
Policy 2007, 13th June 2007 1

Overriding access control in Overriding access control in
XACMLXACML

JaJa’’far far AlqatawnaAlqatawna
Erik RissanenErik Rissanen
Babak SadighiBabak Sadighi

Policy 2007, 13th June 2007 2

XACML, eXtensible Access XACML, eXtensible Access
Control Markup LanguageControl Markup Language

● An XML-based access control policy language
– This work based on the current version 2.0

● Information about an attempted access is described
in terms of attributes of the Subject, Resource,
Action and Environment

● Policies are functional expressions based on the
attributes

● Output is a Permit/Deny/NotApplicable decision
– (Or ”Inderminate” which indicates an error)

Policy 2007, 13th June 2007 3

XACML architectureXACML architecture

Policy Decision
Point

Policy Enforcement
Point Resource

Response

Additional
attributes

Request
with attributes

Policies

User of a resource

Policy 2007, 13th June 2007 4

Policy Combining in XACMLPolicy Combining in XACML

● Policies can be collected in PolicySets
● All policies are evaluated separately

– Each will say Permit/Deny/NotApplicable
● A Policy Combining Algorithm is used to resolve

conflicts
– ”permit overrides”, ”deny overrides”, ”first applicable”,

etc

Policy 2007, 13th June 2007 5

Obligations in XACMLObligations in XACML

● A policy may contain ”Obligations”
● An obligation consists of an identifier and optional

parameter values
● An obligation is an additional action which the

policy enforcement point has to implement
– The identifier defines the semantics of the obligation

Policy 2007, 13th June 2007 6

Issues with obligationsIssues with obligations

● The treatment of obligations is quite simple
– They are simply collected into a set from the applicable

policies
● There is no mechanism for resolving conflicts

between obligations
– For instance ”log in detail” vs ”protect privacy”

● This paper contributes a conflict resolution
mechanism for obligations

Policy 2007, 13th June 2007 7

Previous work on generalization Previous work on generalization

● Categorization by Michiharu Kudo
– Aim to understand what use cases there are for more

general treatment of obligations in XACML
– Atomic, Sequential, Asynchronous, Supplemental,

Data-processing
● Bill Parducci has described the categories in terms

of parameters
– Exclusive, Timing, Sequence

Policy 2007, 13th June 2007 8

Access control overrideAccess control override

● We have used access control override as our use case
● Consider the policy:

– A doctor may read the records of any patient of which he is the
primary physician

– A doctor may read the records of any patient whose life is at threat
● The second rule cannot be implemented on a computer

– A computer cannot know if life is at threat or not
● But we don’t want to close up the system either

– That could be fatal, literally…
● Solution: let the doctor make the decision, but audit extra

carefully to prevent abuse
– Need to mark certain rules for strict audit
– Better than fully open system: less logs to look at

Policy 2007, 13th June 2007 9

Implementing override in Implementing override in
XACMLXACML

● Essentially we need to move beyond the
Permit/Deny decision of XACML
– Permit, Deny, Override

● Obligations could be a simple method to do this
– Define an obligation which means that a warning

message is displayed and a special audit log record is
written

– Three possible decions: Deny, Permit and Permit with
override obligation

Policy 2007, 13th June 2007 10

The problem using obligationsThe problem using obligations

● How do we resolve the conflict in decision
between a ”regular permit” and a ”permit with an
override obligation”?
– If both would apply to a request, we want the normal

permit to have precedence
● XACML lacks this kind of conflict resolution

Policy 2007, 13th June 2007 11

Solving with ordered combiningSolving with ordered combining

● One approach is to use a first applicable policy
combining algorithm

● Just put the ”regular permits” first in the policy set
– The override policies/rules will never be reached if a

regular permit is applicable
● Problem: keeping policies in order may not be

practical in a distributed administration case
– This leads to a need of a global view of the policies and

a risk that someone messes up the order

Policy 2007, 13th June 2007 12

Solving with a custom policy Solving with a custom policy
combining algorithmcombining algorithm

● It is (at least practically) possible to write a policy
combining algorithm which looks at the
obligations as well, in addition to the Permit/Deny
decisions

● However, this is a bit of a kludge, and it would be
better to have a more explicit, standardized
solution

Policy 2007, 13th June 2007 13

What we didWhat we did

● First combine effects from policies
– (Essentially the regular policy combining algorithms)

● After this, a number of obligation combining
algorithms may be called
– Each obligation combining algorithm recognizes

particular types of obligations, removes conflicts and
passes the others to the other algorithms

● At the end, the remaining obligations are returned
to the PEP

Policy 2007, 13th June 2007 14

The effects combining algorithmThe effects combining algorithm

● Combines the policies into an aggregate decision
and collects obligations into a list
– (In contrast to a set in plain XACML)

● The output looks like this:
– <Effect, [obl1, obl2, …, oblN]>
– Effect is the combined decision (Permit/Deny)
– obl1, …, oblN are sets of obligations from the policies

(kept separate)

Policy 2007, 13th June 2007 15

Obligation combining inputObligation combining input

● An obligation combining algorithm takes as input:
– <Effect, [obl1, obl2, …, oblN], Obls, WS>
– Effect is the decision of the policy set
– obl1, …, oblN are sets with the obligations to combine
– Obls is a set of obligations from the policy set itself
– WS is a working set of already combined obligations

● (WS starts empty)

Policy 2007, 13th June 2007 16

Obligation combining chainingObligation combining chaining

● The output of an obligation combining algorithm is
of the same form as the input

● The algorithm is free to remove any obligations it
recognizes from the list and ”Obls” set
– After any conflicts have been resolved, the output of the

algorithm is placed in the working set
● The input of the first obligation combining

algorithm is the output of the effects comb alg
● The output of an obligation combining algorithm is

the input of the next obligation combining alg

Policy 2007, 13th June 2007 17

Schema changesSchema changes

● A new element called <OblgCombAlg> as a child
to the <PolicySet> element

● This element lists the obligation combining
algorithms which should be applied

Policy 2007, 13th June 2007 18

Example 1Example 1

• Combine effects (permit overrides)
and collect obligations:

• <Permit,
[[OVR],[OTH],[]],OTH’,[]>

• Override-combining algorithm gives
priority to policy without OVR
obligation and removes the OVR
obligation:

• <Permit, [[],[OTH],[]],OTH’,[]>
• Any other obl comb algs could be

called. (Not shown)
• The final result will not contain the

OVR obligation

Policy 2007, 13th June 2007 19

Example 2Example 2

• Combine effects (permit overrides)
and collect obligations:

• <Permit, [[OVR]],OTH’,[]>
• Override-combining algorithm does

not find a policy without an OVR
obligation, so it collects the OVR
obligation:

• <Permit, [[]],OTH’,[OVR]>
• Any other obl comb algs could be

called. (Not shown)
• The final result will contain the

OVR obligation

Policy 2007, 13th June 2007 20

Issues with this solutionIssues with this solution

● Bill Parducci’s critique
– Requires new code in the PDP for new types of

obligations, which is not practical
● Does not take into account all use cases from

Michiharu Kudos work on categories
– For instance order or timing may be significant

Policy 2007, 13th June 2007 21

Recent work in the XACML TCRecent work in the XACML TC

● Recent work (after paper submission) by Bill
Parducci and Erik Rissanen

● Build on top of this paper and the work by Bill
Parducci and Michiharu Kudo
– Basic idea is still an obligation combining algorithm

which recognizes particular obligations
● But it is now called ”Obligation family”

– Family templates based on ideas from Bill Parducci
● The composite obligations can be defined in a policy, rather

than being part of the algorithm definition
● Parameters of families affect behavior

– Inspired by use cases by Michiharu Kudo
● Takes order of obligations into account

Policy 2007, 13th June 2007 22

ConclusionsConclusions

● We can solve the override use case
● We have provided a first simple approach to

resolve conflicts between obligations in XACML
● Further work will allow more complex use cases

and easier implementation

Policy 2007, 13th June 2007 23

Questions?Questions?

	Overriding access control in XACML
	XACML, eXtensible Access Control Markup Language
	XACML architecture
	Policy Combining in XACML
	Obligations in XACML
	Issues with obligations
	Previous work on generalization
	Access control override
	Implementing override in XACML
	The problem using obligations
	Solving with ordered combining
	Solving with a custom policy combining algorithm
	What we did
	The effects combining algorithm
	Obligation combining input
	Obligation combining chaining
	Schema changes
	Example 1
	Example 2
	Issues with this solution
	Recent work in the XACML TC
	Conclusions
	Questions?

