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XACML, eXtensible Access XACML, eXtensible Access 
Control Markup LanguageControl Markup Language

● An XML-based access control policy language
– This work based on the current version 2.0

● Information about an attempted access is described 
in terms of attributes of the Subject, Resource, 
Action and Environment

● Policies are functional expressions based on the 
attributes

● Output is a Permit/Deny/NotApplicable decision
– (Or ”Inderminate” which indicates an error)
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XACML architectureXACML architecture
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Policy Combining in XACMLPolicy Combining in XACML

● Policies can be collected in PolicySets
● All policies are evaluated separately

– Each will say Permit/Deny/NotApplicable
● A Policy Combining Algorithm is used to resolve 

conflicts
– ”permit overrides”, ”deny overrides”, ”first applicable”, 

etc



Policy 2007, 13th June 2007 5

Obligations in XACMLObligations in XACML

● A policy may contain ”Obligations”
● An obligation consists of an identifier and optional 

parameter values
● An obligation is an additional action which the 

policy enforcement point has to implement
– The identifier defines the semantics of the obligation
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Issues with obligationsIssues with obligations

● The treatment of obligations is quite simple
– They are simply collected into a set from the applicable 

policies
● There is no mechanism for resolving conflicts 

between obligations
– For instance ”log in detail” vs ”protect privacy”

● This paper contributes a conflict resolution 
mechanism for obligations
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Previous work on generalization Previous work on generalization 

● Categorization by Michiharu Kudo
– Aim to understand what use cases there are for more 

general treatment of obligations in XACML
– Atomic, Sequential, Asynchronous, Supplemental, 

Data-processing
● Bill Parducci has described the categories in terms 

of parameters
– Exclusive, Timing, Sequence
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Access control overrideAccess control override

● We have used access control override as our use case
● Consider the policy:

– A doctor may read the records of any patient of which he is the 
primary physician

– A doctor may read the records of any patient whose life is at threat
● The second rule cannot be implemented on a computer

– A computer cannot know if life is at threat or not
● But we don’t want to close up the system either

– That could be fatal, literally…
● Solution: let the doctor make the decision, but audit extra 

carefully to prevent abuse
– Need to mark certain rules for strict audit
– Better than fully open system: less logs to look at
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Implementing override in Implementing override in 
XACMLXACML

● Essentially we need to move beyond the 
Permit/Deny decision of XACML
– Permit, Deny, Override

● Obligations could be a simple method to do this
– Define an obligation which means that a warning 

message is displayed and a special audit log record is 
written

– Three possible decions: Deny, Permit and Permit with 
override obligation



Policy 2007, 13th June 2007 10

The problem using obligationsThe problem using obligations

● How do we resolve the conflict in decision 
between a ”regular permit” and a ”permit with an 
override obligation”?
– If both would apply to a request, we want the normal 

permit to have precedence
● XACML lacks this kind of conflict resolution
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Solving with ordered combiningSolving with ordered combining

● One approach is to use a first applicable policy 
combining algorithm

● Just put the ”regular permits” first in the policy set
– The override policies/rules will never be reached if a 

regular permit is applicable
● Problem: keeping policies in order may not be 

practical in a distributed administration case
– This leads to a need of a global view of the policies and 

a risk that someone messes up the order
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Solving with a custom policy Solving with a custom policy 
combining algorithmcombining algorithm

● It is (at least practically) possible to write a policy 
combining algorithm which looks at the 
obligations as well, in addition to the Permit/Deny 
decisions

● However, this is a bit of a kludge, and it would be 
better to have a more explicit, standardized 
solution
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What we didWhat we did

● First combine effects from policies
– (Essentially the regular policy combining algorithms)

● After this, a number of obligation combining 
algorithms may be called
– Each obligation combining algorithm recognizes 

particular types of obligations, removes conflicts and 
passes the others to the other algorithms

● At the end, the remaining obligations are returned  
to the PEP
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The effects combining algorithmThe effects combining algorithm

● Combines the policies into an aggregate decision 
and collects obligations into a list
– (In contrast to a set in plain XACML)

● The output looks like this:
– <Effect, [obl1, obl2, …, oblN]>
– Effect is the combined decision (Permit/Deny)
– obl1, …, oblN are sets of obligations from the policies 

(kept separate)
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Obligation combining inputObligation combining input

● An obligation combining algorithm takes as input:
– <Effect, [obl1, obl2, …, oblN], Obls, WS>
– Effect is the decision of the policy set
– obl1, …, oblN are sets with the obligations to combine
– Obls is a set of obligations from the policy set itself
– WS is a working set of already combined obligations

● (WS starts empty)
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Obligation combining chainingObligation combining chaining

● The output of an obligation combining algorithm is 
of the same form as the input

● The algorithm is free to remove any obligations it 
recognizes from the list and ”Obls” set
– After any conflicts have been resolved, the output of the 

algorithm is placed in the working set
● The input of the first obligation combining 

algorithm is the output of the effects comb alg
● The output of an obligation combining algorithm is 

the input of the next obligation combining alg
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Schema changesSchema changes

● A new element called <OblgCombAlg> as a child 
to the <PolicySet> element

● This element lists the obligation combining 
algorithms which should be applied
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Example 1Example 1

• Combine effects (permit overrides) 
and collect obligations:

• <Permit, 
[[OVR],[OTH],[]],OTH’,[]>

• Override-combining algorithm gives 
priority to policy without OVR 
obligation and removes the OVR 
obligation:

• <Permit, [[],[OTH],[]],OTH’,[]>
• Any other obl comb algs could be 

called. (Not shown)
• The final result will not contain the 

OVR obligation
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Example 2Example 2

• Combine effects (permit overrides) 
and collect obligations:

• <Permit, [[OVR]],OTH’,[]>
• Override-combining algorithm does 

not find a policy without an OVR 
obligation, so it collects the OVR 
obligation:

• <Permit, [[]],OTH’,[OVR]>
• Any other obl comb algs could be 

called. (Not shown)
• The final result will contain the 

OVR obligation
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Issues with this solutionIssues with this solution

● Bill Parducci’s critique
– Requires new code in the PDP for new types of 

obligations, which is not practical
● Does not take into account all use cases from 

Michiharu Kudos work on categories
– For instance order or timing may be significant
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Recent work in the XACML TCRecent work in the XACML TC

● Recent work (after paper submission) by Bill 
Parducci and Erik Rissanen

● Build on top of this paper and the work by Bill 
Parducci and Michiharu Kudo
– Basic idea is still an obligation combining algorithm 

which recognizes particular obligations
● But it is now called ”Obligation family”

– Family templates based on ideas from Bill Parducci
● The composite obligations can be defined in a policy, rather 

than being part of the algorithm definition
● Parameters of families affect behavior

– Inspired by use cases by Michiharu Kudo
● Takes order of obligations into account
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ConclusionsConclusions

● We can solve the override use case
● We have provided a first simple approach to 

resolve conflicts between obligations in XACML
● Further work will allow more complex use cases 

and easier implementation
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Questions?Questions?
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