On the Serializability of Transactions in Shared
Dataspaces with Temporary Data

Nadia Busi
Dept. of Computer Science
Mura A. Zamboni, 7
Univ. of Bologna, Italy

busi@cs.unibo.it

ABSTRACT

Several coordination platforms based on the shared datas-
pace approach introduces, besides the typical Linda-like co-
ordination primitives (used to produce, consume, and test
for the presence/absence of data in a common repository),
a transaction mechanism provided to group coordination
primitives which should be executed in such a way that ei-
ther all succeed or none of them is performed. In this paper
we continue the investigation of the serializability of trans-
actions in shared dataspace coordination languages that has
been initiated in [2). The new contribution consists of the
analysis of the interplay between transactions and tempo-
rary data, ie., data with an associated expiration time.

Keywords
Shared dataspace coordination, temporary data, transaction
serializability.

1. INTRODUCTION

In the last years we assisted to the development of mid-
dleware platforms for the coordination of dynamically re-
configurable federations of devices and processes. In this
context, two relevant commercial proposals are represented
by JavaSpaces [3] and TSpaces [7], produced by Sun Mi-
crosystem and IBM respectively. Both coordination middle-
wares are essentially based on the generative communication
metaphor proposed by Linda [4): processes communicate
through production, consumption and test for presence of
data in a common data repository; besides the traditional
blocking production and test for presence operations, also
the corresponding nonblocking versions, which terminate by
signalling the absence of matching data, are provided; after
its insertion in the dataspace, a datum has an independent
existence, until it is not withdrawn by a consumer.

An interesting extension to the basic model, relevant for
distributed applications and supported by both the afore-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.
SAC 2002, Madrid, Spain
Copyright 2002 ACM 1-58113-445-2/02/03 ...$5.00.

359

Gianluigi Zavattaro
Dept. of Computer Science
Mura A. Zamboni, 7
Univ. of Bologna, ltaly

zavattar @cs.unibo.it

mentioned proposals, is a transaction mechanism. A set of
coordination operations can be grouped in a transaction,
and executed in such a way that either all of them succeed
or none of them is performed.

Consistency of the data repository in the JavaSpaces spec-
ifications [5] is ensured by requiring transactions to satisfy
the so called ACID (atomicity, consistency, isolation and
durability) properties, traditionally supported by database
management systems. In particular, in this paper we are
concerned with preservation of the isolation property, also
called serializability: “Ongoing transactions should not af-
fect each other. Any observer should be able to see other
transactions executing in some sequential order”.

To meet the isolation requirement for transactions, in the
JavaSpaces specification the semantics of coordination op-
erations is affected as follows. A datum produced within a
transaction will become accessible from outside the trans-
action only when the transaction commits; data consump-
tion or test for presence within a transaction can operate
on items emitted either within the tramsaction or in the
common dataspace. Moreover, a datum tested for presence
within a transaction cannot be consumed by processes out-
side the transaction until the transaction commits. Concern-
ing the test for absence operations, if the only occurrences
of matching data have been withdrawn by another transac-
tion, the operation will wait until that transaction commits
before reporting an operation failure.

Recently, in [2], a formal investigation of the serializability
of transactions in a process calculus containing the coordina-
tion primitives of JavaSpaces has been initiated.! As far as
only primitives for data production, consumption and test
for presence are concerned, the constraints on the semantics
imposed by the JavaSpaces specifications [5] are sufficient to
guarantee the serializability of transactions. However, when
also the nonblocking versions of data consumption and test
for presence are considered, the constraints imposed by the
specifications, although necessary, no longer suffice to ensure
serializability. In [2] an improved, serializable semantics, ob-
tained by adding further constraints on data production and
on test for absence operations, is proposed.

1To simplify the treatment, we forbid nested transactions
and we provide only successful termination (commit) of
transactions.

Another relevant extension to the basic model, permitting
to avoid the accumulation of outdated information, is repre-
sented by temporary data. rather than maintaining a datum
until it has been explicitly consumed, the lifetime of the da-
tum is decided by the producer. After this time has been
expired, the existence of the datum is no longer granted.

In this paper we extend the work initiated in {2], by in-
vestigating the serializability of transactions in presence of
temporary data. We start our analysis of temporary data
considering the strict removal policy for expired data (called
leasing) of JavaSpaces: as soon as the lifetime of a datum
expires, the datum can no longer be used and it is removed
from the dataspace.

We show that the introduction of leased data in the basic
calculus — with only data production, consumption and test
for presence — does not affect serializability. When moving
to the full calculus containg also nonblocking predicates, we
provide some examples, showing that the constraints in [5,
2] no longer ensure serializability when leased data are taken
into account. Indeed, to guarantee the serializability of the
full calculus, it is necessary to delay the effective removal
of an expired datum until all transactions which tested that
datum for presence commit, and all previously expired data
have been removed. Besides weakening the benefits of tem-
porary data to prevent the accumulation of outdated infor-
mation, this solution for leased data also presents the draw-
back of potentially blocking the execution of the predicates
interested in data expired but not effectively removed. For
these motivations, it seems more reasonable to weaken the
data removal policy adopted by JavaSpaces in the following
way: after the lifetime of a datum has been expired, the exis-
tence of the datum is no longer granted; however, an expired
datum remains available for consumption (or test for pres-
ence) until it is not effectively removed from the dataspace
by an expired-data collector.

In [1], this interpretation of temporary data alternative to
leasing has been investigated under two different implemen-
tations of the collector. The first one, called unordered col-
lection, removes one of the expired data, whereas the second
one, called ordered collection, removes one of the data which
expired first. To avoid that an expired datum read by an
active transaction prevents the collector from removing all
successively expired data, the more reasonable choice is rep-
resented by unordered collection.

‘We propose an improved semantics for the full calculus with
temporary data and unordered collection, obtained by pre-
venting the collector to garbage expired data that have been
read by a currently active transaction, and we show that it
is serializable.

The paper is structured as follows: Section 2 discusses the
primitives for production, consumption, and test for pres-
ence; Section 3 considers also the test for absence operations;
Section 4 reports some concluding remarks. Due to space
limit the proofs of lemmas and theorems are not reported.

2. THE BASIC PRIMITIVES

In this section we introduce the basic calculus which com-
prises the write, read, and take coordination primitives plus

360

the operations start and commit for transactions. This cal-
culus is essentially an extension of the basic calculus re-
ported in [2] with the leasing mechanism of JavaSpaces: a
write operation specifies a time to live for the datum to be
produced; when this time expires the produced datum is no
more available neither for reading nor for consumption.

In the JavaSpaces specifications a typical read locking mech-
anism is considered: “When reed, an eniry is added to the
set of entries read by the provided transaction. Such an en-
try may be read in any other transaction to which the entry
is visible, but cannot be taken”.

This locking policy is necessary in order to ensure serializ-
ability of transactions as described by the following example.
Consider

(a) | create(z).read(a).take(b).commit(z) |
create(y).teke(a). write(b). commit(y)

representing a state of a shared dataspace system in which
there is a datum a available inside the repository, a first
transaction £ which reads datum a and consumes b, and a
second transaction y which removes a and then produces b.

If the above policy is not taken into account, the following
non-serializable computation may be executed: the datum
a is first read inside the transaction z, and then consumed
by the transaction y; after, the datum b is first produced in-
side transaction y and then consumed inside transaction z;
at this point both the transactions may commit. This com-
putation is clearly non-serializable because the two transac-
tions cannot be executed atomically one after the other.

In [2] it is proved that this locking mechanism is sufficient
to ensure the serializability of transactions using a calculus
with persistent data. Here, we prove that serializability is
ensured even in the new calculus with leased data.

2.1 The basic calculus

Let Narne be a set of data ranged over by a, &, ..., Const
be a set of program constants ranged over by K, A’ ...,
and Tzn a set of transaction names ranged over by z, y,
.... We use capital letters X, Y, ..., to range over p(7zn)
(ie. the power-set of Tzn); we represent sets and multisets
with the classical bracket notation, sometimes omitting the
brackets, ie. {z} is represented also with z.

In order to model temporary data we need to represent the
passing of time. To be as general as possible, we do not fix
any specific model of time. We only assume what follows:
Time, ranged over by £, t', ..., is a set of time instants;
Inter, ranged over by At, At’, ..., is a set of time intervals;
< is a total order on Time such that ¢ < ¢’ means that the
time instant £ follows the instant t; + : Time x Inter —
Time is an addition operation such that ¢ + At is the time
instant in which a time interval At, starting at time instant
t, will finish. We make the minimal reasonable assumption
that, for any time instant £ and time interval At, ¢t < t+ At;
this means that the time instant in which a time interval
finishes follows the instant in which it starts.

Let Proc ranged over by P, @, ... be the set of the possible
processes defined by the following grammar:

P == (a)x | C | z{P} | z:C{P} | P|P
C = 0| mC | CC|K

where:
g o= write(a,At) | read(a) | take(a) |

create(z) | commit(z)

Processes are the parallel composition of available data, pro-
grams, and active transactions. Available data are modelled
by terms (a)%, where a denotes the datum, X the set of ac-
tive transaction from which the datum has been read (it is
usually omitted when empty) — this information is used to
implement the transaction policy described above —, and ¢
is the expiration time of the datum (it is sometimes omit-
ted when it is not important in the current context). Pro-
grams are represented by terms C containing the coordina-
tion primitives.

Active transactions are denoted in two possible ways: on
the one hand, £{P} models a transaction with name z and
involved programs and data described by the process P; on
the other hand, z : C{P} represents a transaction z con-
taining a program C which is interested in performing a co-
ordination operation requiring interaction with the environ-
ment outside the transaction. The second kind of notation is
necessary to permit the interaction between operations per-
formed inside a transactions and the environment external
to the transaction: for instance, we use z:take(a).P{Q} to
denote a transaction z, containing a program which requires
to consume a datum a outside the transaction.

To denote parallel composition we adopt the usual | oper-
ator; in the following we use []. P; to denote the parallel
composition of the indexed terms P;.

A program can be a terminated program 0 (term which is
usually omitted), a prefix form p.P guarded by a coordina-
tion primitive g, the parallel composition of subprograms
P|Q, or a program constant A. A prefix u can be one of
the primitives write(a, At), which introduces a new object
(a) inside the data repository with a time to live of At (we
sometimes use the simplified prefix write(a) when the time
to live of the datum has no importance), read(a), which tests
for the presence of an instance of object (a), and take(a),
which consumes an instance of object (a). We consider two
further operations: create(z) to start a new transaction,
and commit(z) for successful transaction termination. Con-
stants are used to permit the definition of programs with
infinite behaviours. We assume that each constant K is
equipped with exactly one definition K = C; as usual we
assume also that only guarded recursion is used [6].

We use a structural congruence relation on processes to de-
note terms with a different syntax but representing the same
processes; this is denoted by = and it is defined as the small-
est congruence satisfying the following axioms

(i) Plo=P (il) P|Q=Q|P
(iif) P|(Q|R) = (P|Q)|R (wv) C=K fK=C
(v) sz{C|P}==z:C{P}

comprising the standard axioms for parallel composition (i)—
(32), the standard axiom for program constants (iv), plus
an axiom used to permit to a program inside a transaction

361

to move in a position which allows it to perform a coordi-
nation operation requiring interaction with the environment
outside the transaction.

In order to model the passing of time in the system, we in-
troduce configurations: let Conf = {[P,t] | P € Proc,t €
Time} be the set of the possible configurations, described
by a process P (which denotes the active programs, transac-
tions, and data available in the system) and a time instant
t (which indicates the current time in the system).

A transaction is started by a create operation and it is pos-
sibly terminated by a commitment aperation, performed by
all the involved processes. When performed within a trans-
action, a read operation may test for presence either a da-
tum produced under that transaction or a datum in the
external environment. As discussed above, when a datum
is read within a transaction it cannot be consumed by pro-
cesses outside that transaction. A take operation behaves
in a similar way, and the selected datum is withdrawn from
the dataspace. A datum written within a transaction will
not be visible to processes outside the transaction until the
transaction commits; before commitment, this datum can
be consumed by a process inside the transaction; in that
case, the datum will never become externally visible.

The semantics of the language is described by a labelled
transition system (Conf, Label, —) where Label = {X:
X, X:q,X:— | X € p(Tzn),|X| < 1} (ranged over
by a, B, ...) is the set of the possible labels; with abuse of
notation we use a to denote also part of a label as in X :a.
With z: o we denote {z}:a and with a we represent 0: a.
The label X : 7 denotes a standard computation step, while
X :p> and X : Q the beginning and the end of a transaction,
respectively. The last label X:— indicates a step during
which no explicit coordination operations are executed, but
due to the passing of time data expire and they are removed
from the configuration. The labelled transition relation —
is the smallest one satisfying the axioms and rules in Table 1.

In axiom (7) and rules (8) and (11) we use an auxiliary
function P \ t to remove the data inside P which expired
before the time ¢. The function is inductively defined as
follows:

(a)y ift<t
0 otherwise
PI)\Nt=(P\D)(Q\t) C\t=C
(z{PH\t=2z{P\ 1} (z: C{PH\t=1z:C{P\t}
Observe also that rule (10) makes use of the function Data(Q)
(used to denote the set of data available in the configuration
@) inductively defined as follows:
Data((a)%) = {a} Data(P|Q) = Data(P)U Data(Q)
Data(C) = Data(z{P}) = Data(z:C{P}) =10

(a)y \t=

Axiom (1) indicates that (a)a" can be consumed by a process
performing a toke(a) operation; the subscript set of trans-
action names should be empty because the datum should
not be previously read within active transactions. The side
condition imposes two constraints: (i) the first one is that

Table 1: Operational semantics for the basic calculus (symmetric rules omitted).

(1) [take(a).P|(a)g, t] = [P, ']

(2) [read(u).P](a)j; i [P|(a)3;, t']
@) [write(a, At).P, 1] I [(a) +AY| P, ¢')
(4) [create(z).P,t] X3 (y{P[y/z]}, ']

(6) [z:take(a).-P{Q}|(a)s,t] =5 [z: P{Q},t"]
(6) [z:read(a).P{Q}(a)%,t] =5 [mP{Q}l(a)‘;U{,}, t']

t<tand t' <t
t<t and t' <t,

t<t

y fresh and ¢ < ¢’
YC{z}andt <t and t' < t,
t<t'and t' < t,

(1) [={IT; commit(z).Pi| [T;(a;)5 Y TTx(n) %, , 1 =3

[(IT; Pl l'I,-(aj)"'i Hh(bh)tl';h\,,) \t/,t']
®) [a)i.t]—[0,t]
(P, X3 1P, ¢)

9
@) [P1Q, 81 Z3 (P')(Q\ ¢'), ']
(10) [P,t] : [P, t']
[z{P}, t] 5 [z{P'},¥']
(1) [P 1] > [P, ¥
[z{P},t] = [z{P'}, t)
(12) [P, :] =9 P, t')
PlQ,] Z3 [P'I(Q\ ¢),¥]
13) Q=P [P, t] [P ,V'] PP=Q

Q.1 = [, ¢]

t<
t<t' and t' £ t,

a=T1,D,—
a=r71
Data(Q) =0

the current time, in the reached configuration, should not
preceed the current time of the initial configuration; this
constraint, which reflects the passing of time, is used also in
all the other axioms; (ii) the second one, on the other hand,
ensures that the read datum is not yet expired.

Axiiom (2) models the read operation (in this case the sub-
script set of transaction names does not play any role).
Axiom (3) indicates that the effect of the execution of a
write(a, At) operation is the production of (ﬂ-);’+At where
we impose that the subscript set of transaction names is ini-
tially empty, and the expiration time of the new datum is
obtained by adding the time to live to the current time ¢’ of
the configuration in which the new datum is introduced.

Each active transaction is identified by a unique name; we
model this naming mechanism by associating to each trans-
action a fresh name (ie. a new name which has not been
previously used in the agent). For the sake of simplicity, we
do not formally model any mechanism to ensure the global
freshness of names, however, standard mechanisms can be
exploited which allow for the propagation of locally-fresh
names. When a new transaction is started by a program
create(z).P, a fresh name y is used to identify uniquely the
new transaction; this name must be substituted for z inside
P. This is described in axiom (4) where P[y/z] denotes the
substitution of z with y inside P.

Axioms (5) and (6) describe take and read operations, per-
formed by processes inside a transaction, on data in the
external environment; in the case of consumption, the re-
moved datum should not be previously read within other

362

active transactions (this is ensured by the side condition
Y C {z}); in the case of read, the name of the transaction
should be added to the subscript set of transaction names
associated with the read datum.

Axiom (7) describes transaction commitment: the processes
inside the transaction must agree on the commitment op-
eration, the data produced inside the transaction become
available to the external environment, and the name of the
committed transaction should be removed from the sub-
script set of transaction names associated to the data in
the external environment. Observe also that in the reached
configuration, the data which expire between the time t in
the initial configuration and the time ¢’ of the reached con-
figuration are removed by exploiting the auxiliary function
P\ t described above. Axiom (8) allows for the withdrawal
of expired data which are no more available neither for read-
ing nor for consumption (see the side consitions of axioms

(1), (2), (5), and (6))-

Rule (9) is the usual local rule, where the auxiliary function
P\t is used to ensure that all the expired data are removed.
Rule (10) is the application of the local rule to transactions:
observe that the transaction name is added to the label in
order to denote the tramsaction under which the action is
taken. In the case of steps related to data expiration only
(ie. those labeled with —), we do not add the tramsaction
name to the label, because during these kind of steps no op-
erations are executed from within any transaction (see rule
(11)). Rule (12) indicates that a transaction commitment
performed by the configuration P can be performed also in
P|Q provided that @ does not contain data; this side condi-

tion is necessary in order to ensure that all the data in the
environment are taken into account by the axiom (7) which
introduces the transaction commitment action. Finally, rule
(13) is the standard rule for structural congruence.

2.2 Serializability

Serializability is a generally accepted criterion for correct-
ness of the execution of transactions. Given the interleaving
execution of a set of transactions, it is serializable if the same
result can be reached by a serialized execution of the trans-
action. An execution is serialized if all the actions taken
inside the same transaction are executed sequentially, one
after the other, without interleaving with actions outside
the transaction:

In the following we need the following notation: tzn(XT) =
tzn(X:<) = tzn(X>) = tzn(X't) = X to denote the transac-
tion names occurring in a transition label and actzn(P) =
{z | 3C,Qs.t. z{Q} or z: C{Q} is a subterm of P} to
denote the set of the transactions active in a configura-
tion. Given the sequence of labels 0 =) ... a,, we denote
with [P, t] == [P’, t'] the sequence of transitions [P,] —
[P, 1] =2 ... =% [Pn,t.] and with o~ we represent the
sequence obtained from o by removing all the labels —.

DEFINITION 2.1. A transition sequence [P,] - [P, 1],
with actzn(P) = actzn(P') =0 and 0~ = a1, is seri-
alized iff o; = 7: @, with a # <, implies o1 = z: 8, for
eachi=1,...,n—1. A trensition sequence P — P’ is
serializable if there ezists o’ such that o'~ is a permutation

o~ and [P, 1] = [P',t'] is a serialized transition sequence.

The following lemma proves that each transition performed
inside a transaction can be delayed and executed after a
subsequent transition, provided that the latter is performed
outside the transaction.

LEMMA 2.2. If [P, #] =2+ [P", ¢] L5 [P, ¥'] with o = z:
o where @' # <, and tzn(a) # tzn(B) then there ezists a
sequence of labels o 5. t. 0~ = (fa)” and [P, 1] = [P’,t].

We are now ready to present the theorem which reports the
serializability result for the calculus with the basic coordi-
nation operations only.

THEOREM 2.3. Let [P, t) be a configuration and [P, t] =%
[P',t'] be a transition sequence such that actzn(P) = 0.

e If actzn(P’) = 0 then there exists o3 such that oy is a
permutation of oy and [P,t] =2 [P’ t'] is serialized.

e If actzn(P') = {z} then there ezist o2 and o3 s.t. for
each a € o; we have that tzn(a) = {z}, (0203)” is a
permutation of o, and [P,t] =2 [P",t"] 25 [P, t']
where actzn(P”) = 0.

363

3. ADDING TEST FOR ABSENCE

In this section we extend the previous calculus with two fur-
ther coordination primitives readd and take3 which are vari-
ants of the read and take operations which additionally em-
bed the possibility to test for the absence of matching data,
respectively. These operations behave like the correspond-
ing read and teke only in the case the required datum is
available for reading or consumption; otherwise, they termi-
nate by indicating the absence of the required datum. These
two coordination primitives correspond to the readIfEzists
and takelfETists operations of JavaSpaces.

The two operations are guards for programs with two possi-
ble continuations: read3(a)?P_ Q and take3(a)?P_Q, where
P is the continuation chosen in the case the operation suc-
ceeds, while @ is chosen if the required datum is not avail-
able.

We start by discussing some problems related to serializabil-
ity which typically occur when test for absence operations
are taken into account. Consider

(a) | create(z).take(a).take(b).commit(z) |
read3(a)?0_ write(b)

representing a state in which a datum is required to be con-
sumed within a transaction and tested for absence outside
that transaction, Consider now the following computation:
{a) is consumed from within the transaction; subsequently,
the test for absence outside the transaction is performed; the
datum (b) is first produced and then consumed inside the
transaction; finally, the transaction commits. This compu-
tation is clearly non-serializable because the unique way to
perform the test for absence and the output operation out-
side the transaction is to execute them after the fake(a) but
before the take(b) operations inside the transaction. This
kind of problem is solved in JavaSpaces by avoiding the in-
stantaneous consumption of data taken within a transac-
tion: these data are simply locked and they are removed
only when the transaction commits. Locked data can be
neither read nor consumed, and disallow the execution of
operations testing the absence of data of that kind.

We now discuss a further problem concerning serializability
in presence of test for absence operations — which is not
addressed in the JavaSpaces specifications — that has been
pointed out in [2]. Consider the two concurrent programs

create(z).take3(a)?0_ (take(b).commit(z)) |
write(a). write(b)

and their following computation: the transaction starts; the
take3(a) operation tests the absence of (a) and activates the
continuation take(b).commit(z); subsequently the two out-
put operations outside the transaction are executed; finally,
the input operation inside the transaction occurs and the
transaction commits.

This computation is clearly non-serializable as the unique
way for the transaction to commit is that the two write
operations outside the transaction are executed exactly be-
tween the test for absence and the input operation inside
the transaction. To solve this problem, in [2] the following

Table 2: Modified axioms and rules (symmetric rules omitted).

(1) [take(a).P|(a)g,t] — [P, t]

(2) [read(a).P|(a)3,t] - [P|(a)%, ']

(3) [write(a, AE).P, t] 5 [(a)] T2 P, ¥)

(4) [create(z).P, t] X3 [y{P[y/z]}8, ¥']
wﬂlﬂmmmﬂ

(5") [z:take(a).P{Q}‘}.l(a),

(6') [z:read(a).P{Q}(a)},t] =

(™) [={[1; commit(z).P;|I];(a;)"
[TT; PiIT1;¢a3)% | TTa(bn) %, \ oo t']

(8) [(a)g.t1 =10, ¢]

(P,) X3 [P, ¥]

9’

) PlQ, 11 X3 [P'|Q,t]

1) [P.t] = [P, ¢]
[z{P}4, 8] 23 [z {P'}%, t']

ar [P,6) = [P, ']
[::{P}n,t] — [a:{P'}'.}.,t’]

ayy — BA=HPLE]

[P1Q,t] =3 [P'|Q, ¢

t<t!
t<t
t<t
y fresh and £ < &'
YC{z}and i<t

=0 [PLQM(@ ey ¥ ESE
£ TTn o)

z:@;a;d
1] s

t<t
t<t'and t' £ ta

a=T1,D,—
a=r7T1
Data(Q) =0

further locking mechanism is proposed: after o test for ab-
sence is performed inside a transaction on a certain kind of
data, no data of that kind can be introduced in the shared
dataspace before the end of the transaction.

This new constraint forbids the execution of the write(a)
operation in the computation described above, thus solv-
ing the serializability problem. However, here we point out
that the new locking mechanism is not sufficient when we
consider leased data. Consider the following

(a)* | create(z).read(a)-take(b).commit(z) |
read3(a)?0. write(b)

representing a slight variation of the first example of this sec-
tion, where a leased datum (a)* is considered. Consider now
the following computation: the datum (a)’ is read inside
the transaction; subsequently it expires and it is removed;
then the operation reed3(a) operation outside the transac-
tion fails thus activating the write(b) continuation; after, the
datum (b) is first produced from outside the transaction and
then consumed inside the transaction; finally, the transac-
tion commits. This computation is clearly non-serializable
because the unique way for the transaction to commit is to
perform the test for absence and the output operation out-
side the transaction interleaved with the read(a) and the
take(b) operations inside the transaction.

A passible solution to this kind of problem could be to add
the following locking mechanism: When read, a datum is
added to the set of data read by the provided transaction. If
such a datum ezpires before the end of the transaction, no
test for absence on that kind of data could be executed before
the end of the provided transaction.

364

Observe that this new locking mechanism blocks the exe-
cution of the read3(a) operation, thus disallowing the un-
desired computation described above. A drawback of this
locking policy is that, when a datum read inside an ac-
tive transaction expires, it is not possible to forget definitely
about that datum because it is necessary to record the kind
of data on which no test for absence operation could be ex-
ecuted. This contrasts with one of the main aims of the
leasing mechanism, ie., to free the resources allocated to ex-
pired data.

Moreover, other problems concerning serializability occur
due to the fact that the leasing mechanism introduces a tem-
poral dependency between the withdrawal of two data which
have two subsequent expiration times. Indeed, consider the
system

(a)* | (b)" | create(z).read(e).read(c).commit(z) |
read3(5)70_ write(c)

with (a)? which expires before (b)" (ie. # £ t). Con-
sider the following computation: the transaction starts and
the read(a) operation is executed; then (e)! and (b)! ex-
pire in the expected order; the read3(b) operation fails thus
activating the continuation write(c); the datum (c) is first
produced, then tested for presence inside the transaction; fi-
nally, the transaction commits. This computation is clearly
non-serializable because the unique way for the transaction
to commit is to execute the two read operations inside the
transaction interleaved with the test for absence and the
write operations outside that transaction.

In order to solve this further problem of serializability, we
could introduce a locking mechanism which is a stronger ver-

sion of the previous one: When read, e datum is added to the
set of data read by the provided transaction. If such a datum
ezpires before the end of the transaction, all the data which
ezpire subsequently are recorded. No test for absence on the
kind of data which have been recorded could be subseguently
ezecuted, before the end of the provided transaction.

It is worth noting that this locking mechanism is very restric-
tive, because a read primitive performed on a specific kind of
data, executed from within a transaction, could lock a huge
amount of test for absence operations, even if performed
on a different kind of data. Instead of formalizing this sec-
ond stronger version of the locking mechanism, we propose
a different approach for the modeling of temporary data
alternative to leasing. This alternative approach has two
main advantages: on the one hand, the first lighter version
of the locking mechamnism is sufficient; on the other hand, it
takes advantage from the fact that the locking mechanism
requires to remember the expired data read inside active
transactions, by leaving these data in the repository.

The alternative approach has been introduced in [1] under
the name of temporary data with unordered collection and
it is based on a slightly different interpretation of the time
to live At used in the write(a, At) operation: it does not in-
dicate a time after which the datum rmust be removed (as in
the leasing approach of JavaSpaces), but it denotes a time
after which the datum could be removed if required, eg.,
in order to free resources. Under this alternative interpre-
tation, data could remain available even after expiration.
Moreover, it is not necessary to remove the data following
their order of expiration, but a datum could be selected for
withdrawal even if expired after another one which is still
available. An advantage of this approach is that, when new
resources are needed, it is possible to select for withdrawal
exactly the datum which, among all the expired ones, better
fits the actual requirements.

3.1 The full calculus

The syntax of the calculus is extended as follows: the readd
and teked operations are introduced as guards for programs
with two possible continuations:

c == ... | ng?C.C
where:
1 u= read3(a) | taked(a)

Moreover, we have to add two kinds of information to active
transactions: the set of data tested for absence and those
removed during the transaction. This is achieved by using
the new terms:

P = ... | z{P}} | z:C{P}E2

where R, T € p(Name) are two sets of data representing
the kind of data removed and tested for absence inside the
transaction, respectively.

The new set of configurations is denoted by Confs; while the
new set of labels is denoted by Labels = Label U {X:—a, X:
@, X:Ad | X : p(Tzn),a € Name, A C Name}. The first

365

label is used to model test for absence operations on da-
tum a, the second label denotes the execution of a write(a)
operation, while the third label is the new label for transac-
tion commitment indicating also the multisets of data which
have been produced, but not consumed, during the transac-
tion and should be introduced in the shared repository after
transaction commitment.

The rule (v) of the structural congruence = should be mod-
ified according to the new syntax:

(v') z{C|P}; ==z:C{P}}

The operational semantics is defined by the labelled transi-
tion system (Confs, Labels, —) where the labelled transi-
tion relation — is the smallest one satisfying the axioms
and rules in Table 2 (which are the new versions for those
reported in Table 1), plus rule (13) of Table 1, and the new
axioms and rules for the test for absence operations reported
in Table 3.

The rules (20) and (22) use the two functions Rem(P) and
Tfa(P), denoting the set of data removed and those tested
for absence inside transactions active in the configuration
P, respectively. They are inductively defined as follows:

Rem(z{P}%) = Rem(z:C{P}2)=R
Rem(P|Q) = Rem(P) U Rem(Q)
Rem(C) = Data((a)x) =0
Tfa(z{P}}) = Tfa(z:C{P}}) =T
Tfa(P|Q) = Tfa(P)U Tfa(Q)
Tfa(C) = Tfa((a)k) =90

The new axiom (1') is different from the previous version
because the side condition ¢’ < t is removed: this reflects
the new interpretation of temporary data according to which
data could remain available even after expiration. This dif-
ference involves also axioms (27), (4’), (5’), and (6°).

Axiom (3') introduces the new label @ denoting the execu-
tion of a write(a) operation. Axioms (4') and (5') are the
adaptations of the corresponding rules to the new syntax;
in particular, (5') updates the set of data removed from the
environment by input operations inside the transaction. Ax-
iom (7') introduces the new label X:A 4 (the notation @; a;
denotes the multiset union of all the singletons {a;}). The
axiom (8') introduces the new policy for expired data col-
lection; observe that the subscript set of transactions should
be empty. This reflects the fact that under the new locking
mechanism a datum, even if expired, should be maintained
in the system until there exists no active transaction under
which the datum has been read. The rules (9')...(12') are
simple adaptation of the corresponding rules; the main dif-
ference can be found in (9’) and (12') where the auxiliary
function P\t is no more used because it is no more necessary
to remove all the expired data in the configuration.

Axioms (14) and (15) describe the successful execution of the
new takeJ(a) and read3(a) operations, respectively. These
new operations fail when no datum (a) is found in the envi-
ronment; this is modelled by the label —a introduced by the
axioms (16) and (17). Axioms (18) and (19) are adaptations

Table 3: The new axioms and rules (symmetric rules omitted).

(14) [taked(a)?P_Q|(a)g",t] - [P, t']

(15) ([read3(a)?P_Ql(a)3,t] - [Pl(a), ']

(16) [take3(a)?P_Q,t] =3 [Q,#]
(17) [read3(a)?P_Q,f] =51Q, t']

(18) [z:take3(a).P-Q{R}E|(a)ls,] Z5 [z: P{R}F{*}, ¢

t<t
i<
t<t
t<
YC{z}and t< ¥

(19) [z:read3(a).P-Q{R}}a)v,t] =5 [z: P{RYf ()3 () 8] S

[P, t] <30 [P, ¢]

2!
@) e.a S P,
[P, t] =5 [P, t']
21 —
(21) [#{P}Y}. 1 Z=F [z {P'} 0y ¥']
[P, t] 45 [P, ¢']

22

@2) [PIQ, e 255 [P'|Q, ']

(23) [P, 1] = [P, 2]
(PIQ.1] = [P'|Q,]

(24) [P,t] — [P, ']

[={P}§, 8] =5 [={P'}}. ?]

a € Data(Q) U Rem(Q)

Data(Q) =0 and AN Tfa(Q) =0

a ¢ Tfa(Q)

of (14) and (15) to the case in which the operations are ex-
ecuted inside a transaction; in (18) the set of data removed
inside the transaction is updated, while in (19) the subscript
set of transaction names associated to the read datum is ex-
tended with the name of the current transaction.

A transition labelled with —a, representing a test for absence
of a, can be performed only if the environment. does not con-
tain any (a) and also no {a) have been previously consumed
inside an active transaction (see rule (20)). Moreover, when
a test for absence is performed inside a transaction, the sub-
script set T of data tested for absence must be updated (see
rule (21)). According to rule (22) a transaction can commit
only if the data it introduces in the shared repository are not
currently tested for absence inside other active transactions;
moreover, the side condition Data(Q) = @ ensures that all
the data available in the environment when a transaction
commits are taken into account by the rule (7') (which intro-
duces transaction commitment). Rule (23) ensures that an
output operation of (a) is performed only if active transac-
tion exists which already tested for the absence of that kind
of datum. On the other hand, the output operation can be
performed if executed inside a transaction (rule (24)).

The lock policy that we propose ensures the serializability
of transaction; this is formally proved by the fact that the
Lemma 2.2 and the Theorem 2.3 hold also in the new cal-
culus extended with test for absence.

4. CONCLUSION

In this work we tackled a problem with the serializability
of transactions in shared dataspace languages with leased
data. We obtained a serializable semantics by moving to
a weaker data removal policy, consisting in leaving expired
data available for consumption or test for presence until they
are not effectively removed by the collector. To simplify the

366

locking mechanism, we chose the unordered collection policy,
permitting to freely choose the expired datum to remove,
provided that it has not been read by an active transaction.

A final remark concerns the event notification mechanism
of JavaSpaces: in [2] the interplay of transactions and event
notification is studied. The interplay among transactions,
temporary data and event notification will be investigated
in future work.

5. REFERENCES

[1] N. Busi, R. Gorrieri, and G. Zavattaro. Temporary
Data in Shared Dataspace Coordination Languages. In
Proc. of FOSSACS’01, volume 2030 of Lecture Notes in
Computer Science, pages 121-136. Springer-Verlag,
Berlin, 2001.

[2] N. Busi and G. Zavattaro. On the Serializability of
Transactions in JavaSpaces. In Proc. of ConCoord’01,
volume 54 of Electronic Notes in Theoretical Computer
Science. Elsevier Science, 2001.

[3] E. Freeman, S. Hupfer, and K. Arnold. JaveSpaces
Principles, Patterns, and Practice. Addison-Wesley,
1999.

[4] D. Gelernter. Generative Communication in Linda.
ACM Transactions on Programming Languages and
Systemns, 7(1):80-112, 1985.

[6] S. Microsystems. JavaSpaces Service Specification,
available at
http://java.sun.com/products/javaspaces, 1998.

[6] R. Milner. Commaunication and Concurrency.
Prentice-Hall, 1989.

[7] P. Wyckoff, S. McLaughry, T. Lehman, and D. Ford.
T spaces. IBM Syst. J., 37(3):454-474, 1998,

