
Facilitating agent development in open
distributed systems

Mauro Gaspari1 and Davide Guidi2

1 Dipartimento di Scienze dell’Informazione, University of Bologna, Italy
2 Knowledge Media Institute, The Open University, United Kingdom

Abstract. One of the main reasons about the success of the Web is that
many “regular users” are able to create Web pages that, using hyper-
links, incrementally extend both the size and the complexity of the Web
itself. The development of agents in the Web infrastructure should ide-
ally be driven by the same paradigm: users writing simple or advanced
agents. These agents will then provide capabilities using a set of re-
sources, such as standard Web pages, Web services and, of course, other
agents. At the moment, however, agents providing advanced services will
never be developed as Web pages have been created in the past. In fact
programming agents is a complex task which needs adequate skills and
tools to be carried out successfully. As a consequence, only few people
are currently able to contribute to their development. Anyway, will it
be possible to reduce this gap in the future? In this paper we answer
this question presenting NOWHERE, an open agent communication in-
frastructure which facilitates the programming task in open distributed
multi-agent systems.

1 Introduction

Agent platforms usually provide a programming environment and common ser-
vices to applications developed as agents. These environments can include high-
level programming tools for the development of intelligent agents capable of
reasoning, planning, and acting in a changing environment, together with com-
munication mechanisms supporting agent interaction. This paper focuses just on
communication facilities, which have a fundamental role to increase the power of
agents in open distributed Multi-Agent Systems (MAS). Agent platforms embed
specific tools to support inter-agent communication. Many of them are based on
the speech act theory, which is also the approach followed by the current stan-
dard, the FIPA ACL [6]. Jade [1], for example, is one of the most used agent
platforms both in academia and in industry, and uses FIPA ACL to provide
communication facilities. While FIPA ACL includes human like high-level prim-
itives, it does not have specific features for geographically distributed MAS where
agents may crash or simply become unreachable for a while. In fact, if we aim to
develop robust implementations of agents in these systems, we have to consider
agent failures, and a number of extra speech act primitives should be added to
the agent code. Additionally, several low-level issues should be considered, such



as detecting failures, establishing correct timeouts, establishing correct actions
to handle failures and so on. As a result of having to deal with these issues the
programming task is more difficult and the high-level programming style of the
speech act based approach is partially lost.

In this paper, we try to tackle this problem presenting NOWHERE, a mod-
ular and open agent communication infrastructure, which has been designed to
facilitate the programming task in open, geographically distributed, multi-agent
systems. NOWHERE supports a simple programming model which facilitates
the development of agents in open distributed systems and works in a reason-
able class of application domains. This model supports communication among
Knowledge-Level (KL) agents [8], which are agents only concerned with the use,
request and supply of knowledge, exploiting an advanced ACL (FT-ACL) [3])
including high-level primitives to deal with failures of agents. Using Knowledge-
level agents, the available communication primitives are those of the ACL, and
the programmer does not have to explicitly handle many low-level issues, such
as network, timeout and concurrency related problems. Thus the programming
task becomes simpler.

This paper is organized as follows. In Section 2 we give a sketch of the
NOWHERE platform architecture and we present how the FT-ACL primitives
have been realized in a real programming language (Java). Then we compare our
approach with a state-of-the-art agent architecture, presenting some details of
the FIPA contract-net specification implemented using Jade and NOWHERE.
We conclude the paper with a few remarks.

2 The NOWHERE platform

In the NOWHERE platform each agent consists of two main components: a
Dispatcher, that provides the Knowledge Level layer, and a Facilitator, a separate
component that deals with low-level aspects, such as sending and retrieving
messages providing fault tolerance. These two components communicate together
by means of the TCP protocol, using a simple Connector interface. While the
Dispatcher is a relatively simple component that mainly provides ACL primitives
to a specific programming language, the Facilitator hides the whole complexity
of the platform, as shown in Figure 1.

NOWHERE differs from other agent architectures in the way it manages
faults. The Facilitator component contains a failure handler mechanism that
is able to discover crashes of agents. It is based on a set of transparent timeouts,
that are automatically managed by the architecture.

2.1 NOWHERE’s Agent Communication Language

One of the main features of FT-ACL is the ability to deal with crash failures
of agents. Following a well known classification of process failures in distributed
systems [10], we say that an agent is faulty in an execution if its behaviour
deviates from that coded in the algorithm that it is running; otherwise, it is



Fig. 1. The NOWHERE architecture

correct. A faulty agent crashes if it stops prematurely and does nothing from
that point on. FT-ACL manages faults considering only crash failures. This is a
common fault assumption in distributed systems, since several mechanisms can
be used to detect more severe failures and to force a crash in case of detection.
FT-ACL deals with crash failures of agents allowing the programmer to choose
what actions to invoke for each interaction they perform in the MAS, using a
continuation based mechanism.

The following Java-like pseudo code describes a sample genericRequest
primitive, like for example askOne, illustrating how FT-ACL continuations works.

1 public static void main(String args[]) {
2 ... some code ...

3 genericRequest(recipientAgent, content, onAnswer, onFail);

4 ... other code ...

5 }
6 public void onAnswer(Message replyMessage){
7 // Here we handle the success continuation

8 // of the genericRequest primitive

9 }
10 public void onFail(){
11 // Here we handle the failure continuation

12 // of the genericRequest primitive

13 }

In the code presented above there is a main function (mainCode, lines 1-5)
that at some point sends a message to the agent recipientAgent using the
performative genericRequest (line 3). A typical request primitive is usually
realised using only two arguments: the recipient (recipientAgent) and the con-
tent of the request that must be sent (content). Instead, using the FT-ACL



style, a communication primitive also includes a success and a failure continu-
ation, onAnswer and onFail respectively. These parameters are functions that
allow the programmer to specify the success and the failure continuation asso-
ciated to genericRequest. Due to the fact that the language uses non-blocking
primitives, after the execution of genericRequest, the control flow immediately
passes to the next instructions, contained in the “... other code ...” block,
line 4. When the reply message is received, the success continuation onAnswer
(lines 6-8) is executed, with the parameter replyMessage instantiated with the
reply. Otherwise if a communication error arises, then the failure continuation
onFail (lines 10-13) will be executed. Note that the behaviour of the success
continuation onAnswer is specific for a request performative. If we consider other
types of performative the role of the success continuation can be different. For
example the success continuation can be activated when a message is received by
the recipient agent to acknowledge that an inform performative is successfully
executed. The interaction patterns supported by FT-ACL for different classes of
performatives are described in details in [4].

Agents written using FT-ACL are also easy to program because these Knowl-
edge Level properties hold ([3]):

(1) The programmer does not have to manage physical addresses of agents ex-
plicitly.

(2) The programmer does not have to handle communication faults explicitly.
(3) Communication is Starvation free.
(4) Communication is Deadlock free.

Altough NOWHERE communication primitives are deadlock free, it is not
guaranteed that applications implemented in NOWHERE are deadlock free in
general. For example, if an agent implements a shared resource using a wrong
allocation policy, then a resource deadlock may occur.

2.2 Language Primitives

Language primitives support communication providing agents with the capabil-
ity to exchange messages and invoke service. A Message object encapsulates the
content of the communication in a language-independent way, so that agents
written in different languages are able to exchange messages, for example with
the inform primitive. Simple or complex capabilities can be shared among agents
using a Service object. These services are described using a subset of WSDL
[2], the standard XML format for Web services. Services differ from messages
because they have a description that holds information about several aspects, in-
cluding the name of the service, its parameters and the data types used. They are
used with specific communication primitives, for instance askOne, askEverybody
and tell. In the NOWHERE architecture, a service description is contained in
a Description object. To invoke a service and to send a reply NOWHERE
provides a Request and a Response object, that can be retrieved from the de-
scription object. Both the Request and the Response objects are templates



containing relevant information extracted from the service description, such as
the name of the parameters of the service. In order to invoke a service (to pro-
vide a response), a Request (a Response) template must first be filled in with
the correct information. Due to the fact that these templates contain part of
the service description, they simplify the actions of invoking and replying to a
service.

The communication primitives provided by NOWHERE are shown in Table
1. For space constraints we only present the details of those used in the subse-
quent case study. The interested reader will find a detailed description of all the
implemented performative in [9].

One-to-one knowledge exchange
inform(recipientAgent, message)

informACK(recipientAgent, message, onAnswer[, onFail])

Using functions to manage specific messages
handler(message, function)

Managing Services
Description loadDescription(WSDL Description)

Description makeDescription(targetNS, operation,

parameters, returnParameters)

Using functions to manage specific services
handler(request, function)

Providing and Requesting services
askOne(recipientAgent, request, onAnswer[, onFail])

tell(recipientAgent, response)

Service publishing
register(description)

Anonymous service request
askEverybody(request, onAnswer[, onFail])

allAnswers()

Table 1. Language Primitives

One-to-one knowledge exchange.
Communication between two agents can be achieved using the inform primitive,

the very basic communication method provided by NOWHERE. The syntax of
this primitive is:

inform(recipientAgent, message)

where recipientAgent is the unique ID (identifier) of the recipient agent and
message represents the message containing the information to be sent. The
inform primitive is used to send a message to another agent, without any feed-
back about the delivery status. No actions are performed by the sender agent



if the recipient receives the message, as well as no actions are performed if the
message is not delivered for some reason.

Request/Response Performatives.
In order to use services, a Description object (that stores the data about the

service) must first be generated from a standard WSDL file. The loadDescription
primitive is provided for this purpose. It parses a WSDL file either from a local
resource or from the Web, returning a NOWHERE Description object. The
askOne primitive must be used to invoke a service provided by another agent.
The syntax is:

askOne(recipientAgent, Request, onAnswer[, onFail])

The recipientAgent parameter represents the target agent, while the in-
vocation of the service, together with the parameters associated to the specific
service, is contained in the Request object. The onAnswer and the onFail pa-
rameters are the associated continuations. They represent the names of the func-
tions that will handle the answer and the failure, respectively. The NOWHERE
architecture automatically invokes one of these two functions, depending on the
result of the invocation.

Anonymous interaction mechanism.
NOWHERE provides support for invoking a service from a set of agents. This

mechanism is also known as content-based request, because a service is invoked
specifying its content rather than the name of the agent that provides it. Services
can be invoked using the askEverybody primitive, whose syntax is:

askEverybody(Request, onAnswer, onFail)

The parameters are the same as in the askOne primitive seen before, except
that in this case the recipient agent is not specified. It is the runtime support
that will send the request to all (and only) the agents that provide the specified
service. Every time that a reply is received, the onAnswer function will be called.
Instead, the onFail function will be called only if no agents replied at all. Inside
the onAnswer function it is possible to check if the current reply is the last
one using the allAnswers predicate. The allAnswers is a boolean predicate
that returns true if the current response is the last reply for the associated
askEverybody, false otherwise.

3 Transparent timeouts

Timeouts are used to provide a framework that can be adaptable to different
situations. The timeouts used in NOWHERE are called “transparent timeouts”
because they are managed by the architecture itself, so that the user does not
have to deal with them. In NOWHERE, timeouts are countdown timers that



are activated when a certain primitive is issued or, in some cases, received. Each
timeout is associated to a custom message containing an action to do when
the countdown timer reaches zero. Usually the action is to execute the failure
continuation for the associated primitive.

Every timeout object contains:

– A message, which encodes the action to be taken when the countdown timer
reaches zero.

– Two extra parameters: the agentType and agentReactiveness.

The message associated with every countdown timer is automatically sent
using the Facilitator when the countdown reaches zero.

The value for the countdown is calculated using the properties agentType
and agentReactiveness which are associated to each agent. The agentType
property can be considered an upper bound of the time that the agent will wait.
It defines the maximum time that an agent will wait for external replies. If no
replies are given during this time, then the failure continuation is fired. The
agentReactiveness is instead the minimum time that an agent will wait for an
answer.

Every communication primitive can be associated to a custom couple of
agentType and agentReactiveness properties. The agentReactiveness prop-
erty affects how the interaction with the recipient agent will be managed by the
Facilitator. A low value will force the Facilitator to check the recipient agent
very frequently, in order to promptly find crashes. On the other hand, using
high values the Facilitator will accept network lags or temporary failures of the
recipient agent. For the implementation of the askOne communication primitive,
these properties are managed using the following algorithm:

1 - The Agent executes the askOne primitive.
2 - The associated Facilitator sends the message containing the primitive.
3 - The Facilitator starts a countdown timer set to the lower value between

agentReactiveness and agentType.
4 - When the Facilitator receives the reply before that the countdown reaches zero,

it will halt the countdown and forward the received message to the dispatcher
(the success continuation fires).

5 - When the Facilitator receives a NeedMoreTime message before that the
countdown reaches zero, the agentType value will be decremented by
the actual number of milliseconds already passed since the countdown started.
The algorithm continues to step 3.

6 - When the countdown reaches zero, the message associated to the countdown
timer will be forwarded to the Dispatcher (the failure continuation fires).

The algorithm has a loop (lines 3-5) which will end with the success or
failure continuation, in lines 4 and 6. The NeedMoreTime message is automati-
cally generated and managed by the Facilitator. Timeouts are contained in the
CountdownRepository, a structure that provide two basic mechanisms: stop,
to halt a specific timer, and restart, to restart it.



In order to explain this algorithm we introduce a simple scenario, in which
AgentA executes an askOne primitive in order to invoke a service from AgentB.
Four different cases can be obtained:

1. AgentB replies in due time: the time waited by AgentA for the reply is less
than the maximum allowed time set by AgentA (agentType). This case is
illustrated in Figure 2, where FA and FB indicate the Facilitator of AgentA
and the Facilitator of AgentB respectively.

2. AgentB has already crashed when AgentA invokes the service. This case is
illustrated in Figure 3.

3. AgentB receives the request, but it crashes (or a network error occurres)
before replying, so that AgentA never receives a proper reply. This case is
illustrated in Figure 4.

4. AgentB does not reply in due time, that is AgentA does not receive the
reply in the maximum allowed time (specified by agentType). This case is
considered in Figure 5.

Fig. 2. Success Invocation of a Service

The agentType parameter associates an agent to a specific class of agents
with similar interactive characteristics. In principle, any numeric value can be as-
sociated to this parameter using the setAgentType primitive. However, NOWHERE
suggests a predefined set of default values:

– Real Time Agent, for agents that need a reply in 2 seconds.
– Web Agent, for agents that need a reply in 4 seconds.
– Worker Agent, for agents that need a reply in 1 minute.
– Truster Agent, for agents that can wait indefinitely for a reply. This is needed

for example when the sender agent wants to dispatch a task and it does not
know a priori how much time the task will take. Of course, if the recipient
crashes before receiving reply, then the Facilitator of the sender agent will
fire a failure continuation.



Fig. 3. Failure Invocation of a Service (AgentB is already Crashed)

Fig. 4. Failure Invocation of a Service (AgentB Crashes before Replying)

These values were defined according to the work made by Nielsen in [11], one
of the standard reference for the Web usability.

4 Case study: The FIPA Contract Net Protocol

The purpose of this case study is to compare the solution obtained using the
NOWHERE approach to the solution provided by Jade, a state-of-the-art agent
platform. We choose a slightly modified version of the classic Contract Net[13],
fully described in the FIPA specification[7]. The Contract Net protocol allows
an agent to distribute tasks among a set of agents by means of negotiation. The
modified version considers only a single manager agent, the Initiator, and a
set of worker agents, the Responders. Moreover, the FIPA Contract Net also
includes rejection and confirmation communicative acts.

In the following we just recall the basic principles of the protocol, described
in detail in the FIPA specification. A representation of this protocol is given in
Figure 6 which is based on extensions to UML1.x[12]. The sequence diagram
describes the inter-agent transactions needed to implement the protocol, where
the diamond symbol indicates a decision that can result in zero or more com-
munications being sent, depending on the conditions it contains.



Fig. 5. AgentB does not Reply in Due Time

Fig. 6. FIPA Contract Net Protocol (source: FIPA Specification)

According to the FIPA specification, the Initiator agent sends a call for pro-
posal (cfp) act, soliciting a proposal from every other m agents, specifying the
task to be done. Responders receiving the call for proposals are viewed as poten-
tial contractors and are able to generate n responses. Of these, j are proposals to
perform the task, specified as propose acts. The Responder’s proposal includes
the preconditions that the Responder is setting out for the task, which may be
the price, time when the task will be done, etc. Alternatively, the i=n-j Respon-
ders may refuse to propose. Once the deadline passes, the Initiator evaluates the
received j proposals and selects agents to perform the task; one, several or no
agents may be chosen.



Being a FIPA compliant platform, Jade adheres as much as possible to FIPA
specifications. For this reason Jade implements ad-hoc mechanisms for the FIPA
Contract Net, providing facilities that simplify the programming task. In fact,
the task of the programmer is just to extend the two Java classes provided for the
Initiator and for the Responder role. In order to handle proposals from Respon-
der agents, for example, the developer must only write the proper code inside
a function named handlePropose. The Jade architecture will then invoke this
function properly, for each received proposal. In the Jade platform these ad-hoc
mechanisms are called behaviours, and are used to easily implement well defined
actions, like doing repetitive tasks (using the CyclicBehaviour), simultaneously
executing different tasks (using the ParallelBehaviour) or, as in this example,
starting a FIPA Contract Net interaction protocol.

For the comparison we proceed in this way: first we introduce the algorithm
used in the Jade platform (adapted from an example found in the Jade software
distribution) and then we provide an equivalent solution for the NOWHERE
architecture. For space limitations, we only analyze the Initiator agent. However,
the Responder agent is based on a straightforward reactive algorithm.

4.1 The Initiator agent - Jade

The algorithm implemented by the Initiator agent is composed of 3 main steps:

1. Find the set of available Responder agents;
2. Send a cfp message to Responder agents;
3. Select and accept the best proposal;

1 & 2 - Find the set of available agents and send a cfp message to them.
The source code for the first two steps is presented in Figure 7. In the Jade

platform the task of finding other agents is delegated to the Directory Facilita-
tor component. In order to find other agents, the Initiator should first fill in a
Service Description object (lines 1-2). The Service Description object contains
information about the resource that we want to find. In this case we used a type
tag to identify Responder agents. (line 2). The next block of code, lines 3-10,
performs a query on the Directory Facilitator and retrieves a list of the available
Responder agents. The second step is to send a cfp message to every Responder
agent found in the previous step. In lines 11-18 a proper cfp message is created,
specifying every collected agent as receiver, if there are any (line 11). Addition-
ally, the agent sets a maximum timeout of 10 seconds for the proposals (line 17)
and the name of the task to be dispatched (line 18). The newly created message
is then automatically sent using the ContractNetInitiator behaviour in the
third step.

3 - Select and accept the best proposal.
The code used for the third step is shown in Figure 8. Again, replies from

Responder agents are managed exploiting Jade’s FIPA Contract Net behaviour.
The messages are handled using the handleAllResponses function (lines 20-
44). This function is automatically called by the Jade infrastructure when all



// Step 1: Find the set of available Responder agents

1 ServiceDescription sd = new ServiceDescription();

2 sd.setType("Responder");

3 DFAgentDescription df = new DFAgentDescription();

4 df.addServices(sd);

5 DFAgentDescription[] agentList = null;

6 try {
7 agentList = DFService.search(this, df);

8 } catch (Exception e) {
9 e.printStackTrace();

10 }
11 if (agentList != null && agentList.length > 0) {

// Step 2: Send a cfp message to Responder agents

12 ACLMessage msg = new ACLMessage(ACLMessage.CFP);

13 for (int i = 0; i < agentList.length; ++i) {
14 msg.addReceiver(((DFAgentDescription)agentList[i]).getName());

15 }
16 msg.setProtocol(FIPANames.InteractionProtocol.FIPA CONTRACT NET);

17 msg.setReplyByDate(new Date(System.currentTimeMillis() + 10000));

18 msg.setContent("dummy-action");

Fig. 7. Initiator Agent - Jade solution - first fraction

the replies have been received. The code in lines 21-38 selects the best proposal,
sending a REJECT message to the less competitive replies. The proposal are
simply evaluated comparing them against the bestProposal variable that stores
in every iteration the best proposal received. Replies to the Responder agents
are stored in the acceptances Java Vector, and are then automatically sent.
Finally, the code in lines 39-42 accepts the best proposal received.

4.2 The Initiator Agent - NOWHERE

The solution developed for the NOWHERE platform is shown in Figure 9.
Thanks to the anonymous interaction mechanism, there is no need to search
for Responder agents. The cfp message can be sent directly to all the Responder
agents, that are automatically discovered. In this case the anonymous interac-
tion mechanism relies on an agent capability, that is used to find Responder
agents. This capability is provided by all the agents that want to act as Re-
sponder agents, and it is described by an external WSDL file, which can be
something similar to the one presented in Figure 10. This WSDL description is
then loaded in the architecture using the loadDescription primitive (line 2),
which returns a Description object from a WSDL file. The code in line 4 sets
the timeout to 10 seconds, accordingly to the Jade’s version. A Request object
is then instantiated with proper values and sent to Responder agents using an
askEverybody primitive (lines 5-7). The handlePropose function (lines 9-20)



// Step 3: Managing replies from Responder agents

19 addBehaviour(new ContractNetInitiator(this, msg) {
20 protected void handleAllResponses \

(Vector responses, Vector acceptances) {
21 int bestProposal = -1;

22 AID bestProposer = null;

23 ACLMessage accept = null;

24 Enumeration e = responses.elements();

25 while (e.hasMoreElements()) {
26 ACLMessage msg = (ACLMessage) e.nextElement();

27 if (msg.getPerformative() == ACLMessage.PROPOSE) {
28 ACLMessage reply = msg.createReply();

29 reply.setPerformative(ACLMessage.REJECT PROPOSAL);

30 acceptances.addElement(reply);

31 int proposal = Integer.parseInt(msg.getContent());

32 if (proposal > bestProposal) {
33 bestProposal = proposal;

34 bestProposer = msg.getSender();

35 accept = reply;

36 }
37 }
38 }

// Step 4: Evaluate the proposals and accept the best offer

39 if (accept != null) {
40 accept.setPerformative(ACLMessage.ACCEPT PROPOSAL);

41 acceptances.addElement(accept)

42 }
43 } // This closes the addBehaviour function (line 19)
44 }); // This closes the if branch of line 11, Fig. 7
45 }

Fig. 8. Initiator Agent - Jade solution - second fraction

will then be called every time the Initatior agent will receive a reply. As in the
Jade solution, this function will select the best proposal, sending a REJECT
message to the less competitive agents (line 17). Being a synchronized method,
the handlePropose function will avoid concurrency problem when accessing the
bestProposal variable.

4.3 Discussion

The first thing to observe is that the solution obtained with Jade exploits a set of
ad-hoc facilities to manage interactions in the Contract Net protocol. Even using
these facilities for Jade the source code of the solution based on NOWHERE is
much compact.

Analyzing in details the Jade solution, we can observe that two main features
are provided by the Jade’s FIPA Contract Net behaviour:



1 bestProposal = -1;

2 Description cfp = loadDescription("http://maya.unibo.it/cnp.wsdl");

3 public void startAgent() {
4 this.setAgentType(10000);

5 Request r = cfp.getRequest();

6 r.setParameter("taskName", "dummy-action");

7 askEverybody(r, "handlePropose", null);

8 }
9 public synchronized void handlePropose(Message m) {
10 Response r = cfp.retrieveResponseFromMessage(m);

11 int proposal = (Integer) r.getParameter("proposal");

12 if (proposal > bestProposal) {
13 bestProposal = proposal;

14 bestProposer = m.getSender();

15 }
16 else

17 inform(m.getSender(), new Message("REJECT PROPOSAL")

18 if (allAnswer() && bestProposer != null)

19 inform(m.getSender(), new Message("ACCEPT PROPOSAL")

20 }

Fig. 9. Initiator Agent - NOWHERE solution

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="contractNetProtocol"

targetNamespace="http://www.maya.ei.unibo.it/wsdl/cnp.wsdl"

xmlns:tns="http://www.maya.ei.unibo.it/wsdl/cnp.wsdl"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<message name="DoTaskRequest">

<part name="taskName" type="xsd:string"/>
</message>
<message name="DoTaskResponse">

<part name="taskResult" type="xsd:string"/>
</message>
<portType name="DoTask">
<operation name="doTask">
<input message="tns:DoTaskRequest"/>
<output message="tns:DoTaskResponse"/>

</operation>
</portType>

</definitions>

Fig. 10. The Contract Net Protocol WSDL Description

– the facility to automate some tasks, like to automatically reply to Responder
agents with rejection or acceptance of proposals storing the answers in a
vector (Fig. 8, lines 30 and 42);



– the facility that allows the developer to consider just the correct proposals
in the handleAllResponses function, so that the developer does not have
to deal with faulty agents.

While these features make the programming task easier, Jade provides them
only for the Contract Net implementation. On the contrary, the NOWHERE
approach provides a general purpose built-in mechanism which can be used in
many contexts. The anonymous interaction mechanism, for example, can be used
to send a message to every agent in the network that satisfies a set of specific
criteria (such as to be a Responder agent). Regarding failures, both solutions add
functions to handle low-level communication problems, implementing an appro-
priate handleFailure function. Again, the NOWHERE architecture provides
these features as built-in. Thus they can be used for implementing any kind
of interaction protocol. The general idea behind NOWHERE is to simplify the
agent programming task, allowing the developer to concentrate in writing the
code he/she is working on, avoiding as much as possible the need to explicitly
write code to handle failures. Moreover, the NOWHERE architecture provides a
fault tolerant system that implements a much more sophisticated algorithm than
a simple communication timeout. With regard to inter-agent communication, is
important to note that NOWHERE agents can be realised in any program-
ming language including AI languages or knowledge representation languages,
provided that they react to a well defined protocol based on the standard prim-
itives of the ACL. Further advantages of using FT-ACL primitives is that they
satisfy a set of well defined properties[3]. The resulting communication will then
be free from problems like communication deadlock and starvation.

The FIPA contract net protocol does not take into consideration failures of
Responder agents receiving the ACCEPT PROPOSAL message. However, using the
continuations mechanism, it is easy to add this feature. A transaction mechanism
can be realized using the (more lightweight) continuations, for example with
following pseudocode:

21 public void askProposer(String proposer)

22 askOne(proposer, acceptRequest, contractNetOk, getNextProposal)

23 public void getNextProposal()

24 if (proposal.hasNext())

25 askProposer(proposals.next())

The askProposer function (line 21-22) is used to send a request for the
acceptation of the proposal to a Responder agent, whose name is specified as
a parameter. The contractNetOk function will be executed if the Responder
agent replies correctly. Otherwise, the getNextProposal function (lines 23-25)
is executed. The effect of the compensation is to restart the acceptation phase,
sending a request to the agent author of the second best proposal, and so on.



5 Conclusions

In this paper we have presented NOWHERE, a communication infrastructure
that facilitates agent development supporting Knowledge Level agents. Inter-
agent communication is performed by means of an advanced Agent Communica-
tion Language (FT-ACL) that, like other popular ACLs such as FIPA ACL [6]
and KQML [5], is based on the speech acts theory. However, if we consider con-
currency related issues the expressive power of these languages is very different.
For example, FIPA ACL sends every communication performative as content
of asynchronous message passing. On the contrary the FT-ACL performatives
used in NOWHERE can be classified in a few well defined patterns [4], each
one with a different concurrent semantics. Every performative consist of a com-
plex behaviour that is fundamentally different from a simple send primitive. The
comparison between different solutions to the Contract Net Protocol, provided
in this paper, helps to highlight the effects of the adoption of this approach.

References

1. F. Bellifemine, A. Poggi, and G. Rimassa. Jade: a fipa2000 compliant agent de-
velopment environment. In AGENTS ’01: Proceedings of the fifth international
conference on Autonomous agents, pages 216–217, New York, NY, USA, 2001.
ACM Press.

2. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services
description language (wsdl) 1.1. Available online at: http://www.w3.org/TR/wsdl,
2001.

3. N. Dragoni and M. Gaspari. Crash failure detection in asynchronous agent commu-
nication languages. Autonomous Agents and Multi-Agent Systems, 13(3):355–390,
2006.

4. N. Dragoni and M. Gaspari. Performative patterns for designing verifiable acls.
In Proc. of the Tenth International Workshop on Cooperative Information Agents
(CIA), volume 4149 of Lecture Notes in AI, Berlin, Germany, 2006. Springer Verlag.

5. T. Finin, Y. Labrou, and J. Mayfield. KQML as an Agent Communication Lan-
guage. In Software Agents, pages 291–316. MIT Press, 1997.

6. FIPA Communicative Act Library Specification. Available online: http://www.
fipa.org/, 2002. Document number: SC00037J.

7. FIPA Contract Net Interaction Protocol Specification. Available online at http:

//www.fipa.org/specs/fipa00029/SC00029H.pdf, 2002.
8. M. Gaspari. Concurrency and Knowledge-Level Communication in Agent Lan-

guages. Artificial Intelligence, 105(1-2):1–45, 1998.
9. D. Guidi. A communication infrastructure to support knowledge level agents on

the web. Technical Report UBLCS-2007-06, Department of Computer Science,
University of Bologna, 2007.

10. S. Mullender. Distributed Systems. ADDISON-WESLEY, 1993.
11. J. Nielsen. Usability Engineering. MA Academic Press, 1993.
12. J. Odell, H. V. D. Parunak, and B. Bauer. Representing agent interaction protocols

in UML. In AOSE, pages 121–140, 2001.
13. R. G. Smith. The Contract Net Protocol: High Level Communication and Control

in a Distributed Problem Solver . IEEE Transactions on Computers, 29(12):1104–
1113, 1980.


