
Web Rule Languages
to Carry Policies

Nima Kaviani
Laboratory for Ontological Research (LORe)

Simon Fraser University Surrey, Canada

nkaviani@sfu.ca
http://www.sfu.ca/~nkaviani

June 15th, 2007

2

Outline
Policy-based Trust Management

Web services and Policies
Policy Languages

PeerTrust, KAoS, and Rei
The communication issues

Interchange Frameworks
What is RIF?
What is R2ML
Using R2ML to exchange policies
The technical difficulties
The obtained results

Conclusions
Future Directions

3

Policy-Based Trust Management
Web Services and Policy-Based Trust Management

Web services to facilitate collaboration
Trust Management to be used by web services
Policies to regulate Trust Management

Dynamically regulate the behavior of the system without any need to
manipulate the internal code

Policies as Guiding Plans that restrict the behavior of the agents

To protect the privacy of information by providing different levels of
access

Policy Management Approaches and the Languages that support it
Role Based (XACML, Cassandra)
Context Based (KAoS, Rei)

4

Policy Languages

• Syntactically follows Description Logic (OWL-Lite)

• Semantically follows Computational Logic (Prolog)

• FOWL as the meta-interpreter in the backend

• No policy enforcement

• SpeechActs for message passing and dynamic

exchange of rights

• No policy disclosure possibility

Existing Languages for Policy-based Trust
Management

PeerTrust
Rei
KAoS

A DAML/OWL based policy language (KPO)
Robust, Adaptable, Extensible
Policy Specification and Management
Enforcement
A GUI for policy manipulation
Stanford’s JTP to perform static conflict resolution, intelligent
lookup, and dynamic policy refinement

1. Trust Negotiation Engine

2. Text-based EBNF

3. Rules are defined in the form of definite horn clauses

lit0 ← lit1, lit2, …, litn where

liti is a predicate pj(t1, …, tn)

4. Low Expandability

5. Easy to understand

5

Semantic Web Service Discovery & Composition

•The Current Proposals
–Combination of OWL-S and Rei [Kagal, et. al, 2004]
–Combination of WSMO and PeerTrust [Olmedilla et.al, 2004]

•Problems with the current approaches

All Broker
Agents, Service
Providers and
Registries are
assumed to use
the same policy

languages

It is not the case
in the real world

Solution:
Possibility of

exchanging the
policies

P

Broker Agent

Reasoning
Engine

Policy
DataBase

we

Web Services

Requesting Client

2. Client Policies

UDDI

1. Request for

selecting a provider

3.
 C

on
tac

tin
g

th
e

UDDI
4.

 G
et

tin
g

W
SD

L
In

fo

5. Reasoning over
the received policies

6. Getting the
results back

[Kagal, et. al, 2004] Authorization and Privacy for Semantic Web services

6

REWERSE Rule Markup Language (R2ML)

• Rule Interchange Format (RIF)
• RIF working group: defining a rule interlingua based on W3C

standards
• Develop a language to translate rules between rule languages and

transform them between rule systems
• Goal: enabling existing rule technologies to interoperate

• R2ML features
– A general rule interchange language
– Admits to the RIF requirements
– http://rewerse.net/I1/
– Current version 0.4

http://rewerse.net/I1/

7

R2ML cnt’d
Five General Rules

Integrity Rules
Derivation Rules
Production Rules
Reaction Rules
Transformation Rules

if the user is a faculty
then give him/her access to the meeting room

if a visitor is part of a patients family
then give him/her the allowance of visiting the patient

8

R2ML cnt’d

• Current Transformations to/from R2ML
– R2ML as a pivotal MetaModel

R2ML XMLRuleML

R2MLR2ML OWL/SWRLUML/OCL

F-Logic Jess

9

R2ML cnt’d

•Current Transformations to/from R2ML
–R2ML as a pivotal MetaModel
–URML: UML based rule language with
graphical notations

R2ML OWL/SWRL

R2ML XML

R2ML

RuleML

JessF-Logic

UML/OCL

10

Semantic Web Service Discovery
Solution

Enabling involved entities in Semantic Web Service discovery procedure
to communicate

Policies can be defined in the form of R2ML rules

11

To get KAoS and Rei agents to communicate
• Providing transformations between KAoS and Rei [Grosof, et. al, 2003]

– Both are Context-Based policy languages
– Both syntactically follow Ontology Languages
– No straightforward mapping between Rei and KAoS
– KAoS is based on Description Logic
– Rei follows Computational Logic (Logic Programs)

First-Order
Logic

Description
Logic

Horn Logic
Programs

Logic
Programs

(Negation as a
Failure)

KAoS

Rei

Description
Logic

Programs

12

Mapping R2ML & Rei
Rei R2ML

Each Deontic
Element A Derivation Rule

Variable Definition ObjectClassificationAtoms

OR qf.Disjunction

AND
The conclusion in the rule

is a conjunction of
elemenets

NOT Atom is Negated
SimpleConstraint ReferencePropertyAtoms

SpeechActs ObjectDescriptionAtoms
SubElements Object- or Data-Slots

R

Derivation
Rule

R2ML

conditions

Rei

conclusion

Modeling Deontic
Element with

rules

Rule Decision

ReferenceProperty
Atom

SimpleConstraint

• We should get the identical Rei
Policy:

prohibit our system from using
data that is accepted by the
members of a group called
UserActor

13

Mapping R2ML & Rei – cnt’d
<entity:Variable rdf:ID=”x”/>
<entity:Variable rdf:ID=”y”/>
<entity:Variable rdf:ID=”negAuth”/>
<constraint:SimpleConstraint rdf:ID="constraint1 ">
 <constraint:subject rdf:resource="#x "/>
 <constraint:predicate rdf:resource="&rdfs;type "/>
 <constraint:object rdf:resource="#AcceptData "/>
</constraint:SimpleConstraint>

<constraint:SimpleConstraint rdf:ID="constraint2 ">
 <constraint:subject rdf:resource="#y "/>
 <constraint:predicate rdf:resource="&rdfs;type "/>
 <constraint:object rdf:resource="#UserActors "/>
</constraint:SimpleConstraint>

<constraint:And rdf:ID="conditions ">
 <constraint:first rdf:resource="#constraint1 "/>
 <constraint:second rdf:resource="#constraint2 "/>
</constraint:And>

<constraint:SimpleConstraint rdf:ID="actor_value ">
 <constraint:subject rdf:resource="#y "/>
 <constraint:predicate rdf:resourc="#performedBy "/>
 <constraint:object rdf:resource="#x "/>
</constraint:SimpleConstraint>

<constraint:SimpleConstraint rdf:ID="actio_value ">
 <constraint:subject rdf:resource="#x "/>
 <constraint:predicate rdf:resource="controls "/>
 <constraint:object rdf:resource="#Plcy_Action "/>
</constraint:SimpleConstraint>

<deontic:Prohibition rdf:ID=”AcpDataP”>
 <deontic:actor rdf:resource=”#actor_value”/>
 <deontic:action rdf:resource=”#action_value”/>
 <deontic:constraint rdf:resource=”#conditions”/>
</deontic:Prohibition>

1

3

2

4

<r2ml:DerivationRule>
 <r2ml:conditions>

<r2ml:ObjectClassificationAtom
 r2ml:classID=”#AcceptData”>

 <r2ml:ObjectVariable r2ml:name="x"/>
 </r2ml:ObjectClassificationAtom >

<r2ml:ObjectClassificationAtom
 r2ml:classID=”#UserActor”>

 <r2ml:ObjectVariable r2ml:name="y"/>
 </r2ml:ObjectClassificationAtom >
 </r2ml:conditions>
 <r2ml:conclusion>
 <r2ml:ObjectDescriptionAtom
 r2ml:classID="Prohibition">
 <r2ml:subject>
 <r2ml:ObjectVariable r2ml:name="AcpDataP"/>
 </r2ml:subject>

 <r2ml:ObjectSlot
 r2ml:referencePropertyID="controls"/>
 <r2ml:ObjectVariable r2ml:name=”x”
 r2ml:classID=”#Plcy_Action”>
 </r2ml:ObjectSlot>

 <r2ml:ObjectSlot
 r2ml:referencePropertyID="performedBy">
 <r2ml:ObjectVariable r2ml:name="y"/>
 </r2ml:ObjectSlot>
 </r2ml:ObjectDescriptionAtom>

 </r2ml:conclusion>
</r2ml:DerivationRule>

1

2

3

4

R2MLRei

14

Mapping KAoS & R2ML
•The KAoS Policy:

prohibit our system from using data that is
accepted by the members of a group called
UserActor

R

Derivation
Rule

R2ML

conditions

KAoS

conclusion

Modeling OWL
Elements with

Rules

Logical
Consequent

ReferenceProperty
Atom

constraints

R

Policy

Rei Vocabulary

Deontic Rule

KAoS Vocabulary

actor

No Set in KAoS

performedBy

Permission

PosAuthorization

15

KAoS and Rei Meta-Models

Rei Action to R2ML ObjectDescriptionAtom

16

KAoS and Rei Meta-Models

Rei SimpleConstraint to R2ML ObjectDescriptionAtom

17

KAoS and Rei Meta-Models

KAoS Policy Rule to R2ML ObjectDescriptionAtom

18

Mapping KAoS & R2ML - cnt’d

<policy:NegAuthorizationPolicy rdf:ID="AcpDataP">

<policy:controls rdf:resource="#Plcy _Action"/>
<policy:hasPriority>2</policy:hasPriority>

</policy:NegAuthorizationPolicy>

<owl:Class rdf:ID="Plcy _Action ">
<owl:intersectionOf>

<owl:Class rdf:about="#AcceptData"/>
 <owl:Class>
 <owl:Restriction>
 <owl:onProperty rdf:resource="
 #performedBy"/>
 <owl:allValuesFrom>

<owl:Class rdf:about="#UserActor"/>
 </owl:allValuesFrom>
 </owl:Restriction>
 </owl:Class>
 </owl:intersectionOf>
</owl:Class>

1

3

1

2
4

<r2ml:DerivationRule>
 <r2ml:conditions>

<r2ml:ObjectClassificationAtom
 r2ml:classID=”#AcceptData”>

 <r2ml:ObjectVariable r2ml:name="x"/>
 </r2ml:ObjectClassificationAtom >

<r2ml:ObjectClassificationAtom
 r2ml:classID=”#UserActor”>

 <r2ml:ObjectVariable r2ml:name="y"/>
 </r2ml:ObjectClassificationAtom >
 </r2ml:conditions>
 <r2ml:conclusion>
 <r2ml:ObjectDescriptionAtom
 r2ml:classID="Prohibition">
 <r2ml:subject>
 <r2ml:ObjectVariable r2ml:name="AcpDataP"/>
 </r2ml:subject>

 <r2ml:ObjectSlot
 r2ml:referencePropertyID="controls"/>
 <r2ml:ObjectVariable r2ml:name=”x”
 r2ml:classID=”#Plcy_Action”>
 </r2ml:ObjectSlot>

 <r2ml:ObjectSlot
 r2ml:referencePropertyID="performedBy">
 <r2ml:ObjectVariable r2ml:name="y"/>
 </r2ml:ObjectSlot>
 </r2ml:ObjectDescriptionAtom>

 </r2ml:conclusion>
</r2ml:DerivationRule>

1

2

3

4

KAoSR2ML

19

Evaluation of the information loss
Reasoning on the obtained policies

The reasoner for Rei is not supported any more
No release for KAoS reasoner

Derivation Rules or Integrity Rules

The Difference in the underlying Logic
KAoS has both universal and existential quantifiers
Rei only has universal quantifiers

Universal and Existential Quantifiers

Cardinality Support for the Rules

Language specific concepts
SpeechActs in Rei …. No equivalent concept in KAoS

Is it still effective when we perform the transformations?

20

Conclusions

Benefits
Language Independence Policy Design
Architecture independent
Easier surfing of the web for broker agents

Known Issues
Information loss during exchange

How it may affect the trust

Derived R2ML transformations from different languages
do not exactly match

An internal exchange between R2ML rules might be required

21

Future Direction
Towards Combining Model Driven Approaches and
Policy Languages

Policy Modeling Language

Connecting various policy languages through their models

XACML as a widely recognized policy language

Combining Service Oriented Architecture (SOA) with
Policy Modeling

Semantic Web and its ability to introduce context based
concepts that facilitate the definition of TRUST.

Questions?

Thank you

	Web Rule Languages to Carry Policies
	Outline
	Policy-Based Trust Management
	Policy Languages
	Semantic Web Service Discovery & Composition
	REWERSE Rule Markup Language (R2ML)
	R2ML cnt’d
	R2ML cnt’d
	R2ML cnt’d
	Semantic Web Service Discovery
	To get KAoS and Rei agents to communicate
	Mapping R2ML & Rei
	Mapping R2ML & Rei – cnt’d
	Mapping KAoS & R2ML
	KAoS and Rei Meta-Models
	KAoS and Rei Meta-Models
	KAoS and Rei Meta-Models
	Mapping KAoS & R2ML - cnt’d
	Evaluation of the information loss
	Conclusions
	Future Direction
	Questions?

