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ABSTRACT 
Applications in eCommerce and Ubiquitous Computing ask for 
coordination of  highly distributed and hetemgenous data sources 
and services. Tuple spaces offer a data-driven coordination model, 
hence they may be used for this purpose. However, research on 
distributed tuple spaces has not resolved yet how to render tuple 
spaces scalable. This is partly due to their informal conception. 
This paper formalizes tuple spaces and introduces a new concept 
for achieving scalabillty. It generalizes existing concepts and may 
lead to scalability in some application areas. 
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1. I N T R O D U C T I O N  
Applications in the emerging fields of  eCommerce [6] and 
Ubiquitous Computing [15] are composed of  heterogenous 
systems that have been designed separately. Hence, these systems 

loosely coupled and require a coordination mechanism that is 
able to gap spatial and temporal remoteness. The use of  tuple 
spaces [8] for data-driven coordination of  these systems has been 
proposed in the past [7]. In addition, applications of  eCommerce 
and Ubiquitous Computing are not bound to a predefined size, so 
that the underlying coordination mechansim has to be highly 
scalable. However, it seems to be difficult to conceive a scalable 
tuple space. 

The paper is organized as £ollows. Chapter 2 gives an overview of 
existing approaches for achieving scalability in tuple spaces and 
their shortcomings are pointed out. Chapter 3 and 4 furmalize 
tuple spaces and scalability respectively. A proposed concept 
based on hypercobes is discussed in chapter 5. 

2. S T A T E  O F  T H E  ART 
2.1 The Original Concept and its Extensions 
A tuple space [8] is a logically shared associative memory that 
enables cooperation based on the blackboard design pattern [11]. 
Tuples may be written to the tuple space and they axe retrieved as 
specified by templates. Tuples and templates are ordered 
collections of  fields that can be either actual or formal.  An actual 
field has a specific value, whereas a formal field represents a set 
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of  values. There is no schematic restriction on how fields are 
composed to tuples and templates. A reading operation returns a 
tuple that is matched by a template. Matching is the key concept 
of topl¢ spaces, because it enables associative yet only partly 
specified retrieved of  tuples. 

Several extensions of  this concept have been proposed in the past 
[2], [7], [9], [16]. E.g. object orientation has been introduced to 
tuple spaces [2] and [7] suggests the use o f  semantic templates 
that match tuples structurally. There are several implementations 
of  tuple spaces, e.g. Linda [8], JavaSpaces [13] and T Spaces 
[ 17]. They differ in the amount of  extensions implemented. 

2.2 Prior Studies of Scalability 
A scalable tuple space is inherently distributed. Different concepts 
for dis/ributing tuples have been suggested in the past. However, 
remarkably few of  them aim at scalability. 

In [12], an adaptive mechanism is set in place that automatically 
moves tuples to the server with the lowest cost. E.g. if  an 
application exclusively uses specific tuples, they are moved to the 
server nearest to the application. Therefore, this concept improves 
performance, if access to tuples comes with locality of  space and 
time. However, some applications make use of  a tuple space, in 
order to gap space or time remoteness. Hence, this mechanism 
may lead to performance gains in some application areas, but it is 
no general concept for scalability. Yet another approach [4] 
includes replication o f  tuples and induces a logical structure on 
the servers. It is assumed that cooperating applications are 
logically near. However,  such an assumption may be correct in 
parallel processing, but not for other applications of  tuple spaces. 
Fur th=, ,ore ,  this concept is not really scalable, because some 
servers become bottlenecks due to the logical structure. In 
addition, it is difficult to dynamically adjust the number of 
s e r v e r s .  

All of these concepts strictly rely upon locality of  access and thus 
they regard tuples as black boxes. Since locality cannot not be 
assumed in general, another approach [6] disffibutes tuples based 
on a tuple's attributes. Hence, retrieval of  tuples is performed on 
servers that are determined by the template's attributes. However, 
templates do not have to fully specify the attributes of  the tuples 
that they match. Therefore, it is necessary to identify attributes 
that are shared by a template and the tuples matched. 

The use of  hash functions has been suggested [1], [10] for this 
purpose. According to its hash code, a tuple or template is 
distributed to either an arbitrary server or to all servers. Hence, the 
concept of hash functions lacks a fine granular distribution 
strategy. Furthermore, it relies on the proliferation of an 
appropriate hash function by the application programmer, if 
scalability is to be achieved. In most application areas, this is a 
highly non trivia3 task that, in addition, often is not solvable. In 
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spite of that, this contribution introduces a new concept that is a 
refinement of this approach. 

3. A N A L Y S I S  
In order to achieve scalability, structural restrictions of the scheme 
have to be exploited. E.g. in relational databases, the uniqueness 
of primary key values is used. However, the structure of tuple 
spaces as introduced in [8] has recently been extended by object 
orientation and semantic tuples [7]. As a result, tupIe spaces are 
more expressive, but important structural restrucfinns are set 
aside. E.g. in JavaSpaces [13] and TSpaces [17] matching of a 
tuple can be implemented regardless of its structure, i.e, its fields. 
Therefore, a formalization of tuple spaces must take into account 
.different levels of expressiveness. 

3.1 F o r m a l i z a t i o n  o f  T u p l e  S p a c e s  
In a first step, fields and tuples are formalized in a way, that 
integrates extentions. One key concept is to regard templates as 
tuples [7], so that matching induces a structure on tuples and 
fields. In the following, the term template depicts a tuple with a 
certain role, i.e. the specification of a reading access. 

Actual and formal tuples are introduced as vectors of fields. In 
addition, semantic tuples are defined as sets of actual and formal 
tuples. 

Fields. Let C denote the set of classes and let Ic denote the set of 
instances of c¢C, with c~c '  implying I , :~I~,=~.  The classes are 
ordered by <~_cC 2, with c ~ c '  if and only if c is c '  or c is a 
superclass of c'. Multi-inheritance is explicitly allowed, but .% has 
to be antisymmetric. Therefore, (C,<) is apartially ordered set. It 
is assumed that there exists a minimal element 2.v¢C, i.e...LF<_~c 
for all c~C. E.g. in Java [14] I v is the class o b j e c t .  Let 1 
denote the set of all instances, Elements of C axe called formal 
fields and elements o f / a r e  called actual fields. Therefore, the set 
of fields F is defined as 

F = C u  U I ~ .  
c¢c 

Let class: F -9  C denote the mapping class(c)= c =class(i) for any 
c~C and iEl.~. <~ partly implies matching on fields, because c 
matches c' if and only if c <~ c'. Furthermore, an actual field iE I~ 
has to be matched by every superclass of c. Therefore, matchFC F 2 
is a matching relation on F if and only if 

VceC: VfeF: c <~ class(f) ~ rnatehv-(c,f). 

Hence, matchvnC2=.%. This definition of matching imposes no 
restriction on matching between actual tupies. E.g. in [13], [17] 
matching is freely customizable by polymorphic matching 
methods_ 

Tuples. Let *.r~rr~j(b") and %~t,~l(F) denote the set of formal and 
actual tuples to a given set of Fields F. If the dimension of formal 
and actual tuples is not limited to a maximal dimension d, d is set 
to ,o. In addition, x(F) is defined as the set of forrna] and actual 
tuples by 

d d 
'L'(F) = U ] ~ ,  "~a~ual(F) = U I  i T, forrnal(F) = '~(F) ~ 'Uactual(F) 

i=l  i=l  

Let I-'(t0 denote the set of semantic tuples with 

d 
±s(~ = U{±,~} i E P(m(v0), ±s(~ E F(F) ~ P(*(VO) \ IOI 

i=1 

with P(A) depicting the power set [3] of A. Then 
~(F) := F(F) ux('F) is called the set oftuples. It depends on F, but 
an explicit depiction of this dependency may be omitted in later 
chapters by using ~3, l-" and x. There is at least one semantic tuple 
in ~(F), i.e. -L,~(v3- Furthermore, let III:'c('F)---)F denote the 
projection of a vector in "~(F) to the field at position i. 

Matehin~_ Let mateh~ denote the matching relation on tuples. In 
order to be as expressive as in [13], [17], no restriction for the 
matching on tuples is applied, except of match~ ~ ~(F) 2. 

Tuple Space Schemes, Let F, matchv, ~(F) and match~ denote 
sets that comply with above restrictions. Then, the quadruple 
(F, matcht~,~(F),matcha) is ca]led a tuple space scheme, q/ is 
defined as the set of tuple space schemes. 

~ t r i n g )  I 
/ 

Figure 1. Excerpt of an exemplary tuple space scheme that can 
be used in I.,inde. (F, matchF) is shown above and (~(F),match,O is 
shown below. 

Example. F and 5(17) are sets ordered by matchp and match,. 
Therefore, (F,matchF) and (3(F),match~) can be visualized as 
graphs [3]. Semantic, formal and actual fields or tuples are 
represented as rhombi, rectangles and circles. In the following, 
reflexivity and transitivity is obmitted in the figures, if obvious 
from the context. Furthermore, only parts of the graphs are shown, 
because generally F and ~(F) are infinite. Figure 1 shows an 
example of a scheme. 

Alternatively, tuples may be visualized based on the graph 
('~(F),match~). Then, semantic tuples are represented as 
hypergraphs [3]. 
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3.2 The  Subset  W* of Tuple Space Schemes 
Tuple space schemes are very expressive. Except for semantic 
tuples and multiple inheritance, JavaSpaces [13] and T Spaces 
[ 17] allow such schemes to be implemented. However, Linda [8] 
does not support object orientation, user defined field matching, 
semantic templates and user defined tuple matching. 

Therefore, the following sections are confined to the subset 
W* c_ W of quadruples (F,matchv,~3(F'),match,0 that comply with: 

a) .~:=matcht~ is an order and the infimum on F is well- 
defined. Therefore, (F,<~) is a semilattice. 

b) The only semantic tuple is -l-ate. 

c) Matching of tuples is performed by matching the fields of a 
template to the one of a tuple [8]. Hence, .<-a:=match~ is an 
order with 

--<'~ := [ {-J-0(v0} x ~ ( F )  ] ~ I (h , t2 )ex(F)  ~ I 

Ihl=lht ^ '¢ i~  [1 ..... IttlJ: match~(Yl#D,H~(tD) } . 

4. FORMALIZATION OF SCALABILITY 
This work is focused on how tuple spaces can scale up with the 
stored tuples and their retrieval. However, resources on a single 
tuple space server are limited. Therefore, tuples have to be 
distributed on several servers, in order to achieve scalability. 
Former approaches to scalability [1], [10], [12] have different 
mechanisms on how tuples and templates are assigned to servers. 
Note, that it does not suffice to achieve scalability of the total size 
of tuples stored. E.g. an approach is not scalable, if matching on 
an arbitrary template is done by querying every server. 

4.1 Dist r ibut ion  
Let p denote the number of servers that store tuples. Furthermore, 
it is supposed that the servers are indexed from ] to p. In the 
following, a server is identified by its index. Therefore, the servers 
are represented by the set { 1,...,p}. In addition, 5 depicts a set of 
tuples, as defined in chapter 3. Let A denote the set of mappings 
5--> P([ 1 ..... p } ) \ O ,  called distributions. 

Definition. ~ A is a permissible distribution i f  and only i f  

VTt ,T2E ~ :  match~(Tt ,T2)  --> 8 ( T 0 ~ $ ( T z ) ~  ~ .  

Ap denotes the set of permissible distributions. They ensure that 
matching tuples share a common server. If every tuple Tt is stored 
to 8(Tl), then it is enough to confine to 8(T2), in order to find 
tuples matched by T2. 

Example.  For an arbitrary hash function h: ~ --> Nat, [6] suggests 
the distribution ~, 

~ ( T )  := { 1 + [h(T)  rood p] ] . 

However, ~ is not a permissible distribution, because 
~ , (±a)*  [ l ..... p].  

Permissible distributions do not distinguish tuples from templates, 
although a distinction based on the role of a tuple could be 
reasonable. 

Definition. With 5w,5~A, (5,,,8r) is a permissible write~read 
distribution if and only if 

VT1,T2~ ~ :  match~(T1,Ta) --> ~(T1)C'hSw(T2) ~: ~ . 

Let Awr denote the set of permissible write/read distributions. Awr 
is not empty, since 8EAp implies (fi,8)eA~ r. Aw, can be regarded 
as the asymmetric extention of  Ap. Semantically, a tuple Tt that is 
to be written to the tuple space, is stored to 8w(Tt). Then, a 
reading access with the template T2 may be confined to 8,(T2). 
Note, that the cardinality of 8w(T) does not have to be one. Hence, 
this formalism does not impose any restriction on the replication 
of tuples among several servers. 

Example.  Let fil.S*EA with 

V T E B :  15t(T)I=I ^ 15*(T)l=-p. 

Then, (5",8t) and (~1,~') ~ both permissible write/read 
distributions. The strategy pursued by (S*,6t), is to write tuples to 
every server, so that retrieving tuples is confined to an arbitrary 
server. On the contrary, (St,~ °) implies that tuples axe only written 
to one server, hence every server has to be queried for retrieval. 
Figure 2 illustrates this principle. 

F i g u r e 2 .  (8*,St)¢Awr (above) and (St,8*)~A,,, (below). The 
arrows indicate which servers (MU) are taken into account for 
writing (W) and reading (R) a tuple. 

4.2 A Determinis t ic  Model  
Let z ~ , ~ . : q - ~ [ 0 , 1 ]  denote the mapping of toples to their 
frequency of use in write and read operations. Therefore, I'Iwr is 
defined as the set of  usage profiles (ff.~,ztr) with 

~-~.xw(T) = I -- ~'-'.Xr(T) . 
TEel TEa 

In this section, a determistic model is introduced which describes 
static and dynamic hehaviour of a tuple space. The model is based 
on a tuple space scheme (F,matchF,B (F),matcha)e ~F, a 
permissible write/read distribution ( ~ . ~ ) E  Awr and a usage profile 

(X~,rOE I'Iw~- 

Let ~ a ~  denote a multiset of  n tuples, that is the tuple space. 
B.(q) c ~n is defined as the multiset of tuples on server q by 

. (q)  := { T e  5 .  I q¢  6w(T) } • 

Let SM(q) and Sq(q) denote the resources needed on server q for 
storing tuples and for processing queries respectively. A 
processing query is a test on whether a server contains a tuple that 
is matched by a template. The unit of  SM is tuples, hence this 
models abstracts from the size of tuples. The unit  of S O is 
processing queries per time unit. It is assumed that the number of 
reading operations on the tuple space ~ ,  is proportional to the 
number of tuples n. Hence, 
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SM(q) := L~,(q)l and SQ(q) := n • ~ ( T )  . 
TEq 

qe ~, (T) 

Let A., Ar and Aa denote the average number of servers taken 
into account while proceeding a writing, reading and bulk reading 
operation [g]. 

Aw:= E=w(T).I8,,,(T l and A~.:= Ex,(T)-Ia,(T ] . 
TE~ TEa 

In bulk reading operations, every server in ~(T) has to be queried, 
even if a matching tople already has been found on one server. 
However, a reading ope~tion should stop after having found a 
tuple. Let X: [ 1 ..... p}x...q -o {0,1] denote the characteristic 
function which determines whether a given server holds a tuple 
that is matched by a given template. Furthermore, x(T) is defined 
as the number of servers in ~(T) that hold a tuple which is 
matched by a given template. Then, 

x(q,T)  = 1 : ~  3 T ' ¢ ~ , ( q ) :  matcha(T,T')  

zfT) := ~Zr(q,T). 
qGJi, (T) 

As a result, the expected number of servers queried is about 
I~-(T)I * [max(1,g(T))] -1 for a template T. Hence, 

A~ := E xrCT) 15rCT] 
"r~ max(l ,  x (T) )  " 

Note, that the definition of S O is pessimistic, since it assumes that 
every query is a bulk reading operation. This is due to the fact that 
the ratio of reading and bulk reading operations is not defined in 
this model to simplify matters. 

4 . 3  C o n c l u s i o n s  o f  t h e  M o d e l i n g  
Server resources are limited, so that they scale up only to a certain 
degree. However, scalability means that the tuple space scales up, 
even for very large n. Therefore, the load of a server has to be 
independent of n. 

Definition. The properties SM(q) and S0(q) of the server q scale if 
and only if they are elements of O(1). 

In analogy, reaponse t imes should be independent ofn.  

Definition. The properties A,, Ar and AR scale if and only if they 
are elements of O(l). 

Example. Whatever scheme is used, a scaling property opposes 
the scaling of another. E.g. in case of (~*,fil) used as distribution, 
SQ(q), A~ and Ae seaM, but $M(q) and Aw do not. For (81,fi*) Sty(q) 
and Aw scale, but S0(q), A~ and Aa do not. If tuples are not 
distributed at all (p=l), then A,,,, A r and AR scale, but SM(q) and 
S0(q) do not. 

Finally, a tuple space is called scalable, if all of its properties 
scale. 

5. AN ADVANCED CONCEPT FOR 
SCALABILITY 
As already mentioned before, one strictly relies on the systematic 
exploitation of structural restrictions, in order to conceive a 
scalable tuple space. More precisely, if the s~ucture of the graph 
(B,matehg) is known, similar tuples should be stored on the same 

server. Then, queries may be directed to servers that hold tuples 
similar to the template. However, such an approach requires a 
notion of similarity. E.g. hash functions can be used for this 
purpose [1], [10]. 

The SLrUcmre of (~3,match~) is implied by the matching on mplas. 
Therefore, an arbitrary match~ hinders a systematic exploitation. 
In such a case, matching on fields is irrelevant and information 
about the structure of (F,matchr) cannot be used. Hence, the 
concept of this chapter assumes tuple space schemes in ~ ' .  Then, 
a formal or actual tuple is a vector of fields and matching on it is 
induced by matching on its fields. Therefore, similarity of tuples 
can be expressed as similarity of their fields. 

This chapter introduces a new concept for scalability that fully 
exploits the smactore of tuples. It consists of two steps. First, the 
structure of fields is taken into account by transforming them into 
a representation that is similar to hash codes. Although this 
transformation has to be implemented in addition, it is quite 
sa'aighfforward. In a second step, the structure of tuples is 
automatically deduced by the transformation to hypereubes. They 
are able to express similarity of tuples. 

5.1 Intervals 
The distribution based on hash functions is too coarse, it either 
maps to [q} or to {1 ..... p}. The most general distribution maps to 
an arbitrary subset of { 1,...,p}, but it takes O(p) for computation 
and storage. Therefore, a distribution has to map to manageable 
subsets of {1,...,p} that on the other hand have a sufficient fine 
granularity. It seems promising to use intervals for this purpose, 
because they may be represented in O(1) and are quite fine 
granular. 

Let J(S) denote the set of intervals on an arbitrary total ordering S 
and <j a partial order on J(S) with 

VU,VEJ(S) :  U <j V <--> VuEU:  V w V :  u < v .  

Assume that tn: ~3-->J(Nat) maps a tuple to an interval of natural 
numbers. In addition, t,~ has to comply with 

VTz,T2E 5 :  matcha(T1,T2) -+ ta(T1)~ta(T2) *: ~ .  

Furthermore, assume that tn complies with the inversion, that is 

V T t , T x e ~ :  ta(Tt)~t~(T2)  ;e O -+ 

matcha(Ti,Tz) v matcha(Tz, T t ) ,  

Assume that there was such a t~t in Figure 3(a). Then, 

t~(Tj) t~ t~(Tk) = O = t~(Si) ~ tn($k) with j,k~ [ 1.2,3,4] 

and j~k. 

If ~ (1" 0 < tq (Tz) < tn (T3) < t,,(T4), then xn (S1) < t9 (Sz) < t9 (S3), too. 
Therefore, x~(Tt)<t~t(S2)<tn(T,0, so that there is no valid value 
for t9 (Sa), because tn (S2) c t~ ($4). 
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~ $4= (device, 

1200dpid.~) [ t200dpi,.I- d I 

F i g u r e 3 .  Excerpts of the graph (~,match5) above (a) and 
(F,matchv) below (b) in a service brokering scenario. Note, that 
the definition of a mapping to intervals is trivial, if  the graph is a 
tree as in (b). 

However, Figure 3(b) suggests that it is no problem to map fields 
to intervals. This is due to the tree structure of (F, matchv). 
Furthermore, ~ complies with 

Vf~,f2e F: rnateh~(ft,fT.) ~ t~(f2) ~_ t ~ f t ) .  

In conclusion, the structure of tuples is too complex to be 
described by intervals. However, intervals may be used on fields. 

5.2 Trans fo rma t ion  of Tuples to Hypercubes  
Let IF denote the set of mappings tF: F --~ J(Na0 that comply with 

Vft , f2~F:  matchF(ft,f2) ---> tv-(ft)f'~t~(fz) :/: ~ . 

Note, that IF is not empty. Furthermore, let Iv c ~ IF denote a subset 
of mappings xv-~ IF that in addition comply with 

Vf~,f2~ F: rnatch~ft , fz)  --> t~(f2) ~__ tv(ft) , 

Vft,f2~ F: t~f2)  ~ tv(ft) --> matchF(fl,f2) , 

~f~,fz~ F: tF(fi)=tF(f2) ^ f~*:f2 --> Itv-(fl)l = 1 = ItF(inf(ft,f~))l 

The last line is necessary, because a field f with Ixe(f)l= 1 may 
match a set of other fields. If  (F,matchF) is a tree, I ~  is not empty. 

The mapping of fields to intervals induces a mapping of tuples to 
hypen:ubes, as denoted by I~: I~----> [~(F) --¢ J(NatL) { -I  })d]. For 
an arbitrary l.v-~ le the mapping t~ := I~(tF) is induced with 

V te  x(F): t~ (0  = t~I ' l l( t))x. . .Xtv(I-I~l(t))x[-l ,-1] a-~' , 

lx3(lS) = [0 ,m)×  [--1 e~) d-I . 

Therefore, tuples are mapped to hypercuhes with d dimensions. 
E.g. for the mapping tv of Figure 3(b), it is 
h(tv)(-L~) = [O,.o) × [-1,o.) 2 and 

Ia(tv) ( (p r in t e r , a t t r i bu t e s , add re s s ) )  = [0 ,0]x[2,3]x[4,**) .  

T h e o r e m  S.2.1. For (F,matchv, et,matcha)~W * and t~=Ia(tF) 
with l t~  Iv, it is 

a) Vtl,t2~x: mateh~(tt,tD --> t~(tl)~t~(t2) ~e O 

b) Vt t , t #  ~:  match~(h,t2) ~ t~(tt)~t~(t2) ~: H .  

Proof. 

a) Ittl = n = It21 and it is mateh~rl](tt),l-I](tT..)) for an arbiUrary j 
with l<j~aa. Therefore, tF(Ylj(tt))~t~Ha(t2))~elZI and it 
follows ~3(tt) n ts( t2) :#  H. 

Because of Vt~'t: t,t(t) c__ t~(_l_~) the direct outcome of a). b)  

Compared to IF, ~ c  does not enhance correlation of hypercubes to 
the matching of tuples. E.g. for t~(q) = [0,2] × [0,0], 
ha(h) = [0,2] × [1,2] and ~a(t3) = [1,1] x [0,1], it is 
t~(T) = [0,2] x [0,2] with T =  [tt,t2]. Then, FIj(xq(tz))cIIj(ta(T)) 
for j¢  [1,2}, but match~(T,t3) is false. 

5.3 Dis t r ibut ion Based on Hypercubes  
The transformation of tuples to hypercubes abstracts from tuples, 
however without ignoring the structure of tuples that is induced 
by matching. Hence, the tuples may be distributed based on their 
hypercubes, which gives more room for differing distribution 
strategies. This section suggests two of them. The first one is to 
map a hypercube to a set of  natural numbers that are interpreted as 
hash codes. The other strategy introduces adaptivity into the 
distribution, since it takes into consideration, which toples are 
stored in the mple space. Therefore, every server is assigned a 
hypercube that identifies its tuple domain. Then, the distribution 
is adaptive, e-g. by splitting domains that are frequently used. In 
the following, t #  IF is assumed. 

Hash Codes. Let (3: J ( N a t u  [-1 })d __~ P(Nat) denote a mapping of 
a hypercube to a set of hash codes. E.g. such a mapping can be 
determined with CJ~del numbering, that is 

d 
G(S)  := [ ] - I p i  t+sJ I (s 1 . . . . .  Sd)~S ] 

j f t  

with [Pt,P2,---} depicting the set of  prime numbers. Then, the 
assignment 8o~ A of a tuple to a set of  servers is performed by an 
arbitrary hash function. E.g. based on [6], it is 

~i~(T) := { 1 + Ix rnod  p] I x ~ G(In( tF)(T))  } . 

T h e o r e m  5 ,3 .1 .8o  is a permissible distribution. 

Proof. If  rnatch~ (Tt,T2), Theorem 5.2.1 (b) shows 
I~ (lF)(Tt) ¢'3 Ia0,F)(T2) ~: H. Then, there is an 
xE G(Ia (IF)(TI)) ~ G(I,1 (XF)(Tz)). Hence, ~ ( T l )  n ~(T2)  ~ ~ -  

Figure 4 illustrates this concept. Note, that it is the generalization 
of the distribution based on hash functions, since they are 
identical in case of 

V T ¢  ~ :  [ IIa(tv)(T)l= 1 v I~(tF)(T)=Ia(tF)(-Lq) ] .  

However, this distribution strategy has to be refined, because 
~o('I') takes O(lI,~(tv)('l')l) in computation complexity and, for an 
arbitrary mapping G, Ifio(T)l takes O(II~(tF)(T)I), too. 
Furthermore, the servers' tuple domains do not adapt to the usage 
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profile. For  many mappings G, it is cosily to adjust the number  of  
S er~,ers. 

X 

Ns, t 
S4 

I 

============================================ 

!i!i:iii iii iii iii iii  :iiii!ii 

• J ,J ,I !== ll ill!!.!ii !ilIiiii. !{!i 

I I IBII I I 
s,l i s,I s,I  s=l s=l s,I -x= 

Figure  4. Distribution strategy based on hashing hypercubes for 
five servers [s~,--.,Ss}. The example shows tuples with one or two 
dimensions that are mapped to rectangles as induced by t~ of  
Figure 3(b). The displayed tuples are Tt=(pdnter),  
T2=(device, 1200dpi), T3=(scanner, at tributes) 
T4={ (1200dpi),(A1)}, Ts= [ (1200dpi,printer),(600dpi, scanner) i 
and T6={(address,address),(12OOdpi,12OOdpi)}. 6o is based on 
GiJdd numbering, so that 80(T0=131, 8o(Tz)=13,51, 
5o(T3)=[4,5 }, 8o(T~)={3,4,5 }, ~ (Ts)=[2 ,3  } and 
~o(Td= 12,3 A,5 }. 

Tuple  Domains.  For  each server with the index q, Eq denotes its 
hypereube. The servers' hypercubes have to comply with 

p 
U E q  = [0 ,~)×[-1 , ,~)  d-t ^ Vq ,q ' e  [1 ..... p l :  Eq~Eq, = ~ . 
q=l. 

Then, tuples T with I,~(tF)(T)~Eq identify the tuple domain of 
server q. Hence, let 6~:~ A be defined as 

~z(T) := [ q e  [ 1 ..... p} I Ia( t~)(T)  tm Eq ~ ~ ] . 

T h e o r e m  5,3,2.  6~: is a permissible distribution. 

Proof. If matchn(Tt,T2), Theorem 5.2.1(b) shows that there is a 
x~ In (t~)(T~) ~ I,~(tv)(T2). Therefore, I~ (tv)(T~) ~ I~ (tt~) (TT.) _ 
[0,**)×[-1,**) a-t implies that there is a q with XeEq. Hence, 
qe ~:(%) ~ ~z(Tg. 
This distribution strategy is illustrated in Figure 5. Note, that 
I,~(tF)(T) ~ ~ = 13 implies that there is no tuple stored on server q 
that is matched by template T. 

Unlike the other suggested strategies, the serw'rs' state is taken 
into account. Therefore, it is possible to automatically adapt the 
distribution to the usage profile of  the tuple space: If the number 
of tuples that are stored on server q exceeds maxr, the tuple 
domain of  q is split and one additional server is added. If there are 
only few tuples stored on two servers with adjacent tuple 
domains, the domains are merged. 

However, there are some problems when implementing this 
strategy. The program units that compute ~:(T) need to know 
about the servers' tuple domains. Furthermore, the computation 

has to verify for every q, whether the intersection of Ia(tF)('r) and 
Eq is empty. I f  priority search trees [5] are used, 5r(T) takes 
O((log p)d-2) in computation complexity. 

X t i~?!.!?~!~!H!ili~i!~]~kE~i~i~;i! iiiiiii!.ii!i!ii!~iiiiiiiiiiiii 

Figure  5. Distribution strategies based on tuple domains for five 
servers Is t ..... ss}. The tuples and te are the same as in Figure 4. 
However, the distribution strategy based on tuple domains is 
applied. The servers' rectangles are Et =I9 (I.F)((.LF)), 
E2=Ia (tF)((addres s,/F)), Ea=Ia (tF)((attribu tes,lF)), 
E4=I,I(1F)([ (device,deviee),(device,600dpi) }) and 
Es=bt(tF)({(device,1200dpi),(device,address)]). Therefore, the 
tuples are distributed to 8r(Tt)--{l},  8z(T2)--[5L ~(T3)=14,5}, 
~:(T4)={ 1 }, 8r_(Ts)= [ 3 } and 8z(T6)= [2,3 }. 

5.4 A n a l y s i s  of  the  C o n c e p t  
The quality of the distribution strategies highly depend on IF. E.g. 
for a constant tF, no property of the tuple space scales_ However, 
it is impossible to define tF automatically, if matchF is user 
defined. Even though the application programmer has to 
implement Iv, it is by far an easier task compared to the 
implementation of a hash function. Furthermore, if (F,matchv) is 
structured as a tree, it should be feasible to define a t t~IF c 
automatically, as shown in Figure 3(b). Then, it is a sufficient 
condition for a scaling Aw, that only actual tuples are stored in the 
tuple space. This is true for many application areas and, besides, it 
is a basic assumption of  the approaches of section 2.2. 

The finest granularity in the hypereube concept are points. All 
tuples that share one point are stored on the same server. This has 
to be taken into account in the definition of Iv. 

T h e o r e m  5.4.1.  Let ~= or ~ be the distribution and tt~IF. If 
there exists an x~ [0,==) × [-1,~) d-L with 

3~ ' c . .q , :  Iq'l~ 03(1) ^ V T e ~ ' :  X~I,a(tF)(T ) , 

then SM(q) does not scale for a server q. 

Proof. If i~: is applied, let q denote the server with x~Y-q. If  ~ is 
applied, let q denote the server as induced by G(lx}).  Then, it is 
~ ' ~  5~(q), hence I~n(q)l~ ~ 1). 

The effectiveness of the distribution strategy based on hashing 
hypercubes has still to be examined. It strictly depends on an 
appropriate mapping G, especially in regard to the dynamic 
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behaviour of the tuple space. Hence, the rest of  this section is 
focused on the distribution 8z that is based on tuple domains. 

T h e o r e m  5.4.2. Let 5r be the distribution based on tuple 
domains and tFEIv. If  there is no x~ [0,==) × [-1,~=) d-t with 

3~'~. .q.:  I~'l~ tO(I) ,', M'TE ~ ' :  x~ la( tF)(T) ,  

then SM(q) scales for every server and adjusting the number of 
servers takes O(1). 

Proof. Assume that SM(q)~O(1) for a server q. Then, its tuple 
domain is a single point Ix}, otherwise it would have been split. 
Hence, I~,(q)l = SM(q)6 W(1) and X/TE ~,(q): XE Ia0F)(T). I f  tuple 
domains are merged or split, only two servers axle concerned, so 
that adjustment is done in O(1). 

An analysis of  Ar requires an explicit definition of tv and of the 
algorithm that merges and splits tuple domains. However, such an 
algorithm has still to be researched in the future. I f  the analysis of 
Ar proves to be too complex, simulative methods may be applied. 

5.5 C o n c l u s i o n s  a n d  F u t u r e  W o r k  
The paper has presented a formal description of tuple spaces 
which takes into account different levels of expressiveness in 
current tuple space implementations. Distribution strategies are 
formally characterized and a deterministic model of  scalability is 
introduced. 

The formalization provides the foundation of a new concept for 
rendering tuple spaces scalable. The concept introduces an 
adaptive distribution of mples based on an intermediate 
representation, i.e. hypercubes. Furthermore, it generalizes former 
approaches towards scaiability and thus it overcomes some of  
their limi rations. 

Future work is in direction of implementing a tuple space based 
on the hypercube concept, in order to verify its feasibility and 
effectiveness. 

6. REFERENCES 
[1] Bjomson ,  R. D.: Linda  on Distr ibuted M e m o r y  

Multiprocessors.  PhD thesis, Yale University,  TR931 
(1993) 

[2] Castellani,  S, Ciancarini,  P., Rossi, D.: The  ShaPE of  
ShaDE: a Coordinat ion System. Technical  Repor t  
UBLCS,  Dipar t imento di Scienze del l ' Informazione,  
UniversitA di Bologna,  I ta ly (1995) 

[3] Cohn,  P., M.: Algebra,  John Wiley  & Sons, Second 
Edition (1982) 

[4] Corradi,  A., Leonardi,  L., Zambon¢ll i ,  F.: A Scalable 
Tuple  Space Model  for  Structured Parallel 
Programming.  Proceedings of  the Conference  on 
Massively Parallel P rogramming  Models ,  IEEE CS 
Press, Pages 25-32,  Berlin, Ge rmany  (1995) 

[5] McCreight ,  E. M.: Priority Search Trees ,  S IAM J. 
Comput ing  14, Pages 257-276 (1985) 

[6] E C O M  (Ed.): Electronic Commerce - An Introduction.  
h t tp : i /ecom.fov .uni -mb.s i  (1998) 

[7] Gaedke,  M,,  Turowski ,  K.: Gener ic  W e b - B a s e d  
Federat ion o f  Business Appl icat ion Systems for E- 
C o m m e r c e  Applications.  In: S. Conrad;  W. 
Hasselbring;  G. Saake  (Ed.): 2rid Intl. W o rk sh o p  on 
Engineer ing Federated Informat ion  Systems (EFIS99),  
Ge rmany  (1999) 

[8] Gelemter ,  D.: Generat ive  communica t ion  in Linda. 
A C M  Transact ions on Programming  Languages  and 
Systems,  7(1): 80-112 (1985) 

[9] Gelernmr,  D.: Mult iple  tuple spaces in Linda. In  E. 
Odijk, M. Rem,  and J.-C. Syre, editors, P A R L E  '89: 
Parallel  Architectures and Languages  Europ¢.  V o lu me  
II: Parallel Languages ,  vo lume  366 o f  Lecture  Noms in 
Compute r  Science, pages  20-27,  Springer-Verlag 
(1989) 

[10]Larsen,  J. E., Spring, J. H.: A Dynamica l ly  Fault-  
Tolerant  and Dynamica l ly  Scalable  Distr ibuted 
Tuplespace  for Heterogeneous,  Loose ly  Coupled  
Networks  (GLOBS) ,  Master  thesis, Univers i ty  o f  
Copenhagen  (1999) 

[11] Luger,  et  el.: The  Blackboard  Architecture for P rob lem 
Solving, Artificial Intelligence: Structures and 
Strategies for  Complex  Prob lem Solving, Second  
Edition, Chapter  5.5, Benjamin /Cummings  Publishing 
C o m p a n y  (1993) 

[12] Rowstron,  A.: WCL,  a Coordinat ion Language  for  
Geographica l ly  Distr ibuted Agents.  Wor ld  Wide  W e b  
Journal,  Vo lume  1, I ssue  3, 167-179 (1998) 

[13] Sun Microsys tems:  ] avaSpaces  Technology,  
http:/Ijava.sun.com/productsljavaspacos (2000) 

[14] Sun Microsysmms:  Java,  ht tp: / / java.sun.com (2000) 

[15] Weiser ,  M.: S o m e  Compute r  Science Issues in 
Ubiquitous Comput ing,  Communica t ions  o f  the A C M  
(1993) 

[16] Wells,  G., Chalmers ,  A.: An Extended Linda  Sysmm 
Using PVM.  In P V M  Users '  Group  Meeting,  Pit tsburgh 
(1995) 

[17]Wyckoff ,  P., McLaughry ,  S. W., I ~ h m a n ,  T. J., Ford, 
D. A.: TSpaces ,  I B M  Systems Journal  (1998) 

3 5 0  


