Specifying Policies Using UML Sequence Diagrams

An Evaluation Based on a Case Study

Bjørnar Solhaug, Dag Elgesem and Ketil Stølen

2007 IEEE Workshop on Policies for Distributed Systems and Networks, Bologna, 13 June 2007

Motivation and Objective

- Policies are increasingly being used for the management of information systems
- The UML is currently the de facto standard for the modeling of information system
- Can we specify policies using the UML?
- The UML is not a policy specification language
- Objective: Evaluate the suitability of using the UML for policy specification
 - Specifically UML sequence diagrams

Sequence Diagrams

Policy Concepts

A policy is a set of rules governing the choices in the behavior of a system (M. Sloman, 1996)

Kripke Semantics for Deontic Logic

State Triggered Permission

Software engineers are **permitted** to configure TC when time is between 10pm and 4am

Kripke Semantics for Deontic Logic

Implied Prohibition

Software engineers are **permitted** to configure TC when time is between 10pm and 4am

Evaluation – Deontic Expressions

- Sequence diagrams can express permissions, obligations and prohibitions
- Fulfill the requirements to the semantics as defined in standard deontic logic
- Particularly, the following hold
 - $OBp \rightarrow PEp$ (SDL axiom)
 - $PEp \leftrightarrow \neg OB \neg p$ (SDL definition)
 - $PRp \leftrightarrow OB \neg p$ (SDL definition)
- But with state triggers, we additionally get
 - $p \rightarrow PEq$ implies $\neg p \rightarrow PRq$
 - $p \rightarrow PRq$ implies $\neg p \rightarrow PEq$

Evaluation

Future Work

- Based on the evaluation
- introduce customized policy specification constructs
- with a semantics matching deontic logic
- The syntax and semantics should capture the theory of standard deontic logic