Policy-driven Distributed Authorization: Status and Prospects

(sanitized version)

Marianne Winslett
University of Illinois
A tale of two trends
Organizational boundaries used to be solid
Now boundaries are fuzzy

Why?
Competitive pressures are dissolving boundaries
Example: supply chains

1. Walmart
2. Supplier
3. Supplier
4. Supplier
5. Supplier
6. Supplier
7. 2nd level Supplier
8. 2nd level Supplier
9. 2nd level Supplier
10. 2nd level Supplier
11. 2nd level Supplier
12. 2nd level Supplier
Example: first responders
Example: any large enterprise
Distinction between insiders and outsiders becomes unclear
Corporations are also facing new pressures for accountability
Accountability includes knowing who can/did do what to your data when
Industry is taking several steps to meet these needs

Strong authentication (X.509)
Centralize role definitions, base on attributes
Get access control out of apps (some day)
So enterprises are moving toward attribute-based access control

- Based off centralized LDAP + X.509
- Avoids inconsistency due to distribution
- Easier to maintain, compared to ACLs

Less insider threat
Doesn’t this sound like a good thing?
Why this scares me:

Automated exploitation of policy errors
Why this scares me:

Centralized authorization services can be attacked
Why this scares me:

Understanding policies

Industrial policy languages were not intended for rigorous analysis or user-friendliness

Analysis tools
Do things look more promising outside of industry?

Bilateral trust
Sensitive policies and credentials

We understand this theory pretty well
Trust-negotiation-like approaches will inevitably come into use.

Authorization Server receives Alice’s LAN access request.

Auth. Server discloses access policy (on-site access for WidgetCorp employees only).

Alice discloses her policy for disclosing her WidgetCorp employee ID.

Auth. Server discloses its patch level credential, proves ownership.

Alice discloses her employee ID, proves ownership.

Auth. Server grants access to certain portions of LAN.

Beijing Office Network Authorization Server’s TrustBuilder Security Agent.
But this only means more policies, more complex decisions to explain

“Ohhhhhhh . . . Look at that, Schuster . . . Dogs are so cute when they try to comprehend quantum mechanics”

--Gary Larson
Traditional access control is transparent; TN is not

You are in the right group
Great ideas can fail if they don’t consider the human factor

The success of attribute-based policies for security and privacy, and ultimately the open and compliant systems they enable, relies on the ability of humans to comprehend and manage these policies.
Policy HCI is my #1 open problem

- Real-world case studies of policy management activities, to learn how users think about these activities
- User interfaces to help people understand and modify large, complex sets of policies
Example: Allegis policy middleware company

- Software for cross-organizational access to customer relationship management applications
- Allegis does not allow its clients to update their policies themselves

- Only policy specialists can be trusted to understand and update the policies correctly
- Even they may struggle to specify, modify, and comprehend complex policies--- note CRM focus
Large policies are as complex as any software

Declarative policy languages are not a panacea
Consider hundreds of pages of (declarative) SQL

```
SELECT a1.Name, a1.Sales, SUM(a2.Sales)/(SELECT SUM(Sales)
   FROM Total_Sales) Pct_To_Total
FROM Total_Sales a1, Total_Sales a2
WHERE a1.Sales <= a2.sales or (a1.Sales=a2.Sales and
a1.Name = a2.Name)
GROUP BY a1.Name, a1.Sales
ORDER BY a1.Sales DESC, a1.Name DESC;
```
...

And any bugs may be found and exploited automatically
What if companies manage their own policies, as is natural with ABAC?

- How can a decision-maker with limited technical expertise quickly understand a particular policy that suddenly becomes crucial?
- What if the company’s policy admin quits or is sick? How can a new hire quickly understand policies?

Ordinary users:

- Why was this decision made?
- How can I get it reversed?
- What if I ...
A proof is not an explanation

- Proofs are fundamental in TN
- But almost no one can understand a proof
- Need heuristics to turn proofs into explanations, both for ordinary users and administrators

- An explanation of why you didn’t get access, or how to get access, or what these policies say, doesn’t start from a proof
A possible solution: visual metaphors

The patient, Adam, wants to conceal prescriptions after May 2006* and lab reports after June 2006** from Dr. Gurtner [his previous physician].

The patient, Adam, wants to conceal prescriptions after May 2006* and lab reports after June 2006** from Dr. Gurtner [his previous physician].

Conceal-request(Ragib, [(Demographic)], Dr_Snir, 8/2000)
Conceal-request(Adam, [(Lab_Report, 6/2006), (Prescriptions, 5/2006)], Dr_Gurtner, NOW)
Conceal-request(Megan, [(Prescriptions, 1/2005)], Dr_Nelson, 12/2004)

Context sensitive menus could be used to set temporal and other related constraints, indicated with small icons.

Adjustable borders allow the source code and explanation windows to be selectively positioned or closed.

Marianne Winslett / POLICY 2007
A possible solution: use AI to convert proofs into explanations.
Policy analysis is the #2 open problem

We need to develop tools for analyzing large sets of policies

- Safety
- Availability
- What-if?
- Why?

both for policy administrators and ordinary users even in heterogeneous systems.

Challenges #1 & #2 should keep us busy for the next decade!
Lack of real-world experience is challenge #3

- Cassandra health care policies
- Shibboleth installations--- but only one-shot unilateral trust, with a closed set of organizations

We need more feedback from the real world to ensure that we are addressing the most important problems in policy-based authorization!
Vulnerability to attack is #4

- Centralized authorization servers are attractive target
- TN is heavyweight → DDoS is so easy
TN is heavyweight

Multiple rounds of exchange

(Nested) third-party interactions

Complex decision making processes

Expensive crypto

This is a *liability*. Solutions will require a multi-faceted approach.
Poor understanding of systems issues is #5

- How should we build the policy engine?
 - Certainly not a Datalog theorem prover!
 - How can we integrate it with strategic decisions?
 - How can we make the policy engine reusable in other contexts (e.g., for analysis)?

- How can we make a TN implementation flexible?
TrustBuilder2 addresses the flexibility problem

User-Supplied Plug-ins
- Anomaly Detection
- Logging, visualization, or instrumentation
- Policy composition or rewriting
- State inspection
- Disclosure modification
- Etc.

Policy satisfaction checking

Audit Service
- Log
- Visualization
- User Defined

Obligation Service
- User Defined
- Email
- Issue Certificate
- Alice's Obligations
- Alice's Credentials
- Alice's Policies

Query Interface

Strategy Module

Compliance Checker

Credential Verifier

External Query Processor

External Network

Message serialization

Caching

Bob's Disclosures

Alice's Disclosures

Log Visulization

User-Defined

External Network
Policy compliance checking is slow

Minimize/maximize “value” of next disclosure
Choice of “best” way to satisfy a policy depends on strategic goals

- Service availability
 - e.g., closeness to ideal completeness

- Privacy preservation
 - e.g., control leaks or minimize “value” of disclosed credentials

- Computational overheads

- Storage requirements
Rete is fast for compliance checking

Less than 4 seconds to find hundreds of satisfying sets, pick the one with minimal weight (new work)

Ships with Trustbuilder2!
Delegation and replication can improve availability, performance of decentralized ABAC

Interactive negotiation protocol

Load Balancer (e.g., Wackamole)

Transcript generation

Worker 1 Worker 2 Worker 4 ... Worker m

Transcript broadcast

Transcript verification

Access token generation (threshold cryptography)

Auth. Server 1 Auth. Server 2 ... Auth. Server n

How to integrate strategic decisions with other functionality?

I have no idea
Five other cool problems

1. How to implement sticky policies?
2. Can TN research give insights into distributed proof construction?
3. Theoretical ABAC / TN issues (pick one)
4. How to build a reputation system in a world without global identities?
5. Can programming languages use TN?
How to implement sticky policies?

I have no idea.
TN has close ties to distributed proof construction

Trust negotiation
- Bonatti and Samarati (CCS 2000)
- Yu, Winslett, and Seamons (TISSEC 2003)
- Li and Mitchell (DISCEX 2003)
- Becker and Sewell (POLICY 2004)
- Bertino, Ferrari, Squincciarini (IEEE TKDE 2004)
- Li, Li, and Winsborough (CCS 2005)
- And many others...

Logics

Policy languages

Distributed proof construction
- Bauer, Gariss, and Reiter (Oakland 2005)
- Winslett, Zhang, and Bonatti (CCS 2005)

Strategies and proof tactics
Example distributed proof of authorization

\[\text{true} \]

Querier

P₀ → P₁

P₀ → P₂

P₀ → P₄

P₁ → P₃

P₂ → P₃

P₄ → P₅
Without concrete user identities, how can we build support services?

- E.g., Reputation, audit, collusion detection
- Attribute certificates need not be bound to a particular *identity*

Observation: Each entity is described uniquely by the collection of credentials that she possesses
A Simple Pseudo-Identity

This is the same person…

\[C_{A1} \quad C_{A2} \]
\[C_{A3} \quad C_{A4} \]
\[C_{B1} \quad C_{B2} \]
\[C_{B3} \]

\[C_{B1} \]

\[C_{A1} \quad C_{A2} \]
\[C_{A1} \quad C_{A4} \]

Marianne Winslett / POLICY 2007
Virtual fingerprints are privacy-preserving pseudonyms

\[h(C_1) \quad h(C_3) \quad h(C_4) \quad h(C_n) \]

... maps to ...

A description, \(d \), ...

... a virtual fingerprint, \(f \)

Marianne Winslett / POLICY 2007
We can query reputation information associated with virtual fingerprints

Collection, update, and selection independent of aggregation

- Improved reputation functions can be incorporated
- Existing reputation models can now be used in ABAC systems
A theory problem: access decisions may not be “safe”

GeoTech DB?

Ops group? Purchase > $10k?

Ops group credential. BBB?

BBB credential

Purchase > $10k credential

Access granted!

Inconsistent State!
Incremental evaluation of credential validity may not be enough

Similar consistency problems arise in other domains
Several possible levels of consistency

- **Incremental**
 - Credentials validated as they are received

- **Internal**
 - Credentials valid simultaneously at *some* time during protocol

- **Endpoint**
 - Credentials valid simultaneously at decision point

- **Interval**
 - Credentials valid from time received until decision point
Internal consistency = transactional semantics

Parties have no incentive to cooperate in the traditional transactional manner, but new implementation approaches can be used.
In sum: my top 10 open problems for policy-based authorization

1. Policy HCI
2. Need for real-world feedback
3. Policy analysis
4. Vulnerability to attack
5. Systems issues (especially integration of strategic decisions with the rest of the system)
6. 7. 8. 9. 10. Other fun stuff