

CoRaL – Policy Language and Reasoning Techniques for Spectrum Policies

Daniel Elenius, Grit Denker, Mark-Oliver Stehr, Rukman Senanayake, Carolyn Talcott, David Wilkins

Current Spectrum Policy Regime

- Policy = natural language document
- Policy enforcement C code compiled into radio firmware
- Radio accreditation Test radio with the compiled-in binary policies against some pre-defined test suite

Problems

- Spectrum scarcity
- Deployment delays
 - Policy evolution
 - Different context different policies

Solutions

- Spectrum sharing
 - Most spectrum unused
 - Sensing to avoid interference
- Declarative policy language
 - Load new policies on the fly
- Separation of policy enforcement from other radio software
 - Accredit policy, policy reasoner, and radio software separately

The XG Architecture

state of the environment

Policy Language Requirements

- Accreditability
- Extensibility
- Expressiveness
 - Functions
 - Computations
 - Orderings

CoRaL Language

- Typed first-order logic with equality
- Constraint Simplification
- Functional approach
 - To represent functions
 - Computations inside language
 - Term rewriting
- Ontologies
 - Algebraic Data Types
- Standard set theoretic semantics
- Operational semantics

Policy Examples 1/2

Allow to transmit in the band 5180 MHz to 5250 MHz, if the radio is at most 10 km away from the geographic coordinates 39 10' 30" N, 75 01' 42", and only between 06:00 and 13:00 local time.

```
policy p1 is
use request_params;
allow if
centerFrequency(req_transmission)in {5180.0 .. 5250.0} and
(exists ?le:LocationEvidence)
req_evidence(?le) and
distance(location(?le),loc1) =< 10000 and
(exists ?te:TimeEvidence)
req_evidence(?te) and
hour(timeStamp(?te)) in {6 .. 12};
```

end

Policy Examples 2/2

Prohibit transmission if peak sensed received power is more than -80 dBm:

policy p2 is
 use request_params;

disallow if
 (exists ?se:SignalEvidence)
 req_evidence(?se) and
 peakRxPower(?se) > -80.0;

end

Logical Approach

If PR can prove

policies, facts from SSR | permit

Then transmission is allowed

Permissive and Restrictive Policies

- Policies contain axioms about allow and disallow
- A "meta-policy" relates permit to allow and disallow
- Typically, permit iff allow and not disallow
- i.e. restrictive takes precedence over permissive policies
- Other meta-rules can accommodate prioritized policies

Reasoning about Spectrum Policies

Requirements on an ideal reasoner

- Interactivity
- Underspecified requests
- Prolog-based reasoner
 - Only yes/no answers, no constraints
 - clp/r
- Executable specification in Maude
- Current work efficient implementation of part of CoRaL
 - Will be implemented on radio hardware

Conclusions

- Spectrum domain is highly amenable to a policy approach
- Special requirements on the policy language
- Special requirements on the reasoner

