
Specifying Interaction Space Components in a FIPA-
ACL Interaction Framework

Ernesto German, Leonid Sheremetov

Mexican Petroleum Institute
Eje Central Lazaro Cardenas 152, San Bartolo Atepehuacan,

Distrito Federal, Mexico
{egerman, sher}@imp.mx

Abstract. Despite the acceptance of FIPA-ACL as a standard for agent
communications, there exist a gap between its specification and infrastructures
to support interactions among agents. The hypothesis we study in this paper is
that interaction space components must be specified and described in depth by
taking into account an explicit six-layered FIPA-ACL communication model.
Based on this model, generic components can be described for a FIPA-ACL
interaction framework. An implementation for interaction components is given
within the CAPNET agent platform in an integrated way with the agent
interaction architecture. Working with interaction space capabilities for
engineering agent interactions is pointed out through a MAS example.

Keywords: FIPA-ACL, Interaction Framework, Interaction Space.

1 Introduction

Beyond dealing with communication issues at the level of data and physical message
transport, Agent Communication Languages (ACL) are complex structures composed
of different sublanguages that specify the message content syntax and meaning,
interpretation parameters such as the sender and receiver, and the pragmatics of the
intention of the message. Furthermore, next to message exchange, interaction also
includes interpretation and validation that the message has been correctly interpreted.

In spite of many efforts on designing flexible and robust agent interactions, very
little attention has been paid so far on providing support for runtime processing such
interactions using higher level concepts than messages. Indeed, current Multi-Agent
System (MAS) infrastructures (such as languages, toolkits, frameworks and
platforms) are limited to simple message sending and receiving for processing agent
interactions [1]. Although interaction protocol is a higher level concept than
messages, they are supported at runtime only for controlling the sequence of messages
but not for processing the whole set of activities involved in ACL interaction.
Nevertheless, the increasing complexity of MAS integration requires more effective
interactive behaviors based on message semantics and pragmatics [2], [3].

Though FIPA-ACL communication language has become a standard to engineer
agent-to-agent interactions, two main objectives persecuted by this language,

autonomy and interoperability, are not addressed by MAS engineering. Our
experience in developing MAS with current FIPA-ACL infrastructures tells that
interactions typically have been engineered using somewhat ad-hoc and developer-
private communication assumptions made for reasons of communication efficiency or
developer convenience [4], [5]. Furthermore, knowledge of these assumptions is
critical to properly interpret and understand messages at runtime, becoming autonomy
and interoperability almost impossible to achieve [6]. So, while application specific
agents are useful to test and validate different approaches to develop agents, they can
be extremely difficult to generalize and extend without extensive interaction with the
original developers.

The paper focuses on the problem of interaction by explicitly arranging and
engineering different layers found in the FIPA-ACL language specification1. These
layers go from physical transport and encoding messages to internal agent processing
for syntax, semantics and pragmatics of messages. In particular, we think that explicit
support for capabilities helps to fill the gap between FIPA-ACL specification and
implementation/runtime interaction processing. To facilitate the engineering of MAS
interactions we developed interaction space components as an important step to
address the problem of interaction. Our approach considers that these interaction
components can be integrated in an agent interaction architecture.

The structure of the paper is the following. In section 2 the specification of an
explicit FIPA-ACL communication model is given. Section 3 describes the generic
interaction space components required to fulfill computation at each layer of the
model. Section 4 gives details of the interaction space components implemented into
the CAPNET agent platform. In section 5 an example shows how the interaction
space components can be created in applications and explains how components are
used at runtime by the agent interaction architecture. Finally, some related works are
discussed and conclusions of our work are given.

2 FIPA-ACL Communication Model

Till now, the FIPA model has focused more on how agents could communicate by
separately specifying different components. However, little work has been done on
explicitly specifying organization and integration of these components to enable
message processing by agents. The paper considers a six-layered FIPA-ACL model
which is inspired in a recent revised FIPA-ACL model [7]. The approach based on
layers is taken to better organize and build the interaction components from an
engineering perspective because it lets specify not only interaction components but
also computation in the context of runtime message validation process [8]. The focus
of the paper is to describe the components needed at each layer by means of
development tools implemented in our agent interaction framework and not to discuss
in depth this communication model. In this section we briefly describe the FIPA-ACL
communication model and in section 3 the interaction space components are detailed.

1 Foundation for Intelligent Physical Agents. FIPA Communicative Act Library Specification

http://www.fipa.org/specs/fipa00037/ and FIPA ACL Message Structure Specification
http://www.fipa.org/specs/fipa00061/

http://www.fipa.org/specs/fipa00037/
http://www.fipa.org/specs/fipa00061/

In figure 1, the connection between FIPA-ACL communication model and the
application layer of the OSI reference model is shown. The FIPA-ACL model starts
on top of the OSI reference model [9] extending the application layer to support six
FIPA-ACL computation layers: Message Transport, Message Encoding, Content
Expression Syntax, Content Expression Semantics, Communicative Acts and
Interaction Protocols. The unit of processing at each layer is a FIPA-ACL message.

Fig. 1. FIPA-ACL communication model: an engineering perspective

At the message transport layer, agents look for and use asynchronous message
transport protocols to interchange messages through a physical network. The next
layer validates message structure and encoding because agents serialize messages
through the network. Messages are encoded using data structures such as XML, string
formats and bit efficient schemas, further than binary codifications. Furthermore,
message information such as agent identifiers, type of message and payload require
parsers. Content expression syntax is a layer where agents recognize the entities built-
in into the content of messages by determining whether the content structure is correct
in accordance with a common content language representation. The fourth layer refers
to the use of ontologies to describe the meaning of content by explicitly representing
domain concepts. At the layer of communicative acts agents have to manage the
messages taking into account the pragmatics of each type of communicative act.
Almost all communicative acts entail access to a knowledge base where application
domain information is stored. When communications use a pre-defined sequence of
messages among involved agents, interaction protocols components are used.

3 Interaction Space Components

In our previous work a FIPA-ACL interaction framework was described through three
main notions: interaction space, interaction models and interaction architecture [8].

The Interaction Space (IS) is an environment that stores interaction capabilities of
the agent that can be accessed in order to validate interactions at runtime. It is
integrated by the following components: message transport services, message parsers,
content languages, ontologies, interaction models, interaction protocols and a
knowledge base. An Interaction Model (IM) represents a modular unit permitting the
validation of a simple interaction. IM includes five modules for programming
validation of syntax and semantics content, feasibility preconditions, rational effect of
messages and interaction termination. The Agent Interaction Architecture (AIA) is
defined as a component to control creation and processing of interactions through
validation of interaction models within the interaction space of an agent. Interaction
space is part of agent architecture. The main objective of this framework is to propose
components for extending FIPA-ACL interaction infrastructure by means of
interaction space capabilities.

3.1 Message Transport Service

The first layer is composed of message transport services (TS). TSs are components
that agents use to exploit several available network infrastructures. Concrete
networking technologies are available along distributed computing infrastructures so
that different TSs could be implemented for exploiting those advantages of each type
of technology such as SOAP-XML for web services-based agents, HTTP for web-
based agents and TCP for remote object-oriented agents. Since some of these
communication services are commonly used in known MAS infrastructures, in this
framework they are considered to be part of the interaction space like specific
components that will be invoked dynamically when agents need their services.

Although each TS has its own implementation features they can be implemented
using common interfaces in order to be added to the interaction space of the agent.
Basically, this type of services must give functionality to process the sending and
receiving transport messages. Transport message is the unit of communication in this
layer of the model and includes message payload and envelope information.

3.2 Message Parser

At the layer of message encoding, each message is either encoded or decoded2 by a
component called a message parser. The main activity of parsers is to find out
whether the structure of the message complies with FIPA-ACL. This is a first level of
syntactic validation of the message. Typically, several message parsers can be
available as software components. These parsers must be implemented following a
well defined interface to generate and parse messages represented through different
codification schemas such as XML and others types of strings. The information about
parser components is explicitly available in the interaction space. With this
information, agent interaction architecture can dynamically analyze the message
requirements applying the specific parser.

2 Encode means what is usually called “generate” or “format” and decode is similar to parse.

3.3 Content Language

Agent communication is designed to represent the content of messages following
certain common criteria in such way that content can be understood by both sides of
the communication. Since agents could manage different content languages (usually
written by different programmers), similar basic elements should be used. Based on
the specification of each communicative act of FIPA-ACL, five types of entities that
can be part of message’s content are implicitly found: actions, propositions, domain
objects, references to objects and FIPA-ACL messages (table 1).

Table 1. Content requirements for FIPA-ACL communicative acts

Communicative act Content entities
accept-proposal, agree, cfp, failure, propose, refuse,
reject-proposal, request-when, request-whenever

action, proposition

request, cancel action
confirm, disconfirm, inform, inform-if, query-if proposition
inform-ref object reference
not-understood action, message, proposition
propagate, proxy object reference, message,

proposition
query-ref, subscribe object reference

We define a Generic Content Language component with these set of basic content

entities. The GCL also contains a set of content objects to build message content
combining one or more basic entities. Every concrete CL should give only one object
per communicative act. For example the “request-when“ communicative act combines
an action and a proposition in the content. Since every entity and content object is
designed to be used in a serialized way in messages, they must give two functions: the
first one is used to serialize the entity in an encoded format in such way that it can be
part of the message. The second one does the opposite task: from a serialized
representation gets the entity information and re-builds the entity as a memory object.
The validation criteria for each concrete CL are left free to CL programmers because
they depend on the particular requirements of each type of entity.

3.4 Ontology

The communication model of FIPA-ACL is based on the assumption that two agents
try to interact sharing a common ontology of the domain to give meaning to the
entities represented in a message’s content. For a given domain, agents can decide to
access ontologies explicitly represented and stored. In this paper, we consider that
ontologies engineering must share common design lines. That is why, we propose to
define a Generic Ontology (GO) as software component. Based on GO, concrete
ontologies can be built and added as part of the interaction space of agents and can be
accessed to validate the semantics of message’s content at runtime.

The GO is basically formed by all content entities given by generic content
language but messages. GO has two parts: in the first one, collections for actions,

propositions, domain objects and object references store the information about the
domain. In the second part there are a set of validation functions for each type of
content entity forming the ontology and one validation function for each type of
communicative act. The criteria for internal organizing, storing and validating the
entities in the ontology are left open for developers of concrete implementations.

3.5 Interaction Model

An interaction model is a key concept of the framework for implementing the
communicative acts layer in the FIPA-ACL model. An IM is seen as an interaction
component for validating single-message interactions. For each communicative act,
the IM is composed of the modules covering five validation phases: validation of the
content structure with a specific content language, validation of content semantics
with a specific ontology, validation of feasibility preconditions, validation of rational
effect, and validation of the termination conditions of the interaction.

Depending on the interaction requirements of each agent, different interaction
models implemented according with supported interaction capabilities such as
communicative acts, content languages and ontologies are required. Each IM is going
to be stored in the interaction space so it could be automatically used when messages
fit its requirements. The idea is that IMs can be as reusable for different application
agents as possible or at least ready to be refined by specializing functionality.

When agents interact and try to achieve pragmatics of communicative acts
(feasibility preconditions and rational effects), almost always they have to store, query
or modify concrete information about the application. The knowledge base is an
interaction space component very important to complete several types of interactions.

Being consistent with the knowledge model given by the FIPA-ACL followed in
both the generic CL and generic ontology, the KB must give the possibility of
managing actions, propositions and domain objects in order to allow agents to reason
about requirements of the communicative acts. For example, when a request message
is going to be sent or is being received, the agent has to decide whether the action is
known. That is why we consider that actions must be part of the knowledge base.
Regardless any concrete implementation of the KB, this software component must
give functions to add, query and remove actions, propositions and domain objects.

3.6 Interaction Protocol

The framework requires interaction protocols to attend interactions composed of more
than one message. To build concrete IPs, we propose to define a generic interaction
protocol as a component with IP common attributes. The specification for a Generic
Interaction Protocol (GIP) is given by a unique name of IP, a name of the content
language, a name of the ontology and the implementation engaged of controlling the
execution sequence and states of the IP. Each agent will be able to know the set of
protocols it can use at runtime when interactions occur because they will be stored in
the interaction space. How IPs are invoked and executed is a matter of agent
interaction architecture and it is out of the scope of this paper.

4 CAPNET Interaction Space

The current version 2.0 of the CAPNET agent platform [10] is empowered with the
interaction framework described in this paper. In the CAPNET, each type of
interaction component is implemented following an object oriented design. The
InteractionSpace class is a container of concrete objects representing capabilities that
can be used dynamically by the validation process of the AIA. Each concrete
component has its own unique descriptive information so that message attributes can
be used to resolve at runtime invocation of the correct component, depending on the
communication requirements. Each interaction capability is engineered by following
interfaces and base classes that represent generic component functionality. In this
way, capabilities can be implemented by reusing and extending from them exploiting
the runtime polymorphic advantages for checking and resolving types.

4.1 Message Transport Services

To help the messaging system to work dynamically (and eventually to make agents
more autonomous) CAPNET transport services are implemented by following the
IGenericTransportService interface (figure 2-a). This interface defines methods for
sending (sendMessage) and receiving (receiveMessage) messages. The base class
BaseTransportService declares attributes for transport service type (MTSType) and
address (address).

Fig. 2. CAPNET Message Transport Services (a) and Parsers (b)

At the moment, we have implemented two concrete message transport services. In
the first one (RemotingTransportService), we configure a TCP connection by using
distributed .NET framework remote objects for intranet agent applications. The
second service (HttpTransportService) is an HTTP server infrastructure based on
request-response connections to send and receive messages beyond local area
networks and for web based agent applications. In the interaction space, we add one
single instance of each TS to make them available at runtime.

4.2 Message Parsers

In the CAPNET implementation, the IGenericMessageParser interface describes the
generic functionality for parser components. Two methods are described to cover the
parsing of messages: on the side of the sender agent, format should be used for
converting a message to its textual representation ready to be communicated by a
transport service. Parse is the method for checking message syntax and for recovering
the message information from a textual representation when a message is received on
the side of the receiver agent. As it is shown in figure 2-b, the basic class BaseParser
is given to be extended by concrete classes like xmlParser and fipaStringParser.
While the first one serializes messages by using XML formats and conventions the
second represents messages as string format.

4.3 Content Languages

CAPNET CLs design is based on the Generic Content Language specification and
implemented by the GenericCL class (see figure 3-a). GenericCL class has a CLName
attribute to assign a unique identifier of the CL. Also this class is composed of a set of
basic entity classes (explained in section 3.3) that implements the ISerialization
interface supporting methods for serialization syntax validation (validateDescription)
and for converting the entity to a serializable format (setDescription).

 Fig. 3. CAPNET Content Language implementation

Following these design rules, we have developed two concrete CL classes in
CAPNET (figure 3-b). CAPNET-CL [11] is a proprietary language based on FIPA-
RDF0 to represent the syntax of entities. FIPA-SL0 is the implementation of
CAPNET to support FIPA-SL0 specification. Both CLs inherit from GenericCL class
and implement each entity by the ISerialization interface.

4.4 Ontologies

For engineering ontologies, CAPNET offers the GenericOntology class which is
composed by several common ontology attributes (figure 4). Ontologies must have a
unique name for identifying them in the interaction space (OntoName). The attribute
CLName is the name of the content language the entities managed by the ontology
belong to. As it was established in the Generic Ontology, this software component
contains collections for storing actions, propositions, domain objects and references to
domain objects (ActionsSet, PropositionsSet, DomainObjectsSet and
ObjectReferencesSet respectively).

Concrete ontologies must implement the IOntology interface to offer common
functionality. This interface has functions to search entities (searchAction,
searchProposition, and so on) and to add entities (addAction, addProposition, and so
on). Finally, the interface includes methods to validate the content object of each type
of communicative act supported by the ontology (validateInform, validateRequest,
validateQueryRef, and so on). We have developed the CAPNETOntology concrete
class by using the CAPNET-CL entities.

Fig. 4. Design of ontologies in CAPNET

4.5 Interaction Models

Interaction Models are software components based on the GenericInteractionModel
CAPNET class. Some of them are illustrated in figure 5-a. When a message is going
to be processed, the AIA looks for an IM that fits the message requirements.

To control the execution of concurrent IMs at runtime, a set of common attributes
identified for interaction models were implemented. InteractionId is a unique number
to identify each individual interaction. IMName is used to identify the communicative
act of the interaction. The field message indicates what message the IM object is
related to at runtime. CLName and OntologyName attributes store the names of the
content language and ontology used to represent and validate syntax and semantics of
the entities included in the message content. The same type of communicative act can
be implemented by different interaction models combining different content
languages and ontologies because an agent can participate in different application

domains. Each IM developed for a specific agent must implement the
IInteractionModel interface where the five phases of IM validation are defined
(validateCL, validateOntology, validateFP, validateRE and validateTermination).

Fig. 5. CAPNET Interaction models (a) and protocols (b)

4.6 Knowledge Base

The CAPNET KB was implemented by the KnowledgeBase class. This component is
formed by collections to store actions, propositions and domain objects derived from
generic classes. Moreover, in our implementation we have found two special types of
collections to temporally store monitors. Monitors are propositions and domain
objects to be monitored at runtime and are useful to implement some interaction
models like request-when, request-when-ever, subscribe, inform-if and query-if
making the agent be aware when entities have changed their attributes.

Although the purpose of having a knowledge base in the agent interaction space
can help the agent to do many internal reasoning activities, in this paper we focus on
the necessary functionality to carry out interactions. In this sense, the knowledge base
class has methods to add, search and remove specific entities and methods to add,
update and remove entity monitors when interactions take place at runtime.

4.7 Interaction Protocols

Each interaction protocol is implemented as a software component that includes
necessary attributes to dynamically determine its execution. We propose the
GenericInteractionProtocol base class to encapsulate such attributes that agent
interaction architecture can read when messages require the use of a specific IP.

In the case of the CAPNET IP development, the base class considers that each IP
has a unique name (such as FIPA-REQUEST, FIPA-CNP, and so on), a timeout (a

configurable amount of time the agent is going to wait for the next message in the
sequence), content language (the name of the CL used by the protocol) and the
ontology (the name of the ontology) as it is shown in figure 5-b. Concrete IP classes
inherit from the base class and also should implement the IInteractionProtocol
interface where run and initConversation methods are defined to allow agents
concurrently execute several IPs. Run is used to create a new thread of execution
when the IP is instantiated in the agent interaction architecture. InitConversation
implements the real strategy of controlling the sequence of messages.

5 Example

In this section we show a simple example that illustrates the use of the main
interaction components in the context of the proposed framework. It shows how a
particular agent interaction space is constructed (instantiated) as part of the agent
interaction architecture. A complete description of the interaction architecture and the
validation process can be found in [8].

The example is oriented to manage supplies logistics for offshore oil platforms [5].
To make supplies operations, boats and ships are required for transportation. These
transportation services are offered by third party providers that the MAS have to find
out and request for. This scenario configures an open and flexible environment where
heterogeneous agents should interact by using different interaction capabilities. The
MAS is composed by several oil platform agents that request specific supplies to a
supplier agent. Supplier agent receives requests, looks for the requested supplies, and
carries out the operations to negotiate the marine transport services offered by
transport agents. To engineer the interactions we have built agents by using the
interaction space capabilities of the CAPNET platform. Table 2 shows the interaction
components incorporated to each type of agent. The code of the example is Visual
Basic .NET compatible with the .NET framework 1.1.

Table 2. Interaction Space components

Agents TSs Parsers CLs Ontologies IMs IPs
Supplier http

TCP-
Remoting

XML
FIPA-
string

CAPNET CL
FIPA SL0

transport
supply

request
requestWhen
inform

Platform TCP-
remoting

XML
FIPA-
string

CAPNET CL
FIPA SL0

supply request
inform

FIPA-
request

Transport http XML
FIPA-
string

CAPNET CL
FIPA SL0

transport
supply

requestWhen
inform

FIPA-
request

The supplier agent has two transport services (http and TCP-Remoting) because it

needs to interact with Platform and Transport agents. To communicate with Platform
agents it uses TCP-Remoting transport service and to communicate with Transport
agents it uses http. In the prototype, agents use XML and fipa-string parsers to
validate syntax of FIPA-ACL messages. Resolving which parser will be used is a task

done dynamically by the agent interaction architecture by checking the message field
encoding for every message and by invoking the required parser component. TSs and
parsers are stored in collections of the interaction space (ts and p in code 4).

When created, agents get object instances of the CAPNETCL and FIPASL0 classes
and store them in the interaction space (code 1). When agents are interacting with
CAPNET management agents (Agent Management System and Directory Facilitator),
they apply FIPASL0 content in the messages and when communicates with supply
specific agents they interchange messages codified in CAPNETCL.

Code 1. The content languages instances are created

capnetcl = New CAPNETCL(CONTENT_LANGUAGE_CAPNET-CL)
sl0 = New FIPASL0(CONTENT_LANGUAGE_SL0)
cl = New Hashtable
cl.Add(capnetcl.CLName, capnetcl)
cl.Add(sl0.CLName, sl0)

The MAS works with transport and supply domain ontologies. The Supplier and

Transport agents load both ontologies. Platform agents only need supply ontology
(code 2). Internally, these ontologies are based on the CAPNETOntology class and
uses CAPNETCL to represent concrete entities. The supply ontology defines the
planningSupply action to allow Platform agents request supplies to Supplier agent.
This ontology also declares domain object references that can be considered as valid
supplies in this domain. In the transport ontology the transportSupplies action also is
defined to negotiate transport services among Supplier and Transport agents. Every
action is also stored in the KB in order to be executed at runtime (code 4).

Code 2. Segment of the ontology supply creation

ontSupp = New CAPNETOntology("supply", capnetcl.CLName)
PlanSupplyAct = New
CAPNETCL.RDF0Action("planningSupply")
PlanSupplyAct.setact("planningSupply")
PlanSupplyAct.setactor("SupplyAgent")
ontSupp.AddAction(PlanSupplyAct)
Dim d1, d2, d11 As CAPNETCL.RDFObjectRef
d1 = New CAPNETCL.RDFObjectRef ("PERF-WATER", "No")
ontSupp.AddObjectReference(d1)
d2 = New CAPNETCL.RDFObjectRef ("DRINK-WATER", "No")
ontSupp.AddObjectReference(d2)
d11 = New CAPNETCL.RDFObjectRef("BUMP-A", "No")
ontSupp.AddObjectReference(d11)
Dim o As New Hashtable
o.Add(ontSupp.OName + ontSupp.CLName, ontSupp)

The agents require several interaction models in order to execute specific

communicative acts supported by the MAS (code 3). For example, Platform agents
use requestIM for requesting the action planningSupply to Supplier agent (and
whatever supported action). Typically when they request the action, they receive the
answer by an inform message that is managed by an InformIM. This interaction could
also be carried out by applying the fipa-request interaction protocol when

synchronous communication is preferred. In other interactions, Supplier agent uses
requestWhenIM to ask Transport agents to execute the action transportSupplies for
some supplies assigned to it only when the required supplies are ready to be
transported. When each interaction component and collection is created, the agent
programmer must create the InteractionSpace instance as it is shown in code 4.

Code 3. Creation of Interaction Models

requestWhenIM = New RequestWhenIM(ACL_REQUEST_WHEN)
requestIM = New RequestIM(ACL_REQUEST)
InformIM = New InformIM(ACL_INFORM)
Dim IM As New Hashtable
IM.Add(requestIM.IMName + capnetcl.CLName +
ontoSupp.OName, requestIM)
IM.Add(requestWhenIM.IMName + capnetcl.CLName +
ontoSupp.OName, requestWhenIM)
IM.Add(IIM.IMName + capnetcl.CLName + ontoSupp.OName,
InformIM)

Code 4. Creation of the Interaction Space of agents

Dim actions As New Hashtable
actions.Add(PlanSupplyAct.Name, PlanSupplyAct)
Dim kb As New KBManager(Props, Objects, actions)
iSpace As New InteractionSpace(ts,p,kb,cl,o,IPs,IM)

Figure 6 illustrates the validation process of the agent interaction architecture for
the scenario of the request message implemented by Platform agents to request the
planningSupply action to Supplier agent. The purpose is to show how components are
instantiated and invoked by using the proposed generic design at runtime.

Messaging gets the TCP-Remoting TS to send the message on the side of the
Platform agent because so is indicated in the message by the programmer. The
Supplier agent is connected to a TCP-Remoting TS so it can receive the message. The
messaging engine gets the XML parser to validate the structure of this message
because the message is encoded with XML syntax. After that, the validation is made
by an instance of the requestIM class because it has been implemented in accordance
with the CAPNET CL content language and the supply ontology. Every phase of the
IM is executed by the corresponding engines in the validation process. The CAPNET
CL component is cloned from the interaction space and used to validate the
requestContentObject by invoking its validateDescription method. The meaning of
the content is validated when the ontology engine gets a copy of the supply ontology
component from the IS. Then, the method validateRequest is invoked where the
requested action is validated as part of the ontology. Finally, the requested action is
searched in the KB where the capability is implemented by an executable action.

Fig. 6. Agent accessing its interaction space

6 Related Work and Discussion

Research work in agent technology is focused on moving away from the hand-crafted
agents to the agents able to participate in particular institutional space enabling them
to determine capabilities at runtime [12]. In such institutions, communicative
interactions take place in open interaction frameworks and exist only thanks to
common agreements on the basis of a shared set of conventions [13]. Nevertheless,
there is little effort to model, design, and implement crosscutting agent interaction
concerns which depend largely on the ability of software engineering techniques and
methods to support the explicit separation of concerns throughout the design and
implementation stages [14].

In the literature, there are also reported communication layered approaches like the
efficient agent communication on wireless environments presented in [15] and the
communication model based on interactions, conversations and ontologies described
in [16]. The latter covers some specific issues but not all that we have considered in
this paper.

Concerning presented approach, we briefly emphasize three issues i) how
autonomy is improved, ii) what type of interoperability is enabled and iii) interaction
engineering concerns.

Our autonomy’s approach is oriented to process interactions. Agents are able to
determine by themselves whether or not they can process unforeseen messages at
runtime depending on their own interaction capabilities. This is achieved by having
both explicitly represented interaction components and an inter-built agent interaction

architecture. It is fairly different from that of representative works like Jadex and
Jason presented in [17], which employ a reasoning architecture for deducing agent’s
actions from internal domain model but not for processing ACL interactions.

Interoperability refers to the programmer’s ability to take into account at design
time the interaction capabilities of the agents in order to reduce interaction among
software developers. It permits development of agent interactions using common
interaction space components. Other level of interoperability could be reached when
agents developed within different agent infrastructures try to interoperate using the
same interaction components. To reach this level of interoperability we need other
platforms implement interaction components following the proposed generic
components. Then experiments could be provided to test this issue in practice. Our
work is different than other similar approaches found in the literature [18] [19]
because it provides interoperability for each layer of the communication model.

Finally, the use of interaction space components releases developers from writing
bulk of code to validate each stage of communication. Agent interaction architecture
is given once by the basic agent and it takes the control of agent interaction
processing. Without it, development of interactions would require writing code to
control each scenario of message processing and for each agent in the MAS. That
technique of programming is inflexible, repetitive and prone error because validation
of messages at each layer is completely duty of the developer. As an outcome, we
promote the separation of concerns by reusing, extending and sharing different
interaction components.

7 Conclusions

In this paper we pointed out the interaction space components that are required to
make the FIPA-ACL interaction framework carry out message processing at runtime.
We organized the FIPA-ACL communication model through six layers to accomplish
agent interactions: transport services, message parsers, content languages, ontologies,
communicative acts and interaction protocols. Based on this model, interaction
components were identified as part of each layer and arranged as core components of
our FIPA-ACL interaction framework.

We proposed that every interaction component should be stored into the agent
interaction space as software components that could be accessed at runtime by the
agent architecture. Interaction components were defined as generic software
components in order to specify their basic functionality in accordance with the
expected activities they have to manage at each layer of the communication model.
These interaction components are implemented within the CAPNET agent platform.
We show by example of the MAS for offshore oil platform logistics how the
interaction components can be created in CAPNET agents. We are convinced that
proposed agent interaction architecture improves autonomy, interoperability and
interaction engineering of complex multiagent systems.

Acknowledgments. The first author would like to thank CONACYT and the IMP for
supporting the Ph. D. studies that originated this research.

References

1. Winikoff, M.: Implementing Commitment-Based Interaction. International Conference on
Autonomous Agent and Multi-Agent Systems (AAMAS 2007), Hawaii, May 2007

2. Omicini, A., Ossowski, S., Ricci, A.: Coordination Infrastructures in the Engineering of
Multiagent Systems. Methodologies and Software Engineering for Agent Systems – An
AgentLink Perspective, Bergenti, F., Gleizes, M., Zambonelli, F. (Eds), Kluwer (2004)

3. Serrano, J. M., Ossowski, S.: On the Impact of Agent Communication Languages on the
Implementation of Agent Systems. LNCS, Vol. 3191, Springer Verlag, (2004), 92-106

4. Smirnov A., N. Chilov, T. Levashova, L. Sheremetov, M. Contreras. Ontology-Driven
Intelligent Service for Configuration Support in Networked Organizations. J. of Knowledge
and Information Systems, Springer Verlag, 12(2): (2007) 229-253

5. L. B. Sheremetov, M. Contreras, C. Valencia, Intelligent Multi-Agent Support for the
Contingency Management System. J. of Expert Systems with Applications, Pergamon Press,
26(1): (2004) 57-71

6. Chaib-Draa, B., Dignum, F. Trends in Agent Communication Language. Computational
Intelligence, Volume 18, Num. 2, (2002) 89-1015

7. Poslad, S. Review of FIPA Specifications, IEEE FIPA Revision of FIPA Specifications
Group, Foundation for intelligent Physical Agents http://www.fipa.org , September 2006

8. German, E., Sheremetov, L.: An Agent Framework for Processing FIPA-ACL Messages
Based on Interaction Models. Proceeding of the eight Workshop on Agent Oriented
Software Engineering (AOSE 2007), (2007) 75-89

9. Zimmermann, H.: OSI Reference Model–The ISO Model of Architecture for Open Systems
Interconnections. IEEE Transactions on Communications, vol. 28, no. 4, (1980) 425-432

10. Contreras, M., Germán, E., Chi, M., Sheremetov, L.: Design and Implementation of a FIPA
Compliant Agent Platform in .NET. J. of Object Technology, vol. 3, no. 9, (2004) 5-28

11. Sheremetov, L., Batyrshin, I., Filatov, D., Martínez-Muñoz, J.: An Uncertainty Model for
Diagnostic Expert System Based on Fuzzy Algebras of Strict Monotonic Operations.
Lecture Notes in Computer Science, Vol. 4293 Springer Verlag, (2006) 165-175

12. Dignum, F., Dignum, V., Thangarajah, J., Padgham, L., Winikoff, M. Open Agent
Systems? Agent Oriented Software Engineering (AOSE 2007), (2007) 45-59

13. Fornara, N., Vigano, F., Colombetti, M.: Agent Communication and Institutions Reality.
Agent Communication, State of the Art Survey, In van Eijk, R., Huget, M., Dignum, F.(Eds)
LNAI Volume 3396, (2004) 1-17

14. Garcia, A., Chavez, C., Choren, R.: Enhancing Agent-Oriented Models with Aspects.
International Conference on Autonomous Agents and Multi Agent Systems (AAMAS
2006), Japan, May 2006

15. Helin, H., Laukkanen, M.: Efficient Agent Communication in Wireless Environments.
Software Agent-based Applications, Platforms and Development Kits. In Unland, R.,
Klusch, M., Calisti, M. (Eds), Birkhauser ISBN 3764373474, (2005) 307-330

16. van Aart, C.: Organizational Principles for Multi-Agent Architectures. Birkhauser ISBN
3764372133, (2005) 139-176

17. Bordini, R.; Dastani, M.; Dix, J.; El Fallah Seghrouchni, A. (Eds.): Programming Multi-
Agent Systems. Kluwer Academic Publishers, (2005)

18. Pasha, M., Faroog-Ahmad, H., Ali, A., Suguri, H.: Semantic Grid Interoperability Between
OWL and FIPA SL. Agent Computing and Multi-Agent Systems, Zhong-Zhi Shi, Ramakoti
Sadananda (Eds.): LNCS 4088, ISBN 3-540-36707-1, (2006) 714-720

19. Suguri, H., Kodama, E., Miyazaki, M.: Assuring Interoperability in Heterogeneous,
Autonomous and Decentralized Multi-Agent Systems. Proceedings of 6th International
Symposium on Autonomous Decentralized Systems (ISADS 2003), IEEE Computer
Society, ISBN 0-7695-1876-1, (2003) 17-24

http://www.fipa.org/
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Shi:Zhong=Zhi.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Sadananda:Ramakoti.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Sadananda:Ramakoti.html
http://www.informatik.uni-trier.de/%7Eley/db/journals/lncs.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/k/Kodama:Eiichiro.html

