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Abstract. Despite the acceptance of FIPA-ACL as a standard for agent 
communications, there exist a gap between its specification and infrastructures 
to support interactions among agents. The hypothesis we study in this paper is 
that interaction space components must be specified and described in depth by 
taking into account an explicit six-layered FIPA-ACL communication model. 
Based on this model, generic components can be described for a FIPA-ACL 
interaction framework. An implementation for interaction components is given 
within the CAPNET agent platform in an integrated way with the agent 
interaction architecture. Working with interaction space capabilities for 
engineering agent interactions is pointed out through a MAS example. 
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1   Introduction 

Beyond dealing with communication issues at the level of data and physical message 
transport, Agent Communication Languages (ACL) are complex structures composed 
of different sublanguages that specify the message content syntax and meaning, 
interpretation parameters such as the sender and receiver, and the pragmatics of the 
intention of the message. Furthermore, next to message exchange, interaction also 
includes interpretation and validation that the message has been correctly interpreted. 

In spite of many efforts on designing flexible and robust agent interactions, very 
little attention has been paid so far on providing support for runtime processing such 
interactions using higher level concepts than messages. Indeed, current Multi-Agent 
System (MAS) infrastructures (such as languages, toolkits, frameworks and 
platforms) are limited to simple message sending and receiving for processing agent 
interactions [1]. Although interaction protocol is a higher level concept than 
messages, they are supported at runtime only for controlling the sequence of messages 
but not for processing the whole set of activities involved in ACL interaction. 
Nevertheless, the increasing complexity of MAS integration requires more effective 
interactive behaviors based on message semantics and pragmatics [2], [3]. 

Though FIPA-ACL communication language has become a standard to engineer 
agent-to-agent interactions, two main objectives persecuted by this language, 



autonomy and interoperability, are not addressed by MAS engineering. Our 
experience in developing MAS with current FIPA-ACL infrastructures tells that 
interactions typically have been engineered using somewhat ad-hoc and developer-
private communication assumptions made for reasons of communication efficiency or 
developer convenience [4], [5]. Furthermore, knowledge of these assumptions is 
critical to properly interpret and understand messages at runtime, becoming autonomy 
and interoperability almost impossible to achieve [6]. So, while application specific 
agents are useful to test and validate different approaches to develop agents, they can 
be extremely difficult to generalize and extend without extensive interaction with the 
original developers. 

The paper focuses on the problem of interaction by explicitly arranging and 
engineering different layers found in the FIPA-ACL language specification1. These 
layers go from physical transport and encoding messages to internal agent processing 
for syntax, semantics and pragmatics of messages. In particular, we think that explicit 
support for capabilities helps to fill the gap between FIPA-ACL specification and 
implementation/runtime interaction processing. To facilitate the engineering of MAS 
interactions we developed interaction space components as an important step to 
address the problem of interaction. Our approach considers that these interaction 
components can be integrated in an agent interaction architecture. 

The structure of the paper is the following. In section 2 the specification of an 
explicit FIPA-ACL communication model is given. Section 3 describes the generic 
interaction space components required to fulfill computation at each layer of the 
model. Section 4 gives details of the interaction space components implemented into 
the CAPNET agent platform. In section 5 an example shows how the interaction 
space components can be created in applications and explains how components are 
used at runtime by the agent interaction architecture. Finally, some related works are 
discussed and conclusions of our work are given. 

2   FIPA-ACL Communication Model 

Till now, the FIPA model has focused more on how agents could communicate by 
separately specifying different components. However, little work has been done on 
explicitly specifying organization and integration of these components to enable 
message processing by agents. The paper considers a six-layered FIPA-ACL model 
which is inspired in a recent revised FIPA-ACL model [7]. The approach based on 
layers is taken to better organize and build the interaction components from an 
engineering perspective because it lets specify not only interaction components but 
also computation in the context of runtime message validation process [8]. The focus 
of the paper is to describe the components needed at each layer by means of 
development tools implemented in our agent interaction framework and not to discuss 
in depth this communication model. In this section we briefly describe the FIPA-ACL 
communication model and in section 3 the interaction space components are detailed.  

                                                           
1 Foundation for Intelligent Physical Agents. FIPA Communicative Act Library Specification 

http://www.fipa.org/specs/fipa00037/ and FIPA ACL Message Structure Specification 
http://www.fipa.org/specs/fipa00061/

http://www.fipa.org/specs/fipa00037/
http://www.fipa.org/specs/fipa00061/


In figure 1, the connection between FIPA-ACL communication model and the 
application layer of the OSI reference model is shown. The FIPA-ACL model starts 
on top of the OSI reference model [9] extending the application layer to support six 
FIPA-ACL computation layers: Message Transport, Message Encoding, Content 
Expression Syntax, Content Expression Semantics, Communicative Acts and 
Interaction Protocols. The unit of processing at each layer is a FIPA-ACL message. 

 

                  
Fig. 1. FIPA-ACL communication model: an engineering perspective 

At the message transport layer, agents look for and use asynchronous message 
transport protocols to interchange messages through a physical network. The next 
layer validates message structure and encoding because agents serialize messages 
through the network. Messages are encoded using data structures such as XML, string 
formats and bit efficient schemas, further than binary codifications. Furthermore, 
message information such as agent identifiers, type of message and payload require 
parsers. Content expression syntax is a layer where agents recognize the entities built-
in into the content of messages by determining whether the content structure is correct 
in accordance with a common content language representation. The fourth layer refers 
to the use of ontologies to describe the meaning of content by explicitly representing 
domain concepts. At the layer of communicative acts agents have to manage the 
messages taking into account the pragmatics of each type of communicative act. 
Almost all communicative acts entail access to a knowledge base where application 
domain information is stored. When communications use a pre-defined sequence of 
messages among involved agents, interaction protocols components are used. 

3   Interaction Space Components 

In our previous work a FIPA-ACL interaction framework was described through three 
main notions: interaction space, interaction models and interaction architecture [8]. 



The Interaction Space (IS) is an environment that stores interaction capabilities of 
the agent that can be accessed in order to validate interactions at runtime. It is 
integrated by the following components: message transport services, message parsers, 
content languages, ontologies, interaction models, interaction protocols and a 
knowledge base. An Interaction Model (IM) represents a modular unit permitting the 
validation of a simple interaction. IM includes five modules for programming 
validation of syntax and semantics content, feasibility preconditions, rational effect of 
messages and interaction termination. The Agent Interaction Architecture (AIA) is 
defined as a component to control creation and processing of interactions through 
validation of interaction models within the interaction space of an agent. Interaction 
space is part of agent architecture. The main objective of this framework is to propose 
components for extending FIPA-ACL interaction infrastructure by means of 
interaction space capabilities. 

3.1   Message Transport Service 

The first layer is composed of message transport services (TS). TSs are components 
that agents use to exploit several available network infrastructures. Concrete 
networking technologies are available along distributed computing infrastructures so 
that different TSs could be implemented for exploiting those advantages of each type 
of technology such as SOAP-XML for web services-based agents, HTTP for web-
based agents and TCP for remote object-oriented agents. Since some of these 
communication services are commonly used in known MAS infrastructures, in this 
framework they are considered to be part of the interaction space like specific 
components that will be invoked dynamically when agents need their services. 

Although each TS has its own implementation features they can be implemented 
using common interfaces in order to be added to the interaction space of the agent. 
Basically, this type of services must give functionality to process the sending and 
receiving transport messages. Transport message is the unit of communication in this 
layer of the model and includes message payload and envelope information. 

3.2   Message Parser 

At the layer of message encoding, each message is either encoded or decoded2 by a 
component called a message parser. The main activity of parsers is to find out 
whether the structure of the message complies with FIPA-ACL. This is a first level of 
syntactic validation of the message. Typically, several message parsers can be 
available as software components. These parsers must be implemented following a 
well defined interface to generate and parse messages represented through different 
codification schemas such as XML and others types of strings. The information about 
parser components is explicitly available in the interaction space. With this 
information, agent interaction architecture can dynamically analyze the message 
requirements applying the specific parser. 

                                                           
2 Encode means what is usually called “generate” or “format” and decode is similar to parse. 



3.3   Content Language 

Agent communication is designed to represent the content of messages following 
certain common criteria in such way that content can be understood by both sides of 
the communication. Since agents could manage different content languages (usually 
written by different programmers), similar basic elements should be used. Based on 
the specification of each communicative act of FIPA-ACL, five types of entities that 
can be part of message’s content are implicitly found: actions, propositions, domain 
objects, references to objects and FIPA-ACL messages (table 1). 

Table 1. Content requirements for FIPA-ACL communicative acts 

Communicative act Content entities 
accept-proposal, agree, cfp, failure, propose, refuse, 
reject-proposal, request-when, request-whenever 

action, proposition 

request, cancel action 
confirm, disconfirm, inform, inform-if, query-if proposition 
inform-ref object reference 
not-understood action, message, proposition 
propagate, proxy object reference, message, 

proposition 
query-ref, subscribe object reference 

 
We define a Generic Content Language component with these set of basic content 

entities. The GCL also contains a set of content objects to build message content 
combining one or more basic entities. Every concrete CL should give only one object 
per communicative act. For example the “request-when“ communicative act combines 
an action and a proposition in the content. Since every entity and content object is 
designed to be used in a serialized way in messages, they must give two functions: the 
first one is used to serialize the entity in an encoded format in such way that it can be 
part of the message. The second one does the opposite task: from a serialized 
representation gets the entity information and re-builds the entity as a memory object. 
The validation criteria for each concrete CL are left free to CL programmers because 
they depend on the particular requirements of each type of entity. 

3.4   Ontology 

The communication model of FIPA-ACL is based on the assumption that two agents 
try to interact sharing a common ontology of the domain to give meaning to the 
entities represented in a message’s content. For a given domain, agents can decide to 
access ontologies explicitly represented and stored. In this paper, we consider that 
ontologies engineering must share common design lines. That is why, we propose to 
define a Generic Ontology (GO) as software component. Based on GO, concrete 
ontologies can be built and added as part of the interaction space of agents and can be 
accessed to validate the semantics of message’s content at runtime. 

The GO is basically formed by all content entities given by generic content 
language but messages. GO has two parts: in the first one, collections for actions, 



propositions, domain objects and object references store the information about the 
domain. In the second part there are a set of validation functions for each type of 
content entity forming the ontology and one validation function for each type of 
communicative act. The criteria for internal organizing, storing and validating the 
entities in the ontology are left open for developers of concrete implementations. 

3.5 Interaction Model  

An interaction model is a key concept of the framework for implementing the 
communicative acts layer in the FIPA-ACL model. An IM is seen as an interaction 
component for validating single-message interactions. For each communicative act, 
the IM is composed of the modules covering five validation phases: validation of the 
content structure with a specific content language, validation of content semantics 
with a specific ontology, validation of feasibility preconditions, validation of rational 
effect, and validation of the termination conditions of the interaction. 

Depending on the interaction requirements of each agent, different interaction 
models implemented according with supported interaction capabilities such as 
communicative acts, content languages and ontologies are required. Each IM is going 
to be stored in the interaction space so it could be automatically used when messages 
fit its requirements. The idea is that IMs can be as reusable for different application 
agents as possible or at least ready to be refined by specializing functionality. 

When agents interact and try to achieve pragmatics of communicative acts 
(feasibility preconditions and rational effects), almost always they have to store, query 
or modify concrete information about the application. The knowledge base is an 
interaction space component very important to complete several types of interactions. 

Being consistent with the knowledge model given by the FIPA-ACL followed in 
both the generic CL and generic ontology, the KB must give the possibility of 
managing actions, propositions and domain objects in order to allow agents to reason 
about requirements of the communicative acts. For example, when a request message 
is going to be sent or is being received, the agent has to decide whether the action is 
known. That is why we consider that actions must be part of the knowledge base. 
Regardless any concrete implementation of the KB, this software component must 
give functions to add, query and remove actions, propositions and domain objects.  

3.6 Interaction Protocol 

The framework requires interaction protocols to attend interactions composed of more 
than one message. To build concrete IPs, we propose to define a generic interaction 
protocol as a component with IP common attributes. The specification for a Generic 
Interaction Protocol (GIP) is given by a unique name of IP, a name of the content 
language, a name of the ontology and the implementation engaged of controlling the 
execution sequence and states of the IP. Each agent will be able to know the set of 
protocols it can use at runtime when interactions occur because they will be stored in 
the interaction space. How IPs are invoked and executed is a matter of agent 
interaction architecture and it is out of the scope of this paper. 



4  CAPNET Interaction Space 

The current version 2.0 of the CAPNET agent platform [10] is empowered with the 
interaction framework described in this paper. In the CAPNET, each type of 
interaction component is implemented following an object oriented design. The 
InteractionSpace class is a container of concrete objects representing capabilities that 
can be used dynamically by the validation process of the AIA. Each concrete 
component has its own unique descriptive information so that message attributes can 
be used to resolve at runtime invocation of the correct component, depending on the 
communication requirements. Each interaction capability is engineered by following 
interfaces and base classes that represent generic component functionality. In this 
way, capabilities can be implemented by reusing and extending from them exploiting 
the runtime polymorphic advantages for checking and resolving types. 

4.1  Message Transport Services  

To help the messaging system to work dynamically (and eventually to make agents 
more autonomous) CAPNET transport services are implemented by following the 
IGenericTransportService interface (figure 2-a). This interface defines methods for 
sending (sendMessage) and receiving (receiveMessage) messages. The base class 
BaseTransportService declares attributes for transport service type (MTSType) and 
address (address).  

  
 

Fig. 2. CAPNET Message Transport Services (a) and Parsers (b) 

At the moment, we have implemented two concrete message transport services. In 
the first one (RemotingTransportService), we configure a TCP connection by using 
distributed .NET framework remote objects for intranet agent applications. The 
second service (HttpTransportService) is an HTTP server infrastructure based on 
request-response connections to send and receive messages beyond local area 
networks and for web based agent applications. In the interaction space, we add one 
single instance of each TS to make them available at runtime. 



4.2 Message Parsers 

In the CAPNET implementation, the IGenericMessageParser interface describes the 
generic functionality for parser components. Two methods are described to cover the 
parsing of messages: on the side of the sender agent, format should be used for 
converting a message to its textual representation ready to be communicated by a 
transport service. Parse is the method for checking message syntax and for recovering 
the message information from a textual representation when a message is received on 
the side of the receiver agent. As it is shown in figure 2-b, the basic class BaseParser 
is given to be extended by concrete classes like xmlParser and fipaStringParser. 
While the first one serializes messages by using XML formats and conventions the 
second represents messages as string format. 

4.3 Content Languages 

CAPNET CLs design is based on the Generic Content Language specification and 
implemented by the GenericCL class (see figure 3-a). GenericCL class has a CLName 
attribute to assign a unique identifier of the CL. Also this class is composed of a set of 
basic entity classes (explained in section 3.3) that implements the ISerialization 
interface supporting methods for serialization syntax validation (validateDescription) 
and for converting the entity to a serializable format (setDescription). 

 

 

 Fig. 3. CAPNET Content Language implementation 

Following these design rules, we have developed two concrete CL classes in 
CAPNET (figure 3-b). CAPNET-CL [11] is a proprietary language based on FIPA-
RDF0 to represent the syntax of entities. FIPA-SL0 is the implementation of 
CAPNET to support FIPA-SL0 specification. Both CLs inherit from GenericCL class 
and implement each entity by the ISerialization interface. 



4.4 Ontologies 

For engineering ontologies, CAPNET offers the GenericOntology class which is 
composed by several common ontology attributes (figure 4). Ontologies must have a 
unique name for identifying them in the interaction space (OntoName). The attribute 
CLName is the name of the content language the entities managed by the ontology 
belong to. As it was established in the Generic Ontology, this software component 
contains collections for storing actions, propositions, domain objects and references to 
domain objects (ActionsSet, PropositionsSet, DomainObjectsSet and 
ObjectReferencesSet respectively).  

Concrete ontologies must implement the IOntology interface to offer common 
functionality. This interface has functions to search entities (searchAction, 
searchProposition, and so on) and to add entities (addAction, addProposition, and so 
on). Finally, the interface includes methods to validate the content object of each type 
of communicative act supported by the ontology (validateInform, validateRequest, 
validateQueryRef, and so on). We have developed the CAPNETOntology concrete 
class by using the CAPNET-CL entities.  

 

 
Fig. 4.  Design of ontologies in CAPNET 

4.5 Interaction Models 

Interaction Models are software components based on the GenericInteractionModel 
CAPNET class. Some of them are illustrated in figure 5-a. When a message is going 
to be processed, the AIA looks for an IM that fits the message requirements. 

To control the execution of concurrent IMs at runtime, a set of common attributes 
identified for interaction models were implemented. InteractionId is a unique number 
to identify each individual interaction. IMName is used to identify the communicative 
act of the interaction. The field message indicates what message the IM object is 
related to at runtime. CLName and OntologyName attributes store the names of the 
content language and ontology used to represent and validate syntax and semantics of 
the entities included in the message content. The same type of communicative act can 
be implemented by different interaction models combining different content 
languages and ontologies because an agent can participate in different application 



domains. Each IM developed for a specific agent must implement the 
IInteractionModel interface where the five phases of IM validation are defined 
(validateCL, validateOntology, validateFP, validateRE and validateTermination). 

 
Fig. 5. CAPNET Interaction models (a) and protocols (b) 

4.6 Knowledge Base 

The CAPNET KB was implemented by the KnowledgeBase class. This component is 
formed by collections to store actions, propositions and domain objects derived from 
generic classes. Moreover, in our implementation we have found two special types of 
collections to temporally store monitors. Monitors are propositions and domain 
objects to be monitored at runtime and are useful to implement some interaction 
models like request-when, request-when-ever, subscribe, inform-if and query-if 
making the agent be aware when entities have changed their attributes. 

Although the purpose of having a knowledge base in the agent interaction space 
can help the agent to do many internal reasoning activities, in this paper we focus on 
the necessary functionality to carry out interactions. In this sense, the knowledge base 
class has methods to add, search and remove specific entities and methods to add, 
update and remove entity monitors when interactions take place at runtime. 

4.7 Interaction Protocols 

Each interaction protocol is implemented as a software component that includes 
necessary attributes to dynamically determine its execution. We propose the 
GenericInteractionProtocol base class to encapsulate such attributes that agent 
interaction architecture can read when messages require the use of a specific IP. 

In the case of the CAPNET IP development, the base class considers that each IP 
has a unique name (such as FIPA-REQUEST, FIPA-CNP, and so on), a timeout (a 



configurable amount of time the agent is going to wait for the next message in the 
sequence), content language (the name of the CL used by the protocol) and the 
ontology (the name of the ontology) as it is shown in figure 5-b. Concrete IP classes 
inherit from the base class and also should implement the IInteractionProtocol 
interface where run and initConversation methods are defined to allow agents 
concurrently execute several IPs. Run is used to create a new thread of execution 
when the IP is instantiated in the agent interaction architecture. InitConversation 
implements the real strategy of controlling the sequence of messages. 

5   Example 

In this section we show a simple example that illustrates the use of the main 
interaction components in the context of the proposed framework. It shows how a 
particular agent interaction space is constructed (instantiated) as part of the agent 
interaction architecture. A complete description of the interaction architecture and the 
validation process can be found in [8].  

The example is oriented to manage supplies logistics for offshore oil platforms [5]. 
To make supplies operations, boats and ships are required for transportation. These 
transportation services are offered by third party providers that the MAS have to find 
out and request for. This scenario configures an open and flexible environment where 
heterogeneous agents should interact by using different interaction capabilities. The 
MAS is composed by several oil platform agents that request specific supplies to a 
supplier agent. Supplier agent receives requests, looks for the requested supplies, and 
carries out the operations to negotiate the marine transport services offered by 
transport agents. To engineer the interactions we have built agents by using the 
interaction space capabilities of the CAPNET platform. Table 2 shows the interaction 
components incorporated to each type of agent. The code of the example is Visual 
Basic .NET compatible with the .NET framework 1.1. 

Table 2. Interaction Space components 

Agents TSs Parsers CLs Ontologies IMs IPs 
Supplier  http 

TCP-
Remoting 

XML 
FIPA-
string 

CAPNET CL 
FIPA SL0 

transport 
supply 

request 
requestWhen 
inform 

 

Platform TCP-
remoting 

XML 
FIPA-
string 

CAPNET CL 
FIPA SL0 

supply request 
inform 

FIPA-
request 

Transport http XML 
FIPA-
string 

CAPNET CL 
FIPA SL0 

transport 
supply 

requestWhen 
inform 

FIPA-
request 
 

 
The supplier agent has two transport services (http and TCP-Remoting) because it 

needs to interact with Platform and Transport agents. To communicate with Platform 
agents it uses TCP-Remoting transport service and to communicate with Transport 
agents it uses http. In the prototype, agents use XML and fipa-string parsers to 
validate syntax of FIPA-ACL messages. Resolving which parser will be used is a task 



done dynamically by the agent interaction architecture by checking the message field 
encoding for every message and by invoking the required parser component. TSs and 
parsers are stored in collections of the interaction space (ts and p in code 4). 

When created, agents get object instances of the CAPNETCL and FIPASL0 classes 
and store them in the interaction space (code 1). When agents are interacting with 
CAPNET management agents (Agent Management System and Directory Facilitator), 
they apply FIPASL0 content in the messages and when communicates with supply 
specific agents they interchange messages codified in CAPNETCL. 

Code 1. The content languages instances are created 

capnetcl = New CAPNETCL(CONTENT_LANGUAGE_CAPNET-CL) 
sl0 = New FIPASL0(CONTENT_LANGUAGE_SL0) 
cl = New Hashtable  
cl.Add(capnetcl.CLName, capnetcl) 
cl.Add(sl0.CLName, sl0)  
 
The MAS works with transport and supply domain ontologies. The Supplier and 

Transport agents load both ontologies. Platform agents only need supply ontology 
(code 2). Internally, these ontologies are based on the CAPNETOntology class and 
uses CAPNETCL to represent concrete entities. The supply ontology defines the 
planningSupply action to allow Platform agents request supplies to Supplier agent. 
This ontology also declares domain object references that can be considered as valid 
supplies in this domain. In the transport ontology the transportSupplies action also is 
defined to negotiate transport services among Supplier and Transport agents. Every 
action is also stored in the KB in order to be executed at runtime (code 4). 

Code 2. Segment of the ontology supply creation 

ontSupp = New CAPNETOntology("supply", capnetcl.CLName) 
PlanSupplyAct = New 
CAPNETCL.RDF0Action("planningSupply") 
PlanSupplyAct.setact("planningSupply") 
PlanSupplyAct.setactor("SupplyAgent") 
ontSupp.AddAction(PlanSupplyAct) 
Dim d1, d2, d11 As CAPNETCL.RDFObjectRef  
d1 = New CAPNETCL.RDFObjectRef ("PERF-WATER", "No") 
ontSupp.AddObjectReference(d1) 
d2 = New CAPNETCL.RDFObjectRef ("DRINK-WATER", "No") 
ontSupp.AddObjectReference(d2) 
d11 = New CAPNETCL.RDFObjectRef("BUMP-A", "No") 
ontSupp.AddObjectReference(d11) 
Dim o As New Hashtable 
o.Add(ontSupp.OName + ontSupp.CLName, ontSupp) 
 
The agents require several interaction models in order to execute specific 

communicative acts supported by the MAS (code 3). For example, Platform agents 
use requestIM for requesting the action planningSupply to Supplier agent (and 
whatever supported action). Typically when they request the action, they receive the 
answer by an inform message that is managed by an InformIM. This interaction could 
also be carried out by applying the fipa-request interaction protocol when 



synchronous communication is preferred. In other interactions, Supplier agent uses 
requestWhenIM to ask Transport agents to execute the action transportSupplies for 
some supplies assigned to it only when the required supplies are ready to be 
transported. When each interaction component and collection is created, the agent 
programmer must create the InteractionSpace instance as it is shown in code 4. 

Code 3. Creation of Interaction Models  

requestWhenIM = New RequestWhenIM(ACL_REQUEST_WHEN) 
requestIM = New RequestIM(ACL_REQUEST) 
InformIM = New InformIM(ACL_INFORM) 
Dim IM As New Hashtable 
IM.Add(requestIM.IMName + capnetcl.CLName + 
ontoSupp.OName, requestIM)  
IM.Add(requestWhenIM.IMName + capnetcl.CLName + 
ontoSupp.OName, requestWhenIM) 
IM.Add(IIM.IMName + capnetcl.CLName + ontoSupp.OName, 
InformIM) 

Code 4. Creation of the Interaction Space of agents 

Dim actions As New Hashtable 
actions.Add(PlanSupplyAct.Name, PlanSupplyAct)            
Dim kb As New KBManager(Props, Objects, actions)  
iSpace As New InteractionSpace(ts,p,kb,cl,o,IPs,IM) 

Figure 6 illustrates the validation process of the agent interaction architecture for 
the scenario of the request message implemented by Platform agents to request the 
planningSupply action to Supplier agent. The purpose is to show how components are 
instantiated and invoked by using the proposed generic design at runtime. 

Messaging gets the TCP-Remoting TS to send the message on the side of the 
Platform agent because so is indicated in the message by the programmer. The 
Supplier agent is connected to a TCP-Remoting TS so it can receive the message. The 
messaging engine gets the XML parser to validate the structure of this message 
because the message is encoded with XML syntax. After that, the validation is made 
by an instance of the requestIM class because it has been implemented in accordance 
with the CAPNET CL content language and the supply ontology. Every phase of the 
IM is executed by the corresponding engines in the validation process. The CAPNET 
CL component is cloned from the interaction space and used to validate the 
requestContentObject by invoking its validateDescription method. The meaning of 
the content is validated when the ontology engine gets a copy of the supply ontology 
component from the IS. Then, the method validateRequest is invoked where the 
requested action is validated as part of the ontology. Finally, the requested action is 
searched in the KB where the capability is implemented by an executable action. 

 



 
Fig. 6. Agent accessing its interaction space 

6   Related Work and Discussion 

Research work in agent technology is focused on moving away from the hand-crafted 
agents to the agents able to participate in particular institutional space enabling them 
to determine capabilities at runtime [12]. In such institutions, communicative 
interactions take place in open interaction frameworks and exist only thanks to 
common agreements on the basis of a shared set of conventions [13]. Nevertheless, 
there is little effort to model, design, and implement crosscutting agent interaction 
concerns which depend largely on the ability of software engineering techniques and 
methods to support the explicit separation of concerns throughout the design and 
implementation stages [14]. 

In the literature, there are also reported communication layered approaches like the 
efficient agent communication on wireless environments presented in [15] and the 
communication model based on interactions, conversations and ontologies described 
in [16]. The latter covers some specific issues but not all that we have considered in 
this paper. 

Concerning presented approach, we briefly emphasize three issues i) how 
autonomy is improved, ii) what type of interoperability is enabled and iii) interaction 
engineering concerns.  

Our autonomy’s approach is oriented to process interactions. Agents are able to 
determine by themselves whether or not they can process unforeseen messages at 
runtime depending on their own interaction capabilities. This is achieved by having 
both explicitly represented interaction components and an inter-built agent interaction 



architecture. It is fairly different from that of representative works like Jadex and 
Jason presented in [17], which employ a reasoning architecture for deducing agent’s 
actions from internal domain model but not for processing ACL interactions. 

Interoperability refers to the programmer’s ability to take into account at design 
time the interaction capabilities of the agents in order to reduce interaction among 
software developers. It permits development of agent interactions using common 
interaction space components. Other level of interoperability could be reached when 
agents developed within different agent infrastructures try to interoperate using the 
same interaction components. To reach this level of interoperability we need other 
platforms implement interaction components following the proposed generic 
components. Then experiments could be provided to test this issue in practice. Our 
work is different than other similar approaches found in the literature [18] [19] 
because it provides interoperability for each layer of the communication model. 

Finally, the use of interaction space components releases developers from writing 
bulk of code to validate each stage of communication. Agent interaction architecture 
is given once by the basic agent and it takes the control of agent interaction 
processing. Without it, development of interactions would require writing code to 
control each scenario of message processing and for each agent in the MAS. That 
technique of programming is inflexible, repetitive and prone error because validation 
of messages at each layer is completely duty of the developer. As an outcome, we 
promote the separation of concerns by reusing, extending and sharing different 
interaction components. 

7   Conclusions 

In this paper we pointed out the interaction space components that are required to 
make the FIPA-ACL interaction framework carry out message processing at runtime. 
We organized the FIPA-ACL communication model through six layers to accomplish 
agent interactions: transport services, message parsers, content languages, ontologies, 
communicative acts and interaction protocols. Based on this model, interaction 
components were identified as part of each layer and arranged as core components of 
our FIPA-ACL interaction framework. 

We proposed that every interaction component should be stored into the agent 
interaction space as software components that could be accessed at runtime by the 
agent architecture. Interaction components were defined as generic software 
components in order to specify their basic functionality in accordance with the 
expected activities they have to manage at each layer of the communication model. 
These interaction components are implemented within the CAPNET agent platform. 
We show by example of the MAS for offshore oil platform logistics how the 
interaction components can be created in CAPNET agents. We are convinced that 
proposed agent interaction architecture improves autonomy, interoperability and 
interaction engineering of complex multiagent systems. 
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