
On the Serializability of Transactions in Shared
Dataspaces with Temporary Data

Nadia Busi
Dept. of Computer Science

Mura A. Zamboni, 7
Univ. of Bologna, Italy

busi@cs.unibo.it

Gianluigi Zavattaro
Dept. of Computer Science

Mum A. Zamboni, 7
Univ. of Bologna, Italy

zavattar @ cs.unibo, it

ABSTRACT
Several coord ina t ion p la t forms based on the shared da tas-
pace approach introduces , besides the typica l Linda-l ike co-
o rd ina t ion pr imi t ives (used to produce, consume, and tes t
for the p resence /absence of d a t a in a common reposi tory) ,
a t r ansac t ion mechanism prov ided to group coordina t ion
pr imi t ives which should be executed in such a way tha t ei-
ther all succeed or none of t h e m is performed. In this pape r
we cont inue the invest igat ion of the ser ia l izabi l i ty of t rans-
act ions in shared da ta space coord ina t ion languages tha t has
been in i t i a ted in [2]. The new cont r ibu t ion consists of the
analysis of the in te rp lay between t ransac t ions and t empo-
r a ry data , ie., d a t a wi th an associa ted exp i ra t ion time.

Keywords
Shared da taspace coordination~ t e m p o r a r y data , t r ansac t ion
serializabili ty.

1. INTRODUCTION
In the last years we assis ted to the development of mid-
dleware p la t forms for the coord ina t ion of dynamica l ly re-
configurable federat ions of devices and processes. In this
context , two relevant commercia l proposals are represented
by JavaSpaces [3] and TSpaces [7], p roduced by Sun Mi-
c rosys tem and IBM respectively. Bo th coord ina t ion middle-
wares are essent ial ly based on the genera t ive communica t ion
m e t a p h o r p roposed by L inda [4]: processes communica te
th rough product ion , consumpt ion and tes t for presence of
d a t a in a common d a t a reposi tory; besides the t r ad i t iona l
blocking p roduc t ion and tes t for presence operat ions , also
the corresponding nonblocking versions, which t e rmina t e by
signall ing the absence of ma tch ing da ta , are provided; after
i ts inser t ion in the da taspace , a d a t u m has an independen t
existence, unt i l i t is not w i thd rawn by a consumer.

An in teres t ing extension to the basic model , re levant for
d i s t r ibu ted appl icat ions and s u p p o r t e d by bo th the afore-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC 2002, Madrid, Spain
Copyright 2002 ACM 1-58113-445-2/02/03 ...$5.00.

ment ioned proposals , is a t r ansac t ion mechanism. A set of
coordina t ion opera t ions can be g rouped in a t ransact ion,
and executed in such a way t ha t e i ther all of t h e m succeed
or none of them is per formed.

Consis tency of the d a t a r epos i to ry in the 3avaSpaces spec-
ifications [5] is ensured by requi r ing t ransac t ions to sat isfy
the so called ACID (atomici ty , consistency, isolat ion and
durabi l i ty) proper t ies , t r ad i t i ona l l y s u p p o r t e d by da tabase
managemen t sys tems. In par t i cu la r , in this pape r we are
concerned with preserva t ion of the isolat ion proper ty , also
called serializnbili~y: "Ongoing t ransac t ions should not af-
fect each other. A n y observer should be able to see o ther
t ransac t ions execut ing in some sequent ia l order" .

To meet the isolat ion requ i rement for t ransact ions , in the
JavaSpaces specif icat ion the semant ics of coordina t ion op-
erat ions is affected as follows. A d a t u m produced within a
t r ansac t ion will become accessible from outs ide the t rans-
act ion only when the t r ansac t ion commits ; d a t a consump-
t ion or tes t for presence wi th in a t r ansac t ion can opera te
on i tems e mi t t e d e i ther wi th in the t r ansac t ion or in the
common da taspace . Moreover, a d a t u m tes ted for presence
wi thin a t r ansac t ion cannot be consumed by processes out-
side the t r ansac t ion unt i l the t r ansac t ion commits . Concern-
ing the tes t for absence opera t ions , if the only occurrences
of ma tch ing d a t a have been wi thd rawn by another t ransac-
tion, the opera t ion will wal t unt i l t h a t t r ansac t ion commi ts
before r epor t ing an opera t ion failure.

Recently, in [2], a formal inves t igat ion of the ser ial izabi l i ty
of t ransac t ions in a process calculus conta ining the coordina-
t ion pr imi t ives of JavaSpaces has been in i t ia ted. 1 As far as
only pr imi t ives for d a t a p roduc t ion , consumpt ion and tes t
for presence are concerned, the cons t ra in ts on the semant ics
imposed by the JavaSpaces specif icat ions [5] are sufficient to
guarantee the ser ia l izabi l i ty of t ransact ions . However, when
also the nonblocking versions of d a t a consumpt ion and tes t
for presence are considered, the cons t ra in ts imposed by the
specifications, a l though necessary, no longer suffice to ensure
serializahility. In [2] an improved, ser ial izable semantics, ob-
t a ined by adding fur ther cons t ra in ts on d a t a p roduc t ion and
on test for absence opera t ions , is proposed.

1To s impl i fy the t r e a tme n t , we forbid nes ted t ransac t ions
and we provide only successful t e rmina t i on (commit) of
t ransact ions .

359

Anothe r re levant ex tens ion to the basic model , p e r m i t t i n g
to avoid the accumula t i on of o u t d a t e d in fo rmat ion , is repre-
sen ted by t e m p o r a r y data. r a the r t h a n m a i n t a i n i n g a d a t u m
un t i l it has been explici t ly consumed, the l ifetime of the da-
t u m is decided by the producer . After this t ime has been
expired, the existence of the d a t u m is no longer granted.

In this pape r we ex t end the work i n i t i a t ed in [2], by in-
ves t iga t ing the ser ial izabi l i ty of t r ansac t i ons in presence of
t e m p o r a r y data . We s t a r t our analysis of t e m p o r a r y da t a
consider ing the s t r ic t removal policy for expired d a t a (called
leasing) of JavaSpaces: as soon as the l ifet ime of a d a t u m
expires, the d a t u m can no longer be used and it is r emoved
f rom the dataspace.

We show t h a t the i n t r o d u c t i o n of leased d a t a in the basic
calculus - w i th only d a t a p roduc t ion , c o n s u m p t i o n a nd tes t
for presence - does no t affect serializabili ty. W h e n moving
to the full calculus con ta ing also nonb lock ing predicates , we
provide some examples , showing t h a t the cons t ra in t s in [5,
2] no longer ensure ser ial izabi l i ty w h e n leased d a t a are t a k e n
in to account . Indeed , to gua ran tee the ser ial izabi l i ty of the
full calculus, it is necessary to delay the effective removal
of an expi red d a t u m un t i l all t r a ~ a c t i o n s which t es ted tha t
d a t u m for presence commi t , a n d all p revious ly expired d a t a
have been removed. Besides weakening the benef i ts of t em-
pora ry d a t a to p reven t the a c c u m u l a t i o n of o u t d a t e d infor-
ma t ion , this so lu t ion for leased d a t a also presents the draw-
back of po ten t i a l ly b locking the execut ion of the predicates
in te res ted in d a t a expi red b u t n o t effectively removed. For
these mot iva t ions , it seems more reasonable to weaken the
d a t a removal policy adop ted by JavaSpaces in the following
way: after the l ifet ime of a d a t u m has been expired, the exis-
t ence of the d a t u m is no longer granted; however, an expired
d a t u m rema ins available for c o n s u m p t i o n (or tes t for pres-
ence) un t i l i t is no t effectively r emoved f rom the da taspace
by an exp i red -da ta collector.

I n [1], this i n t e r p r e t a t i o n of t e m p o r a r y d a t a a l t e rna t ive to
leasing has been inves t iga ted u n d e r two different im p l e me n-
t a t i ons of the collector. T h e first one, called ~nordered col-
lection, removes one of the expired data , whereas the second
one, called ordered collection, removes one of the d a t a which
expired first. To avoid t h a t an expired d a t u m read by an
act ive t r a n s a c t i o n p reven ts the collector from removing all
successively expired data , the more reasonable choice is rep-
resen ted by uno rde red collection.

We propose an improved semant ics for the full calculus wi th
t e m p o r a r y d a t a emd uno rde red collection, o b t a i n e d by pre-
ven t ing the collector to garbage expi red d a t a t h a t have been
read by a cu r r en t ly act ive t r ansac t ion , a n d we show t h a t i t
is serializable.

T h e pape r is s t r u c t u r e d as follows: Sect ion 2 discusses the
pr imi t ives for p roduc t ion , c o n s u m p t i o n , and tes t for pres-
ence; Sect ion 3 considers also the test for absence operat ions;
Sect ion 4 repor ts some conc lud ing remarks . Due to space
l imi t the proofs of l e m m a s and theo rems are no t repor ted .

2. T H E B A S I C P R I M I T I V E S
I n this sect ion we in t roduce t he basic calculus which com-
prises the wr/te, read, a n d take coo rd ina t ion pr imi t ives p lus

the opera t ions star~ a n d commi t for t r ansac t ions . Th i s cal-
culus is essent ial ly an ex tens ion of the basic calculus re-
po r t ed in [2] wi th the leasing m e c h a n i s m of JavaSpaces: a
~r / te opera t ion specifies a t ime to live for the d a t u m to be
produced; w h e n this t i m e expires the p roduced d a t u m is no
more available ne i the r for r ead ing nor for consumpt ion .

In the JavaSpaces specif icat ions a typica l read locking mech-
an i sm is considered: "When read, an ent ry is added to the
set of e~tr/es re~d b~] the provided transaction. S~ch an en-
try may be read in any other transact ion ~o ~hich the ent ry
is visible, but cannot be taken".

This locking pol icy is necessary in order to ensure serializ-
abi l i ty of t r a n s a c t i o n s as descr ibed by the following example.
Consider

Ca) t create(~).readCa).t~ke(b).eommit(~) t
create C y). ~ake C a). ~ t e (b), co mmi~ C y)

r ep resen t ing a s t a te of a shared da taspace sys tem in which
there is a d a t u m a avai lable ins ide the reposi tory, a first
t r a n s a c t i o n z which reads d a t u m a a nd consumes b, a n d a
second t r a n s a c t i o n y which removes a a n d t h e n produces b.

If the above policy is no t t a ke n in to account , the following
non-ser ia l izable c o m p u t a t i o n m a y be executed: the d a t u m
a is first read inside the t r a n s a c t i o n z, a nd t h e n c o n s u m e d
by the t r a n s a c t i o n y; after, the d a t u m b is first p roduced in-
side t r a n s a c t i o n y a n d t h e n c o n s u m e d inside t r a n s a c t i o n z;
at this po in t b o t h the t r a n s a c t i o n s m a y commi t . This com-
p u t a t i o n is clearly non-ser ia l izab le because the two t r ansac -
t ions c a n n o t be execu ted a tomica l ly one a~ter the other.

In [2] it is p roved t h a t th is locking m e c h a n i s m is sufficient
to ensure the ser ia l izabi l i ty of t r a n s a c t i o n s us ing a calculus
wi th pers i s ten t da ta . Here, we prove t h a t ser ial izabi l i ty is
ensured even in the new calculus w i t h leased data .

2 . 1 T h e b a s i c c a l c u l u s
Let N ~ m e be a set of d a t a r a n g e d over by a, b, . . . , Uons~
be a set of p r o g r a m c ons t a n t s r a n g e d over by K , /t", . . . ,
a nd Tz n a set of t r a n s a c t i o n n a m e s r a n g e d over by z, y,
. . . . We use cap i ta l le t ters X , Y, . . . ~ to range over p (T x n)
(ie. the power-set of T ~) ; we represen t sets and mul t i se t s
wi th the classical bracket n o t a t i o n , somet imes o m i t t i n g the
brackets , ie. {z} is r ep resen ted also w i th z.

In order to model t e m p o r a r y d a t a we need to represen t the
pass ing of t ime. To be as genera l as possible, we do no t fix
any specific mode l of t ime . We only assume w h a t follows:
Time, r anged over by t, t ~, . . . , is a set of t ime ins tan t s ;
Inter, r anged over by A t , A t ' , . . . , is a set of t ime intervals;
< is a to ta l order on T i m e such t h a t t < t ~ m e a n s t h a t the
t ime i n s t a n t t ' follows the i n s t a n t ~; + : T i m e x In ter --+
T i m e is an add i t ion ope ra t i on such tha t t + A t is t he t ime
i n s t a n t in which a t i m e in te rva l A~, s t a r t i n g a t t ime i n s t a n t
t , will finish. We make t he m i n i m a l r easonab le a s s u m p t i o n
tha t , for a ny t ime i n s t a n t t a n d t ime in terva l At , t < t-A-~t;
this me a ns t h a t the t ime i n s t a n t in which a t ime in terva l
finishes follows the i n s t a n t in which it s tar ts .

Let Proe r anged over by P , Q, . . . be the set of the possible
processes def ined by t he following grammax:

3 6 0

P : := (a)x I G I ziP} [z : G I P } I PI P
c ::= o I g . c I t i c I K

where:

::= ~,,rite(a,/',t) I read(a) I take(a) I
cre,rte(z) I commit(z)

Processes are the parallel composit ion of available data, pro-
grams, and active transactions. Available data are modelled
by terms (a)~ , where a denotes the da tum, X the set of ac-
tive t ransact ion from which the d a t u m has been read (it is
usually omit ted when empty) - this information is used to
implement the t ransact ion policy described above - , and t
is the expirat ion t ime of the da tum (it is sometimes omit-
ted when it is not impor tan t in the current context). Pro-
grams are represented by terms G containing the coordina-
t ion primitives.

Active t ransact ions are denoted in two possible ways: on
the one hand, z{P} models a t ransact ion with name z and
involved programs and da ta described by the process P ; on
the other hand, z : C{P} represents a t ransaction z con-
ta ining a program O which is interested in performing a co-
ordinat ion operat ion requiring interact ion with the environ-
men t outside the transaction. The second kind of no ta t ion is
necessary to permit the interact ion between operations per-
formed inside a transactions and the envi ronment external
to the transaction: for instance, we use z:take(a).P{Q) to
denote a t ransact ion z, containing a program which requires
to consume a da tum a outside the transact ion.

To denote parallel composit ion we adopt the usual [oper-
ator; in the following we use I'L Pi to denote the parallel
composit ion of the indexed terms Pi.

A program can be a te rminated program 0 (term which is
usually omitted), a prefix form p.P guarded by a coordina-
t ion primitive /J, the parallel composit ion of subprograms
P[Q, or a program constant K. A prefix # can be one of
the primitives write(a, A 0 , which introduces a new object
(a) inside the data repository with a t ime to live of A t (we
sometimes use the simplified prefix write(a) when the t ime
to live of the da tum has no importance) , read(a), which tests
for the presence of an instance of object (a), and take(a),
which consumes an instance of object (a). We consider two
further operations: create(z) to s tar t a new transact ion,
and commit(z) for successful t ransact ion terminat ion. Con-
s tants are used to permit the definition of programs with
infinite behaviours. We assume tha t each constant K is
equipped with exactly one definition K ---- G; as usual we
assume also tha t only guarded recursion is used [6].

We use a s t ructural congruence relat ion on processes to de-
note terms with a different syntax bu t representing the same
processes; this is denoted by -- and it is defined as the small-
est congruence satisfying the following axioms

(i) P [O - - P (ii) P[Q=_ Q[P

(iii) PI(Q[R)-(P]Q)]R (iv) G--K i f K = C

(,) ~{ctP}- z : c { P)

comprising the s tandard axioms for parallel composit ion (i) -
(iii), the s t andard axiom for program constants (iv), plus
an axiom used to permit to a program inside a t ransact ion

to move in a posit ion which allows it to perform a coordi-
na t ion operat ion requir ing in teract ion with the environment
outside the t ransact ion.

In order to model the passing of t ime in the system, we in-
t roduce configurations: let Gonf = {[P, t] [P 6 Proc, t E
Time) be the set of the possible configurations, described
by a process P (which denotes the active programs, transac-
tions, and da ta available in the system) and a t ime ins tant
t (which indicates the current t ime in the system).

A t ransact ion is s tar ted by a create operat ion and it is pos-
sibly t e rmina ted by a commi tmen t operation, performed by
all the involved processes. W h e n performed within a t rans-
action, a read operat ion may test for presence either a da-
t u m produced under tha t t ransact ion or a da tum in the
external environment . As discussed above, when a da tum
is read wi thin a t ransact ion it cannot be consumed by pro-
cesses outside that t ransact ion. A take operation behaves
in a similar way, and the selected d a t u m is withdrawn from
the dataspace. A da t um wri t ten within a t ransact ion will
not be visible to processes outside the t ransact ion unti l the
t ransact ion commits; before commitment , this da tum can
be consumed by a process inside the transact ion; in that
case, the da t um will never become externally visible.

The semantics of the language is described by a labelled
t ransi t ion system (Con], Label, ~) where Label = {X:
r, X: I>, X: ,3, X: - I X • p (T r n) , [X I _< 1) (ranged over
by a, fl, . . .) is the set of the possible labels; with abuse of
nota t ion we use a to denote also par t of a label as in X : a.
Wi th z : a we denote {z) : a and with a we represent $: a.
The label X : r denotes a s t andard computa t ion step, while
X : I> and X : <~ the beginning and the end of a transaction,
respectively. The last label X : - indicates a step during
which no explicit coordinat ion operations are executed, but
due to the passing of t ime da ta expire and they are removed
from the configuration. The labelled t rans i t ion relation
is the smallest one satisfying the axioms and rules in Table 1.

In axiom (7) and rules (8) and (11) we use an auxiliary
function P \ f to remove the da ta inside P which expired
before the t ime t. The funct ion is induct ively defined as
follows:

(a)~ \ t = ~ (a)~c i f t _ < t '

t 0 otherwise

(PIQ) \ t = (p \ t)l(Q \ t) C \ t = C

(~{v}) \ t = ={P \ ~} (z: cIP})\ t = ..: c{P \ t}

Observe also tha t rule (10) makes use of the function Data(Q)
(used to denote the set of da ta available in the configuration
Q) induct ively defined as follows:

Data((a)tx) = {a} Data(P[Q) = Data(P) U Data(Q)

Data(G) = Data(z{P}) = Data(z: C{P}) = 0

Axiom (1) indicates tha t (a)~" can be consumed by a process
performing a take(a) operation; the subscript set of trans-
action names should be empty because the da tum should
not be previously read wi thin active transactions. The side
condit ion imposes two constraints: (i) the first one is tha t

361

T a b l e 1: O p e r a t i o n a l s e m a n t i c s f o r t h e b a s i c c a l c u l u s (s y m m e t r i c r u l e s o m i t t e d) .

O) [t,~ke(a).VlCa)~', t] ~, [v, t']
(2) [~adCa).Pl(a)t~, tl ~ [Vl(a)~, t'l
Ca) [~,~t~(~, At) .p, t] --~ [(a)~'+AqP, t']
(4) [create(z) .P , t] ~ {~{P[~/zl}, t ']

(5) [z:tak~(a).P{Q}l(a)t~,tl-~--%[z:P{Q},t'l
(6) [z: readCa).PTQ}l(a)~, t] ~ [z : P { Q } l (a) ~ u { ,) , t ']

(T) [z{l-[i commit(z),Pil l-Ij (aj)tJ }[H t L (b h) ~ , h , t] - ~
th [(I=[, Pil H i (a i) t i t l-lh(bh)rh\®) \ t', t']

(s) [(a)~, t] ~ [o, t']
[P, t] x:~ [p,, t'l

(9)
[PIQ, t] x=~ [P'I(Q \ t')) t' 1

[P, t] --~ [P', t'l (10)
[zIP},t] ~ [z { P ' } , t ' l

[P, t] --:-+ [P ' , t ' l
Cll)

[z iP), t] ~ [z f P ') , t t]
[P, t] ~-~ [P ' , tt]

Cz2)
[P i Q , t l ~ [P ' I (Q \ t'),t']
Q = P [P, t l - - % [P ' , t '] P ' = Q ' (13)

[Q,tl o,)[Q',t']

t < t t and t I < t~

t < _ t t and t I <_ t~

t < t I

y fresh and t < t '

r C__ {z} and t < t ' and t ' <_ t~

t_< t I and t ' <_t~

t < t '

t < t I and t ' ~ t~

Ot ~ T

Data(Q) = 0

t h e c u r r e n t t ime , in t h e r e a c h e d conf igu ra t ion , s h o u l d no t
p r eceed t h e c u r r e n t t i m e of t h e in i t i a l conf igu ra t ion ; th is
cons t r a in t) wh ich ref lec ts t h e pa s s ing of t i m e , is u sed also in
all t h e o t h e r ax ioms; (ii) t h e s econd one, on t h e o t h e r h a n d ,
ensures t h a t t h e r e a d d a t u m is n o t ye t exp i r ed .

A x i o m (2) m o d e l s the r e a d o p e r a t i o n (in th i s case t h e sub -
s c r i p t se t of t r a n s a c t i o n n a m e s does n o t p l a y any role) .
A x i o m (3) i nd i ca t e s t h a t t h e effect of t h e e x e c u t i o n of a

/~tt-I-At
uJr/ te(a, A t) o p e r a t i o n is t h e p r o d u c t i o n of ~ . /¢ w h e r e
we i m p o s e t h a t t h e s u b s c r i p t se t of t r a n s a c t i o n n a m e s is ini-
t i a l l y e m p t y , a n d t h e e x p i r a t i o n t i m e of t h e new d a t u m is
o b t a i n e d b y a d d i n g t h e t i m e to l ive to t h e c u r r e n t t ime t ' of
t h e con f igu ra t ion in which t h e new d a t u m is i n t r o d u c e d .

E a c h ac t ive t r a n s a c t i o n is i den t i f i ed b y a u n i q u e name ; we
m o d e l th i s n a m i n g m e c h a n i s m b y a s soc i a t i ng to each t r a n s -
a c t i on a fresh n a m e (ie. a new n a m e which has no t been
p r e v i o u s l y u sed in t h e agen t) . Fo r t h e sake of s impl ic i ty , we
do n o t f o r m a l l y m o d e l any m e c h a n i s m to ensu re t h e g loba l
f reshness of names , however , s t a n d a r d m e c h a n i s m s can b e
e x p l o i t e d w h i c h al low for t h e p r o p a g a t i o n of loca l ly - f resh
names . W h e n a new t r a n s a c t i o n is s t a r t e d b y a p r o g r a m
create(z).P, a f resh n a m e y is u sed t o i den t i fy u n i q u e l y t h e
new t r a n s a c t i o n ; t h i s n a m e m u s t b e s u b s t i t u t e d for z ins ide
P . Th i s is d e s c r i b e d in a x i o m (4) w h e r e P[y/z] deno te s the
s u b s t i t u t i o n of z w i t h y ins ide P .

A x i o m s (5) a n d (6) d e s c r i b e t a k e a n d r e a d o p e r a t i o n s , pe r -
f o r m e d b y processes ins ide a t r a n s a c t i o n , on d a t a in t h e
e x t e r n a l e n v i r o n m e n t ; in t h e case of c o n s u m p t i o n , t h e re-
m o v e d d a t u m s h o u l d n o t b e p r e v i o u s l y r e a d w i t h i n o t h e r

ac t ive t r a n s a c t i o n s (th i s is e n s u r e d b y t h e s ide c o n d i t i o n
Y C_ {z}) ; in t h e case of r ead , t h e n a m e of t h e t r a n s a c t i o n
shou ld b e a d d e d t o t h e s u b s c r i p t se t of t r a n s a c t i o n n a m e s
a s s o c i a t e d w i t h t h e r e a d d a t u m .

A x i o m (7) de sc r ibe s t r a n s a c t i o n c o m m i t m e n t : t h e p rocesses
ins ide t h e t r a n s a c t i o n m u s t agree on t h e c o m m i t m e n t op-
e r a t ion , t h e d a t a p r o d u c e d ins ide t h e t r a n s a c t i o n b e c o m e
ava i l ab le to t h e e x t e r n a l e n v i r o n m e n t , a n d t h e n a m e of t h e

c o m m i t t e d t r a n s a c t i o n s h o u l d b e r e m o v e d f rom t h e sub -
sc r ip t se t of t r a n s a c t i o n n a m e s a s s o c i a t e d to t h e d a t a in
t h e e x t e r n a l e n v i r o n m e n t . O b s e r v e also t h a t in t he r e a c h e d
conf igu ra t ion , t h e d a t a which e x p i r e b e t w e e n t h e t i m e t in
t h e in i t i a l c on f igu ra t i on a n d t h e t i m e t ~ of t h e r e a c h e d con-
f i gu ra t i on a re r e m o v e d b y e x p l o i t i n g t h e a u x i l i a r y f u n c t i o n
P \ t d e s c r i b e d above . A x i o m (8) a l lows for t h e w i t h d r a w a l
of e x p i r e d d a t a wh ich a r e no m o r e ava i l ab le n e i t h e r for r e a d -
ing no r for c o n s u m p t i o n (see t h e s ide cons i t ions of a x i o m s
(1), (2), (5), a n d (6))-

R u l e (9) is t h e u s u a l loca l rule) w h e r e t h e a u x i l i a r y func t ion
P \ t is u s e d to ensu re t h a t all t h e e x p i r e d d a t a a re r e m o v e d .
R u l e (10) is t h e a p p l i c a t i o n of t h e loca l ru l e t o t r a n s a c t i o n s :
obse rve t h a t t h e t r a n s a c t i o n n a m e is a d d e d t o t h e l abe l in
o r d e r to d e n o t e t h e t r a n s a c t i o n u n d e r w h i c h t h e a c t i o n is
t a k e n . I n t h e case of s t e p s r e l a t e d to d a t a e x p i r a t i o n on ly
(ie. t h o s e l a b e l e d w i t h - -) , we do n o t a d d t h e t r a n s a c t i o n
n a m e to t h e labe l , b e c a u s e d u r i n g t h e s e k i n d of s t e p s no op-
e r a t i o n s are e x e c u t e d f r o m w i t h i n any t r a n s a c t i o n (see ru l e
(11)) . R u l e (12) i n d i c a t e s t h a t a t r a n s a c t i o n c o m m i t m e n t
p e r f o r m e d b y t h e c o n f i g u r a t i o n P c a n b e p e r f o r m e d also in
P[Q p r o v i d e d t h a t Q does n o t c o n t a i n da t a ; t h i s s ide cond i -

3 6 2

tion is necessary in order to ensure that all the data in the
environment are taken into account by the axiom (7) which
introduces the transaction commitment action. Finally, rule
(13) is the standard rule for structured congruence.

2.2 S e r i a l i z a b i l i t y
Serializability is a generally accepted criterion for correct-
ness of the execution of t ransactions. Given the interleaving
execution of a set of transactions, it is serializable if the same
result can be reached by a serialized execution of the t rans-
action. An execution is serialized if all the actions taken
inside the same t ransact ion are executed sequentially, one
after the other, wi thout inter leaving with actions outside
the t ransact ion:

In the following we need the following notat ion: t~n (~T) -=-
~n(X.'<3) ----- tzn(X:D) = tzn(X.'t) ----- X to denote the t ransac-
t ion names occurring in a t rans i t ion label and nct~n(P) ----
{z I BG', Q s.t. z{Q} or z : C { Q } is a sub te rm of P} to
denote the set of the transactions active in a configura-
tion. Given the sequence of labels cr ---- ~ I • • . ant we denote

with [P, t] --?-+ [P', t'] the sequence of transitions [P, t] ~)

[/>I, ill -2~ ... ~% [P~, tn] and with or- we represent the
sequence obtained from cr by removing all the labels -.

DEFINITION 2.1. A transit ion sequence [P, t] = ~ [P', t'],
with a c t ~ (P) = a c t = , (P ') = ¢ a,~d ~ , - = m . - . a ~ , is seri-
alized i f f tr~ = z : er, with cr ~ <3, implies tri+t = z :/~, for
each i = 1 , . . . , n - - 1. A transit ion sequence P ~'~ P ' is
serializable i f there exists tr' such that ~r'- is a permutat ion

t t #

~r- and [P, t] ~ [P', t 'l is a serialized transit ion sequence.

The following lemma proves that each transition performed
inside a transaction can be delayed and executed after a
subsequent transition, provided that the latter is performed
outside the transaction.

LEMMA 2.2. I f [P, t] ° > [P", t"] #) [P' , t'] with tr = z :
t ; where tr' # <3, and t~n(tr) ~ tz'n(B) then there exiats a
sequence of labels ~ s. t. or- = (~ tr) - and [P, t] ~' } [P ' , t '].

We are now ready to present the theorem which reports the
serializability result for the calculus with the basic coordi-
na t ion operations only.

THEOREM 2.3. Let [P, t] be a configuration and [P, t] ~>
[P' , t'] be a t ransi t ion sequence such that ac t ~ n (P) = ~.

• I f ac txn(P ') = 0 then there exists ~2 such that tT~ is a
permutat ion of ~r~ and [P, t] .Z~ [p' t'] is serialized.

• I / a c t z n (P ') = { z) t h e n t h e r e e= i s t ~ a n d ~., s . t . / o r
each ~ e ~- we have that ~ (~) = {~}, (~2~3)- is a
permutation of t r ; , and [P, t] - ~ [P", t"] - ~ [P', t']
where act.vn(P") = ~.

3 . A D D I N G T E S T F O R A B S E N C E
In this section we extend the previous calculus with two fur-
ther coordinat ion primitives read3 and take3 which are vari-
ants of the read and take operat ions which addi t ional ly em-
bed the possibility to test for the absence of match ing data,
respectively. These operat ions behave llke the correspond-
ing read and take only in the case the required da tum is
available for reading or consumpt ion; otherwise, they termi-
na te by indicat ing the absence of the required da tum. These
two coordinat ion primit ives correspond to the readlfEzists
and takeIJE=ists operat ions of JavaSpaces.

The two operations are guards for progr~m.q with two possi-
ble cont inuat ions: read3(a)?P_ Q and take3(a)?P_ Q, where
P is the cont inuat ion chosen in the case the operation suc-
ceeds, while Q is chosen if the required d a t u m is not avail-
able.

We star t by discussing some problems related to serializabil-
ity which typically occur when test for absence operations
are taken into account. Consider

(a) l create(=).take(a).take(b).commit(z) I
,~ad3(a)?O_,,,~te(b)

representing a s ta te in which a d a t u m is required to be con-
sumed within a t ransac t ion and tested for absence outside
tha t t ransact ion, Consider now the following computat ion:
(a) is consumed from within the t ransact ion; subsequently,
the test for absence outside the t ransac t ion is performed; the
da t um (b) is first produced and then consumed inside the
t ransact ion; finally, the t ransac t ion commits. This compu-
ta t ion is clearly non-serializable because the unique way to
perform the test for absence and the ou tpu t operat ion out-
side the t ransact ion is to execute them after the take(a) but
before the take(b) operations inside the transact ion. This
kind of problem is solved in JavaSpaces by avoiding the in.
s tantaneous consumpt ion of da ta taken within a t ransac-
tion: these da ta are s imply locked mtd they are removed
only when the t ransac t ion commits. Locked data can be
neither read nor consumed, and disallow the execution of
operations test ing the absence of da ta of tha t kind.

We now discuss a further problem concerning serializability
in presence of test for absence operations - which is not
addressed in the JavaSpaces specifications - tha t has been
pointed out in [2]. Consider the two concurrent programs

create (z) . take 3(a) ? O_ (take(b) . c o m m i t (z)) [

w~teCa).write(b)

and their following computa t ion: the t ransact ion starts; the
take3(a) operat ion tests the absence of (a) and activates the
cont inuat ion t ake (b) . commi t (z) ; subsequent ly the two out-
pu t operations outside the t ransac t ion are executed; finally,
the inpu t operat ion inside the t ransac t ion occurs and the
t ransact ion commits.

This computa t ion is clearly non-serializable as the unique
way for the t ransac t ion to commit is tha t the two write
operations outside the t ransac t ion are executed exactly be-
tween the test for absence and the inpu t operat ion inside
the t ransact ion. To solve this problem, in [2] the following

363

T a b l e 2: M o d i f i e d a x i o m s a n d r u l e s (s y m m e t r i c r u l e s o m i t t e d) .

(1') [take(a) .Pl(a)~", t] -Y-+ IF, t ']

(2') [readCa).Pl(a)~ , t] T ~ [P [(a) ~ , t ']

(~') [,~nte(a, A0.P, t] _L, [(a)~'+At]P, t']
(4') [~,,at~(=).P, t] ~ [yCP[~/=]}~,e]
(5') [z : t a k e (a) . P { q)] ~ [(=) ~ , t] " ~ [z :P'{ Q)~U{ ' } , t ']
(6') [z: read (a),P { q } l (a)~ , tl ~ [z :P{ q } l (a) ru{=} ' ~" t ' l

(7') [= { I - [, = o , ~ , , ~ t (=) . P ~ i l - l j (= j) ' ~] ~ 1 1 - [h (b h) ~ , t]

[l-I~ Pd f l j ("i) 'J I I'I~ (b,,?~ \=, t']
(a') [(a)~°, tl --% [0, t']

[P, t] X:~ [p , , t']
(9') [p l q , t] x,~ [p , l q , t ,]

[P, t] a > [p,, t '] 0o') [~{P}~, t] .:o~ [={p,}~, t']
[P , t] -) [P ' , t '] (n')

[={P}~, t] -~ [={P'}x T, t']
[P, t] ~:~ [P', t']

(~2')
[PI q, t] =:<~ [P' iq, t']

D

t < t t

t ~ t t

t ~ t t

tr fresh and t <_ t '

Y C_C - {z} and t < t '

t < t I

t ~ t ~

t < t ' a n d t ' ~ t=

Data(Q) = 0

f u r t he r lock ing m e c h a n i s m is p r o p o s e d : after a test for ab-
sence is performed inside a transacLion on a certain kind of
data, no data of that kind can be introduced in the shared
dataspace before •e end of the transaction.

This new c o n s t r a i n t fo rb ids the execu t ion of t h e w r / t e (a)
o p e r a t i o n in t h e c o m p u t a t i o n d e s c r i b e d above, t hus solv-
ing the se r i a l i zab i l i t y p r o b l e m . However , he re we p o i n t ou t
t h a t t h e new locking m e c h a n i s m is n o t su i t lc ien t when we
cons ider l eased da t a . C o n s i d e r t he fol lowing

(a)~ l createCz).readCa)-takeCb)-c°mmit(=) I
read3(a)?O_ write(b)

r e p r e s en t i ng a s l ight v a r i a t i o n of t h e f irst e x a m p l e of th is sec-
t ion, where a l eased d a t u m (a) ~ is cons idered . C o n s i d e r now
t h e fol lowing c o m p u t a t i o n : t h e d a t u m (a) t is r e a d ins ide
t h e t r a n s a c t i o n ; s u b s e q u e n t l y i t exp i re s a n d i t is r emoved ;
t h e n t h e o p e r a t i o n r e a d 3 (a) o p e r a t i o n ou t s i de t h e t r a n s a c -
t i on falls t hus a c t i va t i ng t h e write(b) con t inua t ion ; af ter , t h e
d a t u m (b) is f i rs t p r o d u c e d f rom o u t s i d e t h e t r a n s a c t i o n a n d
t hen c o n s u m e d ins ide t h e t r a n s a c t i o n ; f inally, t h e t r a n s a c -
t i on c o m m i t s . Th i s c o m p u t a t i o n is c lear ly non- se r i a l i zab le
b e c a u s e t h e u n i q u e way for t h e t r a n s a c t i o n to c o m m i t is to
p e r f o r m t h e t es t for absence a n d the o u t p u t o p e r a t i o n ou t -
s ide t h e t r a n s a c t i o n i n t e r l e a v e d w i t h t h e r e a d (a) a n d the
t ake (b) o p e r a t i o n s ins ide t h e t r ansac t i on .

A poss ib le so lu t ion to th i s k i n d of p r o b l e m could be to a d d
the fol lowing lock ing m e c h a n i s m : When read, a datum is
added to the set of data read by the provided transaction. I f
such a datum e~pires before the end of the transaction, no
tes t for absence on that kind of data could be ezecuted before
the end of the provided transaction.

O bse rve t h a t t h i s new lock ing m e c h a n i s m b locks t h e exe-
c u t i o n of t h e readH(a) o p e r a t i o n , t h u s d i sa l lowing t h e un-
des i r ed c o m p u t a t i o n d e s c r i b e d above . A d r a w b a c k of th i s
locking po l i cy is t h a t , w h e n a d a t u m r e a d ins ide an ac-
t i ve t r a n s a c t i o n expi res , i t is n o t pos s ib l e t o forge t de f in i t e ly
a b o u t t h a t d a t u m b e c a u s e i t is n e c e s s a r y to r e c o r d t h e k i n d
of d a t a on which no tes t for a b s e n c e o p e r a t i o n cou ld b e ex-
ecu ted . T h i s c o n t r a s t s w i t h one of t h e m a i n a ims of t h e
l eas ing m e c h a n i s m , ie., t o free t h e r e sources a l l oca t ed to ex-
p i r e d da t a .

Moreover , o t h e r p r o b l e m s c o n c e r n i n g se r i a l i zab i l i t y occur
due to t h e fact t h a t t h e l eas ing m e c h a n i s m i n t r o d u c e s a t e m -
p o r a l d e p e n d e n c y b e t w e e n t h e w i t h d r a w a l of two d a t a wh ich
have two s u b s e q u e n t e x p i r a t i o n t imes . I n d e e d , cons ide r t h e
s y s t e m

(a)' I (b)¢ I create(z).read(a).read(c).commitCz) I
read~Cb)?0_ ~,~teCc)

w i t h (a) t wh ich exp i res before (b) t ' (ie. t ' ~ t) . Con-
s ider t h e fol lowing c o m p u t a t i o n : t h e t r a n s a c t i o n s t a r t s a n d
t h e r e a d (a) o p e r a t i o n is executed~ t h e n (a) t a n d (b) t" ex-
p i r e in t h e e x p e c t e d o rder ; t h e read3(b) o p e r a t i o n fails t hus
a c t i va t i ng t h e c o n t i n u a t i o n ~ r i t e (c) ; t h e d a t u m (c) is f i rs t
p r o d u c e d , t h e n t e s t e d for p r e sence ins ide t h e t r a n s a c t i o n ; fi-
nal ly, t h e t r a n s a c t i o n c o m m i t s . Th i s c o m p u t a t i o n is c lear ly
non - se r i a l i zab l e b e c a u s e t h e u n i q u e w a y for t h e t r a n s a c t i o n
to c o m m i t is to e x e c u t e t h e two r e a d o p e r a t i o n s ins ide t h e
t r a n s a c t i o n i n t e r l e a v e d w i t h t h e t e s t for absence a n d t h e
w r i t e o p e r a t i o n s o u t s i d e t h a t t r a n s a c t i o n .

In o rde r to solve th i s f u r t h e r p r o b l e m of ser ia l izabi l i ty , we
cou ld i n t r o d u c e a lock ing m e c h a n i s m which is a s t r o n g e r ver-

3 6 4

sion of the previous one: When read, a datum is added to the
set of data read by the provided transaction. I f such a datum
expire.q before the end of the transaction, all the data ~ohich
e~pire subsequently are recorded. No test for absence on the
kind of data tohich have been recorded could be subsequently
ezecuted, before the end of the provided transaction.

I t is wor th not ing t ha t this locking mechanism is very restr ic-
tive, because a read pr imi t ive per formed on a specific k ind of
da ta , executed from within a t ransac t ion , could lock a huge
amount of tes t for absence operat ions , even if per formed
on a different k ind of data . Ins t ead of formalizing this sec-
ond s t ronger version of the locking mechanism, we propose
a different approach for the model ing of t e m p o r a r y d a t a
a l ternat ive to leasing. This a l te rna t ive approach has two
ma in advantages: on the one hand, the first l ighter version
of the locking mechanism is sufficient; on the o ther hand, it
te&es advantage from the fact t ha t the locking mechanism
requires to r emember the expired d a t a read inside active
t ransact ions , by leaving these d a t a in the repository.

The a l ternat ive approach has been in t roduced in [1] under
the name of t e m p o r a r y d a t a wi th uuordered collection and
i t is based on a s l ightly different in te rpre ta t ion of the t ime
to live A t used in the wr/ te(a , A t) opera t ion: it does not in-
dicate a t ime after which the d a t u m must be removed (as in
the leasing approach of JavaSpaces) , bu t it denotes a t ime
after which the d a t u m could be removed if required, eg.,
in order to free resources. Under this a l ternat ive in terpre-
tat ion, d a t a could remain available even after expirat ion.
Moreover, it is not necessary to remove the d a t a following
their order of expira t ion, b u t a d a t u m could be selected for
wi thdrawal even if expired after another one which is still
available. A n advantage of this approach is tha t , when new
resources are needed, i t is possible to select for wi thdrawal
exac t ly the d a t u m which, among all the expi red ones, be t t e r
fits the ac tual requirements .

3 . 1 T h e f u l l c a l c u l u s
The syn tax of the calculus is ex tended as follows: the read3
and take3 opera t ions are in t roduced as guards for p rograms
with two possible cont inuat ions:

0 ::] ~?O_O

where:

,7 ::= , ~ d 3 (a) I ~ake3(a)

Moreover, we have to add two kinds of informat ion to active
t ransact ions: the set of d a t a tes ted for absence and those
removed dur ing the t ransact ion. This is achieved by using
the new terms:

P :: I *{P}~ I *:c{p}~

where R, T E I~(Name) are two sets of d a t a represent ing
the kind of d a t a removed and tes ted for absence inside the
t ransac t ion , respectively.

The new set of configurations is deno ted by Con~; while the
new set of labels is deno ted by Label3 -~ Label U {X:--a, X:
~,X:A<I I X : p (T~n) ,a E Name, A C_ Name}. The first

label is used to model tes t for absence opera t ions on da-
t u m a, the second label denotes the execut ion of a wr / te (a)
operat ion, while the t h i rd label is the new label for t ransac-
t ion c o m m i t m e n t ind ica t ing also the mul t i se ts of d a t a which
have been produced , bu t not consumed, dur ing the t ransac-
t ion and should be in t roduced in the shared repos i to ry after
t r ansac t ion commi tmen t .

The rule (v) of the s t ruc tu ra l congruence ~ should be mod-
ified according to the new syntax :

(v') .{ClP}~ =.:C{P}~

The opera t iona l semant ics is defined by the label led t ransi-
t ion sys tem (Oonf~, Label3, }) where the label led t ransi-
t ion re la t ion } is the smal les t one sat isfying the axioms
and rules in Table 2 (which are the new versions for those
r epor t ed in Table 1), plus rule (13) of Table 1, and the new
axioms and rules for the tes t for absence opera t ions r epor ted
in Table 3.

The rules (20) and (22) use the two functions Rein(P) and
Tfa(P), denot ing the set of d a t a removed and those tes ted
for absence inside t r ansac t ions active in the configurat ion
P , respectively. They are induc t ive ly defined as follows:

R e m (. (P } ~) = Rein(. : C t P } ~) = R

Ram(P] Q) = Rem(P) U Rem(Q)

R e , ~ (c) = Da~a((a)~) =

TIa(x{P}~) = Tfa(*: CiP}~)= T

TIa(e I Q) = Tfa(P) o TIe(Q)

T.fa(C) = Tfa((a)tx) = O

The new axiom (1') is different from the previous version
because the side condi t ion t I < t is removed: this reflects
the new in te rp re ta t ion of t e m p o r a r y d a t a according to which
d a t a could remain avai lable even after expirat ion. This dif-
ference involves also axioms (2'), (4'), (5'), and (fi').

Axiom (3') in t roduces the new label ~ denot ing the execu-
t ion of a wr / te (a) opera t ion . Axioms (4') and (5') axe the
adap ta t ions of the cor responding rules to the new syntax;
in par t icular , (5') upda te s the set of d a t a removed from the
envi ronment by inpu t opera t ions inside the t ransact ion. Ax-
iom (7') in t roduces the new label X.-A<~ (the no ta t ion (Bj aj-
denotes the mul t i se t union of all the singletons {ai}). The
axiom (8') int roduces the new pol icy for expired d a t a col-
lection; observe t ha t the subscr ip t set of t ransac t ions should
be empty. This reflects the fact t h a t under the new locking
mechanism a d a t u m , even if expired, should be ma in ta ined
in the sys tem until there exists no act ive t r ansac t ion under
which the d a t u m h ~ been read. The rules (9 ') . . . (12') are
simple a d a p t a t i o n of the cor responding rules; the main dif-
ference can be found in (9') and (12') where the auxi l iary
function P \ t is no more used because i t is no more necessary
to remove all the expi red d a t a in the configuration.

Axioms (14) and (15) descr ibe the successful execution of the
new takeg(a) and read3(a) operat ions , respectively. These
new opera t ions fail when no d a t u m (a) is found in the envi-
ronment ; this is mode l led by the labe l --a in t roduced b y the
axioms (16) and (17). Axioms (18) and (19) are adap ta t ions

3 6 5

T a b l e 3: T h e n e w a x i o m s a n d r u l e s (s y m m e t r i c r u l e s o m i t t e d) .

(14) [ta/ce:l(a)?P_q[(a)~°,t] ~'~ [P , ¢] t < t '

(15) [re.ad:~(,~)?P_Q[(.)~., t] ~ [el(a).~-, t '] t < ¢
(16) [takeS(a)?P_q, t] _2.% [O, t '] t < t '

(17) [read3(a)?P_O, t] ~ [q , t'] t <_ t '

(18) [=:ta~e3(a).P_q{n}~I(=)~, z] ~ [= : P { n } ~ u~=), t'] Y c_ (z} and t < t '
R ~a t l ~I (19) [z:readS(a).P_Q{R}~l(a)r,t] = 5 [z : P { R) T l (a) r u { = } ,] t <

[P, t] ~--~= [p,, =']
(20)

[PiQ, t,] ~-:~" [P ' lq , t ']
[P, t] ~ [P', t ']

(2z)
[= {P}~ , tl =-~-t [= { P ' } § ~ . ~ , t ']

[p, t] =:A~, [p,, t '] (22)
[PI Q, t] =:A~ [P' IQ, t']

[P, t] - -~ [P', t']
(23)

[PlQ,t] ~ [P'lq, t']

[P, ~l = ~ [P ' , e l
(24)

[={P}.~, t] ==~ [=~{P,}~, t']

- e; b a r - (Q) u Rein(q)

Data(Q) ---- ¢ and A n TIa(Q) =

a ~ TI'=(Q)

of (14) and (15) to the case in which the opera t ions are ex-
ecu ted inside a t ransac t ion; in (18) the set of d a t a r e m o v e d
inside the t r ansac t ion is u p d a t e d , while in (19) the subscr ip t
set of t r ansac t ion names associa ted to t he read d a t u m is ex-
t ended wi th the n a m e of the cur ren t t ransac t ion .

A t rans i t ion labelled wi th --a, represen t ing a tes t for absence
o[a, can be pe r fo rmed only if t he e nv i ronm e n t does no t con-
t a in any (a) and also no ~a) have been previous ly c o n s u m e d
inside an act ive t r an sac t i on (see rule (20)). Moreover , w h e n
a test for absence is pe r fo rmed inside a t ransac t ion , the sub-
script set T of d a t a tes ted for absence m u s t be u p d a t e d (see
rule (21)). Accord ing to rule (22) a t r ansac t i on can c o m m i t
only if the d a t a it in t roduces in t he sha red repos i to ry are no t
cu r ren t ly t e s t ed for absence inside o ther act ive t ransac t ions ;
moreover , t he side condi t ion Data(Q) = 0 ensures t h a t all
t he d a t a available in the e nv i ronm e n t when a t r ansac t i on
c o m m i t s are t aken in to account by the rule (7 ') (which intro-
duces t r ansac t ion c o m m i t m e n t) , l~ule (23) ensures t h a t an
o u t p u t ope ra t ion of (a) is pe r fo rmed only if act ive t r ansac -
t ion exists which a l ready t e s ted for the absence of t h a t k ind
of d a t u m . O n t he o ther hand , t he o u t p u t ope ra t ion can be
pe r fo rmed if execu ted inside a t r ansac t ion (rule (24)).

T h e lock pol icy t h a t we p ropose ensures the serializabili ty
of t ransac t ion ; this is formal ly p roved by t he fact t h a t t he
L e m m a 2.2 and the T h e o r e m 2.3 hold also in the new cal-
culus ex tended wi th tes t for absence.

4. C O N C L U S I O N
In this work we tackled a p rob l e m wi th the serializabili ty
of t r ansac t ions in shared da t a space languages wi th leased
data . We ob ta ined a serializable semant ics by mov ing to
a weaker d a t a removal policy, consis t ing in leaving expired
d a t a available for c o n s u m p t i o n or tes t for presence unti l t h e y
are no t effectively r emove d by t he collector. To simplify the

locking mechan i sm, we chose t he u n o r d e r e d collect ion policy,
p e r m i t t i n g to freely choose t he expi red d a t u m to remove,
p rov ided t h a t it has no t b e e n r ead b y an act ive t ransac t ion .

A final r e m a r k concerns t he event not i f ica t ion m e c h a n i s m
of JavaSpaces : in [2] t he in te rp lay of t r ansac t ions and event
not i f ica t ion is s tudied . T h e in te rp lay a m o n g t ransac t ions ,
t e m p o r a r y d a t a and event no t i f ica t ion will be inves t iga ted
in fu tu re work.

5. R E F E R E N C E S
[1] N. Busi, R. Gorrieri , and G. Zava t ta ro . T e m p o r a r y

D a t a in Sha red D a t a s p a c e Coord ina t i on Languages . In
Proc. of FOSSACS'O1, vo lume 2030 of Lecture Notes in
Computer Science, pages 121-136. Springer-Verlag,
Berlin, 2001.

[2] N. Busi and G. Zava t ta ro . O n the Serial izabil i ty of
Transac t ions in JavaSpaces . I n Proc. of ConCoord'01,
vo lume 54 of Electronic Notes in Theoretical Computer
3cience. Elsevier Science, 2001.

[3] E. Freeman, S. Hupfer , and K. Arnold . JavaHpaces
Principles, Pattern~, and Practice. Addison-Wesley ,
1999-

[4] D. Gelernter . Genera t ive C o m m u n i c a t i o n in Linda.
A C M Tfunsactiona on Programming Languages and
Systems, 7(1):80-112, 1985.

[5] S. Microsys tems . J avaSpaces Service Specif icat ion,
available at
h t t p : / / j ava . s u n . c o m / p r o d u c t s / j a v a s p a c e s . 1998.

[6] R. Milner. Communication and Concurrency.
Prentice-Hall~ 1989.

[7] P. Wyckoff , S. McLaughry , T. L e h m a n , and D. Ford.
T spaces. I B M Syst. J., 37(3):454--474, 1998.

3 6 6

