
DCaseLP: a Prototyping Environment
for Multi-Language Agent Systems?

Ivana Gungui, Maurizio Martelli and Viviana Mascardi

Dipartimento di Informatica e Scienze dell’Informazione – DISI,
Università di Genova, Via Dodecaneso 35, 16146, Genova, Italy.

iva sim@yahoo.it, {martelli,mascardi}@disi.unige.it

Abstract. This paper describes DCaseLP, a multi-language development envi-
ronment for Multi-Agent Systems. DCaseLP provides tools and languages for
modelling and implementing a MAS prototype following a set of steps which
guide the developer from the late requirement analysis to the prototype imple-
mentation. Full support for validating the MAS model by running the prototype
in the JADE platform is offered. DCaseLP and its ancestor, CaseLP, have been
employed to develop many applications also in collaboration with Italian compa-
nies, thus demonstrating the feasibility of the proposed approach.

1 Introduction and Motivation

The correct and efficient engineering of heterogeneous, distributed, open, and dynamic
applications is one of the technological challenges faced by Agent-Oriented Software
Engineering (AOSE). Researchers and practitioners agree that engineering a software
system involves a non negligible amount of risk of different kinds [4]. This is partic-
ularly true when the system to engineer is as complex as a MAS. However, the risk
intrinsic to the development of a MAS could be mitigated by following a prototyping
approach.

In fact, a prototype is not something to be delivered to a client, usually. One of the
reasons is precisely the purpose of the prototype: proof of concept. It intends to show the
client what the final software product will look like, in order to gain a full understanding
of the client’s requirements before starting the implementation of the product. Develop-
ing a working prototype does not usually require a great deal of time. This means early
availability of a product that the customer can evaluate, and the opportunity to detect
any possible inaccuracies. Early detection of inadequacies allows to keep the cost of
the software prototype much lower than the cost of the end product, and this reduces
the financial risks involved in the development process. The iterative prototyping pro-
cess ensures the flexibility to revise the requirements or critical design choices several
times before committing to any final decision. Finally, efficiency is not a key feature:
a prototype does not need to be extremely efficient, and therefore it can be produced
using methods and tools that are suitable for validation of the initial requirements, but
not necessarily for the implementation of the final product.
? This work was partially supported by the research project “Iniziativa Software CINI - Finmec-

canica”.

In this paper we describe the DCaseLP framework for MAS prototyping. DCaseLP
stands for Distributed Complex Applications Specification Environment based on Logic
Programming. Although initially born as a logic-based framework, as the acronym itself
suggests, DCaseLP has evolved into a multi-language prototyping environment that in-
tegrates both imperative (object-oriented) and declarative (rule-based and logic-based)
languages, as well as graphical ones. The rationale behind DCaseLP is that MAS de-
velopment requires engineering support for a diverse range of non-functional proper-
ties, such as understandability of the MAS at various conceptual levels, integrability
of heterogeneous agent architectures, usability, re-usability, and testability. Creating
one monolithic AOSE approach to support all these properties is not feasible. Rather,
we expect different approaches to be suitable for modelling, verifying, or implementing
various properties. By providing the MAS developer with a set of languages, and allow-
ing for the choice of the most suitable one to model, implement, and test each property,
DCaseLP heads towards the modular approach to AOSE proposed by [17,18]. These
ideas, that we applied since the beginning of our project in 1996,1 are currently gaining
a wide consensus also for the final product development and maintenance stages [16].

The languages and tools that DCaseLP integrates are UML and an XML-based
language for the analysis and design stages, Java, JESS and tuProlog for the imple-
mentation stage, and JADE for the execution stage. Software libraries for translating
UML class diagrams into code and for integrating JESS and tuProlog agents into the
JADE platform are also provided.

There are many motivations behind supporting these languages as part of an inte-
grated environment:

1. The ability to describe the MAS’s architecture and interaction strategies in UML2

may be exploited by any average skilled software developer that knows how to draw
UML class and sequence diagrams and wants to generate code starting from those dia-
grams, without needing a deep knowledge of the language in which code is generated.
In fact, the generated code contains comments that explain what should be added inside
the code in order to make it executable, and make code completion easy to be faced.

2. JESS, the Java Expert System Shell [13], allows the developer to supply
knowledge in the form of declarative rules that are processed by means of the Rete
algorithm [11]. It is a very expressive and concise language, suitable for implementing
lightweight and fast expert agents that may easily access and reason about Java objects.

3. Computational logic and logic programming in particular are very suitable to
implement sophisticated, self-aware agents able to reason about themselves and the
other agents in the MAS [20]. tuProlog [10] provides a light Prolog engine written in
Java. It may be used to build rational agents that behave according to the “strong” agent
notion, namely entities conceptualised in terms of mental attitudes and able to perform
some reasoning about their mental state.

1 At that time, the project name was CaseLP – without D, since no support to distribution was
given yet.

2 At the time of writing, only the translation from UML class diagrams to code is fully sup-
ported by DCaseLP. We have already developed a separate translator from sequence diagrams
to Prolog agent skeletons, http://www.disi.unige.it/person/MascardiV/
Software/WEST2EAST.html, and we are currently integrating it in DCaseLP.

4. Finally, as far as the importance and usefulness of JADE is concerned, we may
quote [2] that describes JADE as “probably the most widespread agent-oriented mid-
dleware in use today.”

The paper is organised in the following way: Section 2 discusses the AOSE stages
that DCaseLP addresses; Section 3 describes the libraries that DCaseLP provides
to the user; Section 4 discusses the most recent applications of DCaseLP; Section 5
compares DCaseLP with relevant related tools; and finally Section 6 concludes.

2 DCaseLP: an Integrated AOSE Approach and Environment

DCaseLP provides the languages and tools that support a MAS developer in the en-
gineering stages from late requirements analysis to prototype testing. In the following
sections we outline these engineering stages. The suggested AOSE approach is based
upon existing proposals.

2.1 Modelling stage (analysis and design)

The analysis stage is mainly role-driven. We share the belief that roles are the key ab-
straction in MAS modelling with several researchers in the AOSE field. Role modelling
allows the MAS developer to specify what the system can do, without going into the
details about how the system will do it. Roles are played by agent classes. To make
an example, Seller and Buyer are two roles that may be played by the fruitSeller and
fruitBuyer agent classes respectively, as well as by a fruitExchanger class that plays
both of them. In order to define roles and interactions taking place among them, the
MAS developer may follow the guidelines given in [5], where modularity, high cohe-
sion, parsimony, completeness, and low coupling are used as characterising criteria for
qualifying roles.

Once the role model is well understood, the developer needs to define how com-
munication among entities playing different roles takes place; which roles should be
assigned to which agent class; and how many instances of each agent class are required
for the given application.

The language that DCaseLP provides to the user in order to cope with these aspects
is UML, along the lines of [3,5]. The tool that allows the integration of role models
defined using UML into DCaseLP consists of a set of XSL configuration files that
define the rules for translating XMI representations of UML diagrams into executable
code. The first issue to address refers to the activity of defining interactions among the
roles needed in the MAS under development. A “Protocol Diagram” may be defined to
this aim. A suitable notation is provided by UML sequence diagrams where - according
to the AUML philosophy [22] - roles are used instead of classes or objects as the entities
involved in the interaction.

In order to identify the agent classes needed by the application, and assign roles
to them, the developer may consider that both access points for information, expertise,
and services, and entities that are responsible for controlling some kind of activity, are
good agent class candidates [5]. This assignment of roles to classes may be modelled as
an “Architecture Diagram”, namely, a UML class diagram where UML classes may be

either agent roles or agent classes (according to their stereotype), and “plays” relation-
ships between agent classes and agent roles are defined. For each agent class defined in
the modelling stage, the corresponding code implementing the class behaviour should
be defined in the implementation stage.

The number of instances of each agent class depends on the MAS under develop-
ment. Clearly decoupling agent classes from agent instances enforces the modularity
and re-usability of the agent class model. Agent instances are assigned to their cor-
responding agent classes in the “Agent Diagram”, a UML class diagram that includes
agent classes and agent instances. When the MAS is going to be implemented, the initial
state of each agent instance must be defined by encoding it in the chosen language.

2.2 Implementation Stage

The implementation of the MAS prototype must be coherent with the specification
given in the previous step. Ensuring this coherence is a demanding task for the developer
of the prototype, but DCaseLP may reduce this burden by providing a semi-automatic
translator from UML into JESS, that is one of the implementation languages offered
by DCaseLP.

During the implementation stage, the integration of external software comes into
play. To this aim, DCaseLP follows the Wrapper Agent model, [12], defined by the
Foundation for Intelligent Physical Agents, FIPA, with agents that act as “wrappers ”
for the external pieces of code. The external packages which can be accessed by the
prototype are all the ones that Java, tuProlog and JESS provide interfaces for.

DCaseLP provides a set of libraries for integrating in JADE agents whose be-
haviour is entirely programmed in tuProlog or JESS, and not simply a way of exe-
cuting tuProlog or JESS pieces of code from inside JADE agents. From a developers
point of view, the difference is substantial. By “integrating tuProlog and JESS agents
into JADE”, we mean the ability to specify the complete behaviour of the agent, in-
cluding its ability to communicate with other agents running into a JADE platform, in
tuProlog and JESS and, then, execute these specifications. A developer that is able
to write tuProlog or JESS code, but that is not able to program in Java (and thus, is
not able to define JADE agents), can define active and communicating agents, and run
them in JADE, without even knowing the structure and definition of JADE agents. This
is possible because we have extended both tuProlog and JESS with primitives that al-
low them to communicate with agents running in a JADE platform (no matter if they
are tuProlog, JESS, or pure JADE agents) in a completely transparent way. This is
obviously different from, and more sophisticated than, providing the means to integrate
code into JADE agents, but still constraining the developer to use and know the JADE
package.

2.3 Execution Stage

The execution of the MAS prototype allows the MAS developer to test and evaluate the
analysis, design, and implementation choices that were made during development.

We identified a set of general evaluation criteria, which are relevant for most MAS
applications. The monitoring and debugging tools that JADE offers can be used to
evaluate them:
– Load Balancing and Load Peaks. The amount of work done by each agent in the pro-
totype can be monitored by measuring the number of exchanged messages (for example,
by using the Sniffer agent provided by JADE). By means of these measurements, the
developer can identify the overloaded agents and may then decide to modify the archi-
tecture of the MAS, for example by defining a different assignment of roles to agent
classes.
– Correctness of communication protocols. Implementation of the communication pro-
tocols can be tested by monitoring which messages are received by which agent, and
whether there are agents that receive messages that they do not understand. If this is the
case, there may be a mis-implementation of the protocols related to the roles the agents
must play in the MAS.
– MAS Topology. During the simulation, the “neighbours” of each agent, i.e., the set
of agents it can exchange messages with, can be set up. This allows the developer to
experiment various interconnection topologies.

3 Using DCaseLP

DCaseLP has been implemented in order to provide

1. a support to the steps described in Section 2, and
2. a transparent integration between Java, JESS, and tuProlog agents running in a

JADE platform (Figure 1).

Fig. 1. DCaseLP packages.

The result of our work consists of the following packages:

1. the Java UMLInJADE package that contains the Java classes and the XSL style
sheets for translating UML diagrams created with any UML modelling tool3 and
exported into XMI, into (ad-hoc) intermediate XML models and, from these, to
create the files containing the code for running the JESS agents into JADE.

3 In our experiments, we used ArgoUML.

2. the Java jessInJADE package, that contains the classes that implement JESS
agents, to be run in the JADE environment, and whose behaviour is fully specified
by means of the JESS language.

3. the Java tuPInJADE package, that contains the classes that implement tuProlog
agents, to be run in the JADE environment, and whose behaviour is fully specified
by means of the tuProlog language.

The three packages, together with their manuals and tutorials, are available from
http://www.disi.unige.it/person/MascardiV/Software/DCaseLP.
html. Examples of use of DCaseLP are also provided from the above URL, together
with the code for the electronic commerce application discussed in Section 4.

3.1 The UMLInJADE package

The UMLInJADE package provides the means to translate, in a semi-automatic way, the
high level specification of the MAS, consisting of the Protocol, Architecture and Agent
diagrams introduced in Section 2, given either in UML (usable only for Architecture
and Agent diagrams) or in an XML intermediate format (available for all of them), into
JESS agents.

The protocol diagram sets the interaction rules among roles that will be played
by classes of agents. There is only one way to specify protocol diagrams in a format
that can be automatically translated into code, namely, using our XML intermediate
format. Currently, we cannot define protocol diagrams directly in ArgoUML (http:
//argouml.tigris.org), which is the UML editor that we currently use for draw-
ing UML diagrams and for exporting them into XMI, because ArgoUML does not sup-
port the definition of UML sequence diagrams (and protocol diagrams are expressed
using the same notation of sequence diagrams). Other UML editors such as Posei-
don (http://www.gentleware.com/index.php), that support the definition
of sequence diagrams, export them into an XMI format that is not compliant with our
translation program. We are currently working to a definition of a new translation pro-
gram from XMI to our XML intermediate format, that is compliant with Poseidon, in
order to overcome this limitation of the current release of DCaseLP.

Fig. 2. FIPA propose protocol.

To show how our intermediate XML looks like, we use it to describe the propose
protocol suggested by FIPA (Figure 2), where a Seller role substitutes the role of Ini-
tiator, and a Buyer role substitutes the role of Participant; a fragment of the resulting
intermediate XML specification is shown below. The structure of our XML notation is
trivial, with roles characterised by a role name, and the ordered list of messages that
they send or receive, eventually embedded into “or”, “xor” and “and” tags.

1 <protocoldiagram>
2 <role><name>Seller</name>
3 <msgs><msg><sender>Seller</sender>
4 <receiver>Buyer</receiver>
5 <act>PROPOSE</act></msg>
6 <xor-thread>
7 <thread><msg>
8 <sender>Buyer</sender><receiver>Seller</receiver>
9 <act>REJECT PROPOSAL</act></msg></thread>
10 <thread><msg>
11 <sender>Buyer</sender><receiver>Seller</receiver>
12 <act>ACCEPT PROPOSAL</act></msg></thread>
13 </xor-thread></msgs></role>
.....
n </protocoldiagram>

The architecture diagram expresses the relationships that exist between roles and
classes of agents. It can be specified either by means of a UML class diagram like the
one shown in Figure 3, or in the XML intermediate format.

Fig. 3. An architecture diagram.

The agent diagram states which agent classes have which instances. Like the ar-
chitecture diagram, it can be specified either by means of a UML class diagram (like
the one shown in Figure 4), or in intermediate XML format. The UMLInJADE package

Fig. 4. An agent diagram.

defines the Specif2Code class, that is used to perform the translation from the high
level description of the MAS (either given by means of UML and exported into XMI,
or by means of the intermediate XML format) into partial JESS agents that behave ac-
cording to the interaction protocols, and are organised according to the architecture and
agent diagrams. The Java code necessary to load and run a JESS agent into a JADE
platform is also automatically generated.

The usage of UMLInJADE.Specif2Code is simple: from a command line, the
developer just needs to type in javaUMLInJADE.Specif2Code and enter the in-
formation on the location of the XMI or XML files to translate, that are input by means
of a set of interactive windows.

In order to execute the MAS resulting from the translation of the high level speci-
fication, the generated JESS code, that we will name JESS “skeleton” and that is put
by the translator into a directory named jecode, must first be completed (see Section
3.2). The completed JESS code must be kept in the directory where it was generated
and its name must not be changed, for ensuring its integration into JADE.

Once all the JESS skeletons have been completed, the JADE MAS can be built
and its simulation can start. First of all, the Java “stubs” necessary for integrating the
JESS skeletons into JADE, and automatically generated by the translation program
taking the architecture diagram into account, must be compiled. Supposing that the
Java stubs are compiled into the jacode directory, and that the MAS agent diagram
is the one specified in Figure 4, then the MAS simulation in JADE can be started by
entering the command java jade.Boot fB1:fruitBuyer fB2:fruitBuyer
fS1:fruitSeller fS2:fruitSeller fE1:fruitExchanger from the ja-
code directory.4 This command launches a JADE platform (first argument, jade.
Boot) containing an agent named fB1, and whose behaviour is given by the JESS pro-
gram integrated in JADE by the Java fruitBuyer stub. In the same way, there are an
agent instance fB2with class fruitBuyer, an instance fS1with class fruitSel-
ler, and so on. The names of the agent classes are directly obtained by the architec-
ture diagram. The agent diagram has a one-to-one correspondence with the command
line typed to start the simulation. In fact, the command line has one argument for each

4 We have substituted fruitBuyer1, etc, with fB1, etc, for readability.

agent instance specified in the diagram, and the argument consists of the agent name
separated by a colon from the agent class.

3.2 The jessInJADE package

The jessInJADE package defines two classes, jessAg and jessBhv. Every JESS
agent must be defined by means of a Java class that extends jessAg, which, in turn,
extends the JADE Agent class by adding to it the capability, for an agent written in
JESS, to exchange messages with any JADE agent. The class jessBhv defines the
behaviour of a JESS agent.

In order to integrate a JESS piece of code into a JADE agent, we provide both the
skeleton of a JESS agent, and the Java stub that is necessary to integrate the JESS
agent into JADE. The JavaStubSkeleton code can be found in the jessInJADE
directory. Once opened in a text editor and completed (self-explaining comments in the
code indicate where the developer must add his/her own code), the JavaStubSkele-
ton behaves like a JADE agent whose only activity is to execute the JESS code ob-
tained by editing and completing the jessAgentSkeleton file. This file (also found
in the jessInJADE directory) must be edited by the developer, and completed with
the JESS rules and initial facts that characterise the agent’s behaviour and initial be-
liefs.

If the developer takes advantage of the translation process from the UML and XML
specifications of protocol and architecture diagrams into JESS code, one Java stub
and one JESS skeleton are automatically created for each agent class involved in the
MAS. In other words, the JESS rules that characterise the agent’s behaviour do not
need to be encoded by the developer, since they are automatically generated in order
to comply with the protocol given in the XML intermediate format. Since the protocol
specifies neither the agent’s initial state, nor the conditions under which a message is
sent, the developer still needs to manually complete the code, but his/her work is less,
and easier, than writing a JESS agent from scratch. On the other hand, the Java stub
that is generated by the Specif2Code method, is ready to use and does not need to
be edited.

The built-in predicates defined by the jessInJADE package include a send func-
tion, that sends an ACLMessage to an agent running in a JADE platform, and a
receive function. The input of the send function is the fact ACLMessage whose
template is predefined in any JessAg. The slots defined for the ACLMessage fact
are the same as the one present in a JADE ACLMessage, namely communicative act
(or “performative”), content of the message, sender, receiver, and eventually other argu-
ments. The receive function returns a reference to the first ACLMessage available
in the mail box of the agent, and nil if no message is available.

3.3 The tuPInJADE package

The tuPInJADE package contains the following files:

– JadeShell42P.java and JadeShell42PGui.java represent a tuProlog
agent and, as the name suggests, behave as a general “agent shell” for a tuPro-
log agent in JADE that incorporates a Prolog inference engine. When launched

in a JADE platform, the tuProlog agent needs an input file containing the Prolog
theory defining the agent behaviour. The input file may be either supplied from the
command line (JadeShell42P.java), or by browsing the file system by means
of a GUI (JadeShell42PGui.java).

– TuJadeLibrary.java is a Java library necessary for a tuProlog agent to com-
municate in a JADE platform. It defines the communicative predicates based on the
facilities that JADE offers to its agents for communication in a platform and with
other platforms.

Once a JadeShell42P or JadeShell42PGui agent has been loaded into a
JADE platform, it looks for the tuProlog file that contains the agents’s theory. This
theory must define a “main” predicate that implements the agent’s behaviour. If this
check ends positively, the tuProlog engine is created and, by default, it contains the
standard tuProlog libraries and the theory input when loaded.

Every time that this agent is scheduled by JADE it automatically proves the “main.”
goal. If the resolution does not succeed then an error message is displayed to the user.

The built-in predicates of tuProlog agents defined in the TuJadeLibrary in-
clude a send(Performative,Content,Receiver,Protocol,Cid) pred-
icate, together with a blocking receive (blocking receive(Performative,
Content,Sender)) and a not blocking receive (receive(Performative,
Content,Sender)).

Once a th file containing the tuProlog theory th for an ag agent has been de-
fined, ag can be loaded into a JADE platform by typing java jade.Boot ag:
tuPInJADE.JadeShell42P(th) from a command line (or java jade.Boot
ag:tuPInJADE.JadeShell42PGui, for taking advantage of a GUI for browsing
the file system).

4 Applications

The most recent application that we have developed with DCaseLP, described by [23],
deals with an electronic implementation of different auction mechanisms.

There are many different auction mechanisms that can be classified according to
their features (see for example [19]). The first distinction can be made between open
and sealed-bid auctions. In the open auction mechanisms, the seller announces prices
or the bidders call out the prices themselves, thus it is possible for each agent to observe
the opponents’ moves. The most common type of auctions in this class is the ascending
(or English) auction, where the price is successively raised until no one bids anymore
and the last bidder wins the object at the last price offered. The descending (or Dutch)
auction, works in the opposite way w.r.t. the English one, and essentially belongs to
the sealed-bid class. The sealed-bid auction mechanism is characterised by the fact that
offers are only known to the respective bidders (as the name suggest, offers are submit-
ted in sealed envelopes). In the first-price sealed-bid auction each bidder independently
submits a single bid without knowing the others’ bid, and the object is sold to the bid-
der who made the best offer. The second-price sealed-bid auction works exactly as the
first-price one except that the winner pays the second highest bid.

Considering that the Dutch auction mechanisms is completely equivalent to the first-
price sealed-bid auction, we have implemented the remaining three standard mecha-
nisms: English, first-price sealed-bid and second-price sealed-bid mechanism.

Following the steps sketched in Section 2, for each auction mechanism, we have
analysed the interaction between the Auctioneer role and the Bidder role, and a Pro-
tocol Diagram has been produced. In the design phase, the internal behavior and the
customisable features of each class of agent has been studied. Finally, each agent has
been implemented as a tuProlog agent, and integrated into DCaseLP by exploiting the
functionalities offered by the tuPInJADE package, thus achieving the goal of provid-
ing a tuProlog library of customisable agents for simulating auction mechanisms.

We have ran all the implemented mechanisms under the hypotheses, that, according
to the “Revenue Equivalence Theorem” (RET, described by [26]), lead to the existence
of an optimal bidder’s strategy. We programmed our test bidders with these strategies
and we verified that all the simulated auctions gave the same revenue to the auctioneer
and the same payoff to the bidders. The fact that RET is satisfied (up to some error
clearly due to discretisation) can be seen as a check for the correctness of the imple-
mentation.

The code developed as part of this application can be downloaded from http://
www.disi.unige.it/person/MascardiV/Software/DCaseLP.html.

Many applications had also been developed using the ancestor of DCaseLP, CaseLP.
For example, the Kicker project, based on a previous “freight train traffic” application
by [6], was developed within the framework of the EuROPE-TRIS Project as a result
of an industrial collaboration with the Information Systems Division of Italian Railways
(Ferrovie dello Stato s.p.a.), and dealt with the train dispatching problem.

Another application of CaseLP was the design and development of a working pro-
totype of a vehicle monitoring system, which was carried out in collaboration with
Elsag s.p.a. and discussed by [1].

Finally, a prototype of a multimedia, multichannel, personalised news provider (by
[7]) was developed in collaboration with Ksolutions s.p.a. as part of the ClickWorld
project, a research project partially funded by the Italian Ministero dell’Istruzione,
dell’Università e della Ricerca (MIUR).

The above mentioned applications demonstrated that the CaseLP environment could
be used effectively to engineer a real application modelled as a MAS in very heteroge-
neous domains.

We are currently working on making all these applications compliant with DCaseLP.
Since CaseLP is implemented in Sicstus Prolog, and DCaseLP integrates tuProlog,
the syntactic differences between these two Prolog implementations prevent us from
running the applications developed with CaseLP in DCaseLP “as they are”. How-
ever, the conversion from the two Prolog formats should be almost easy, and we plan to
test soon DCaseLP on the applications already developed with its ancestor.

5 Related work

The three main features that characterise DCaseLP are: support to MAS development;
support to multi-language development (at any level); support to the AOSE process. In

this section we analyse six toolkits that provide a good support to most of these features,
and we compare them with DCaseLP.

AgentTool and AgentTool III. AgentTool [8] is a Java-based graphical development
environment created by the Multiagent & Cooperative Robotics Laboratory. Currently,
there is an ongoing project for releasing AgentTool III (aT3, http://macr.cis.
ksu.edu/projects/agentTool/agentool3.htm) to support the design of
MASs. aT3 will be released as an Eclipse plug-in, and will provide predictive perfor-
mance metrics to allow the designer to make intelligent tradeoffs. It will also generate
code for FIPA compliant frameworks. The support to MAS development provided by
AgentTool consists of a set of editors that allow the developer to define the high-level
system behavior in a graphical way: the types of agents as well as the possible com-
munications that may take place between agents may be defined via the editors. This
system-level specification is then refined for each type of agent in the system. Once
the system has been completely specified, skeletal Java code with empty methods is
produced. Once completed by hand by the developer, the Java agents may be run as
any Java application. No ad-hoc monitoring and debugging facilities are provided. A
good support to multi-language specification is provided by AgentTool: in fact, it al-
lows the MAS developer to describe its MAS in a graphical way, providing an interface
for specifying the goal hierarchy, use cases, sequence, role and agent diagrams. Agent-
Tool allows to use different graphical languages for different specification stages. How-
ever, the language in which the high-level specifications are translated into executable
code is only one: Java. As far as support to AOSE is concerned, AgentTool supports
the Multiagent Systems Engineering (MaSE) methodology [9] that consists of captur-
ing goals; refining roles; creating agent classes; constructing conversations; assembling
agent classes; designing the system.

The INGENIAS Development Kit (IDK). The INGENIAS Development Kit (IDK),
http://ingenias.sourceforge.net/, is a tool supporting MAS development
thanks to the availability of the INGENIAS Editor, the main development tool for IN-
GENIAS methodology. The editor is the replacement of Rational Rose or other UML
based tools for those researchers that work with software agents, and supports alpha
version of AUML protocol diagrams. As far as support to multi-language development
in INGENIAS Development Kit is concerned, the INGENIAS Editor includes several
code generation modules, among which the JADE protocol generator, that generates
JADE agents that implement protocols defined with INGENIAS diagrams, and the
Prolog generator, a basic, non complete, translation of INGENIAS elements to Pro-
log predicates. The support to AOSE in INGENIAS Development Kit is ensured by its
adherence to the INGENIAS MAS design methodology defined by [14]. INGENIAS
describes the elements that constitute a MAS, according to five viewpoints: organiza-
tion, agent, goals/tasks, interactions, and environment.

The Jack Platform. JACK [24] is an agent-oriented development environment cre-
ated by the Agent Oriented Software Pty Ltd, and conceived to be an environment
for creating, running and integrating commercial Java-based multi-agent software us-
ing a component-based approach. JACK supports MAS development by supplying a
lightweight implementation of the BDI architecture. Moreover, JACK provides the core
architecture and infrastructure for developing and running software agents in distributed

applications, and a JDE (JACK Development Environment) that offers a high-level
design tool, a graphical plan editor and graphical tracing of plan execution, that provide
a powerful and flexible program development environment. JACK does not support to
multi-language development: Java is the only language provided to implement both the
agents’ knowledge and their behaviour. MAS development in JACK does not follow a
principled AOSE methodology, although the BDI approach offers a way to verify and
validate the model of the application.

MadKit. MadKit [15] is a highly customisable, scalable, generic multi-agent distributed
platform for developing and executing distributed applications. MadKit supports MAS
development by providing a set of tools which are useful to the developer of multi-agent
applications, like the system agents, that are the main tools that a MadKit developer uses
to explore, launch, visualise and trace agents; the communicator, that is an agent which
allows to build distributed applications without being concerned about distribution; and
an editor and animator of diagrams that can be used to view and manipulate information
represented as graphs. A “graphic shell” launches the kernel and loads the interfaces for
the various agents managing them in a global GUI. MadKit provides a good support to
multi-language development. It is possible to program MadKit agents in several lan-
guages: Java, Python, Scheme (Kawa), BeanShell and JESS. Even if MadKit does
not follow any specific AOSE approach, one of the software tools it provides is SEdit
that stands for Structure Editor. This tool allows the design and animation of structured
diagrams containing nodes and arrows between them, and helps the MAS developer in
engineering the MAS in a correct way.

The Mozart Programming System. The Mozart Programming System [25] is an ad-
vanced development platform for intelligent, distributed applications. It implements Oz
3, the latest in the Oz family of multi-paradigm languages based on the concurrent
constraint model. By combining concurrent and distributed programming with logical
constraint-based inference, Oz is suitable for MAS development. The developer im-
plementing distribution must not be concerned with details regarding the underlying
network, that is open and fault-tolerant. Besides this, Oz is a multiparadigm high-level
programming language which supports declarative programming, object oriented pro-
gramming, constraint programming, and concurrency. Thus Mozart, being based upon
Oz, provides a true support to multi-language development. However, graphical tools
for modelling the MAS or for animating diagrams describing the architecture of the
MAS are not supported by the Mozart platform: no support to any SE methodology is
provided.

The ZEUS Platform. Zeus [21] is an open source agent development tool kit written in
Java and created as part of the Midas and Agentcities research projects at BT in the late
1990’s and early 2000’s. A version of Zeus is available under an open source license
from http://sourceforge.net/projects/zeusagent. As far as support
to MAS development is concerned, Zeus provides editors for entering the specifications
of all the artifacts needed for building a MAS. In particular, it provides an Ontology
Editor for specifying the ontology used by the agents in the MAS, and an Agent Edi-
tor for specifying agents and their tasks, social context, and social abilities. The Code
Generation Editor allows the developer to automatically generate code from the spec-
ifications entered by means of the Agent Editor. Visualiser and deployment tools use

user-friendly graphic interfaces that facilitate the MAS deployment. Multi-language
issues are not faced by Zeus: Zeus agents are programmed by entering their character-
izing features through the Agent Editor panel by means of forms that impose the usage
of a Zeus-dependent input language. The Java agent code can be automatically gener-
ated when all these features have been defined. No other output languages besides Java
are supported. Finally, as far as AOSE support is concerned, the approach that Zeus
suggests for building a MAS consists of five stages: ontology creation, agent creation,
utility agent configuration, task agent configuration, and agent implementation.

Comparison. By comparing DCaseLP with these six toolkits, we may observe that all
the seven systems provide a good support to the MAS development stage (AgentTool
provides a strong support to the analysis and design stages, but poor support to the de-
ployment and execution of the MAS, while the other tools cover all the development
phases). The support that DCaseLP offers to this stage is not an original contribution,
since it entirely relies on the support offered by the JADE platform, which is simi-
lar to that offered by the six systems we have analysed (apart from AgentTool). The
advantage of using JADE is that it is FIPA-compliant.

The multi-language development feature is very well supported by MadKit, and
fairly well supported by INGENIAS Development Kit. Instead, JACK, AgentTool,
and Zeus do not offer facilities for integrating agents written in languages different
from the their respective agent implementation language. Mozart allows the developer
to program agents using Oz 3, that offers multi-paradigm features. Obviously, devel-
oper must know Oz 3 for programming his/her MAS.

Finally, the toolkits that better face the engineering of the MAS are AgentTool and
INGENIAS Development Kit, both built for supporting an existing AOSE method-
ology (Mase and INGENIAS, respectively). MadKit allows the developer to define
diagrams that can be animated by integrating user-defined Java code, while JACK,
Mozart and Zeus offer some guidelines and tools, but no AOSE support at all.

6 Conclusions and future work

From the analysis of AgentTool, INGENIAS Development Kit, JACK, MadKit, Mozart,
and Zeus, we conclude that DCaseLP is comparable with these toolkits under most
respects. An advantage of DCaseLP is that it integrates a Prolog engine, which is not
supported by any of the other toolkits apart from INGENIAS Development Kit. How-
ever, while INGENIAS Development Kit provides the means for generating basic, non
complete Prolog predicates from INGENIAS elements, DCaseLP provides a seamless
integration of Prolog agents within the JADE platform. On the other hand, a feature
that is currently missing in DCaseLP is a unifying formal semantics of the agents
and the MAS, despite the language they are modelled or implemented in. In the end,
DCaseLP complements the related work by taking into account Logic Programming
languages, that is considered in a limited way only by one of the mentioned toolkits.
The advantages of exploiting Logic Programming for implementing intelligent software
agents have been depicted in the Introduction of this paper.

It is part of our future work to formally describe the meaning of protocol, architec-
ture and agent diagrams, and their relationships with the generated JESS code. We are
also working on the automatic translation of all of these diagrams into tuProlog (ad-
vances on the translation of protocol diagrams has been done as part of the “West2East”
project, http://www.disi.unige.it/person/MascardiV/Software/
WEST2EAST.html, but no translation of architecture and agent diagrams has been
performed yet), and on the definition of a translation program that takes as its input the
XMI representations of diagrams produced by Poseidon, instead of those produced by
ArgoUML.

Another direction of our research involves the integration of ontologies within DCa-
seLP, and the experimentation of its suitability as a tool for prototyping Service-
Oriented systems. This last activity is carried out within the “Iniziativa Software Fin-
meccanica” project, http://www.iniziativasoftware.it/. Finmeccanica is
the main Italian industrial group operating globally in the aerospace, defence and se-
curity sectors. The “Iniziativa Software”, set up in April, 2006, is a network of public-
private laboratories where researchers from both the academia and Finmeccanica, work
together for applying the results obtained from the academic partners, to the industrial
needs. We will exploit the results obtained in collaboration with Finmeccanica, for the
industrial project within the Sistemi Intelligenti Integrati Tecnologie (S.I.I.T.) society,
a non-profit consortium aimed at promoting the development of a technological district
in the Italian region of Liguria, in the field of integrated intelligent systems.

References

1. E. Appiani, M. Martelli, and V. Mascardi. A multi-agent approach to vehicle monitoring
in motorway. Technical report, Computer Science Department of Genova University, 2000.
DISI TR-00-13, Poster session of the Second European Workshop on Advanced Video-Based
Surveillance Systems, AVBS 2001.

2. F. L. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent Systems with JADE.
Wiley, 2007.

3. F. Bergenti and A. Poggi. Exploiting UML in the design of multi-agent systems. In
A. Omicini, R. Tolksdorf, and F. Zambonelli, editors, Engineering Societies in the Agents
World, pages 106–113. Springer-Verlag, 2000. LNCS 1972.

4. M. J. Carr, S. L. Konda, I. Monarch, F. C. Ulrich, and C. F. Walker. Taxonomy-based risk
identification. Technical report, Carnegie Mellon University, Pittsburgh, Pennsylvania, 1993.
CMU/SEI-93-TR-6 ESC-TR-93-183.

5. J. Collins and D. Ndumu. ZEUS methodology documentation, Part I: The role modelling
guide. Downloadable from http://more.btexact.com/projects/agents/
zeus/, 1999.

6. A. Cuppari, P. L. Guida, M. Martelli, V. Mascardi, and F. Zini. An Agent-Based Prototype
for Freight Trains Traffic Management. In P. G. Larsen, editor, Proceedings of the Fifth
FMERail Workshop. Held in conjunction with FM’99. Springer-Verlag, 1999.

7. M. Delato, A. Martelli, M. Martelli, V. Mascardi, and A. Verri. A multimedia, multichannel
and personalized news provider. In G. Ventre and R. Canonico, editors, Proceedings of the
First International Workshop on Multimedia Interactive Protocols and Systems, MIPS 2003,
pages 388–399. Springer-Verlag, 2003. LNCS 2899.

8. S. A. DeLoach and M. F. Wood. Developing multiagent systems with AgentTool. In
C. Castelfranchi and Y. Lespérance, editors, Agent Theories Architectures and Languages,
7th International Workshop, ATAL 2000, Proceedings, volume 1986 of LNCS, pages 46–60.
Springer, 2000.

9. S. A. DeLoach, M. F. Wood, and C. H. Sparkman. Multiagent systems engineering. Int. J.
of Software Engineering and Knowledge Engineering, 11(3):231–258, 2001.

10. E. Denti, A. Omicini, and A. Ricci. Multi-paradigm Java-Prolog integration in tuProlog. Sci.
Comput. Program., 57(2):217–250, 2005.

11. C. Forgy. Rete: A fast algorithm for the many patterns/many objects match problem. Artif.
Intell., 19(1):17–37, 1982.

12. Foundation for Intelligent Physical Agents. FIPA agent software integration specifica-
tion. Experimental, 15-08-2001. Downloadable from http://www.fipa.org/specs/
fipa00079/., 2001.

13. E. Friedman-Hill. Jess in Action : Java Rule-Based Systems (In Action series). Manning
Publications, 2002.

14. J. Gomez-Sanz and J. Pavon. Agent oriented software engineering with INGENIAS. In
V. Marı́k, J. P. Müller, and M. Pechoucek, editors, 3rd International Central and Eastern
European Conference on Multi-Agent Systems, CEEMAS 2003, Proceedings, volume 2691
of LNCS, pages 394–403. Springer, 2003.

15. O. Gutknecht and J. Ferber. MadKit: a generic multi-agent platform. In AGENTS ’00:
Proceedings of the fourth international conference on Autonomous agents, pages 78–79,
Barcelona, Spain, 2000. ACM Press. Home Page: http://www.madkit.org/.

16. B. Henderson-Sellers. Evaluating the feasibility of method engineering for the creation of
agent-oriented methodologies. In M. Pechoucek, P. Petta, and L. Zsolt Varga, editors, 4th
International Central and Eastern European Conference on Multi-Agent Systems, CEEMAS
2005, Proceedings, volume 3690 of LNCS, pages 142–152. Springer, 2005.

17. T. Juan, M. Martelli, V. Mascardi, and L. Sterling. Creating and reusing AOSE features.
http://www.cs.mu.oz.au/˜tlj/CreatingAOSEFeatures.pdf, 2003.

18. T. Juan, M. Martelli, V. Mascardi, and L. Sterling. Customizing AOSE methodologies by
reusing AOSE features. In J. S. Rosenschein, T. Sandholm, M. Wooldridge, and M. Yokoo,
editors, Proceedings of the Second International Conference on Autonomous Agents and
Multiagent Systems (AAMAS’03), pages 113–120. ACM Press, 2003.

19. P. Klemperer. Auctions: Theory and practice. Princeton University Press, 2004.
20. V. Mascardi, M. Martelli, and L. Sterling. Logic-based specification languages for intelligent

software agents. TPLP, 4(4):429–494, 2004.
21. H. S. Nwana, D. T. Ndumu, L. C. Lee, and J. C. Collis. ZEUS: A toolkit for building

distributed multiagent systems. Applied Artificial Intelligence, 13(1-2):129–185, 1999.
22. J. Odell, H. V. D. Parunak, and B. Bauer. Representing agent interaction protocols in UML.

In P. Ciancarini and M. Wooldridge, editors, Agent-Oriented Software Engineering - First
International Workshop, AOSE 2000, pages 121–140. Springer-Verlag, Limerick, Ireland,
2000. LNCS 1957.

23. D. Roggero, F. Patrone, and V. Mascardi. Designing and implementing electronic auctions
in a multiagent system environment. In Proceedings of the WOA 2005, Dagli Oggetti Agli
Agenti. 2005.

24. The JACK Home Page. The Agent Oriented Software Group, 2006. Home Page: http:
//www.agent-software.com/shared/home/index.html.

25. The Mozart Home Page. The Mozart Programming System. Last release: June 15, 2006.
Home Page: http://www.mozart-oz.org/.

26. W. Vickrey. Auction and bidding games. In Recent advances in Game Theory, pages 15–27.
Princeton University Conference, 1962.

