On interoperable trust negotiation strategies

S. Baselice, P.A. Bonatti, M. Faella¹

Giugno, 2007

¹Università di Napoli Federico II

S. Baselice, P.A. Bonatti, M. Faella

On interoperable trust negotiation strategies

化基本 化基本

In Trust Negotiation Frameworks such as TRUST BUILDER, RT, PEER TRUST, PROTUNE

Trust Negotiations

・ 戸 ト ・ ヨ ト ・ ヨ ト

S. Baselice, P.A. Bonatti, M. Faella On interoperable trust negotiation strategies

S. Baselice, P.A. Bonatti, M. Faella On interoperable trust negotiation strategies

Many Trust Negotiation Frameworks protect peers' policies:

Example

- a bank grants special treatments to rich customers
- many other customers would not appreciate such privileges

・ 戸 ト ・ 三 ト ・ 三 ト

A negotiation may fail

- because peers' negotiation strategies don't release all of the policy
- even if the peers' policies permit a successful transaction

Our Goal

Guidelines for Negotiation Strategies that

make transactions succeed keeping partially secret both policies and sensitive information

Another goal:

2 reduce the amount of sensitive information released

・ 白 ・ ・ ヨ ・ ・ 日 ・

Previous approches

Previous approches:

start from desirable "good" properties for negotiation strategies for *designing* a family of strategies that work well together.

Our Approch

Our approch:

- starts from the motivations that drive peers in releasing information for *deriving* negotiation strategies:
 - Servers want to publish services
 - Client want to access to services
 - making transactions succeed

As side effect we obtain a "good" property:

Interoperability: strategies yield a successful negotiation whenever the policies of the involved peers permit it.

(日本) (日本) (日本)

Policy language \mathcal{L} :

- a set of policy items
 - policy rules
 - portfolio: digital credentials, declarations

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Policies + Portfolio :

- finite subsets of L
- all the information that a peer has for negotiating a resource

S. Baselice, P.A. Bonatti, M. Faella

On interoperable trust negotiation strategies

The semantics of policies is modelled by

 $\mathsf{unlocks}\subseteq\wp(\mathcal{L})\times\mathcal{L}$

Punlocks x iff P allows x to be released

Monotonicity : if we add more policy rules and credentials to a policy then the set of unlocked policy items increases [K. Seamons et al., *Requirements for policy languages* for trust negotiation.]

Expressiveness :

 $\forall q \in \mathcal{L}$ there exists a finite $P \subseteq \mathcal{L}$ s.t. P unlocks q

Messages :

- a finite subset of L
- information exchanged between a client and a server for negotiating a resource
- client's requests for a resource

S. Baselice, P.A. Bonatti, M. Faella

On interoperable trust negotiation strategies

Peer: a pair $A = (P_A, R_A)$

- *P_A*: policy + portfolio
- $R_A : Msgs^* \rightarrow Msgs$ is a *release strategy*

Given the past history of negotiation, a release strategy prescribes the next "move" of a peer.

Image: A math a math

< 3 >

Transaction $T = \langle A, B, \text{res}, F \rangle$

- A (client) and B (server) are peers;
- res $\in \mathcal{L}$ is a policy item (the *initial request*, res $\in P_B$);
- *F* ⊆ *Msgs*^{*} is a *failure criterion*, i.e. the set of all possible failed negotiations.

Negotiation nego(T) induced by T, R_A and R_B

• the finite or infinite sequence of messages $\mu = \mu_0 \mu_1 \dots \mu_k \dots$ mutually exchanged between *A* and *B*

■ $\mu_0 = \{ res \}$

- nego(T) terminates when
 - $nego(T) \in F$ (negotiation is *failed*)
 - res $\in \bigcup_{i=1}^{|\mu|} \mu_i$ (negotiation is *successful*) $\rightarrow \langle \mathbb{P} \rangle \langle \mathbb{P} \rangle$

S. Baselice, P.A. Bonatti, M. Faella

On interoperable trust negotiation strategies

To get our results we have

- to restrict the class of peers that we study
- to fix a failure criterion

Negotiation Framework

$$\Psi = (\mathcal{C}, F)$$

- \blacksquare C: a class of peers;
- F: a failure criterion.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Peers classification

Truthful: for all *hist*, $R_A(hist) \subseteq P_A$ No item is "invented". Secure: for all *hist*, $R_A(hist) \subseteq$ unlocked(P_A , *hist*) The disclosure policy is preserved. Monotonic: if released(*hist*) \subseteq released(*hist'*) $R_A(hist) \subseteq R_A(hist')$ The more information is received, the more information is released

Monotonic servers are of practical interest

A better characterization of the client lets the server present a wider range of choices to get the desired resource.

・ 日 ト ・ 雪 ト ・ 目 ト ・ 日 ト

Failure Criteria and Termination

Vacuous Messages

- equivalent to empty message;
- it carries no new information.

Failure criteria F_k

■ a negotiation fails after *k* consecutive *vacuous messages*.

Negotiation Framework

Next we focus on the negotiation framework

$$\Psi = (\mathcal{C}, F_k)$$

 F_k : a failure criterion with k > 0C:

- monotonic servers
- canonical (truthful and secure) peers
 - If A and B are truthful, termination is guaranteed.

Starting point: what do peers want?

Peers are selfish :

their only goal is to make transactions succeed

Cooperativeness:

 Cooperative peers are those whose strategies maximize the set of successful transactions.

Towards guidelines

n-cautious peers

- after n vacuous messages
- if A has something to release

```
unlocked(P_A, hist) \nsubseteq released(hist)
```

then A releases something

 $R_A(hist) \not\subseteq released(hist)$

weakly n-cautious peers

- after n vacuous messages
- if A has something to release that could be useful
- then A releases something.

Interacting with monotonic servers

Theorem

A peer A is cooperative w.r.t. monotonic peers iff A is (k-2)-cautious.

- To make a client A cooperative with monotonic servers, it is necessary and sufficient to program A's strategy in a (k - 2)-cautious way.
- But how to make a monotonic server cooperative w.r.t. a (k 2)-cautious client?

Interacting with (k - 2)-cautious peers

Theorem

A peer B is cooperative with all (k - 2)-cautious peers iff B is weakly (k - 2)-cautious.

To make a server *B* cooperative with (k - 2)-cautious clients, it is necessary and sufficient to program *B*'s strategy in a weakly (k - 2)-cautious way.

Note: for efficiency it might be preferrable to adopt cautiousness as an approximation of weak cautiousness.

Summary

In any negotiation framework

 $\bullet \Psi = (\mathcal{C}, F_k)$

- monotonic servers
- selfish peers (cooperative)

strategies must be

- (*k* 2)-cautious on clients
- weakly (k-2)-cautious on servers

- 同下 - 三下 - 三下 - -

Implications

Unexpected side effects

- each client is INTEROPERABLE with each server
- each client is INTEROPERABLE with each client

Interoperability:

whenever a successful transaction is possible, the strategies find some

even if the policies are partially kept secret

Further Guidelines

How to choose a value for parameter k of F_k :

- k even (to avoid exploits)
- preferrably k = 2

See the paper.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Future Work

Sensitivity Minimizing

 guidelines to program release strategies that minimize the amount of sensitivity of information disclosed during a negotiation

More on k in F_k - Even k vs. Odd k

Odd values of k allow exploits even

if both A and B are (k - 2)-cautious

- A may send vacuous messages until B is forced to disclose something 2 steps before failure
- If B sends a vacuous message 2 steps before failure, then it really means it can't release anything else
- A can still disclose something at the last step and keep the negotiation alive

・ロット (母) ・ ヨ) ・ コ)

Very bad for privacy – deprecated

More on k in F_k - Even k vs. Odd k

Even values are ok

- The peer that starts the vacuous sequence is also the peer that must release something 2 steps before failure
- Optimal value: k = 2
- No vacuous messages unless a peer really can't release anything new

Negotiations

Negotiation nego(*T*) induced by $T = \langle A, B, \text{res}, F_k \rangle$, R_A and R_B

• the finite or infinite sequence of messages $\mu = \mu_0 \mu_1 \dots \mu_k \dots$ s.t.

■
$$\mu_0 = \{\text{res}\};$$

■ for all even $i \in \mathbb{N}$, $\mu_{i+1} = R_B(\mu_{\leq i});$
■ for all odd $i \in \mathbb{N}$, $\mu_{i+1} = R_A(\mu_{\leq i});$

• for all $i \in \mathbb{N}$, if res $\in \mu_i$ or $\mu_{\leq i} \in F$, then $\mu = \mu_{\leq i}$.

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・ 日

Cooperativeness

A peer A is cooperative w.r.t. a class of peers C, if no A' is s.t.

- A and A' have the same policy P,
- for all $B \in C$ and all Ψ -transactions T involving A and B, val(T) ≤ val(T[A'/A]),
- for some $B \in C$ and some Ψ -transaction T involving A and B, val(T) < val(T[A'/A]).

n-cautiouness

A peer A is n-cautious if

- for all transactions T involving A
- and all prefixes μ of nego(T),
- If μ has a vacuous tail whose length is $\geq n$

then

unlocked(P_A, μ) \nsubseteq released(μ) \Rightarrow $R_A(\mu) \nsubseteq$ released(μ)

(i.e., $R_A(\mu)$ is not vacuous)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

weak n-cautiouness

- A peer A is weakly n-cautious if
 - for all transactions *T* involving *A*
 - and all prefixes μ of nego(T),
 - if μ has a vacuous tail whose length is $\geq n$ and
 - if $R_a(\mu)$ is vacuous then T fails while
 - T can be successful,

then

unlocked(P_A, μ) \nsubseteq released(μ) \Rightarrow $R_A(\mu) \nsubseteq$ released(μ)

```
(i.e., R_A(\mu) is not vacuous)
```

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト