
Towards Scalability in Tuple Spaces
Philipp Obreiter, Guntram Gr&f

Telecooperation Office (TecO), University of Karlsruhe,
Vincenz-PrieRnitz Str. 1, 76131 Karlsruhe, GERMANY

Phone: +49 (721) 6902-79, Fax: +49 (721) 6902-16

{obreiter, graef}@teco.uni-karlsruhe.de

ABSTRACT
Applications in eCommerce and Ubiquitous Computing ask for
coordination of highly distributed and hetemgenous data sources
and services. Tuple spaces offer a data-driven coordination model,
hence they may be used for this purpose. However, research on
distributed tuple spaces has not resolved yet how to render tuple
spaces scalable. This is partly due to their informal conception.
This paper formalizes tuple spaces and introduces a new concept
for achieving scalabillty. It generalizes existing concepts and may
lead to scalability in some application areas.

Keywords
Tuple Spaces, scalability, formalization, distribution

1. I N T R O D U C T I O N
Applications in the emerging fields of eCommerce [6] and
Ubiquitous Computing [15] are composed of heterogenous
systems that have been designed separately. Hence, these systems

loosely coupled and require a coordination mechanism that is
able to gap spatial and temporal remoteness. The use of tuple
spaces [8] for data-driven coordination of these systems has been
proposed in the past [7]. In addition, applications of eCommerce
and Ubiquitous Computing are not bound to a predefined size, so
that the underlying coordination mechansim has to be highly
scalable. However, it seems to be difficult to conceive a scalable
tuple space.

The paper is organized as £ollows. Chapter 2 gives an overview of
existing approaches for achieving scalability in tuple spaces and
their shortcomings are pointed out. Chapter 3 and 4 furmalize
tuple spaces and scalability respectively. A proposed concept
based on hypercobes is discussed in chapter 5.

2. S T A T E O F T H E ART
2.1 The Original Concept and its Extensions
A tuple space [8] is a logically shared associative memory that
enables cooperation based on the blackboard design pattern [11].
Tuples may be written to the tuple space and they axe retrieved as
specified by templates. Tuples and templates are ordered
collections of fields that can be either actual or formal. An actual
field has a specific value, whereas a formal field represents a set

Permission to make digita[or hard copies of all or part of this work for
pe~onal or classroom use is granted without fee provided that copies
not made or distributed for profit or commercial advantage and chat
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists.
requires prior specific permission and/or a fee.

SAC2002, Madrid, Spain
Copyright 2000 ACM 1-5 g 113-445-2/02/03...$5.00.

of values. There is no schematic restriction on how fields are
composed to tuples and templates. A reading operation returns a
tuple that is matched by a template. Matching is the key concept
of topl¢ spaces, because it enables associative yet only partly
specified retrieved of tuples.

Several extensions of this concept have been proposed in the past
[2], [7], [9], [16]. E.g. object orientation has been introduced to
tuple spaces [2] and [7] suggests the use o f semantic templates
that match tuples structurally. There are several implementations
of tuple spaces, e.g. Linda [8], JavaSpaces [13] and T Spaces
[17]. They differ in the amount of extensions implemented.

2.2 Prior Studies of Scalability
A scalable tuple space is inherently distributed. Different concepts
for dis/ributing tuples have been suggested in the past. However,
remarkably few of them aim at scalability.

In [12], an adaptive mechanism is set in place that automatically
moves tuples to the server with the lowest cost. E.g. if an
application exclusively uses specific tuples, they are moved to the
server nearest to the application. Therefore, this concept improves
performance, if access to tuples comes with locality of space and
time. However, some applications make use of a tuple space, in
order to gap space or time remoteness. Hence, this mechanism
may lead to performance gains in some application areas, but it is
no general concept for scalability. Yet another approach [4]
includes replication o f tuples and induces a logical structure on
the servers. It is assumed that cooperating applications are
logically near. However, such an assumption may be correct in
parallel processing, but not for other applications of tuple spaces.
Fur th=, ,ore , this concept is not really scalable, because some
servers become bottlenecks due to the logical structure. In
addition, it is difficult to dynamically adjust the number of
s e r v e r s .

All of these concepts strictly rely upon locality of access and thus
they regard tuples as black boxes. Since locality cannot not be
assumed in general, another approach [6] disffibutes tuples based
on a tuple's attributes. Hence, retrieval of tuples is performed on
servers that are determined by the template's attributes. However,
templates do not have to fully specify the attributes of the tuples
that they match. Therefore, it is necessary to identify attributes
that are shared by a template and the tuples matched.

The use of hash functions has been suggested [1], [10] for this
purpose. According to its hash code, a tuple or template is
distributed to either an arbitrary server or to all servers. Hence, the
concept of hash functions lacks a fine granular distribution
strategy. Furthermore, it relies on the proliferation of an
appropriate hash function by the application programmer, if
scalability is to be achieved. In most application areas, this is a
highly non trivia3 task that, in addition, often is not solvable. In

344

spite of that, this contribution introduces a new concept that is a
refinement of this approach.

3. A N A L Y S I S
In order to achieve scalability, structural restrictions of the scheme
have to be exploited. E.g. in relational databases, the uniqueness
of primary key values is used. However, the structure of tuple
spaces as introduced in [8] has recently been extended by object
orientation and semantic tuples [7]. As a result, tupIe spaces are
more expressive, but important structural restrucfinns are set
aside. E.g. in JavaSpaces [13] and TSpaces [17] matching of a
tuple can be implemented regardless of its structure, i.e, its fields.
Therefore, a formalization of tuple spaces must take into account
.different levels of expressiveness.

3.1 F o r m a l i z a t i o n o f T u p l e S p a c e s
In a first step, fields and tuples are formalized in a way, that
integrates extentions. One key concept is to regard templates as
tuples [7], so that matching induces a structure on tuples and
fields. In the following, the term template depicts a tuple with a
certain role, i.e. the specification of a reading access.

Actual and formal tuples are introduced as vectors of fields. In
addition, semantic tuples are defined as sets of actual and formal
tuples.

Fields. Let C denote the set of classes and let Ic denote the set of
instances of c¢C, with c~c ' implying I , :~I~,=~. The classes are
ordered by <~_cC 2, with c ~ c ' if and only if c is c ' or c is a
superclass of c'. Multi-inheritance is explicitly allowed, but .% has
to be antisymmetric. Therefore, (C,<) is apartially ordered set. It
is assumed that there exists a minimal element 2.v¢C, i.e...LF<_~c
for all c~C. E.g. in Java [14] I v is the class o b j e c t . Let 1
denote the set of all instances, Elements of C axe called formal
fields and elements o f / a r e called actual fields. Therefore, the set
of fields F is defined as

F = C u U I ~ .
c¢c

Let class: F -9 C denote the mapping class(c)= c =class(i) for any
c~C and iEl.~. <~ partly implies matching on fields, because c
matches c' if and only if c <~ c'. Furthermore, an actual field iE I~
has to be matched by every superclass of c. Therefore, matchFC F 2
is a matching relation on F if and only if

VceC: VfeF: c <~ class(f) ~ rnatehv-(c,f).

Hence, matchvnC2=.%. This definition of matching imposes no
restriction on matching between actual tupies. E.g. in [13], [17]
matching is freely customizable by polymorphic matching
methods_

Tuples. Let *.r~rr~j(b") and %~t,~l(F) denote the set of formal and
actual tuples to a given set of Fields F. If the dimension of formal
and actual tuples is not limited to a maximal dimension d, d is set
to ,o. In addition, x(F) is defined as the set of forrna] and actual
tuples by

d d
'L'(F) = U] ~ , "~a~ual(F) = U I i T, forrnal(F) = '~(F) ~ 'Uactual(F)

i=l i=l

Let I-'(t0 denote the set of semantic tuples with

d
±s(~ = U{±,~} i E P(m(v0), ±s(~ E F(F) ~ P(*(VO) \ IOI

i=1

with P(A) depicting the power set [3] of A. Then
~(F) := F(F) ux('F) is called the set oftuples. It depends on F, but
an explicit depiction of this dependency may be omitted in later
chapters by using ~3, l-" and x. There is at least one semantic tuple
in ~(F), i.e. -L,~(v3- Furthermore, let III:'c('F)---)F denote the
projection of a vector in "~(F) to the field at position i.

Matehin~_ Let mateh~ denote the matching relation on tuples. In
order to be as expressive as in [13], [17], no restriction for the
matching on tuples is applied, except of match~ ~ ~(F) 2.

Tuple Space Schemes, Let F, matchv, ~(F) and match~ denote
sets that comply with above restrictions. Then, the quadruple
(F, matcht~,~(F),matcha) is ca]led a tuple space scheme, q/ is
defined as the set of tuple space schemes.

~ t r i n g) I
/

Figure 1. Excerpt of an exemplary tuple space scheme that can
be used in I.,inde. (F, matchF) is shown above and (~(F),match,O is
shown below.

Example. F and 5(17) are sets ordered by matchp and match,.
Therefore, (F,matchF) and (3(F),match~) can be visualized as
graphs [3]. Semantic, formal and actual fields or tuples are
represented as rhombi, rectangles and circles. In the following,
reflexivity and transitivity is obmitted in the figures, if obvious
from the context. Furthermore, only parts of the graphs are shown,
because generally F and ~(F) are infinite. Figure 1 shows an
example of a scheme.

Alternatively, tuples may be visualized based on the graph
('~(F),match~). Then, semantic tuples are represented as
hypergraphs [3].

345

3.2 The Subset W* of Tuple Space Schemes
Tuple space schemes are very expressive. Except for semantic
tuples and multiple inheritance, JavaSpaces [13] and T Spaces
[17] allow such schemes to be implemented. However, Linda [8]
does not support object orientation, user defined field matching,
semantic templates and user defined tuple matching.

Therefore, the following sections are confined to the subset
W* c_ W of quadruples (F,matchv,~3(F'),match,0 that comply with:

a) .~:=matcht~ is an order and the infimum on F is well-
defined. Therefore, (F,<~) is a semilattice.

b) The only semantic tuple is -l-ate.

c) Matching of tuples is performed by matching the fields of a
template to the one of a tuple [8]. Hence, .<-a:=match~ is an
order with

--<'~ := [{-J-0(v0} x ~ (F)] ~ I (h , t2)ex(F) ~ I

Ihl=lht ^ '¢ i~ [1 IttlJ: match~(Yl#D,H~(tD) } .

4. FORMALIZATION OF SCALABILITY
This work is focused on how tuple spaces can scale up with the
stored tuples and their retrieval. However, resources on a single
tuple space server are limited. Therefore, tuples have to be
distributed on several servers, in order to achieve scalability.
Former approaches to scalability [1], [10], [12] have different
mechanisms on how tuples and templates are assigned to servers.
Note, that it does not suffice to achieve scalability of the total size
of tuples stored. E.g. an approach is not scalable, if matching on
an arbitrary template is done by querying every server.

4.1 Dist r ibut ion
Let p denote the number of servers that store tuples. Furthermore,
it is supposed that the servers are indexed from] to p. In the
following, a server is identified by its index. Therefore, the servers
are represented by the set { 1,...,p}. In addition, 5 depicts a set of
tuples, as defined in chapter 3. Let A denote the set of mappings
5--> P([1 p }) \ O , called distributions.

Definition. ~ A is a permissible distribution i f and only i f

VTt ,T2E ~ : match~(Tt ,T2) --> 8 (T 0 ~ $ (T z) ~ ~ .

Ap denotes the set of permissible distributions. They ensure that
matching tuples share a common server. If every tuple Tt is stored
to 8(Tl), then it is enough to confine to 8(T2), in order to find
tuples matched by T2.

Example. For an arbitrary hash function h: ~ --> Nat, [6] suggests
the distribution ~,

~ (T) := { 1 + [h(T) rood p]] .

However, ~ is not a permissible distribution, because
~ , (±a)* [l p].

Permissible distributions do not distinguish tuples from templates,
although a distinction based on the role of a tuple could be
reasonable.

Definition. With 5w,5~A, (5,,,8r) is a permissible write~read
distribution if and only if

VT1,T2~ ~ : match~(T1,Ta) --> ~(T1)C'hSw(T2) ~: ~ .

Let Awr denote the set of permissible write/read distributions. Awr
is not empty, since 8EAp implies (fi,8)eA~ r. Aw, can be regarded
as the asymmetric extention of Ap. Semantically, a tuple Tt that is
to be written to the tuple space, is stored to 8w(Tt). Then, a
reading access with the template T2 may be confined to 8,(T2).
Note, that the cardinality of 8w(T) does not have to be one. Hence,
this formalism does not impose any restriction on the replication
of tuples among several servers.

Example. Let fil.S*EA with

V T E B : 15t(T)I=I ^ 15*(T)l=-p.

Then, (5",8t) and (~1,~') ~ both permissible write/read
distributions. The strategy pursued by (S*,6t), is to write tuples to
every server, so that retrieving tuples is confined to an arbitrary
server. On the contrary, (St,~ °) implies that tuples axe only written
to one server, hence every server has to be queried for retrieval.
Figure 2 illustrates this principle.

F i g u r e 2 . (8*,St)¢Awr (above) and (St,8*)~A,,, (below). The
arrows indicate which servers (MU) are taken into account for
writing (W) and reading (R) a tuple.

4.2 A Determinis t ic Model
Let z ~ , ~ . : q - ~ [0 , 1] denote the mapping of toples to their
frequency of use in write and read operations. Therefore, I'Iwr is
defined as the set of usage profiles (ff.~,ztr) with

~-~.xw(T) = I -- ~'-'.Xr(T) .
TEel TEa

In this section, a determistic model is introduced which describes
static and dynamic hehaviour of a tuple space. The model is based
on a tuple space scheme (F,matchF,B (F),matcha)e ~F, a
permissible write/read distribution (~ . ~) E Awr and a usage profile

(X~,rOE I'Iw~-

Let ~ a ~ denote a multiset of n tuples, that is the tuple space.
B.(q) c ~n is defined as the multiset of tuples on server q by

. (q) := { T e 5 . I q¢ 6w(T) } •

Let SM(q) and Sq(q) denote the resources needed on server q for
storing tuples and for processing queries respectively. A
processing query is a test on whether a server contains a tuple that
is matched by a template. The unit of SM is tuples, hence this
models abstracts from the size of tuples. The unit of S O is
processing queries per time unit. It is assumed that the number of
reading operations on the tuple space ~ , is proportional to the
number of tuples n. Hence,

3 4 6

SM(q) := L~,(q)l and SQ(q) := n • ~ (T) .
TEq

qe ~, (T)

Let A., Ar and Aa denote the average number of servers taken
into account while proceeding a writing, reading and bulk reading
operation [g].

Aw:= E=w(T).I8,,,(T l and A~.:= Ex,(T)-Ia,(T] .
TE~ TEa

In bulk reading operations, every server in ~(T) has to be queried,
even if a matching tople already has been found on one server.
However, a reading ope~tion should stop after having found a
tuple. Let X: [1 p}x...q -o {0,1] denote the characteristic
function which determines whether a given server holds a tuple
that is matched by a given template. Furthermore, x(T) is defined
as the number of servers in ~(T) that hold a tuple which is
matched by a given template. Then,

x(q,T) = 1 : ~ 3 T ' ¢ ~ , (q) : matcha(T,T')

zfT) := ~Zr(q,T).
qGJi, (T)

As a result, the expected number of servers queried is about
I~-(T)I * [max(1,g(T))] -1 for a template T. Hence,

A~ := E xrCT) 15rCT]
"r~ max(l , x (T)) "

Note, that the definition of S O is pessimistic, since it assumes that
every query is a bulk reading operation. This is due to the fact that
the ratio of reading and bulk reading operations is not defined in
this model to simplify matters.

4 . 3 C o n c l u s i o n s o f t h e M o d e l i n g
Server resources are limited, so that they scale up only to a certain
degree. However, scalability means that the tuple space scales up,
even for very large n. Therefore, the load of a server has to be
independent of n.

Definition. The properties SM(q) and S0(q) of the server q scale if
and only if they are elements of O(1).

In analogy, reaponse t imes should be independent ofn.

Definition. The properties A,, Ar and AR scale if and only if they
are elements of O(l).

Example. Whatever scheme is used, a scaling property opposes
the scaling of another. E.g. in case of (~*,fil) used as distribution,
SQ(q), A~ and Ae seaM, but $M(q) and Aw do not. For (81,fi*) Sty(q)
and Aw scale, but S0(q), A~ and Aa do not. If tuples are not
distributed at all (p=l), then A,,,, A r and AR scale, but SM(q) and
S0(q) do not.

Finally, a tuple space is called scalable, if all of its properties
scale.

5. AN ADVANCED CONCEPT FOR
SCALABILITY
As already mentioned before, one strictly relies on the systematic
exploitation of structural restrictions, in order to conceive a
scalable tuple space. More precisely, if the s~ucture of the graph
(B,matehg) is known, similar tuples should be stored on the same

server. Then, queries may be directed to servers that hold tuples
similar to the template. However, such an approach requires a
notion of similarity. E.g. hash functions can be used for this
purpose [1], [10].

The SLrUcmre of (~3,match~) is implied by the matching on mplas.
Therefore, an arbitrary match~ hinders a systematic exploitation.
In such a case, matching on fields is irrelevant and information
about the structure of (F,matchr) cannot be used. Hence, the
concept of this chapter assumes tuple space schemes in ~ ' . Then,
a formal or actual tuple is a vector of fields and matching on it is
induced by matching on its fields. Therefore, similarity of tuples
can be expressed as similarity of their fields.

This chapter introduces a new concept for scalability that fully
exploits the smactore of tuples. It consists of two steps. First, the
structure of fields is taken into account by transforming them into
a representation that is similar to hash codes. Although this
transformation has to be implemented in addition, it is quite
sa'aighfforward. In a second step, the structure of tuples is
automatically deduced by the transformation to hypereubes. They
are able to express similarity of tuples.

5.1 Intervals
The distribution based on hash functions is too coarse, it either
maps to [q} or to {1 p}. The most general distribution maps to
an arbitrary subset of { 1,...,p}, but it takes O(p) for computation
and storage. Therefore, a distribution has to map to manageable
subsets of {1,...,p} that on the other hand have a sufficient fine
granularity. It seems promising to use intervals for this purpose,
because they may be represented in O(1) and are quite fine
granular.

Let J(S) denote the set of intervals on an arbitrary total ordering S
and <j a partial order on J(S) with

VU,VEJ(S) : U <j V <--> VuEU: V w V : u < v .

Assume that tn: ~3-->J(Nat) maps a tuple to an interval of natural
numbers. In addition, t,~ has to comply with

VTz,T2E 5 : matcha(T1,T2) -+ ta(T1)~ta(T2) *: ~ .

Furthermore, assume that tn complies with the inversion, that is

V T t , T x e ~ : ta(Tt)~t~(T2) ;e O -+

matcha(Ti,Tz) v matcha(Tz, T t) ,

Assume that there was such a t~t in Figure 3(a). Then,

t~(Tj) t~ t~(Tk) = O = t~(Si) ~ tn($k) with j,k~ [1.2,3,4]

and j~k.

If ~ (1" 0 < tq (Tz) < tn (T3) < t,,(T4), then xn (S1) < t9 (Sz) < t9 (S3), too.
Therefore, x~(Tt)<t~t(S2)<tn(T,0, so that there is no valid value
for t9 (Sa), because tn (S2) c t~ ($4).

347

~ $4= (device,

1200dpid.~) [t200dpi,.I- d I

F i g u r e 3 . Excerpts of the graph (~,match5) above (a) and
(F,matchv) below (b) in a service brokering scenario. Note, that
the definition of a mapping to intervals is trivial, if the graph is a
tree as in (b).

However, Figure 3(b) suggests that it is no problem to map fields
to intervals. This is due to the tree structure of (F, matchv).
Furthermore, ~ complies with

Vf~,f2e F: rnateh~(ft,fT.) ~ t~(f2) ~_ t ~ f t) .

In conclusion, the structure of tuples is too complex to be
described by intervals. However, intervals may be used on fields.

5.2 Trans fo rma t ion of Tuples to Hypercubes
Let IF denote the set of mappings tF: F --~ J(Na0 that comply with

Vft , f2~F: matchF(ft,f2) ---> tv-(ft)f'~t~(fz) :/: ~ .

Note, that IF is not empty. Furthermore, let Iv c ~ IF denote a subset
of mappings xv-~ IF that in addition comply with

Vf~,f2~ F: rnatch~ft , fz) --> t~(f2) ~__ tv(ft) ,

Vft,f2~ F: t~f2) ~ tv(ft) --> matchF(fl,f2) ,

~f~,fz~ F: tF(fi)=tF(f2) ^ f~*:f2 --> Itv-(fl)l = 1 = ItF(inf(ft,f~))l

The last line is necessary, because a field f with Ixe(f)l= 1 may
match a set of other fields. If (F,matchF) is a tree, I ~ is not empty.

The mapping of fields to intervals induces a mapping of tuples to
hypen:ubes, as denoted by I~: I~----> [~(F) --¢ J(NatL) { -I })d]. For
an arbitrary l.v-~ le the mapping t~ := I~(tF) is induced with

V te x(F): t~ (0 = t~I ' l l(t))x. . .Xtv(I-I~l(t))x[-l ,-1] a-~' ,

lx3(lS) = [0 ,m)× [--1 e~) d-I .

Therefore, tuples are mapped to hypercuhes with d dimensions.
E.g. for the mapping tv of Figure 3(b), it is
h(tv)(-L~) = [O,.o) × [-1,o.) 2 and

Ia(tv) ((p r in t e r , a t t r i bu t e s , add re s s)) = [0 ,0]x[2,3]x[4,**) .

T h e o r e m S.2.1. For (F,matchv, et,matcha)~W * and t~=Ia(tF)
with l t~ Iv, it is

a) Vtl,t2~x: mateh~(tt,tD --> t~(tl)~t~(t2) ~e O

b) Vt t , t # ~: match~(h,t2) ~ t~(tt)~t~(t2) ~: H .

Proof.

a) Ittl = n = It21 and it is mateh~rl](tt),l-I](tT..)) for an arbiUrary j
with l<j~aa. Therefore, tF(Ylj(tt))~t~Ha(t2))~elZI and it
follows ~3(tt) n ts(t2) :# H.

Because of Vt~'t: t,t(t) c__ t~(_l_~) the direct outcome of a). b)

Compared to IF, ~ c does not enhance correlation of hypercubes to
the matching of tuples. E.g. for t~(q) = [0,2] × [0,0],
ha(h) = [0,2] × [1,2] and ~a(t3) = [1,1] x [0,1], it is
t~(T) = [0,2] x [0,2] with T = [tt,t2]. Then, FIj(xq(tz))cIIj(ta(T))
for j¢ [1,2}, but match~(T,t3) is false.

5.3 Dis t r ibut ion Based on Hypercubes
The transformation of tuples to hypercubes abstracts from tuples,
however without ignoring the structure of tuples that is induced
by matching. Hence, the tuples may be distributed based on their
hypercubes, which gives more room for differing distribution
strategies. This section suggests two of them. The first one is to
map a hypercube to a set of natural numbers that are interpreted as
hash codes. The other strategy introduces adaptivity into the
distribution, since it takes into consideration, which toples are
stored in the mple space. Therefore, every server is assigned a
hypercube that identifies its tuple domain. Then, the distribution
is adaptive, e-g. by splitting domains that are frequently used. In
the following, t # IF is assumed.

Hash Codes. Let (3: J (N a t u [-1 })d __~ P(Nat) denote a mapping of
a hypercube to a set of hash codes. E.g. such a mapping can be
determined with CJ~del numbering, that is

d
G(S) := [] - I p i t+sJ I (s 1 Sd)~S]

j f t

with [Pt,P2,---} depicting the set of prime numbers. Then, the
assignment 8o~ A of a tuple to a set of servers is performed by an
arbitrary hash function. E.g. based on [6], it is

~i~(T) := { 1 + Ix rnod p] I x ~ G(In(tF)(T)) } .

T h e o r e m 5 ,3 .1 .8o is a permissible distribution.

Proof. If rnatch~ (Tt,T2), Theorem 5.2.1 (b) shows
I~ (lF)(Tt) ¢'3 Ia0,F)(T2) ~: H. Then, there is an
xE G(Ia (IF)(TI)) ~ G(I,1 (XF)(Tz)). Hence, ~ (T l) n ~(T2) ~ ~ -

Figure 4 illustrates this concept. Note, that it is the generalization
of the distribution based on hash functions, since they are
identical in case of

V T ¢ ~ : [IIa(tv)(T)l= 1 v I~(tF)(T)=Ia(tF)(-Lq)] .

However, this distribution strategy has to be refined, because
~o('I') takes O(lI,~(tv)('l')l) in computation complexity and, for an
arbitrary mapping G, Ifio(T)l takes O(II~(tF)(T)I), too.
Furthermore, the servers' tuple domains do not adapt to the usage

348

profile. For many mappings G, it is cosily to adjust the number of
S er~,ers.

X

Ns, t
S4

I

==

!i!i:iii iii iii iii iii :iiii!ii

• J ,J ,I !== ll ill!!.!ii !ilIiiii. !{!i

I I IBII I I
s,l i s,I s,I s=l s=l s,I -x=

Figure 4. Distribution strategy based on hashing hypercubes for
five servers [s~,--.,Ss}. The example shows tuples with one or two
dimensions that are mapped to rectangles as induced by t~ of
Figure 3(b). The displayed tuples are Tt=(pdnter),
T2=(device, 1200dpi), T3=(scanner, at tributes)
T4={ (1200dpi),(A1)}, Ts= [(1200dpi,printer),(600dpi, scanner) i
and T6={(address,address),(12OOdpi,12OOdpi)}. 6o is based on
GiJdd numbering, so that 80(T0=131, 8o(Tz)=13,51,
5o(T3)=[4,5 }, 8o(T~)={3,4,5 }, ~ (Ts)=[2 ,3 } and
~o(Td= 12,3 A,5 }.

Tuple Domains. For each server with the index q, Eq denotes its
hypereube. The servers' hypercubes have to comply with

p
U E q = [0 ,~)×[-1 , ,~) d-t ^ Vq ,q ' e [1 p l : Eq~Eq, = ~ .
q=l.

Then, tuples T with I,~(tF)(T)~Eq identify the tuple domain of
server q. Hence, let 6~:~ A be defined as

~z(T) := [q e [1 p} I Ia(t~)(T) tm Eq ~ ~] .

T h e o r e m 5,3,2. 6~: is a permissible distribution.

Proof. If matchn(Tt,T2), Theorem 5.2.1(b) shows that there is a
x~ In (t~)(T~) ~ I,~(tv)(T2). Therefore, I~ (tv)(T~) ~ I~ (tt~) (TT.) _
[0,**)×[-1,**) a-t implies that there is a q with XeEq. Hence,
qe ~:(%) ~ ~z(Tg.
This distribution strategy is illustrated in Figure 5. Note, that
I,~(tF)(T) ~ ~ = 13 implies that there is no tuple stored on server q
that is matched by template T.

Unlike the other suggested strategies, the serw'rs' state is taken
into account. Therefore, it is possible to automatically adapt the
distribution to the usage profile of the tuple space: If the number
of tuples that are stored on server q exceeds maxr, the tuple
domain of q is split and one additional server is added. If there are
only few tuples stored on two servers with adjacent tuple
domains, the domains are merged.

However, there are some problems when implementing this
strategy. The program units that compute ~:(T) need to know
about the servers' tuple domains. Furthermore, the computation

has to verify for every q, whether the intersection of Ia(tF)('r) and
Eq is empty. I f priority search trees [5] are used, 5r(T) takes
O((log p)d-2) in computation complexity.

X t i~?!.!?~!~!H!ili~i!~]~kE~i~i~;i! iiiiiii!.ii!i!ii!~iiiiiiiiiiiii

Figure 5. Distribution strategies based on tuple domains for five
servers Is t ss}. The tuples and te are the same as in Figure 4.
However, the distribution strategy based on tuple domains is
applied. The servers' rectangles are Et =I9 (I.F)((.LF)),
E2=Ia (tF)((addres s,/F)), Ea=Ia (tF)((attribu tes,lF)),
E4=I,I(1F)([(device,deviee),(device,600dpi) }) and
Es=bt(tF)({(device,1200dpi),(device,address)]). Therefore, the
tuples are distributed to 8r(Tt)--{l}, 8z(T2)--[5L ~(T3)=14,5},
~:(T4)={ 1 }, 8r_(Ts)= [3 } and 8z(T6)= [2,3 }.

5.4 A n a l y s i s of the C o n c e p t
The quality of the distribution strategies highly depend on IF. E.g.
for a constant tF, no property of the tuple space scales_ However,
it is impossible to define tF automatically, if matchF is user
defined. Even though the application programmer has to
implement Iv, it is by far an easier task compared to the
implementation of a hash function. Furthermore, if (F,matchv) is
structured as a tree, it should be feasible to define a t t~IF c
automatically, as shown in Figure 3(b). Then, it is a sufficient
condition for a scaling Aw, that only actual tuples are stored in the
tuple space. This is true for many application areas and, besides, it
is a basic assumption of the approaches of section 2.2.

The finest granularity in the hypereube concept are points. All
tuples that share one point are stored on the same server. This has
to be taken into account in the definition of Iv.

T h e o r e m 5.4.1. Let ~= or ~ be the distribution and tt~IF. If
there exists an x~ [0,==) × [-1,~) d-L with

3~ ' c . .q , : Iq'l~ 03(1) ^ V T e ~ ' : X~I,a(tF)(T) ,

then SM(q) does not scale for a server q.

Proof. If i~: is applied, let q denote the server with x~Y-q. If ~ is
applied, let q denote the server as induced by G(lx}). Then, it is
~ ' ~ 5~(q), hence I~n(q)l~ ~ 1).

The effectiveness of the distribution strategy based on hashing
hypercubes has still to be examined. It strictly depends on an
appropriate mapping G, especially in regard to the dynamic

3 4 9

behaviour of the tuple space. Hence, the rest of this section is
focused on the distribution 8z that is based on tuple domains.

T h e o r e m 5.4.2. Let 5r be the distribution based on tuple
domains and tFEIv. If there is no x~ [0,==) × [-1,~=) d-t with

3~'~. .q.: I~'l~ tO(I) ,', M'TE ~ ' : x~ la(tF)(T) ,

then SM(q) scales for every server and adjusting the number of
servers takes O(1).

Proof. Assume that SM(q)~O(1) for a server q. Then, its tuple
domain is a single point Ix}, otherwise it would have been split.
Hence, I~,(q)l = SM(q)6 W(1) and X/TE ~,(q): XE Ia0F)(T). I f tuple
domains are merged or split, only two servers axle concerned, so
that adjustment is done in O(1).

An analysis of Ar requires an explicit definition of tv and of the
algorithm that merges and splits tuple domains. However, such an
algorithm has still to be researched in the future. I f the analysis of
Ar proves to be too complex, simulative methods may be applied.

5.5 C o n c l u s i o n s a n d F u t u r e W o r k
The paper has presented a formal description of tuple spaces
which takes into account different levels of expressiveness in
current tuple space implementations. Distribution strategies are
formally characterized and a deterministic model of scalability is
introduced.

The formalization provides the foundation of a new concept for
rendering tuple spaces scalable. The concept introduces an
adaptive distribution of mples based on an intermediate
representation, i.e. hypercubes. Furthermore, it generalizes former
approaches towards scaiability and thus it overcomes some of
their limi rations.

Future work is in direction of implementing a tuple space based
on the hypercube concept, in order to verify its feasibility and
effectiveness.

6. REFERENCES
[1] Bjomson , R. D.: Linda on Distr ibuted M e m o r y

Multiprocessors. PhD thesis, Yale University, TR931
(1993)

[2] Castellani, S, Ciancarini, P., Rossi, D.: The ShaPE of
ShaDE: a Coordinat ion System. Technical Repor t
UBLCS, Dipar t imento di Scienze del l ' Informazione,
UniversitA di Bologna, I ta ly (1995)

[3] Cohn, P., M.: Algebra, John Wiley & Sons, Second
Edition (1982)

[4] Corradi, A., Leonardi, L., Zambon¢ll i , F.: A Scalable
Tuple Space Model for Structured Parallel
Programming. Proceedings of the Conference on
Massively Parallel P rogramming Models , IEEE CS
Press, Pages 25-32, Berlin, Ge rmany (1995)

[5] McCreight , E. M.: Priority Search Trees , S IAM J.
Comput ing 14, Pages 257-276 (1985)

[6] E C O M (Ed.): Electronic Commerce - An Introduction.
h t tp : i /ecom.fov .uni -mb.s i (1998)

[7] Gaedke, M,, Turowski , K.: Gener ic W e b - B a s e d
Federat ion o f Business Appl icat ion Systems for E-
C o m m e r c e Applications. In: S. Conrad; W.
Hasselbring; G. Saake (Ed.): 2rid Intl. W o rk sh o p on
Engineer ing Federated Informat ion Systems (EFIS99),
Ge rmany (1999)

[8] Gelemter , D.: Generat ive communica t ion in Linda.
A C M Transact ions on Programming Languages and
Systems, 7(1): 80-112 (1985)

[9] Gelernmr, D.: Mult iple tuple spaces in Linda. In E.
Odijk, M. Rem, and J.-C. Syre, editors, P A R L E '89:
Parallel Architectures and Languages Europ¢. V o lu me
II: Parallel Languages , vo lume 366 o f Lecture Noms in
Compute r Science, pages 20-27, Springer-Verlag
(1989)

[10]Larsen, J. E., Spring, J. H.: A Dynamica l ly Fault-
Tolerant and Dynamica l ly Scalable Distr ibuted
Tuplespace for Heterogeneous, Loose ly Coupled
Networks (GLOBS) , Master thesis, Univers i ty o f
Copenhagen (1999)

[11] Luger, et el.: The Blackboard Architecture for P rob lem
Solving, Artificial Intelligence: Structures and
Strategies for Complex Prob lem Solving, Second
Edition, Chapter 5.5, Benjamin /Cummings Publishing
C o m p a n y (1993)

[12] Rowstron, A.: WCL, a Coordinat ion Language for
Geographica l ly Distr ibuted Agents. Wor ld Wide W e b
Journal, Vo lume 1, I ssue 3, 167-179 (1998)

[13] Sun Microsys tems:] avaSpaces Technology,
http:/Ijava.sun.com/productsljavaspacos (2000)

[14] Sun Microsysmms: Java, ht tp: / / java.sun.com (2000)

[15] Weiser , M.: S o m e Compute r Science Issues in
Ubiquitous Comput ing, Communica t ions o f the A C M
(1993)

[16] Wells, G., Chalmers , A.: An Extended Linda Sysmm
Using PVM. In P V M Users ' Group Meeting, Pit tsburgh
(1995)

[17]Wyckoff , P., McLaughry , S. W., I ~ h m a n , T. J., Ford,
D. A.: TSpaces , I B M Systems Journal (1998)

3 5 0

