
Goal Selection Strategies for Rational Agents

Nick A.M. Tinnemeier, Mehdi Dastani, and John-Jules Ch. Meyer

Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

Abstract. In agent theory and agent programming, goals constitute
the motivational attitude of rational agents and form the key concept
in explaining and generating their pro-active behavior. Pursuing multi-
ple goals simultaneously might pose problems for agents as the plans for
achieving them may conflict. We argue that a BDI-based agent program-
ming language should provide constructs to allow an agent programmer
to implement agents that: 1) do not pursue goals with conflicting plans
simultaneously, and 2) can choose from goals with conflicting plans. This
paper presents an explicit and generic mechanism to process incompati-
ble goals, i.e., goals with conflicting plans. The proposed mechanism can
be integrated in existing BDI-based agent programming languages. We
discuss different strategies to process incompatible goals based on a given
conflict relation and show some properties and relations between these
strategies.

1 Introduction

To facilitate the implementation of cognitive agents, BDI-based agent program-
ming languages provide constructs to implement agent concepts such as beliefs,
goals and plans. Examples of these programming languages are Jadex [1], Jack
[2], Jason [3], 3APL [4], IMPACT [5], CLAIM [6] and 2APL [7]. In these agent
programming languages, belief constructs can be used to implement the (incom-
plete) information the agent has about its world, whereas goal constructs can
be used to implement the states the agent desires to achieve. In agent theory
and agent programming, goals constitute the motivational attitude of rational
agents and form the key concept in explaining and generating their pro-active
behavior [8–10]. In pursuing its goals an agent uses (partial) plans which specify
the actions that should be taken to achieve its goals. In general, most BDI-based
agent programming languages allow an agent to have multiple goals at the same
time. When an agent has more than one goal, different strategies are possible
for adopting plans to achieve these goals. A strategy that is commonly used in
many agent programming languages, for example in both 3APL[4] and 2APL
[7], is to adopt a plan for each goal and to execute all generated plans at the
same time (in an interleaving mode).

Pursuing multiple goals simultaneously might be beneficial for an agent, it
also poses problems. Goals might be incompatible with each other in the sense

that the plan for reaching one goal possibly conflicts with the plans for other
goals. Consider for example a household agent with the capability of cleaning
rooms. Suppose that the agent has two goals: to have cleaned room one and five.
Although it is possible for the agent to achieve one goal after the other, trying
to achieve them simultaneously by first making a step in the direction of one
room and then in the direction of the other would clearly be irrational. So, the
goals that an agent has committed to by adopting plans might pose constraints
for the adoption of plans to pursue other goals. Furthermore, confronted with
different incompatible goals, an agent should still be able to choose among goals.
Therefore, we argue that a BDI-based agent programming language should pro-
vide constructs to allow an agent programmer to implement agents that: 1) do
not pursue incompatible goals simultaneously, and 2) can choose from possibly
incompatible goals. Most agent programming languages, however, lack construc-
tions that sufficiently deal with these issues in an explicit way. It should be
noted that such constructs are different than a goal (event) selection function
as proposed, for example, by Jason [3]. These selection functions are too generic
and are not devised to process incompatible goals. In fact, our proposal can be
considered as a specific instantiation of such a function.

One might argue that it is the responsibility of the agent programmer to
implement its agents in such a way that its goal base will never contain incom-
patible goals. For example, the programmer should ensure that a goal is added
to its goal base after the existing plans for incompatible goals are fully executed
and the goals are either achieved or dropped. However, we believe that adding a
goal to the goal base should not depend on the existence of incompatible goals,
as the goals of an agent can in principle be incompatible or even inconsistent.
Moreover, we believe that an agent programmer may not know at design time
which goals it will adopt during its execution such that it becomes a cumber-
some task, if not impossible, to write such an agent program. In our opinion, a
generic mechanism to process incompatible goals facilitates the implementation
of pro-active agents and eases the task of agent programmers. A different solu-
tion to avoid that an agent pursues incompatible goals is to use the notion of
atomic plans as introduced in 2APL. Atomicity of a plan ensures that the plan
is executed at once without interleaving its actions with the actions of other
plans. This mechanism can be used to avoid the interleaved execution of the
plans for incompatible goals, i.e., to avoid simultaneous pursuit of incompatible
goals. This solution is, however, too restrictive as it does not allow the actions
of an atomic plan to be interleaved with the plans of compatible goals.

In this paper, we propose an explicit and generic mechanism to process in-
compatible goals. In order to illustrate that the proposed mechanism can be
integrated in arbitrary BDI-based agent programming languages, we present the
proposed mechanism in the context of a simple agent programming language
that can be extended to existing BDI-based agent programming languages. Ac-
cording to this proposal, an agent programmer should specify a conflict relation
between only those sub-goals for which a planning rule is specified. It should
be noted that in most BDI-based agent programming languages, all (sub-)goals

for which planning rules are specified, are known at design time. It should also
be noted that these planning rules could be applied to adopt plans for arbitrary
goals not known at design time. We discuss different strategies to process incom-
patible goals based on a given conflict relation and show some properties and
relations between these strategies. In particular, we present in section 2 a simple
generic BDI-based agent programming language by specifying its syntax and
operational semantics. Then, in section 3 we extend the programming language
with a goal conflict relation and discuss different strategies to process incom-
patible goals and show their properties and relations. We conclude the paper in
section 4 with some remarks, related works and future research.

2 An agent programming language

In this section we provide the syntax and semantics of a logic-based agent pro-
gramming language. The language provided here is based on 2APL [7], but does
not reflect its complete syntax and semantics. Instead, we provide a simplified
version that is self-contained and can be used to illustrate the different notions
of a goal selection strategy. In contrast to 2APL and many logic-based agent
programming languages in which the beliefs and goals of the agent are mod-
elled in a subset of first-order logic, the programming language presented here
uses a subset of propositional logic. Furthermore, 2APL provides external ac-
tions by which the agent can change its environment, communicative actions
to communicate with other agents, and rules to react to external events. All of
these constructs are left out in the language presented here, because they are
not needed to illustrate the idea of goal selection strategies. In the next section
this simplified language will be extended with some goal selection strategies.

2.1 Syntax

An agent has beliefs about its environment, and goals to denote the desirable
situation it wants to realize. As mentioned earlier, these are modelled in a subset
of propositional logic.

Definition 1 (belief and goal language). Let the set P be the set of atomic
propositions. The belief language LB with typical element β, and goal language
LG with typical element κ are then defined as:

– if ϕ ∈ P then ϕ,¬ϕ ∈ LB

– if ϕ ∈ (P \ {>,⊥}) then ϕ,¬ϕ ∈ LG

– if κ, κ′ ∈ LG then κ ∧ κ′ ∈ LG

The symbol |= will be used to denote the standard entailment relation for propo-
sitional logic.

The beliefs of the agent can thus be represented by literals, i.e. positive
and negative atomic propositions. A belief that the agent is in room three, for

instance, can be represented as in room 3. The goals of the agent can be rep-
resented by a conjunction of literals, for instance, cleaned1 and cleaned2 to
denote the goals of having cleaned room one and two.

To reach its goals, an agent needs to act. A plan describes a sequence of
actions an agent should perform in order to reach its goals. For the sake of
simplicity and to focus on goal selection strategies we assume only a set of basic
actions by which the agent can modify its beliefs, and an action by which the
agent can adopt new goals.

Definition 2 (plan language). Let Act with typical element a be the set of
basic actions an agent can perform. The set of plans Plan with typical element
π is then defined as:

– Act ⊆ Plan
– if κ ∈ LG then adopt(κ) ∈ Plan
– if π1, π2 ∈ Plan then π1;π2 ∈ Plan

In the following we will use ε to denote the empty plan and identify ε;π and π; ε
with π. Furthermore, we assume that every plan is ended by ε.

An agent can possibly know of more than one plan to pursue a single goal.
Which plan is the best depends on the current situation. To choose and generate
an appropriate plan, the agent uses so-called planning goal rules. These rules are
of the form κ ← β | π. The informal meaning of such a rule is that the agent
can use a plan π to reach a goal κ in case the agent believes β.

Definition 3 (planning goal rules). The set of goal planning rules RPG is
defined as:

RPG = {(κ← β | π) : κ ∈ LG and β ∈ LB and π ∈ Plan}

2.2 Semantics

In this section we define the operational semantics of the agent programming
language as defined in the previous section in terms of a transition system. A
transition system is a set of derivation rules for deriving transitions for this
language. A transition is a transformation of one configuration C into another
configuration C ′, denoted by C −→ C ′. Each transition corresponds to a single
computation step for the presented (agent) programming language. A configu-
ration represents the state of an agent at each point during computation.

Definition 4 (agent configuration). Let Σ = {σ : σ ⊆ LB and σ 6|= ⊥} be
the set of consistent belief sets, and let Γ = {κ ∈ LG : κ 6|= ⊥} be the set of
goals. An agent configuration is then defined as a tuple 〈σ, γ, Π, PG〉 where σ ∈ Σ
is the belief base, γ ⊆ Γ is the goal base, Π ⊆ (LG × Plan) are the plans, and
PG ⊆ RPG are the planning goal rules.

The plan base of the agent is a set of pairs (κ, π), where κ denotes the state
of affairs that is supposed to be reached by the sequence of actions denoted by
π. We use κ to keep track of the goals the agent is working on.

Note that in contrast to the belief base, the individual goals in the goal base
are consistent, but different goals can be inconsistent. An agent can thus have
as goal in room 3 while it also has a goal ¬in room 3. We say that an agent
has a goal κ when κ is derivable from the goal base of that agent. As the goal
base can be inconsistent we cannot use the same entailment relation as we use
for the belief base. Instead, we define a goal entailment relation to be used for
the goal base (cf. [11]). As it would be irrational for an agent to have goals that
are already believed to be achieved, the belief base of the agent is also used for
this goal entailment relation.

Definition 5 (goal entailment). Let γ ⊆ Γ be a goal base, and let σ ∈ Σ be a
belief base. The goal entailment relation |=g is then defined in the following way:

(γ, σ) |=g κ⇔ (∃γi ∈ γ : γi |= κ) and σ 6|= κ

An agent with belief base σ and goal base γ is thus said to have a goal κ if
and only if κ is derivable from some of its goals and is not entailed by the belief
base.

The agent can update its belief base by performing basic actions. For this
purpose we use a function update : Act × Σ → Σ that takes as arguments a
basic action and a belief base, and evaluates to a new belief base as a conse-
quence of executing the basic action. The transition rule defined below defines
the semantics of executing a basic action, which can be executed in case the goal
for which the plan is generated is still a goal of the agent (condition (γ, σ) |=g κ).
A goal of the agent is removed from its goal base if the goal is believed to be
reached after having executed the belief update operation (clause 3). Moreover,
it would be irrational for an agent to execute a plan for a goal already believed
to be reached. Therefore, the plans that were generated for this goal are removed
from the plan base (clause 2). In defining the transition rules below an agent
configuration C = 〈σ, γ, Π, PG〉 is assumed. The set of planning rules PG will be
omitted whenever possible, since this component does not change during the
agent’s execution.

R1 (belief update) Let C = 〈σ, γ, Π, PG〉 be an agent configuration, and let
a ∈ Act and (κ, a;π) ∈ Π.

update(a, σ) = σ′ and (γ, σ) |=g κ

〈σ, γ, Π〉 −→ 〈σ′, γ′,Π ′′〉

where
1) Π ′ = (Π \ {(κ, a;π)}) ∪ {(κ, π)}
2) Π ′′ = Π ′ \ {(κ′, π′) ∈ Π ′ : (γ, σ′) 6|=g κ′}
3) γ′ = γ \ {γi ∈ γ : σ′ |= γi})

Note that under the interpretation of the goal entailment relation a goal
in room 1 ∧ battery loaded differs from having two separate goals in room 1
and battery loaded in the goal base. The first goal is only achieved once the
agent believes in room 1 ∧ battery loaded, while the single goal in room 1 is
achieved if it believes in room 1 even when it does not believe battery loaded.

Agents can adopt new goals by performing an adopt action. The goal is
added to the goal base only if the goal is not already believed to be achieved.
The following two transition rules capture a goal adoption. The first rule captures
the case in which the goal is not already believed to be achieved, whereas the
second rule captures the case in which the goal is already believed to be achieved.
In the latter case the plan execution proceeds without any changes in the agent’s
belief and goal bases.

R2 (goal adoption 1) Let C = 〈σ, γ, Π, PG〉 be an agent configuration.

(κ, adopt(κ′);π) ∈ Π and (γ, σ) |=g κ and σ 6|= κ′

〈σ, γ, Π〉 −→ 〈σ, γ ∪ {κ′},Π ′〉

where Π ′ = (Π \ {(κ, adopt(κ′);π)}) ∪ {(κ, π)}

R3 (goal adoption 2) Let C = 〈σ, γ, Π, PG〉 be an agent configuration.

(κ, adopt(κ′);π) ∈ Π and (γ, σ) |=g κ and σ |= κ′

〈σ, γ, Π〉 −→ 〈σ, γ, Π ′〉

where Π ′ = (Π \ {(κ, adopt(κ′);π)}) ∪ {(κ, π)}

When an agent has executed all the actions of a plan, this plan is removed
from the plan base. Removing a plan from the plan base does not affect the goal
base of the agent. When the plan failed in establishing the desired state, the goal
remains in the goal base of the agent. The next transition rule is for removing
empty plans from the plan base.

R4 (empty plan) Let C = 〈σ, γ, Π, PG〉 be an agent configuration.

(κ, ε) ∈ Π

〈σ, γ, Π〉 −→ 〈σ, γ, Π \ {(κ, ε)}〉

As already mentioned, an agent uses planning goal rules for generating plans
by which it hopes to reach its goals. An agent can apply a goal planning rule
κ← β | π if κ is a goal of the agent, β is derivable from the agent’s belief base,
and the agent is not already working on a plan for κ. In defining the transition
rule for plan generation we first define the set of applicable planning rules with
respect to an agent configuration.

Definition 6 (applicable rules). Let C = 〈σ, γ, Π, PG〉 be an agent configura-
tion, and let κ ∈ LG. The set of applicable planning goal rules for goal κ w.r.t.
configuration C is then defined as:

appl(κ, C) =

{κ← β | π ∈ PG : (γ, σ) |=g κ and σ |= β and ¬∃π′ ∈ Plan : (κ, π′) ∈ Π}

When a goal planning rule is applicable the plan will be added to the agent’s
plan base. The following rule captures this situation.

R5 (plan generation) Let C = 〈σ, γ, Π, PG〉 be an agent configuration.

(κ← β | π) ∈ appl(κ, C)
〈σ, γ, Π〉 −→ 〈σ, γ, Π ′〉

where Π ′ = Π ∪ {(κ, π)}

In order to show some properties of the behavior of an agent, we define the
notion of an agent execution. Given a transition system consisting of a set of
transition rules, an execution of an agent is a sequence of configurations that
can be generated by applying transition rules to the initial configuration of
that agent. An agent execution thus shows a possible behavior of the agent. All
possible executions for an initial configuration show the complete behavior of an
agent.

Definition 7 (agent execution). An execution of an agent in transition sys-
tem T is a (possibly infinite) sequence of agent configurations 〈C0, C1, . . .〉 such
that for each for i ∈ N, Ci −→ Ci+1 can be derived from T . We use the term
initial configuration to refer to C0.

Recall that (κ, π) ∈ Π means that a plan has been generated to achieve a
state denoted by κ. We assume that in the initial configuration the associated κ
to each plan in the plan base is in fact a goal of the agent. Under this assumption
we can show that R1, . . . , R5 ensures that the associated κ to each plan in the
plan base in all derived configurations is in fact a goal of the agent. In other
words, the agent will never adopt a plan for which the corresponding κ is not a
goal of the agent.

Proposition 1. Let 〈C0, C1, . . .〉 be an agent execution in transition system T ,
where Ci = 〈σi, γi,Πi, PG〉, and let T consist of the rules R1, . . . , R5. Given that
∀(κ, π) ∈ Π0 : (γ0, σ0) |=g κ, then ∀i ∈ N.∀(κ, π) ∈ Πi : (γi, σi) |=g κ

Proof. By induction on the depth of the execution. We have ∀(κ, π) ∈ Π0 :
(γ0, σ0) |=g κ by assumption. Now assume that ∀(κ, π) ∈ Πk : (γk, σk) |=g κ for
arbitrary k ≥ 0. Now we have to prove that after application of one of R1, . . . , R5
it holds that ∀(κ, π) ∈ Πk+1 : (γk+1, σk+1) |=g κ. For R2, R3 and R4 this

is trivial as they do not change the belief and goal bases. Assume that a plan
(κ, π) ∈ Πk+1 is adopted by application of rule R5. From definition 6 and that
γk = γk+1 after application of R5 it follows that (γk+1, σk+1) |=g κ. Now assume
that a goal is removed from the goal base by application of rule R1. From the fact
that if a goal is removed, also all the plans that are associated to this goal are
removed we conclude that ∀(κ, π) ∈ Πk+1 : (γk+1, σk+1) |=g κ still holds. ut

3 Goal Selection Strategies

The previous section defined a simplified version of an agent programming lan-
guage. In this section we consider several possible goal selection strategies for
this agent programming language. Central to the notion of a goal selection strat-
egy is that we relate those goals that cannot be pursued simultaneously. For this
purpose we extend the previously defined agent configuration with a binary re-
lation R on the set of goals. We call such an extended agent configuration a goal
strategy agent.

Definition 8 (goal strategy agent). Let 〈σ, γ, Π, PG〉 be an agent configura-
tion. A goal strategy agent is a tuple 〈σ, γ, Π, PG,R〉 where R ⊆ (LG ×LG) is a
goal selection strategy.

The main idea of R is thus that it specifies which goals are incompatible
with each other. To work on two goals that might hinder the achievement of
one another would be irrational. Consequently, we desire that if two goals are
incompatible the agent should not be working on plans for these goals at the
same time.

Definition 9 (non-conflicting plan base). Let C = 〈σ, γ, Π, PG,R〉 be a goal
strategy agent. The plan base in C is R-non-conflicting iff:

∀(κ, π), (κ′, π′) ∈ Π : (κ, κ′) 6∈ R and (κ′, κ) 6∈ R

In the sequel we consider several notions of a goal selection strategy by in-
troducing the relations R<> and R≺ as concrete instances of R. We study some
of the possible semantics of these relations by providing alternative definitions
of the plan generation rule R5.

3.1 Incompatibility of goals

Goals the agent has already committed to by having adopted a plan constrain the
possibility for the pursuit of other goals. A rational agent is expected to refrain
from adopting a plan that hinders the achievement of the goals the agent is
currently committed to. In this subsection we define the incompatibility relation
R<> to relate goals that cannot be pursued at the same time. We adapt the
previously defined plan generation rule R5 to ensure that the agent generates its
plans in such a way that the plan base remains non-conflicting.

Definition 10 (goal incompatibility relation). A goal incompatibility rela-
tion R<> ⊆ (LG × LG) is a set of pairs of goals such that:

– (κ, κ′) ∈ R<> ↔ (κ′, κ) ∈ R<>

– (κ, κ′) ∈ R<> → κ′ 6= κ

Intuitively, when (κ, κ′) ∈ R<> this means that the goal κ cannot be pursued
in parallel with the goal κ′. Note that the incompatibility relation is symmetric
and anti-reflexive, meaning that two distinct goals are always incompatible with
each other and no goal can be incompatible with itself. The next transition rule
redefines rule R5 for plan generation, now taking the incompatibility of goals
into account.

R5.1 (incompatibility) Let C = 〈σ, γ, Π, PG,R<>〉 be a goal strategy agent
with R<> being an incompatibility relation

(κ← β | π) ∈ appl(κ, C) and ∀κ′ ∈ LG : (κ′, π′) ∈ Π → (κ, κ′) 6∈ R<>

〈σ, γ, Π〉 −→ 〈σ, γ, Π ′〉

where Π ′ = Π ∪ {(κ, π)}

In words, a plan can be generated for κ if there is an applicable planning
rule for κ, and none of the current plans the agent is working on are for a goal
that is incompatible with κ. Returning to the example of section 1, in this new
transition system we can prevent the household agent from trying to clean the
rooms one and five at the same time by defining the goals clean1 and clean5 as
incompatible with each other, i.e. (clean1, clean5), (clean5, clean1) ∈ R<>.
When the household agent has for example adopted a plan for cleaning room
one, it will not adopt a plan for cleaning room five as long as it is still working
on cleaning room one. Note that in case the adopted plan finished, but failed to
clean room one, the agent can either try again to clean room one or it can start
working on cleaning room five instead.

Similar to proposition 1 we show for rules R1, . . . , R4, R5.1 that the agent
will never adopt a plan for which the corresponding κ is not a goal of the agent
when in the initial configuration the associated κ to each plan in the plan base
is in fact a goal of the agent. Although not needed for proving that the plan
base of the agent remains non-conflicting during its execution, we provide this
property for the sake of completeness.

Corollary 1. Let 〈C0, C1, . . .〉 be an agent execution in transition system T ,
where Ci = 〈σi, γi,Πi, PG,R<>〉, and T consists of the rules R1, . . . , R4 and
R5.1. Given that ∀(κ, π) ∈ Π0 : (γ0, σ0) |=g κ, then ∀i ∈ N.∀(κ, π) ∈ Πi :
(γi, σi) |=g κ

Proof. This follows from proposition 1 and the fact that R5.1 is a more restrictive
version of R5. ut

The bottom line of R<> is to ensure that if the agent started with a non-
conflicting plan base, the plan base of the agent remains non-conflicting. Given
that the agent starts with a non-conflicting plan base, we show that the plan
base stays non-conflicting for all executions in the transition system consisting
of the rules R1, . . . , R4, R5.1.

Proposition 2. Let 〈C0, C1, . . .〉 be an agent execution in transition system T
consisting of the rules R1, . . . , R4 and R5.1. Given that the plan base in C0 is
R<>-non-conflicting then the plan base in Ci is R<>-non-conflicting ∀i ∈ N.

Proof. By induction on the depth of the execution. The plan base of C0 is non-
conflicting by assumption. Now assume that the plan base of Ck is non-conflicting
for arbitrary k ≥ 0. The only way in which the plan base can become conflicting
is by adoption of a plan to the plan base. Suppose that in configuration Ck+1 a
plan for goal κ has been adopted by applying R5.1. From the premises of R5.1
it directly follows that ∀(κ′, π) ∈ Πk+1 : (κ, κ′) 6∈ R<>. From the symmetry of
R<> we conclude that ∀(κ′, π) ∈ Πk+1 : (κ′, κ) 6∈ R<>, which means that the
plan base of Ck+1 is also non-conflicting. ut

3.2 Precedence of goals

The above defined incompatibility relation ensures that the agent refrains from
adopting plans for goals that hinder the achievement of goals the agent is cur-
rently pursuing. It does not, however, guarantee a certain order in which the
agent tries to achieve its goals. Under the interpretation of the incompatibility
relation R<> the choice between two incompatible goals for which no plan is
adopted yet is non-deterministic. Sometimes, however, when an agent is faced
with such a choice, one goal should have precedence over the other. Suppose, for
instance, that the household agent cannot clean rooms in case its battery charge
is low. Therefore, one would expect the agent to first achieve its goal to have
its battery loaded (denoted by battery loaded) before pursuing a goal to clean
a room. In this subsection we provide the precedence relation R≺ enabling the
agent not only to avoid pursuing goals that cannot be achieved simultaneously,
but also to choose between such incompatible goals.

Definition 11 (goal precedence relation). A precedence relation R≺ ⊆ (LG×
LG) is a set of pairs of goals such that:

– (κ, κ′) ∈ R≺ and (κ′, κ′′) ∈ R≺ → (κ, κ′′) ∈ R≺
– (κ, κ′) ∈ R≺ → (κ′, κ) 6∈ R≺ and κ′ 6= κ

The intuitive meaning of the precedence relation is as follows. When some
goals κ and κ′ are related by R≺, i.e. (κ, κ′) ∈ R≺, these goals are not to be
pursued simultaneously, and when both κ and κ′ are goals of the agent the
achievement of κ has precedence over the achievement of κ′. Precedence implies
an order in which goals are pursued. The relation R≺ is irreflexive, i.e. no goal
can have precedence over itself, and transitive. When, for example, the goal to

have the battery loaded precedes the goal to have room one clean (the room of
the boss), and cleaning room one on its turn precedes a goal to have cleaned
room two, then it seems not unreasonable to assume that the goal of having the
battery loaded also precedes the goal to have cleaned room two.

Suppose, for example, that in generating its plans an agent is faced with a
choice between two goals battery loaded and clean1. Furthermore, assume
that (battery loaded, clean1) ∈ R≺. If the agent has not adopted a plan
for one of them and does not have any goals with higher precedence than
battery loaded, then one might expect this agent to adopt a plan to load its
battery. If, however, the agent was already working on a plan for cleaning room
one before the goal battery loaded was adopted, then applying a planning goal
rule for battery loaded results in a conflicting plan base. In the following we
propose two different strategies to keep the plan base non-conflicting by provid-
ing two transition rules for plan generation with precedence. The first transition
rule implements a strategy in which the agent stops pursuing goals with less
precedence the moment a plan can be adopted for a goal with higher prece-
dence. Plans the agent is already executing might thus be disrupted in case a
plan is adopted for a more important goal.

R5.2 (disruptive precedence) Let C = 〈σ, γ, Π, PG,R≺〉 be a goal strategy
agent where R≺ is a precedence relation.

(κ← β | π) ∈ appl(κ, C) and ∀κ′ ∈ LG : (γ, σ) |=g κ′ → (κ′, κ) 6∈ R≺

〈σ, γ, Π〉 −→ 〈σ, γ, Π ′〉

where Π ′ = (Π ∪ {(κ, π)}) \ {(κ′, π′) ∈ Π : (κ, κ′) ∈ R≺}

In words, an applicable planning goal rule for κ is applied if no other goal has
precedence over κ. Note that in contrast to transition rule R5.1 in the premises
only conflicting goals are taken into account instead of plans in the plan base. It
might thus seem that there are plans (κ′, π′) in the plan base of the agent such
that (κ′, κ) ∈ R≺, which means that the agent has plans for goals that precede
κ, and therefore conflict with κ. However, this will never be the case because the
premises ensures that the agent has no goal that precedes κ, and as we show by
the following corollary, every κ′ associated to a plan of the agent is also a goal
of the agent.

Corollary 2. Let 〈C0, C1, . . .〉 be an agent execution in transition system T ,
where Ci = 〈σi, γi,Πi, PG,R≺〉, and T consists of the rules R1, . . . , R4 and R5.2.
Given that ∀(κ, π) ∈ Π0 : (γ0, σ0) |=g κ, then ∀i ∈ N.∀(κ, π) ∈ Πi : (γi, σi) |=g κ

Proof. This follows from proposition 1 and the fact that R5.2 is a more restrictive
version of R5. ut

When a planning rule for a goal κ is applied, all plans associated with goals
that are to be preceded by κ are dropped. This way it is ensured that the goal
κ for which a plan has been adopted does not conflict with plans for goals with

less precedence. At this point we are able to show that if the agent starts with
an empty plan base, with rules R1, . . . , R4 and R5.2 it is guaranteed that the
plan base stays non-conflicting in the rest of the execution.

Proposition 3. Let 〈C0, C1, . . .〉 be an agent execution in transition system T
consisting of the rules R1, . . . , R4 and R5.2 and let the plan base in C0 be empty.
Then the plan base in Ci is R≺-non-conflicting ∀i ∈ N.

Proof. By induction on the depth of the execution. In C0 the plan base is non-
conflicting, because Π = ∅. Assume that for arbitrary k ≥ 0 the plan base of Ck

is non-conflicting. Now we have to prove that when a plan for goal κ is adopted
by rule R5.2 for all plans in Ck+1 for a goal κ′ it holds that (κ, κ′), (κ′, κ) 6∈ R≺.
The premises of rule R5.2 ensures that (κ′, κ) 6∈ R≺ for any goal κ′. From
Π0 = ∅ and corollary 2 it follows that ∀(κ′, π) ∈ Πk : (γ, σ) |=g κ′, we can thus
conclude that ∀(κ′, π) ∈ Πk+1 : (κ′, κ) 6∈ R≺. That there are no plans in the
plan base for κ′ such that (κ, κ′) ∈ R≺ follows from the fact that all these plans
are dropped once a plan for κ has been adopted. ut

When the goal of the household robot to have loaded its battery should
precede a goal to have a room clean, and the agent is not cleaning a room already,
the agent should postpone the adoption of a plan for cleaning a room until its
battery is loaded. In the following we show that for rules R1, . . . , R4, R5.2 such
behaviour can indeed be expected. More generally, when the agent has adopted
a goal κ that has precedence over some other goal κ′, then if the agent has not
adopted a plan for κ′ it will not do so as long as κ is still a goal of the agent.
Recall that κ is a goal of the agent as long as the state denoted by κ is not
believed to be reached.

Proposition 4. Let transition system T consist of the rules R1, . . . , R4 and
R5.2. Let C0 = 〈σ0, γ0,Π0, PG,R≺〉 be an initial configuration where (γ0, σ0) |=g

κ, (γ0, σ0) |=g κ′, ∀π ∈ Plan : (κ′, π) 6∈ Π0 and (κ, κ′) ∈ R≺. Then for ev-
ery execution with initial configuration C0 in T it holds that ∀i≥0 : ((∀0≤j≤i :
(γj , σj) |=g κ)→ ∀π ∈ Plan : (κ′, π) 6∈ Πi)

Proof. By induction on the depth of an execution 〈C0, C1, . . .〉 with all of the
above assumptions about C0. Then ∀π ∈ Plan : (κ′, π) 6∈ Π0 by assumption.
Assume that up to arbitrary k ≥ 0 it holds that ∀0≥i≥k : ((γi, σi) |=g κ and ∀π ∈
Plan : (κ′, π) 6∈ Πi). Now we have to prove that it cannot be that (γk+1, σk+1) |=g

κ and ∀π ∈ Plan : (κ′, π) ∈ Πk+1 which can only happen after application of
R5.2. As the condition ∀κ ∈ LG : (γk, σk) |=g κ→ (κ, κ′) 6∈ R≺ of the premises
of rule R5.2 is not satisfied, we can conclude that ∀π ∈ Plan : (κ′, π) 6∈ Πk+1.

ut

Note that in the above proposition no assumptions are made about whether
the agent is already working on a plan for κ or not. Even if no plan is adopted
for κ and there are no applicable planning rules, the agent will not adopt a plan
for goals that are to be preceded by κ. As a consequence, the execution of the

agent might block when all goals of the agent are to be preceded by a goal for
which no plan can be adopted. A weaker version of R5.2 can be introduced such
that a rule for κ′ can be applied when there are no applicable rules for more
important goals.

By dropping plans for goals with less precedence immediately after a PG-
rule for some goal with higher precedence is enabled the agent might give up too
soon. Particularly in situations in which goals with higher precedence are often
adopted the agent might never finish a plan for some of its goals. The agent
would then never reach those goals. For example, when the boss’ room needs a
lot of cleaning, the agent might never finish a plan for cleaning the other rooms.
Therefore, we also propose a more cautious form of precedence, in which the
agent persists to plans it has already adopted. With such a strategy the agent
is more cautious about dropping plans. This strategy is captured by rule R5.3
as defined below.

R5.3 (cautious precedence) Let C = 〈σ, γ, Π, PG,R≺〉 be a goal strategy
agent where R≺ is a precedence relation.

(κ← β | π) ∈ appl(κ, C) and ∀κ′ ∈ LG : (γ, σ) |=g κ′ → (κ′, κ) 6∈ R≺ and
∀κ′ ∈ LG : (κ′, π′) ∈ Π → (κ, κ′) 6∈ R≺

〈σ, γ, Π〉 −→ 〈σ, γ, Π ′〉

where Π ′ = Π ∪ {(κ, π)}

The first clause of the premises of R5.3 states that an agent can apply an
applicable planning goal rule for a goal κ if no other goal has precedence over κ.
The second clause of the premises states that the agent is not already working
on a goal κ′ with less precedence than κ. The agent will thus persist working
on a plan for a goal even though a goal planning rule for a goal with higher
precedence is applicable. Note that when the plan for such a conflicting goal κ′

failed to achieve this goal, the agent will not retry with another plan as long
as κ is still a goal of the agent. Under the assumption that no new goals with
higher precedence than κ are adopted, the agent will adopt a plan for κ as soon
as all plans for goals with lower precedence than κ are completed.

Note that just like in transition rule R5.2 only conflicting goals are taken
into account instead of plans in the plan base. To avoid that a plan for a goal
κ is adopted while there already is a plan (κ′, π) in the plan base such that
(κ′, κ) ∈ R≺, it is needed that every κ′ associated to a plan of the agent is also
a goal of the agent. This is shown by the corollary below.

Corollary 3. Let 〈C0, C1, . . .〉 be an agent execution in transition system T ,
where Ci = 〈σi, γi,Πi, PG,R≺〉, and T consists of the rules R1, . . . , R4 and
R5.3. Given that ∀(κ, π) ∈ Π0 : (γ0, σ0) |=g κ, then ∀i ∈ N.∀(κ, π) ∈ Πi :
(γi, σi) |=g κ.

Proof. This follows from proposition 1 and the fact that R5.3 is a more restrictive
version of R5. ut

Next, we show that similar to proposition 3, in a transition system consisting
of the rules R1, . . . , R4 and R5.3 the plan base of the agent stays non-conflicting
during the execution of an agent that started with an empty plan base.

Proposition 5. Let 〈C0, C1, . . .〉 be an agent execution in transition system T
consisting of the rules R1, . . . , R4 and R5.3 and let the plan base in C0 be empty.
Then the plan base in Ci is R≺-non-conflicting ∀i ∈ N.

Proof. Observe that rule R5.3 is a more restricted version of R5.2 and ensures
that no goal κ is adopted when ∃(κ′, π) ∈ Π : (κ, κ′) ∈ R≺. The proof is therefore
similar to the proof of proposition 3. ut

Just like we have shown for rules R1, . . . , R4, R5.2 we show that with rules
R1, . . . , R4, R5.3 an agent that has not already adopted a plan for a goal κ′

will not do so as long as the agent has a goal κ with higher precedence, i.e.
(κ, κ′) ∈ R≺.

Proposition 6. Let transition system T consist of the rules R1, . . . , R4 and
R5.3. Let C0 = 〈σ0, γ0,Π0, PG0,R≺〉 be an initial configuration where (γ0, σ0) |=g

κ, (γ0, σ0) |=g κ′, ∀π ∈ Plan : (κ′, π) 6∈ Π0 and (κ, κ′) ∈ R≺. Then for ev-
ery execution with initial configuration C0 in T it holds that ∀i≥0 : ((∀0≤j≤i :
(γj , σj) |=g κ)→ ∀π ∈ Plan : (κ′, π) 6∈ Πi)

Proof. Similar to the proof of proposition 4. ut

We have already shown that all three transition systems guarantee that if a
plan base is non-conflicting initially it remains non-conflicting during the agent’s
execution. We have not shown, however, to what extent the different transition
systems differ from each other. We omit a formal proof that the behaviour of
a transition system with disruptive precedence differs from one with cautious
precedence, as we believe that the difference should be clear; the first will drop
a plan for less important goals immediately after a planning rule is applied for
a goal with higher precedence, while the latter will wait for plans associated
to goals with less precedence to finish before applying a planning rule for a
goal with higher precedence. We will, however, as a final property show that
both forms of plan generation with the precedence relation generate different
behaviour than plan generation with incompatibility. The crux is that with the
rules R1, . . . , R4, R5.1 no order of the pursuit of goals is assured.

Proposition 7. Let transition system T1 consist of rules R1, . . . , R4, R5.1,
transition system T2 of R1, . . . , R4, R5.2, and transition system T3 of R1, . . . , R4,
R5.3. Neither transition system T2 nor T3 can generate the same behaviour as
T1.

Proof. Assume that ∀π ∈ Plan : (κ, π) 6∈ Π0, (κ′ ← β|π) ∈ appl(κ′, C0), and
that R<> = {(κ, κ′), (κ′, κ)}. Recall that if a rule for κ is applicable then κ is a
goal of the agent. Then after applying R5.1 for (κ′ ← β|π), in C1 it holds that
(κ′, π) ∈ Π1 and (γ1, σ1) |=g κ. According to proposition 4 and proposition 6
such an execution is not possible in T2 nor in T3. ut

4 Conclusions, related work and future research

In this paper, we have introduced three types of goal selection strategies as an
explicit and generic mechanism to process incompatible goals. These mechanisms
prevent an agent from simultaneously pursuing goals that are incompatible with
each other, and enable the agent to choose from possibly incompatible goals in
adopting plans to reach its goals. We have presented the proposed mechanism
in the context of a simple agent programming language that can be extended to
most BDI-based agent programming languages. The three goal selection strate-
gies are implemented as conditions for the application of goal planning rules.
These strategies are integrated in the transition rules for PG-rule applications.
It should be noted that our account of precedence might look like a preference re-
lation. However, it should be emphasized that the precedence relation is defined
as a programming construct to help an agent to choose a goal from a (possibly)
incompatible set of goals. It is not a concept agents reason about.

Related to our work is the work presented in [12], which describes the struc-
ture of a goal model which can be used by an agent to reason about goals during
its deliberation process and means-ends reasoning. As part of this model an in-
consistency operator is provided to denote that the success of one goal implies
the failure of another. Also a preference operator is provided to express that in
case of inconsistency between goals one goal is preferred to another. Also related
to our work is the goal deliberation strategy as proposed in [13]. This strategy
allows agent developers to specify the relationship between incompatible goals
in order to avoid negative interference in pursuing multiple goals. This relation
also implies a precedence of one goal over another. The main difference between
our work and that of [12] and [13] is that our proposal is not limited to a spe-
cific platform, but can be integrated in existing BDI-based agent programming
language. Furthermore, [12] and [13] do not provide a formal semantics of the
proposed constructions. The lack of a formal semantics makes it hard to compare
different approaches.

Another solution that involves avoiding negative interference in pursuing
multiple goals is the one proposed in [14]. Possible conflicts are detected and
avoided by annotating plans and goals with detailed information about their
effects, pre-conditions, and in-conditions. Just as observed in [13] we believe that
acquiring and assigning such information to goals and plans is a cumbersome
task for an agent programmer. Also, in contrast to our approach, it is not possible
to enforce that one goal precedes another. Moreover, as we have integrated the
goal selection strategies in transition rules we believe that our approach can be
directly used to build agent interpreters that can process incompatible goals.

In the current proposal different strategies are studied apart from each other.
We are currently investigating new relations that can be used to denote the in-
compatibility of goals. Further, for now it is the task of the agent programmer to
specify which goals are incompatible with each other. We envisage a mechanism
that detects incompatibility automatically. As for now, R is defined on only the
head of PG-rules. A possible extension would be to define R on the entire PG-
rules, allowing for a more fine grained specification of incompatibility. Finally,

we observe that in the current approach the precedence of goals is fixed, while
in some cases precedence might depend on a specific context, e.g., the current
beliefs of the agent. Investigating how the precedence relation can be extended
taking the context into account remains for further research.

References

1. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI Reasoning Engine. [15]
149–174

2. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Jack intelligent agents:
An industrial strength platform. [15] 175–193

3. Bordini, R., Hübner, J., Vieira, R.: Jason and the Golden Fleece of agent-oriented
programming. [15] 3–37

4. Dastani, M., van Riemsdijk, M., Meyer, J.: Programming Multi-Agent Systems in
3APL. [15] 39–67

5. Dix, J., Zhang, Y.: IMPACT: A Multi-Agent Framework with Declarative Seman-
tics. [15] 69–122

6. Fallah-Seghrouchni, A.E., Suna, A.: CLAIM and SyMPA: A Programming Envi-
ronment for Intelligent and Mobile Agents. [15] 95–122

7. Dastani, M., Meyer, J.: A Practical Agent Programming Language. In: Proc. of
the fifth Int. Workshop on Programming Multi-agent Systems. (2007)

8. Winikoff, M., L. Padgham, J.H., Thangarajah, J.: Declarative and Procedural
Goals in Intelligent Agent Systems. In: Proc. of the Eighth Int. Conf. on Principles
of Knowledge Representation and Reasoning (KR2002). (2002)

9. Dastani, M., van Riemsdijk, M.B., Meyer, J.: Goal types in agent programming.
In: Proc. of AAMAS. (2006) 1285–1287

10. van Riemsdijk, M.B., Dastani, M., Meyer, J., de Boer, F.S.: Goal-oriented modu-
larity in agent programming. In: Proc. of AAMAS. (2006) 1271–1278

11. van Riemsdijk, M.B., Dastani, M., Meyer, J.J.C.: Semantics of declarative goals
in agent programming. In: Proc. of AAMAS. (2005) 133–140

12. Morreale, V., Bonura, S., Francaviglia, G., Centineo, F., Cossentino, M., Gaglio, S.:
Goal-Oriented Development of BDI Agents: The PRACTIONIST Approach. In:
IAT ’06: Proc. of the IEEE/WIC/ACM int. conf. on Intelligent Agent Technology.
(2006)

13. Pokahr, A., Braubach, L., Lamersdorf, W.: A Goal Deliberation Strategy for BDI
Agent Systems. In Eymann, T., Klügl, F., Lamersdorf, W., Klusch, M., Huhns, M.,
eds.: Third German conf. on Multi-Agent System TEchnologieS (MATES-2005),
Springer-Verlag, Berlin Heidelberg New York (2005) 82–94

14. Thangarajah, J., Padgham, L., Winikoff, M.: Detecting & Avoiding Interference
Between Goals in Intelligent Agents. In: Proc. of the 18th Int. Joint Conference
on Artificial Intelligence. (2003)

15. Bordini, R., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E., eds.: Multi-Agent
Programming: Languages, Platforms and Applications. Springer (2005)

