s ‘height’ relates to the speed at which
the system finds matches. For instance, we show that for
a triangular matching function, doubling the probability of
each service matching results in about a 1.6 times speedup.

Keywords

multi-agent systems, peer-to-peer computing, matchmaking

1. INTRODUCTION

In this paper we present results from two experiments de-
signed to test how an abstract model of distributed, agent
matchmaking, introduced in [5], might perform in a less pre-
cise real world setting. The model we investigate was first
studied with the aim of determining if multi-agent systems
could accomplish a matchmaking coordination task without
being given a predefined system structure [5], and then later,
without any form of global system structure [4]. These ex-
periments showed some promising behavior. For example,
agents communicating in a peer-to-peer fashion with a lim-
ited set of neighbors were able to find 90% or more of pos-
sible tasks matches in a short amount of time in systems
with up to 100 categories of tasks. While promising how-
ever, these experiments leave some open questions. There is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specifc
permission and/or a fee.

SAC 2002, Madrid, Spain

Copyright 2002 ACM 1-58113-445-2/02/03 ...$5.00.

300

Stamatis Vassiliadis
Computer Engineering Laboratory, ITS
Deift University of Technology

stamatis@ce.et.tudelft.nl

a danger that the ability to coordinate shown by the agents
is due, in part, to the manner in which parallelistn was sim-
ulated. The sequential order in which theoretically parallel
agents actions are sirnulated may provide an unintentional
means of regulation. In addition, the abstract nature of the
tasks studied may have a simplifying effect that makes the
problem solved by the agents much easier than any they
might face in a more realistic situation. Thus, it could be
the case that in a more true to life setting the system behav-
iors shown in the experiments presented in [4] and [5] will
change dramatically.

In this paper we address these open questions. The ex-
periments presented here are concerned with relaxing two
assumptions made to enable analysis in the original model.
The first was that all agents move at the same speed, thus
allowing an order in which actions are performed to be de-
fined. This method represents a form of global synchronizing
time that will not exist in a truly distributed system. We
test the model with several different methods of simulat-
ing continuous time and find that the order in which agents
move in fact makes little overall difference. The second as-
sumption that we put on trial is that the categories of tasks
being matched are discrete and matchings themselves are
deterministic. In actual applications this is unlikely to hold
true. Agents may be looking for any of a number of different
services to accomplish a task, some of which are better than
others, and may probabilistically accept an offered service
based on its suitability. We examine several forms of fuzzy
matching and show that number of categories supported re-
lates to how precise a match agents are willing to accept,
even when given a low matching probability for less suitable
services. Meanwhile, the probability of services matching
is shown to affect the speed with which matches are found.
Overall we find that the following may hold true:

o The system is robust with respect to timing; there is
no dependency on the order in which agents move.

e The system is flexible with respect to how task cate-
gories are matched; agents do not need to know exactly
what services they are searching for.

In the remainder of this paper we first discuss related work
in sections 2 and the model we investigate in section 3. In
section 4 we present simulation results and analysis. Section
5 concludes with some final remarks.

2. RELATED WORK

Within multi-agent systems research there are two com-
monly used methods of matchmaking; markets and facilita~

tors. In the first, economic models of commodity markets
are used to ‘trade’ services among agents [9]. For instance,
in the contract net protocol [7] agents broadcast a need for
a service and service providing agents return bids for a con-
tract. In general markets consist of a set of buying agents,
a set of selling agents, and a central market. For efficiency’s
sake, agent markets often take the form of an auction in
which bids and offers are sent to an auctioneer that broad-
casts them to other agents in the system. These shouts
are made in rounds, all agents placing shouts, listening to
other’s shouts, and then recalculating what they shall bid
or offer in the next round. It has been shown that over time
even agents with simple bidding strategies will converge to
a market equilibrium price that is optimal for the system as
a whole [6]. Facilitators, as generalized in the middle agents
paradigm [2] [8], on the other hand rely on one central agent,
or set of agents, to indicate where looked for services can be
found [3]. Such systems create a central directory of service
providers, service users, or both. This directory can then be
queried by agents looking for services or clients.

In this paper we want, by contrast, to consider unstruc-
tured multi-agent systems. We study a model without any
predefined structure like a central marketplace, broadcast
mechanism or network of well know middle agents. Instead,
our agents search for possible serve providers by making
one-to-one queries among a small set of direct neighbors.
Agent’s search spaces are expanded by forming ‘clusters’
among agents that find they are able to work together. We
have shown that this model will quickly organize into a single
large cluster allowing 90% or more of matches to be found,
provided that the number of task categories is limited [5].
We have further investigated limiting the cluster size in such
systems and have found that while this reduces the percent-
age of matches found by around half, it still works well in
the dynamic case where tasks are completed and agents go
on to search for new task matches [4].

‘We are interested in investigating two possible uninten-
tional sources of organization in this agent model; timing
and task category structure. Global clocks are often used
for synchronization. Knowing the order in which events will
take place can allow a systemn designer to make assumptions
in calculations. In auctions the fact that bids take place
in rounds allows agents to update their shouts based on a
know current best bid or offer. This speeds-up the time it
takes the market to converge to equilibrium. In a system
that uses a middle agent directory the middle agents can
control the order in which requests are handled. They can
thus distribute requests to service providers based on their
capacity to handle them. When attempting to create a fully
distributed agent system we must be sure that none of the
system behavior observed is due to such a hidden depen-
dency on timing.

The method by which task categories are matched can also
provide an unseen form of structure. Many agent markets
deal with commodity items, meaning that all offers and bids
for particular services are interchangeable; different services
are traded in different markets, Middle agent directories are
more flexible; they provide a central ontology that allows all
services in the system to be described in the same man-
ner, simplifying matching decisions. However, among a dis-
tributed group of autonomous individuals this strict ontol-
ogy is unlikely to exist. Individuals may not know an exact
definition of a desired service and can make choices based

301

on a subjective judgment of suitability. This means that
one-to-one negotiations are likely to be non-deterministic as
individuals can consider more decision factors than can be
cornmunicated to a middle agent. For this reason we look
at fuzzy matching among task categories. As an example,
imagine that I would like to purchase a book on java pro-
gramming. If I knew that I wanted the book with ISBN
number 1-56592-262-X I could place a bid in a Kasbah [1]
auction or order it from any bookstore in my local yellow
pages. On the other hand if I simply want a book on Java
and browse through several of my local bookstores I can
consider many other factors in my decision of which book to
purchase; my general impression of the book’s layout, or the
niceness of the staff, for instance. This manner of finding a
book can easily lead me to purchasing a different book from
a different store over several trials of the experiment.

3. OUR MODEL

In this section we define the model we are working with
and describe how it differs from the simpler version used in
previous work. We further give a brief overview of previous
results about the model’s basic behaviors. The model pre-
sented is focused on providing an abstract representation of
agents attempting to find partners for tasks using peer-to-
peer communications. Our aim in its design is to simulate
a system that will help us determine under what conditions
unorganized agents can find partners, and to minimize any
predefined means of cooperating. We consider agents that
each have a number of tasks that they would like to find part-
ners for. Each tasks has a category which determines what
partner tasks are suitable; each task category has one or
more matching categories. Agent’s tasks are initially linked
at random with a neighbor task. Agents then search for
matches for their tasks. They do this by moving in turns in
which they reassign their links, shuffling which of their un-
matched tasks are paired with which neighbor task. When
a match is found it forms a connection between the agents
of the tasks involved. Connected agents act as a single en-
tity and move by shuffling all of their unmatched tasks and
neighbors together. Creating clusters in this way expands
the search spaces of the individual agents, allowing them to
find partners outside of their initial neighborhood.

Our system consists of a set of agents A = {a1,...,an},
and a continuum of task categories C = [0,m). These tasks
categories represent the types of job for which an agent
may seek a partner. We suppose that there is a distance
d:C x C — [0,00) on C. The distance between two cate-
gories measures how similar they are. In this paper we use
a simple cyclic distance: d(c,¢’) = min{|c—¢'|,m—|c—{|}.
This cyclic distance is used to avoid edge effects, and gives
a maximum distance of m/2. Furthermore, we consider a
matching function on the possible distances: f : [0,m/2] —
[0,1], where f(d) is the probability that two categories at
distance d form a matching pair. This function determines
if an agent looking for a service of category c will accept a
candidate one of category ¢’- We consider functions f that
are non-increasing and have a maximum at 0, representing
the fact that agents are more likely to accept offered services
the more similar they are to the one desired.

In our model, each agent e in A has a set of k tasks T, =
{t1,...,tx}, each task belonging to a category in C. Note
that T, can contain more than one task from a category.
The goal of the matchmaking problem is for the agents to

create links between their tasks and those of other agents,
maximizing the number of links between matching client-
server pairs as defined above. We shall represent this by
defining a graph G = (V, E) where the nodes are all of the
agents’ tasks and edges are placed between any tasks that
have a non zero probability of matching. More formally:

V = {((a.t):a€c Aandte€Ta} and

E = {(u,v) €V XV :u=/(a,t),v=(b,t') such that if c
is the category of task t and ¢’ is the category
of task t’, then f(d(c,c’)) > 0.

Thus G is a graph representing all the possible matches
in the systemm. The aim of the matchmaking problem is
to approximate a maximum sized matching M in G, i.e.
a set M C E such that no two edges in M are adjacent.
This represents a system where each task is paired to one
other task and the number of matching client-server pairs is
approximately maximized.

‘We initiate our simulations of this model by creating agents
with tasks chosen uniformly at random. We then take a
random matching of size [|V'|/2] in the complete graph on
V so that each task in each agent is linked to one other task
in another randomly chosen agent. This represents initial
neighborhoods formed by some means outside of the system,
for instance based on location. The initial links are tested
to see if they form connections, i.e. that they represent a
matching pair of tasks. Agents then search for further links
that are members of FE above, i.e. they look for links that
are between two possibly matching tasks. When a new link
is formed (either initially or in the later searching process)
the matching function f is used as the probability of that
link becoming a connection.

Agents search for connections by permuting which of their
unmatched tasks are paired to which of their unmatched
neighbors. This is done in turns; during each turn each
agent randomly reassigns all of its unmatched tasks to its
unmatched neighbor tasks. For each of these new links f
is used to determine if a new connection is created. A con-
nected link represent two agents agreeing to cooperate. We
assume that agents that cooperate on one task are likely
to be able to work together more closely, for instance they
might represent devices from the same manufacturer. Thus,
we group such connected agents into a cluster. Clusters then
act like compound agents; the unmatched tasks and neigh-
bors of the agents in the cluster are all shuffled together on a
turn. Simulations halt after no new connections are formed
within a set number of turns.

In a previous study [4] [5] we investigated a discrete de-
terministic version of the system described above, one in
which there are a finite number of categories represented by
integers and the matching function is 1 at distance 0 and
0 otherwise. Three measures were used to characterize the
general behavior of this systern: the number of categories
supported, the percentage of connected links at the end of a
trial, and the number of turns until a trial stops changing.
It was found that for low numbers of categories trials will
always connect into a single cluster, with high numbers of
categories they will never connect, and between there is a
steep drop where some percentage of trials connect. The
percentage of connecting trials as a function of the number
of categories was graphed to determine the point where this
drop begins and the curve’s steepness. It was found that
for agents with 3 tasks each the percentage of connecting

302

] |: \\ %‘eo:lr::ﬁng
E o] X
Ee R

0 \'sr-——

1: average-%---|
:] © - connectad
Bl =~

e (=}

AC 20 20 40 S0 o0 10 20 @0 400410470 430 440 ASD 480 {70 ABD A4S0 00 910 220 220 240
.. numbar of categories
Figure 1: original synchronized system vs. no mem-

ory unsynchronized system

trials remains 100% until around 100 categories, and then
drops to 0% at about 200 categories. Further, the num-
ber of categories supported increases to 400 categories when
each agent is given 4 tasks and 800 categories with 5 tasks
per agent. For the trials that formed a single cluster the
percentage of tasks within the system that are matched to
partners was also investigated. This was found to be around
97% for systems with 10 categories, dropping to 90% at 200
categories. Finally the pumber of turns that connecting tri-
als ran for before they stopped changing was graphed. This
ranged from an average of 298 at 10 categories to 2369 at
200 categories. These previous results are from simulations
run with 2000 agents each with 3 tasks, and will be used for
comparison with the experiments presented here. We have
also studied more complicated systems with limited cluster
sizes and tasks that end and get reassigned. These however
are more difficult to analyze and as their basic behavior re-
lates closely to that of the static, large cluster system we
choose to look only at the simpler system in the following
experiments.

4. RESULTS

In the following sections we present results from two ex-
periments; one comparing perforrnance of the original sys-
tem with different approximations of continuous time and a
second looking at forms of matching Functions for systems
with continuous task categories. The experiments presented
below all use 2000 agents each with 3 tasks, a system small
enough to be quickly simulated yet large enough that a lack
of agents doesn’t affect system behavior. Trials are run un-
til no change oecurs within 200 turns, and the last turn on
which a change was made is recorded as the end of the trial.
For graphs of the percentage of trials that connect we ran
100 trials at each category point.

4.1 Continuous Time

‘We first want to ensure that the behavior observed in the
original experiments is not due to any structure in the order
in which agents move. The original experiments were run in
turns, each agent or cluster moving once each turn, in the

10 4
ao 1
w ..
- S
o]
1]
100
98 {-
% 7
s g4
!‘ 24
0
=
:]
a1 4
a2
1 1]
2000
-
10 - | —w—nomem |
~ss—rnem 10
o1 -] -~ mem 1000|
QA -—r—r—TrTrr T r T T T rr T T
AD 20 30 A 50 @0 -0 @0 @0 4004 A0 420 420 440 50 40 (70 480 400 200 240 220 730 240

numbar of categoriaa .
Figure 2: no memory v.s memory of intervals [1,10]

and [1,1000]

order in which they are stored in an internal array. There
are several ways to simulate continuous time on a discrete
computer. In the following sections we study a system with
no memory, and several where clusters wait some period of
time between moves. As we wish to compare to the origi-
nal system we consider the discrete deterministic matching
case: categories have integer values between 0 and m and
the matching function is 1 at distance 0 and 0 otherwise.
We use a distance function such that each category matches
to exactly one other category.

4.1.1 No Memory

One way of simulating an unsynchronized system is to
move clusters in a randomly chosen order. Figure 1 com-
pares the original system (described above) to one in which
moves are made one cluster at a time, each step choosing
which to move uniformly from all existing clusters. For com-
parison’s sake we mark turns as ending after N moves, where
N is the number of clusters at the start of the turn. We see
that there is little difference between the two. The unsyn-
chronized system stops reliably forming large clusters with
slightly fewer categories, however the percentage of connec-
tions in its end clusters and the length of trials are almost
identical.

4.1.2 Memory

A more realistic version of an unsynchronized system con-
siders the fact that a cluster that has recently moved is less
likely to move next then others that have been still, and
thus places some time between the moves of a cluster. We
simulate this by having each cluster wait some number of
time steps, uniformly chosen from an interval [tmin, tmaz],
between each move. We first consider a situation in which
clusters that wish to move simultaneously in a given time
step are moved one at a time in a random order. Figure 2
compares the no memory case in Figure 1 to two versions of
such a system, "mem 10" with wait times of between 1 and
10 steps, and "mem 1000” with waits of between 1 and 1000
steps. For comparisons sake we measure turns after 10 or
1000 time steps respectively, the expected amount of time

303

/

|

percentage
FERIRWEEH N

b,

A

\O 20 30 40 50 &0 10 &0 B0 40040 420 {10 AAD ASD 430 470 480480200240 220230 240
number of cxtegories

Figure 3: memory interval [1, 10]; sequential vs.
synchronous cluster movement

for each cluster to move once. Since we have 2000 agents,
and on average even fewer clusters, we expect the “mem
1000” case to approximate the no memory case, as we see
occurs in the graphs. The “mem 10” case however also shows
no appreciable difference indicating that this change in the
order of moves makes no difference to the overall system.

4.1.3 Moving in Unison

Our previous cases clusters move sequentially. More real-
istically we want to consider clusters that move in parallel. If
moved in sequence two neighboring clusters will get to test
two possible matching task pairs, first one cluster moves
and tests for a match, then the second moves, creating a
new pair, and tests again. Two clusters that move at the
same time will skip the intermediate task pair, testing only
one new pair. Figure 3 compares the “mem 10" experiment
above with an experiment run with the same memory pa-
rameters but moves made in this synchronous manner. As
expected the system with synchronous moves takes slightly
longer (2.4% to 12.3%) due to this single testing, but other-
wise we see little difference between the two methods.

4.2 Continuous Categories

In our second experiment we study the difference between
systems with discrete categories and deterministic matches,
and systems with categories chosen from an interval with
various matching functions. Our categories are now chosen
from an interval [0,), and we look at matching functions on
the distance between categories, f(d) as defined in Section 3.
In the following sections we look at several different match-
ing functions, first to compare against the discrete case, and
then to determine the effect of changing their width (i.e.
the support of f; Sy = {d : f(d) > 0}), average height or
fuzziness.

4.2.1 Original vs. Rectangular

We first compare the original discrete case to its closest
match in a continuous system. Figure 4 compares the orig-
inal data with a matching function that is 1 between 0 and
1/2 and O everywhere else, labelled 'rectangular’. As in the

pucentage
Mguuaa

| —o— iangular

wms
“EEBEEQE

o888 BE
—

Y ETEL ;!\muﬂn'nﬂn\m\m \m\w\!ﬂ\u'ﬂ;ﬂz;“ﬂ;‘ﬂw

R I ber of e rian / gory interval size (m)

Figure 4: original discreet system compared to a
continuous systems with ‘rectangular’ and ‘triangu-

lar’ matching functions

—

original system, this ‘rectangular’ function represents a case
where a category will always match to any category within
a distance of 1/2 to either side. We see that the main differ-
ence is that the ‘rectangular’ case improves on the percent-
age of connected links at the end of a trial by 1.4% to 5.3%.
This is due to the fact that if a task A has two matches, B
and C, B and C are unlikely to be identical and thus while
some of their matching space overlaps there are also further
tasks that will only match B or only match C. Thus B con-
necting to A removes less of C’s potential matches then it
does in the discrete case.

4.2.2 Triangles

In a more realistic system it is likely that an agent is
willing to accept a number of different related services as
modelled in the ‘rectangular’ case above, but also that the
agent will prefer some of these services to others. In the
following section we model this behavior using triangular
matching Functions. These ‘triangular’ functions provide a
simple representation of an agent’s preference for a partic-
ular category, with a diminishing ability to accept related
categories depending on how similar they are to the desired
category. They place the highest probability of matching at
distance 0, and then linearly lower the matching probability
to 0 at some distance dmq..- For comparison to the ‘rect-
angular’ case, Figure 4 includes data for such a ‘triangular’
function with f(0) = 1 and dmax = 1/2, labelled ‘triangu-
lar’. We see that the ‘triangular’ case in general performs
less well than the ‘rectangular’, It supports the same num-
ber of categories, but with a more gradual drop off and end
clusters have 0.1% to 1.5% less connected links. More im-
portantly however, runs are 1.8 to 2.9 times longer, due to
the fact that pairs that may possibly connect might meet
a number of times before doing so. We further explore two
sets of these ‘triangular’ functions, first holding f(0) at 1
and varying dmqz to determine the effect of the 'width’ or
support of the matching function. We then fix dmas at 1/2
and vary the height of the triangle to determine the effect
of the probability of two tasks matching.

304

0P D a0 0 P 0 D 90 A0 410 420 (D WD (B0 480 (10 A0 490 200 210 7O 0 U0
catagory Interval size (m)

Figure 5: ‘triangular’ matching functions with vary-
ing widths

Figure 5 shows the first of these experiments. All data sets
show 'triangular’ matching functions with f(0) = 1; “width
17, “width 1/2”, “width 1/4” have daz = 1/2, 1/4, and
1/8 respectively. (Intuitively ‘width’ 1 indicates that each
category can possibly match to an interval of categories of
length 1) The points labelled “width 1/2 x 2” show the data
for “width 1/2” with its category axis doubled, similarly
“width 1/4 x 4” shows the data for “width 1/4” with its
category axis quadrupled. As these points indicate multi-
plying the width of the matching function by a constant
simply has the effect of multiplying the supported category
range by the same constant. This makes sense, categories
are chosen from a continuous interval so scaling the match-
ing function’s support is equivalent to scaling the interval.
We next look at the effect of varying the height of a 'trian-
gular’ matching function. In Figure 6 all data sets have a
‘triangular’ function with dmez = 1/2. “height 1”, “height
1/2” and “height 1/4” have f(0) = 1, 1/2 and 1/4 respec-
tively. Reducing the probability of matches being made has
a small effect in reducing the system’s ability to connect,
but most importantly changes the speed at which the sys-
tem finds matches. Compared to “height 1”7, “height 1/2”
takes 1.5 to 1.7 times longer and “height 1/4” takes 2.4 to
2.8 times longer. Thus doubling the height gives an approx-
imately 1.6 times speedup to the system.

4.2.3 Fuzzy Tails

In our last experiment we look at the effect of ‘fuzziness’
in our system. As the ‘triangle’ graphs indicate, even a
very low probability of matchirig at some distance can con-
tribute to the overall system behavior. Though the ‘triangu-
lar’ cases took longer to run than the ‘rectangular’ one, they
still supported about the same range of task categories in
spite of their low edge probabilities. To look further at this
we want to consider a case where agents have a preferred
match for a task, but could possibly take matches that are
very different from their preferred partner. We use the unit
normal distribution function to model this behavior as it has
a high center and very low probability tails. We scaled the
width of the unit normal by 2/11 to give approximately the

100
- m o
i‘ -
§ of
[3
x
0 T
100
= |2 — L
o %1 connected ..
E a4] links .
2
g
[B = e-sreeee o e emmenmtae s e RS8R AR SRS AR St S e S 8 4 e S e e
8
1200
100D =
sam 1
4000 4 —e—height 1
i —— height 172
-+ T T T —r T v T

\Q 20 0 A0 50 @0 70 80 @0 A00AAD 470 130 A0 450 4@0 470 480 100 200 740 220 230 240
category Interval size (m)

Figure 6: ‘triangular’ matching functions with vary-
ing heights

same range of supported categories as our previous experi-
ments. This is the “normal” data in figure 7. The “normal
no tail” data shows this same function but with probabil-
ity at distances [1/2, infinity] set to 0. At distance 1/2 the
probability of two tasks matching is already very low so the
cut off tail accounts for only 1% of the total area under the
original curve. However cutting off this tail still affects the
number of categories supported by around 12%, though it
makes little difference to the length of runs or the quality of
solutions.

5. CONCLUSION

In this paper we considered matchmaking in an unstruc-
tured multi-agent system. Using simulations we have shown
that the following holds true:

e We tested several methods of simulating continuous
time and found no dependency on the order in which
clusters move. This held true for systems with and
without memory, and for systems that assumed that
clusters move in parallel.

e We found that the system is flexible with respect to
how task categories are matched. Agents can be un-
sure of what matches they are willing to accept and
can accept a range of matches, even with probabilities
as low as 0.01. The range of categories accepted in this
manner is proportional to categories supported by the
systemn as a whole, and the average probability of cat-
egories in this range being accepted relates to speed
of the system. A doubling in height of a triangular
function results in roughly a 1.6 times speedup.

These experiments, while still abstract, indicate that un-
controlled systems of interacting agents might be able to

maintain stable behaviors, in spite of the complications thrown

at them by real world applications. There are however
some limitations that may effect the suitability of the sys-
tem we've described for a given application. The range of
categories supported by our system is limited while the cate-
gory range needed in an actual problem, especially in prob-
lems that consider multi-dimensional categories, could be

305

parcantage
88 E8B B

4
—

|

i

i

i

I

]

?

I

:

i

|

|

1

|

i

|
N

] / [~—normal

- .——nnrmalnolail
AC 20 20 40 50 @0 10 a0 @0 400410420120 140 4SO 480 {70 480 420 200 210 220 230240
category interval size (m)

Figure T7: scaled normal matching function vs. same
cut off at 1/2

-
Qg

very large. Further, the speed of a ‘turn’ depends upon
the communication costs faced by the agents. These issues
constitute further research directions.

6. REFERENCES

[1] Chavez, A., Maes, P.: Kasbah: An Agent Marketplace
for Buying and Selling Goods. Proceedings 1st Int.
Conference on the Practical Appication of Intelligent
Agents and Multi-Agent Technology. (1996) 75-90

[2] Decker, K., Sycara, K., Williamson, M.: Middle-Agents
for the Internet. Proceedings of the 15th Int. Joint
Conference on Artificial Intelligence. (1997) 578-583

(3] Kuokka, D., Harada, L.: Matchmaking for Information
Agents. Proceedings of the 14th International Joint
Conference on Artificial Intelligence. (1995) 672-678

[4] Ogston, E.,Vassiliadis, S.: Local Distributed Agent
Matchmaking. Proc. 9th International Conference on
Cooperative Information Systems . (2001) 67-79

[6] Ogston, E.,Vassiliadis, S.: Matchmaking Among
Minimal Agents Without a Facilitator. Proc. 5th Int.
Conlerence on Autonomous Agents_ (2001) 608-615

[6] Preist, C., Van Tol, M.: Adaptive Agents in a
Persistent Shout Double Auction. Proc. 1st
International Conference on the Internet, Computing
and Economics. (1998) 11-17

[7] Smith, R.: The Contract Net Protocol: High-Level
Communication and Control in a Distributed Problemn
Solver. IEEE Trans. On Computers, 29(12). (1980)
1104-1113

[8] Sycara, K., Lu, J., Klusch, M., Widoff, S.:
Matchmaking among Heterogeneous Agents on the
Internet. Proc. AAAI Spring Symposium on Intelligent
Agents in Cyberspace. (1999)

[9] Vulkan, N., Jennings, N.: Efficient Mechanisms for the
Supply of Services in Multi-Agent Environments. Int.
Journal of Decision Support Systems, 28(1-2) (2000)
5-19

