Web Rule Languages to Carry Policies

Nima Kaviani Laboratory for Ontological Research (LORe) Simon Fraser University Surrey, Canada

> nkaviani@sfu.ca http://www.sfu.ca/~nkaviani

> > June 15th, 2007

Outline

Policy-based Trust Management

- Web services and Policies
- Policy Languages
 - PeerTrust, KAoS, and Rei
- The communication issues

Interchange Frameworks

- What is RIF?
- What is R2ML
- Using R2ML to exchange policies
- The technical difficulties
- The obtained results
- Conclusions
- Future Directions

Policy-Based Trust Management

- Web Services and Policy-Based Trust Management
 - Web services to facilitate collaboration
 - Trust Management to be used by web services
 - Policies to regulate Trust Management
- Dynamically regulate the behavior of the system without any need to manipulate the internal code
- Policies as Guiding Plans that restrict the behavior of the agents
- To protect the privacy of information by providing different levels of access
- Policy Management Approaches and the Languages that support it
 - Role Based (XACML, Cassandra)
 - Context Based (KAoS, Rei)

Policy Languages

Existing Languages for Policy-based Trust Management

- PeerTrust
- Rei 1. Trust Negotiation Engine
 - KAoS Sext and EBNA Description Logic (OWL-Lite)
 - A DAML/OWL based policy language (KPO)
 Belegratical of food virs the format at footes in iteg ho (mice language)
 Robust, Adaptable, Extensible

 - Policy Speek and the backend
 - Enforcementations aligned in the analysis and the aligned in the a
 - A GUL for policy manipulation Stanford's JTP to perform static conflict resolution, intelligent
 - lookua: and and and parter stated refinement
 - No policy disclosure possibility

Semantic Web Service Discovery & Composition

The Current Proposals

-Combination of OWL-S and Rei [Kagal, et. al, 2004] -Combination of WSMO and PeerTrust [Olmedilla et.al, 2004]

REWERSE Rule Markup Language (R2ML)

Rule Interchange Format (RIF)

- RIF working group: defining a rule interlingua based on W3C standards
- Develop a language to translate rules between rule languages and transform them between rule systems
- Goal: enabling existing rule technologies to interoperate

R2ML features

- A general rule interchange language
- Admits to the RIF requirements
- http://rewerse.net/l1/
- Current version 0.4

R2ML cnt'd

Five General Rules

- Integrity Rules
 Derivation Rules
 Production Rules
- Reaction Rules
- Transformation Rules

if the user is a faculty then give him/her access to the meeting room

if a visitor is part of a patients family then give him/her the allowance of visiting the patient

R2ML cnt'd

Current Transformations to/from R2ML – R2ML as a pivotal MetaModel

R2ML cnt'd

•Current Transformations to/from R2ML

- -R2ML as a pivotal MetaModel
- -URML: UML based rule language with graphical notations

Semantic Web Service Discovery

Solution

Enabling involved entities in Semantic Web Service discovery procedure to communicate

Policies can be defined in the form of R2ML rules

To get KAoS and Rei agents to communicate

- Providing transformations between KAoS and Rei [Grosof, et. al, 2003]
 - Both are Context-Based policy languages
 - Both syntactically follow Ontology Languages
 - No straightforward mapping between Rei and KAoS
 - KAoS is based on Description Logic
 - Rei follows Computational Logic (Logic Programs)

OWL Constructor	DL Syntax	FOL Expressions
subClassOf	$C \subseteq D$	$D \leftarrow C$
transitiveProperty	$P^+ \subseteq P$	$\forall x, y, z (P(x, y) \land (P(y, z)) \rightarrow P(x, z)$
inverseOf	$P \equiv Q^-$	$\forall x, yP(x, y) \Leftrightarrow Q(y, x)$
intersectionOf	$C_1 \cap \ldots \cap C_n$	$C_1(x) \wedge \ldots \wedge C_n(x)$
unionOf	$C_1 \cup \ldots \cup C_n$	$C_1(x) \lor \ldots \lor C_2(x)$
complementOf	$\neg C$	$\neg C(x)$
oneOf	$\{a_1,\ldots,a_n\}$	$x = a_1 \lor \ldots \lor x = a_n$
hasClass	$\exists P.C$	$\exists y (P(x, y) \land C(y))$
toClass	$\forall P.C$	$\forall y(P(x, y) \to C(y))$

Mapping R2ML & Rei

Rei	R2ML	
Each Deontic Element	A Derivation Rule	
Variable Definition	ObjectClassificationAtoms	
OR	qf.Disjunction	
AND	The <i>conclusion</i> in the rule is a conjunction of elemenets	
NOT	Atom is Negated	
SimpleConstraint	ReferencePropertyAtoms	
SpeechActs	ObjectDescriptionAtoms	
SubElements	Object- or Data-Slots	

• We should get the identical Rei Policy:

prohibit our system from using data that is accepted by the members of a group called UserActor

Mapping R2ML & Rei – cnťd

		-		
	<pre><entity:variable rdf:id="x"></entity:variable></pre>			
	<pre><entity:variable rdf:id="y"></entity:variable></pre>			
	<pre><entity:variable rdf:id="negAuth"></entity:variable></pre>			
	<pre><constraint:simpleconstraint rdf:id="constraint1"> 1</constraint:simpleconstraint></pre>			
	<pre><constraint:subject rdf:resource="#x"></constraint:subject></pre>			
	<pre>constraint.predicate rdf.resource="&rdfs.type"/></pre>	וו	<r2ml:derivationrule></r2ml:derivationrule>	
	<pre><constraint.picateure <constraint.picateure="" cype="" fai.feboaree="afarb," rdf.regourge="#AggentData"></constraint.picateure></pre>		<r2ml:conditions></r2ml:conditions>	
	<constraint:object ful:lesource="#Acceptbala"></constraint:object>		<r2ml:objectclassificationatom< th=""><th></th></r2ml:objectclassificationatom<>	
	constraint: simpleconstraint		r2ml:classID="#AcceptData">	
	senstusint GimpleGenstusint wif ID "senstusint?"		<r2ml:objectvariable r2ml:name="x"></r2ml:objectvariable>	
	<constraint:simpleconstraint rdl:id="constraint2"></constraint:simpleconstraint>			
	<constraint:subject rdf:resource="#y"></constraint:subject>		<r2ml:objectclassificationatom< th=""><th></th></r2ml:objectclassificationatom<>	
	<constraint:predicate rdf:resource="&rdfs;type"></constraint:predicate>		r2ml:classID="#UserActor">	
	<constraint:object rdf:resource="#UserActors"></constraint:object>		<r2ml:objectvariable r2ml:name="y"></r2ml:objectvariable>	
	<constraint:and rdf:id="conditions"></constraint:and>		<r2ml:conclusion></r2ml:conclusion>	
	<constraint:first rdf:resource="#constraint1"></constraint:first>		<r2ml:objectdescriptionatom< th=""><th>4</th></r2ml:objectdescriptionatom<>	4
	<pre>constraint.second rdf.resource="#constraint2"/></pre>		r2ml:classiD="Pronibition">	
	<pre>/constraint.lnd></pre>		<r2ml:subject></r2ml:subject>	ш/х
			<pre><th>/ ></th></pre>	/ >
	constraint.SimpleConstraint rdf.ID-"actor value"			
	<pre>constraint.gubjogt_rdf.rogourgo_"#u"/></pre>		<r2ml·objectslot< th=""><th>2</th></r2ml·objectslot<>	2
	<constraint: ful:="" resource="#y" subject=""></constraint:>		r2ml:referencePropertvID="controls"/>	4
	<constraint:predicate rdl:resourc="#performedBy"></constraint:predicate>		<r2ml:objectvariable <="" r2ml:name="x" th=""><th></th></r2ml:objectvariable>	
	<constraint:object rdf:resource="#x"></constraint:object>		r2ml:classID="#Plcy Action">	
-				
	2			
	<constraint:simpleconstraint rdf:id="actio_value"></constraint:simpleconstraint>		<r2ml:objectslot< th=""><th>3</th></r2ml:objectslot<>	3
	<constraint:subject rdf:resource="#x"></constraint:subject>		r2ml:referencePropertyID="performedBy">	Ē
	<constraint:predicate rdf:resource="controls"></constraint:predicate>		<r2ml:objectvariable r2ml:name="y"></r2ml:objectvariable>	
	<constraint:object rdf:resource="#Plcy Action"></constraint:object>			
	<pre><deontic:prohibition rdf:id="AcpDataP"></deontic:prohibition></pre>			
	<pre><deontic:actor rdf:resource="#actor_value"></deontic:actor></pre>			
	<pre><deontic:action rdf:resource="#action value"></deontic:action></pre>			
	<pre><deontic:constraint rdf:resource="#conditions"></deontic:constraint></pre>			

Mapping KAoS & R2ML

•The KAoS Policy:

prohibit our system from using data that is accepted by the members of a group called UserActor

KAoS and Rei Meta-Models

Rei Action to R2ML ObjectDescriptionAtom

KAoS and Rei Meta-Models

Rei SimpleConstraint to R2ML ObjectDescriptionAtom

Mapping KAoS & R2ML - cnt'd

<pre><r2ml:derivationrule> <r2ml:conditions> <r2ml:objectclassificationatom r2ml:classid="#AcceptData"> <r2ml:objectvariable r2ml:name="x"></r2ml:objectvariable> </r2ml:objectclassificationatom> <r2ml:objectclassificationatom< pre=""></r2ml:objectclassificationatom<></r2ml:conditions></r2ml:derivationrule></pre>		
<pre>r2ml:classID="#UserActor"></pre>	<pre>4 <policy:negauthorizationpolicy rdf:id="AcpDataP"> 4 <policy:controls rdf:resource="#Plcy _Action"></policy:controls> <policy:haspriority>2</policy:haspriority> </policy:negauthorizationpolicy> </pre>	
<pre><r2ml:objectdescriptionatom r2ml:classid="Prohibition"> <r2ml:subject> <r2ml:objectvariable r2ml:name="AcpDataP"></r2ml:objectvariable> </r2ml:subject></r2ml:objectdescriptionatom></pre>	<pre><owl:class rdf:id="Plcy _Action "></owl:class></pre>	
<pre><r2ml:objectslot r2ml:referencepropertyid="controls"></r2ml:objectslot> <r2ml:objectvariable <="" r2ml:name="x" td=""><td><pre><owl:onproperty performedby"="" rdf:resource="</td></tr><tr><td><pre><r2ml:ObjectSlot r2ml:referencePropertyID="></owl:onproperty></pre></td><td> </td></r2ml:objectvariable></pre>	<pre><owl:onproperty performedby"="" rdf:resource="</td></tr><tr><td><pre><r2ml:ObjectSlot r2ml:referencePropertyID="></owl:onproperty></pre>	

Evaluation of the information loss

Reasoning on the obtained policies

- The reasoner for Rei is not supported any more
- No release for KAoS reasoner

Derivation Rules or Integrity Rules

The Difference in the underlying Logic

- KAoS has both universal and existential quantifiers
- Rei only has universal quantifiers

Universal and Existential Quantifiers

Cardinality Support for the Rules

Language specific concepts

SpeechActs in Rei No equivalent concept in KAoS

Is it still effective when we perform the transformations?

Conclusions

Benefits

- Language Independence Policy Design
- Architecture independent
- Easier surfing of the web for broker agents

Known Issues

- Information loss during exchange
 - How it may affect the trust
- Derived R2ML transformations from different languages do not exactly match
 - An internal exchange between R2ML rules might be required

Future Direction

- Towards Combining Model Driven Approaches and Policy Languages
 - Policy Modeling Language
 - Connecting various policy languages through their models
 - XACML as a widely recognized policy language
- Combining Service Oriented Architecture (SOA) with Policy Modeling
- Semantic Web and its ability to introduce context based concepts that facilitate the definition of TRUST.

Questions?

Thank you