
Autonomous Pervasive Systems and the Policy
Challenges of a Small World!

Emil Lupu

Imperial College London

University of Bologna

• Oldest University in Europe

(certainly the oldest medieval).

• Born out of conflict: the papal-

imperial rivalry, restrictions put

by the church on learning and

in particular on common law.

• Lack of protection of non

“citizens” leads to the

formation of guilds

(“universitas”).

• In essence a school of law.

• A university ran by the students.

Policy (Bologna University style):

• Doctors elected by students.

• Curriculum must be agreed by
the students.

• Curriculum must be divided into
two-weekly puncta.

• Doctors who start lectures late or
finish late must pay a fine.

• Doctors who fail to attract at
least 5 students are deemed
absent and fined.

• Doctors must pay a deposit
before being allowed to leave the
city to ensure their return.

Policy at Bologna

Peter Watson
Ideas: A history from Fire to Freud

Phoenix Publ. 2005

Policies are for
Large Systems

Policies

• Originally introduced to separate the strategy for resource allocation in OSs

from the mechanisms controlling the resources.

R Levin et al.�Policy/Mechanism Separation in Hydra. 5th Symp. on Operating
Systems Principles (SOSP), November 1975.

• Became popular in large centralised access control systems and

subsequently, in the early 90’s, for managing large networks and distributed

systems.

• Policies apply to large sets of objects providing uniform configuration.

• Provide the means to automate adaptation across large systems

Policy Areas

Network and
Systems

Management

Access Control and
Security

Management

Enterprise
Distributed Object

Computing

Policy Workshop
1999

Privacy

Trust

Business Rules

Multi-Agent Systems

Web-Services

SLAs

Negotiation

Semantic Web Data Centric Security

Policies for Large Systems
require Complex Policy Systems

• Build on complex software infrastructure: CIM, LDAP, Storage, Databases,

Web-Services (WS-*), Grid-Environments, ...

• Systems are functionally separated. A function realised for the entire system

e.g., Authentication, Fault-Diagnostics, Accounting, ...

• Architectures are tightly coupled, making in difficult and laborious to add new

elements.

• Computational power is infinite (or almost). Components are always available

• Policies are replacing human actions.

Examples: Ponder

LDAP Server

Domain Service
Front End

HypTree Browser

Editor

Policy

Object

enable

Enforcement

Agents

enable

DeletedDormant

Loaded

Enabled

load unload

disable

Access

Controllers

(Authorisation

Policies)

Policy

Management

Agents

(Obligation &

Refrain Policies)

Deployment

Policy

Source

Text

Code

Assembler

Call Policy-

Service to store

policy code in

directory

IC

Scope/

Type

Analysis

Semantic

Analyser

AST

Syntax

Analyser

(SableCC)

Syntax

Analysis

XML

Code Generator

Java security

Code Generator

Win2000 security

Code Generator

...

Java obligation

policies

Compiler

OPOs

RPOs
load, enable,..

checkRefrains

enable,disable

eventHandler

obligMethod

enable,disable

checkRefrain

register, ...

eventEngine

ACs

OEOs

REOs

Policy Management Agent
Event Service

Access Controllers

1 2 3

7

4

56

2

8

9 Enforcement

Configuration
Manager

Toolkit

London

network

edge router

edge

router

Paris

network

tr1

instinst

mstruct /london/tr1 = trafficT(op1, qos1)

core network

tr2

mstruct /paris/tr2 = trafficT(op1, qos2)

Roles, Rel
Management

Structures

CIM

DiffServ

Analysis
Refinement

Lessons

• Development intensive requiring numerous services that depend on many

underlying systems and packages. Must be able to rely on commercial policy

products ... which aren’t there.

• Difficult to maintain, distribute and demonstrate. Numerous queries received

about the Ponder toolkit were about LDAP installation and configuration.

• Difficult to integrate with new techniques: planning, context, analysis, security

and management ...

• Policies replace human (administrator) led activity. Typically compared with

scripting and ad-hoc human-driven solutions. Poor short term ROI.

Need to provide “advantage”: analysis, refinement and validation.

Need to provide benchmarking and proof of scale up.

Policy Outset

• Policy motivated by arguments of

scale

• Industry cannot deliver the

products and benchmarks

• Academics cannot deliver

convincing demonstrations

• Restrict to theoretical work.

• Small proof of concept for

individual techniques.

Autonomous Pervasive Systems
... at any scale

Cardiac Monitoring

Power

RF

Control

Primary unit Secondary unit

Signal conditioning Antenna Antenna

Control

RF

Tertiary unit/Central Server

Battery

Sensors

UbiMon Body Sensor Node

The BSN platform

- TinyOS

- Ultra low power 16 bit processor

- 64KB + 256KB Flash memory

- 6 analog channels

- IEEE 802.15.4 (Zigbee) wireless link

Body Area Networks for eHealth

• Implanted and wearable sensors:

Heart monitoring, blood-pressure,

oxygen saturation, etc.

• Continuous monitoring of

physiological condition e.g.,

cardiac arrhythmia.

• Maintenance of chronic

conditions: heart deficiencies,

diabetes mellitus, chronic

anaesthesia

• Incremental drug delivery. Context

dependent drug delivery.

• Remote interrogation

• Alert for emergency interventions.
Body Area Networks

Requirements

• Continuous adaptation:

• sensor failures, new sensors and

diagnostic units

• changes in user activity and

context

• changes in the patient’s medical

condition

• interactions with other devices

in different environments: home,

hospital, GP clinic

• Minimal resource (power)

consumption

• No administrator interactions

• Low-coupling

• Support for Interactions

• peer-to-peer interactions

between devices

• composition between

subsystems

• federation between collections

of devices

• Decision making: goal-driven,

heuristics, utility

• Learning: classification, statistical,

declarative

Policy-based closed adaptation loop

Control

actions
Decisions

Managed
Objects

Monitor
Events

Manager

Agent

Events

Policies

(auth)

New functionality Policies

(oblig/ECAs)

Policies in Healthcare Environments

• Obligations define which operations need to be performed when certain

events occur. Event-Condition-Action Rules

• Authorisations define which operations are permitted and under which

circumstances.

• Other policy types: Membership management, Information Filtering, Trust

Management, Delegation, Negotiation, etc.

• Policies applied to different functional areas: device and service discovery,

device configuration, authentication and authorisation, privacy,

collaborations, ...

The Controller: Gumstix

• 200-400MHz (Intel XScale PXA255)

16 MBFlash

Bluetooth

• Expansion boards: Wifi, Eth, Cf or

MMC, audio, GPS

• Linux 2.6

• GCC, JamVM and other

development tools

• 802.15.4 through connected BSN

Autonomous Unmanned Vehicles

• Each vehicle is

an autonomous

collection of

managed

devices with

different

functional

capabilities

• Must be

extensible to

different sensors

and modules

• Can aggregate

and collaborate

in fleets of

autonomous

vehicles

• Must interact

with external

environment

Building Integration

• Instrumentation

of in-door

environments:

multimedia,

assisted living for

the elderly

• Discovery and

autonomy across

nested

collections of

devices

• Interactions with

persons (and

their personal

area networks)

• Composition and

federation that

follows: physical

space, functional

space

Citywide environments

• How do we build next generation

pervasive city infrastructures?

• Composition federation and

interaction of pervasive spaces.

• Interactions with mobile users

and groups of users.

• Space as catalyst for social

interaction

Pervasive Spaces

PAN Control

ControlControl

actionsactions
DecisionsDecisions

ManagedManaged

ObjectsObjects

MonitorMonitorEventsEvents

ManagerManager

AgentAgent

EventsEvents

PoliciesPolicies

New functionalityNew functionality PoliciesPolicies

ControlControl

actionsactions
DecisionsDecisions

ControlControl

actionsactions
DecisionsDecisions

ManagedManaged

ObjectsObjects

MonitorMonitorEventsEvents MonitorMonitorEventsEvents

ManagerManager

AgentAgent

EventsEvents

ManagerManager

AgentAgent

EventsEventsEventsEventsEventsEvents

PoliciesPoliciesPoliciesPolicies

New functionalityNew functionalityNew functionalityNew functionality PoliciesPoliciesPoliciesPolicies

Personal Area Networks

Pervasive
Environments

Appliance

 Control

ControlControl

actionsactions
DecisionsDecisions

ManagedManaged

ObjectsObjects

anageranager

AgentAgent

PoliciesPolicies

New functionalityNew functionality PoliciesPolicies

ControlControl

actionsactions
DecisionsDecisions

ControlControl

actionsactions
DecisionsDecisions

ManagedManaged

ObjectsObjects

anageranager

AgentAgent

anageranager

AgentAgent

PoliciesPoliciesPoliciesPolicies

New functionalityNew functionalityNew functionalityNew functionality PoliciesPoliciesPoliciesPolicies

Intelligent Home
Networks

Autonomous
Vehicles

A common pattern

• That can be used at different levels of scale: body area networks, unmanned

vehicles, intelligent homes, and large distributed systems and networks.

• That can provide self-management and closed-loop adaptation at the local

level.

• That can provide different levels of functionality.

• That is architectural as well as functional.

• Provides low-coupling between the different services.

Self-Managed Cells

... and the first
Architectural Steps

What is a Self-Managed Cell?

• A set of hardware and software components forming an administrative

domain that is able to function autonomously and thus capable of self-

management.

• Management services interact with each other through asynchronous events

propagated through a content-based event bus.

• Policies provide local closed-loop adaptation.

• Able to interact with other SMCs and able to compose in larger scales

SMCs.

Self-Managed Cell (SMC)

Control
actions

DecisionsManaged
Objects

Monito

Events

Manager
Agent

Events

Policies

New functionality` Policies

SMC Pattern

• Provides low-coupling between the different services.

• Permits the use of different service implementations when used at different

levels of scale.

• Permits to add services to SMCs in order to add functionality:

• Context service(s) for mobile users and gathering information from the

environment.

• Authentication, Access Control and other security services.

• Provisioning and Optimisation services for control of resources

SMC Core Services

• Discovery Service

(including membership management)

• Event Service

• Policy Service

Control
actions

Decisions

Managed
Objects

Monitor
Events

Manager
Agent

Events

Policies
(auth)

New functionality Policies
(oblig/ECAs)

Cell Discovery Service

• Discovers new devices and maintains membership to detect failures and

departures from cell.

• Queries device for its profile and services;

• Performs vetting functions e.g. authentication, admission control.

• Listens for new service offers and service removals from the devices

• Generates events to signal new/disconnected devices or software

components. Interested services can subscribe, receive and react to these

events.

• Own implementation developed to cater for BSN nodes and policy

configurable parameters but other protocols e.g., SDP, SLP, ... could be used

in other environments.

Cell Event Service

• Publish/Subscribe with content based router.

• At-most-once, reliable event delivery.

• To an individual recipient events are delivered in the same order as received

by the router.

• Quenchable publishers to minimise number of messages and power

consumption.

• Supports heterogeneous communication.

Event Service Architecture

proxy S1

proxy S2

proxy P1

subscription
filtering

S1

S2

undelivered
messages

P1

S1

S2

filter(s)

RouterPublisher Subscribers

NewDevice DeviceLeft

Policy Service: Ponder2

... the same, yet very different

http://ponder2.net

Policies for Different Functional Areas

• Device and Service Discovery. How to react to new devices and services and

their disappearance.

• Membership Management.

• Context Management. How to react to changes in location, activities of the

user, surrounding environment.

• Clinical Management. How to react to changes in the clinical condition.

• Security Management.

• Policy Management. Enable, disable, unload policies.

Ponder2 Design Goals

• Permit interaction with a running SMC

• invoking operations on objects

• policy creation, activation, etc.

• Only loads what is needed

• Can be extended (dynamically)

• Must run on a Gumstix (and possibly on

BSN nodes)

Ponder2 Design Process

Design

Remove

Ponder2

• Supports both obligation policies in the form of Event-Condition-Action rules

and authorisation policies. Therefore it requires:

• Managed Objects to represent resources and invoke operations on

external services

• Domains to group objects and specify policies in terms of domains of

objects.

• Events to trigger policies and interactions with the event bus.

• Policies of multiple kinds.

• Object invocations to implement policy actions

...

Ponder2 Policy Service

Cell Policy

Interpreter

Managed Objects

Event

Policy Objects

PonderTalk

Commands

(and Policies)

Policy

Service

Domains

Holds refs to managed

objects: Devices, SMCs,

Policies, Roles, etc

Actions

Events

Ponder2, try again

• The Policy Service requires:

• Convention for loading and creating Managed Objects

• Invoking operations on Managed Objects

• Root domain (that does not know it is a domain)

• That’s it!

• Domains, policies, events, ... are themselves managed objects that follow the

same conventions.

Bootstrapping Ponder2 in PonderTalk

• SMC is just an empty

domain - root

• Import domain factory

• Create domains

• Import basic factories

• Read more PonderTalk

// Bootstrap code for Ponder2

// Import the Domain code
// and create the default domains
domainFactory := root load: "Domain".
root

at: "factory" put: domainFactory create;
at: "policy" put: domainFactory create;
at: "event" put: domainFactory create.

// Put the domain factory into the factory directory
root/factory at: "domain" put: domainFactory.

// Import event and policy factories
root/factory

at: "event" put: (root load: "EventTemplate");
at: "oblig" put: (root load: "ObligationPolicy").

Managed Objects

• A managed object

• Conforms to a set of interface rules.

• Created through a factory

• Accepts commands

• Several pre-defined types of managed

objects: domains, policies, factories,

external, events

Policy
service

RMI

.jar file

import

import

import

External

Internal
Factory

/

/svc /fact

RMI

factory
object

remote
invocation

<<create>>

Writing a new Managed Object

• A Managed Object is a Java class

• PonderTalk messages converted to method calls

• Constructors called by factory messages

• Instance methods called by operational messages

• Mapping done by @Ponder2op Java annotation

• uses apt Annotation Processing Tool instead of javac

public class MyManagedObject
implements P2ManagedObject {

private Map<String, OID> data;

@Ponder2op("create")
 MyManagedObject() {

data = new HashMap<String, OID>();
 }

@Ponder2op("size:")
 MyManagedObject(int size) {

data =
new HashMap<String, OID>(size);

 }

@Ponder2op("at:put:")
 OID store(String name, OID oid) {

data.put(name, oid);
return oid;

 }

 @Ponder2op("at:")
 OID get(String name) {

return data.get(name);
 }

@Ponder2op("remove:")
 OID remove(String name) {
return data.remove(name);

 }

}

Example: a HashTable Managed Object

41

apt

create
size: int
at: name put: OID
at: name
remove: name

P2MyManagedObject
MyManagedObject()
MyManagedObect(int size)
store(String name, OID oid)
get(String name)
remove(String name)

MyManagedObject

<<interface>>
ManagedObject

ManagedObject

/

event fact

<<create>>

intrusion compromise

inst

event
types

XML
Blaster WS-Notif

Events in Ponder2

• Event = notification with named

attributes.

• Trigger policies.

• An event factory interfaces with an

external event bus.

• Multiple factories can be used.

• Event types (templates) are created

by factories.

Example: Discovery of new BSN sensor

• Discovery service issues events when BSN is detected or lost

newevent := root/factory/SMCeventbus.

// newBSN event type

root/event
 at: "newBSN"
 put: (newevent create: #("name" "type")).

// example of raising an event
root/event/newBSN

create: #("Temp1" "TempMon").

Policies

• Created with policy factory

• Dynamically associate events,

actions and conditions with a

policy

• Can be activated and deactivated

• Are managed objects. Can be

moved, deleted, created,

activated, deactivated by other

policies

• Actions and conditions are blocks

Blocks

•Blocks are objets that group

statements.

•Block execution is delayed

•Blocks can take arguments

•Blocks are closures

•Blocks return the result of their last

statement

Discovery Policies

• When a new BSN sensor is

discovered a policy is used to

create the appropriate adaptor

managed object

• Adaptor object acts as proxy for

the BSN and can receive

commands for them e.g. setrate

// Create discovery policy
newpolicy := root/factory/oblig.

discBSN := newpolicy create.
discBSN
 event: root/event/newBSN;
 action: [:name :type |

root/template/bsnAdaptor
create: name
setActive: type

];
 setActive: true.

Blood Pressure Policy

• on bp(value)

 if (value>150)

 && oldValue<=150

• do

 /bsn/HEART1

 .set(sensorRate=1)

 /alarm.alarm(on)

 /alarm.show

// Create blood pressure policy
newpolicy := root/factory/event.
newevent := root/factory/ecapolicy.

bphigh := newpolicy create.
bphigh
 event: (newevent create: #(“name”, “newVal”, “oldVal”)
 condition: [:name :newVal :oldVal |
 name == "BP1"

&& (newVal > 150)
&& (oldVal < 150)];

 action: [
 root/bsn/HEART1 setRate: 0.1.
 root/alarm setAlarm: true; show];
 setActive: true.

root/policy at: "bphigh" put: bphigh

Ponder2 Policy Service - II Not yet quite a policy language

on new_component(id, profile, addr) do
if profile == “heart rate” then

r = /fact/hr.create(profile, addr); /sensors.add(r)

on hr(level) do
if level > 100 then /sensors/os.setfreq(10min);
 /sensors/os.setMinVal(80)

on context(activity) do
if activity == “running” then

/policies/normal.disable(); /policies/active.enable()

auth+ /patient � /os.{setfreq, setMinVal, stop, start}
auth+ /patient � /policies.{load, delete, enable, disable}

Heart Monitoring Demo

Gumstix (Linux, BT, WiFi)

Discovery Service

Policy service

Event service

BSN Node

Accelerometer

BSN Node

ECG sensor

BT link

HR visualisation

and communication

(SMS, Call, GPRS)

How small should an SMC be?

• Is a BSN node an SMC?

• 6 analog sensor channels

• Event based interactions

• Need for policy-based adaptation

Interactions
Between
Self-Managed
Cells

Inter-SMC Interactions Measurement
& Mon itoring

Serv ice
Discov ery

Event Bus

Policy
Management Measurement and

Control Adapters
Context

Interaction
Adaptation

Other

Me a sur eme n t &

Mo n itor in g
S er vice

D isco ver y

Eve n t Bu s

Po licy

Ma n a g e me n t Me a sur eme n t a n d

Co n tro l A d a p ter s
C o n te xt

In tera ctio n

A d a p ta t io n

Ma n a g e d R e so ur ce s

Me a sure me n t &

Mo n itor in g
S er vice

Disco ver y

Eve n t B u s

Po licy

Ma n a g e me n t Me a sure me n t a n d

C o n tro l A d a p ter s
C o n te xt

In tera ct io n

A d a p ta t io n

Ma n a g e d R e so ur ce s

Peer-to-Peer Interactions

• Layered SMCs: application /
services / network

• Peer SMCs (peer devices,
peer networks, SLAs…)

…

…

Peer to Peer Interactions

Patient

Nurse

Doctor
(GP clinic)

SMC Composition

The internal
SMCs cease to
advertise
themselves
externally.

The enclosing
SMC programs
the nested SMCs

Composition Interactions

SMC Interactions: Requirements

• Despite apparent differences both peer-to-peer and composition interactions

require similar support:

• actions: SMCs need to invoke actions on other SMCs e.g. to access

device readings, actions specified as part of policies.

• events: SMCs need to exchange events i.e. both publish and subscribe to

events in a remote SMC

• policies: SMCs need to exchange policies e.g. ask a remote SMC to react

to events in a particular way

Interactions and Autonomy

• Each SMC must retain autonomy over its resources:

• It must decide which functions (services) to export

• It must retain decision on whether to export (bind) any of its internal resources

externally

• It may mediate external interactions to internal managed objects e.g., for filtering

and parameter adaptation.

• It decides which policies to accept (allowing “full access” may jeopardise

integrity).

• Applicable in both p2p and composition

Differences: p2p - composition

• Once bound as a resource in a composition relationship:

• The SMC ceases to advertise itself

• The SMC does not establish other p2p or composition relationships unless

directed by the outer SMC

• “administrative” interfaces are guaranteed to be bound to a single outer SMC.

• Events and services exposed to other SMCs will be different in composition and p2p

relationships.

• Policies (i.e., missions) accepted will be different

SMCs discovery

• On SMC discovery, each SMC assigns discovered SMC to pre-defined

domains.

• Policies for domain apply to assigned SMC.

• SMC Discovery can also result in policy-exchange and sharing of events and

services.

SMC Missions: Policy Exchange

• SMC Interfaces define:

• events: that can be raised by an SMC

• notifications: that an SMC can receive

• actions: that can be invoked on the SMC

Policy Exchange II

mission patientT(nurse, patient, ECGlevel, ECGTime) do

on patient.mloaded() do

nurse.store(patient.readlog())

on patient.hr(level) do

if level > ECGlevel then

patient.startECG()
 patient.timer(ECGTime, endECG())

 nurse.ecgOn()

on patient.endECG() do

nurse.display(patient.readECG())

SMC Missions: Policy Exchange

auth+ /nurse � /patient.loadMission // at the Patient
auth+ /patient � /nurse.store // at the Nurse
auth+ /patient � /nurse.displayECG
on newPatient(p) do

ref = p.loadMission(/patients.interface, p.interface, 82, 40); /
roles[p].add(ref)

Interaction Procedure

• Discover SMCs

• Decide what kind of interaction to create (for both SMCs)

• Decide on role assignment

• Exchange Interfaces

• Perform role assignment and creation of managed object

• Decide which missions to instantiate and instantiate them.

Missions in Multi-Party Interactions

Patient

Nurse

Doctor Measurements
and Performance

IEEE 802.15.4

• Claims maximum bandwidth of 250Kbps

1 hop away
1 packet = 76B
Rate varies:
1-40 packets/s

•Observed max. throughput 50Kbps. At this rate the

receiver’s packet queue fills up and packets are dropped

IEEE 802.15.4 throughput

End-to-end Delay

BSN Node
802.15.4 gateway

Serial Comms

25 ms 20 ms

IEEE 802.15.4

Gumstix
Bluetooth, WiFi

Linux
Discovery Service
Discovery Service

Policy service
Event service

• expected 110ms (2 serial + 3 * 802.15.4 packets)

• observed 129ms

• End-to-end: 144ms; includes

• discovery handshake

• generation of new_component event

• event proxy and managed object creation

Discovery

Event Service

• Subscription matching: 13-15ms

Policy Service

• Policy Object: 3.214 kB includes policy type, triggers, actions and constraints

• Simple policy execution (null action): 13.57ms

• Simple policy execution action issued to BSN: 23.88ms

• Simple policy execution + simple condition: 30.05ms

• End-to-end: event published to proxy to policy execution: 46.05 ms

Observations

• Use of XML generates significant overhead in terms of both memory

consumption and run-time processing.

• This despite using a small footprint and efficient parser.

• Performance suitable for body-area network for self-management purposes.

• Not always suitable for application data e.g., ECG 200Hz

• Processing and adaptation capability on sensor

Challenges

Reasoning and Planning

• Analysis and Refinement work to date relies on abductive reasoning.

• Can we do abductive reasoning on a Gumstix?

• Yes with a bit more memory!

• Planning and Distributed Planning

?

?
?

?

Making Sense of the Surrounding World

• Much work is directed

towards abstracting sensor

input in higher level “state”

information. Accelerometers,

Temperature, Sound, ...

• Buy why should be always

starting from scratch...

Can we use

acquired information

to refine Context

Models?

Making Sense of Behaviour

Policies are rules governing choices in the

behaviour of systems

Policies are rules learnt from the behaviour of ...

Trust, Security and Privacy

Conclusions

• SMC defines a common architectural pattern that can be applied at different

levels of scale.

• Content-based filtering event bus provides flexibility and de-coupling

between services.

• Ponder2 provides support for general object management and policies

• In contrast to policies in large systems, designs in autonomous pervasive

computing strive to be simple. Scale is achieved through extensibility,

modularity and composition of autonomous components.

• Realising autonomous pervasive systems requires the integration of multiple

techniques from different areas of computing: operating systems, distributed

systems, statistical decision methods, AI, DAI, multi-agent systems,

knowledge engineering, ...

• ... on a small scale!

Acknowledgements

Morris Sloman

Naranker DulaySye-Loong Keoh

Alberto Schaeffer

Joe Sventek Stephen Strowes Steven Heeps

Kevin Twidle

References

• Ponder2 Policy Service: http://www.ponder2.net

• E. Lupu, N. Dulay, M. Sloman, J.Sventek, S. Heeps, S. Strowes, K. Twidle, S.-L. Keoh, A.

Schaeffer-Filho. AMUSE: Autonomic Management of Ubiquitous e-Health Systems.

Concurrency and Computation: Practice and Experience, John Wiley and Sons, Inc., 2007

(To Appear).

• Keoh, S.L., Twidle K., Pryce, N., Schaeffer-Filho, A E., Lupu, E., Dulay, N., Sloman, M.,

Heeps, S., Strowes, S., Sventek, J., and Katsiri, E. Policy-based Management for Body-

Sensor Networks. 4th International Workshop on Wearable and Implantable Body Sensor

Networks (BSN 2007), AAchen, Germany, March 2007.

• Russello, C. Dong, and N. Dulay. Authorisation and Conflict Resolution for Hierarchical

Domains. IEEE Workshop on Policies for Distributed Systems and Networks (Policy),

Bologna, Italy, June 2007.

