
A Step towards Fault Tolerance for Multi-Agent
Systems

Katia Potiron?†, Patrick Taillibert?, and Amal El Fallah Seghrouchni†

?Thales Systèmes Aéroportés
2 avenue Gay Lussac

78852 Elancourt – FRANCE
{katia.potiron,patrick.taillibert}@fr.thalesgroup.com

†LIP6
104 avenue du Président Kennedy

75016 Paris – FRANCE
{amal.elfallah}@lip6.fr

Abstract. Robustness, through fault tolerance, is a property often put
forward in order to advocate MAS. The question is: What is the first step
to be fault tolerant? Obviously the answer is: to know faults. The claim
of this paper is that existing fault classification suitable for distributed
systems does not fit completely MAS needs because of autonomy, the
main characteristic of their components. Actually autonomy is the very
distinctive concept of agents and has unquestionable worthwhile proper-
ties. But do these properties have no compensation?
After a short presentation of the fault classification which prevails in
fault tolerance community, the paper will show that autonomy induces
a need for significant extension to this classification. It will then make
a special review of this extension and present some expectations with
regard to the programing of fault tolerant MAS.

Key words: Fault tolerance, MAS design, autonomy

1 Introduction

Autonomy is one of the major characteristics of agents, and one issue of the MAS
domain has been to precisely define that concept. In this paper, we consider a
point that most definitions have in common: autonomy allows agents to take
their decisions on their own, see for example [dL96,Hex01,CF03].
Agents, taking their decisions on their own gain some independence with regard
to other agents. They can go on an dthus survive even if some other agent is not
available. This aspect of autonomy makes agents more robust.
But, as a consequence of this decision making, the behavior of an agent is not
completely foreseeable for the agents interacting with it. The question here can
be: How to interact with autonomous agents? Agents eventually have to make
some assumptions about the behavior of the other agents. But what is to be
done if an agent does not fulfill these expectations? In brief, agents taking their



decisions by themselves can, voluntarily or not, be responsible for faults which
other agents will experience.
From a software engineering point of view, autonomy can be perceived as the
fact that the agent designer does not know exactly the specifications and internal
laws of other agents or their internal state during their execution. Even if MAS
are distributed systems, this is the break point opposing their design.

Faults are a concern for MAS designers, especially because agents are inter-
acting with unpredictable agents. To deal with faults, the designer must have
some precise information on the faults MAS are subject to. But what is a fault?
Faults are generally defined as judged or hypothesized causes of an error. They
are not dangerous when handled properly because only errors have direct ef-
fect on the system. Nonetheless, since not all faults can be detected during the
system design and tests, their handling must be viewed as a natural feature of
computing systems. Some works on MAS were done into this direction.
For example, some research on exception handling for MAS [KD99,PSH06] deals
with exceptional situations. In this researches exceptions are detected as situa-
tions not suitable with the expectations of the agent. More practically they are
defined as the messages that materialize fault detection as it creates an error
[Lap85].
Another line of research in MAS is the replication of agents, a well-known fault
tolerance method which deals particularly with physical faults [FD02,GFB05].
”Prevention of harmful behaviors” [CFST06] which deals with the emergence of
harmful behaviors of agents and ”fault tolerant agents communication language”
which deals with crash failure detection [DG06] are other approaches.

Our final goal is to find a way to build MAS where fault tolerance is naturally
a property of agents and system (achievable without a specific effort of the
designer). To obtain such a good property, fault tolerance must be ”made for
MAS” and hence takes into account specificities of MAS, particularly autonomy
of agents. The fault classification presented in this paper is our first step as it
gives a first tool for designers to specify systems and agents. The paper will
be organized as follow. The first section presents fault classification issue and
method. The second section explains our contribution on classification of MAS
faults. A study of the usefulness of such a classification is presented in the next
section and the last section concludes our paper and presents our perspectives.

2 Conventional fault classification

The seminal work in fault classification is the work done by [Lap85,ALRL04,ACD+06]
that began in the early 80’s. Authors studied a wide group of faults to make their
classification, including faults like short-circuits in integrated circuit, program-
mer’s mistakes, electromagnetic perturbations or inappropriate man-machine in-
teractions.



Fig. 1. Attributes to describe faults and their values

In [ACD+06], faults are classified according to seven attributes1 (Phase of
creation or occurrence, system boundaries, dimension, phenomenological cause,
objective, capability, persistence). Each attribute has a set of exclusive values
(for example values related to the attribute phase of creation are: development
faults or operational faults), as shown on Fig.1.

A fault is described as a complete assignment of a single value to each at-
tribute. Doing so the seven attributes and their values give 192 possible combi-
nations. Not all these combinations were kept by the authors, because not all
combinations are relevant. Thus a fault cannot be malicious and accidental at
the same time. The 25 faults remaining, that are named DSFaults (Distributed
Systems Faults) in this paper, are illustrated in the fault classification tree pre-
sented on Fig.2.

After this formalization of faults classification, some illustrative examples are
given on the boxes at the bottom of Fig.3. The faults are also shown to belong
to three major non-exclusive groups representing some practical points of view
(two first lines of Fig.3) and described as follow:

1 In [ALRL04], there were eight attributes as capability was separated into: 1) intent
with deliberate and non-deliberate faults as values and 2) capability with accidental
and incompetence faults as values. But the intent viewpoint appeared redundant.



Fig. 2. Fault classes combinations

– Development faults: faults occurring during development.
– Physical faults: faults affecting hardware.
– Interaction faults: external faults.

Fig. 3. Groups of fault examples

The knowledge of all possible fault classes allows the system designer to de-
cide, during the system specifications, which fault classes should most be taken
into consideration.

The next section will investigate this fault classification using a MAS point
of view. As matter of fact, the fault classification presented here is in particu-
lar suitable for distributed systems (which MAS are) but, as explained in the
introduction, MAS have some specificities (in particular the autonomy), which
motivate further investigations on the fault classification. Our goal is to empha-
size the pertinent faults for MAS (belonging to Fig.2) and to demonstrate that
new specific faults are needed for MAS. This is the purpose of the next section.



3 MAS faults classification

MAS are separated components interacting each other to achieve some goal as
in the case of distributed systems. What introduce the following findings:

– Since they are made of programs, MAS are vulnerable to all faults grouped
as development faults;

– Since they are distributed programs, MAS are vulnerable to all faults grouped
as physical faults;

– Since they are composed of interacting programs, MAS are vulnerable to all
faults grouped as interaction faults.

The classification tree presented (Fig.2) is entirely relevant for MAS.

But, since MAS are composed of autonomous components we argue that an
extension to the DSFaults classification is necessary. For doing so, a new value
is given to the first attribute of the DSFaults classification. Specific faults of
MAS are investigated and classified from the agents point of view and from an
”external to the MAS” point of view.

3.1 A new value for the first attribute ”phase of creation or
occurrence”

The autonomy of the agents is the most salient difference between MAS and
classical distributed systems. It is perceived by agents as the impossibility to
predict the behavior of other agents. This unpredictability is the point studied
here as possible fault source.
When considering these faults for the first time, we tried to classify them with
one of the two existing values of the first classification attribute ”the phase of cre-
ation or occurrence”2. These attributes presented into (Fig.1) are ”Development
faults” what means faults occurring during system development (they occur be-
fore the execution of the considered ”program”) and ”Operational faults” what
means faults occurring during service delivery of the use phase (they occur when
executing the considered system interacting with programs or human beings).
But the result was not what we expected:

1. These faults can not be considered as development faults because autonomy
is a natural feature of agents.

2. These faults can not be considered as operational faults because they do not
occur because of service delivery but because agents have an autonomous
behavior what is not related.

This makes us consider autonomy as a new value of the attribute ”phase of
creation or occurrence” as shown in Fig.4. Autonomy value will represent faults
occurring during the ”autonomous behavior” of an agent. When employing: ”au-
tonomous behavior” we mean all actions that autonomy allows to the agents, as
for example:
2 Phase of creation or occurrence is related to the moment when the fault is made.



– Not to respond to a request (”the power to say no”) or respond negatively
whether or not it is include into the interaction protocol.

– To make a fault in order to incapacitate another agent.
– Not doing what was promised.

Concerning the three non-exclusive fault groups (development faults, physical
faults or interaction faults) presented on Fig.3, faults which first attribute is
valued as ”autonomy” cannot be considered as belonging exclusively to anyone.
We named these faults: Behavioral faults and consider it as a fourth non-exclusive
group of faults presented in Fig.8.

Fig. 4. Autonomy as a value of the attribute ”phase of creation or occurrence”

The introduction of a new value for an attribute creates 96 new possible
combinations among which the following analysis shows that 12 correspond to
relevant new fault classes. We will present these new fault classes using two
different points of view: agent centered (section 3.2) and ”external to the MAS”
centered (section 3.3).

3.2 Agent centered analysis

The frame of the study from the point of view of the agent is defined as follows:

– System: agent (named B on next examples)
– Environment: other agents or a human user (we have intentionally excluded

the environment in the MAS sense)
– System boundaries: communication means of the agents
– User: other agents or a human user

A behavioral fault, on an agent-centered point of view, is equivalent to the
”freedom” that autonomy gives to other agents and their unpredictability. This
implies that the considered act is a fault only for the agent in interaction with
the agent having an autonomous behavior not for the second agent. We give six
examples to illustrate some corresponding situations.



1. An agent A from time to time voluntarily commits a fault to interfere with
an agent B. For example sending a wrong message because it have chosen
not to follow a correct interaction protocol (if the protocol was not correct
it would be an operational fault).

2. Same as example 1, but permanent.
3. An agent A evaluates that it has no time to respond and so agent B does

not receive any answer (duration of faults is time bounded and link to the
agent a context).

4. Same as example 3, but not bounded in time.
5. Physical attacks between agents like temporary spam.
6. Same as example 5 but permanent.

For these faults, the values of the attributes are:

– Phase of creation or occurrence: Autonomy.
– System boundaries: External ; because its source is in the other agent (an

”internal to the agent” fault would be a development fault).
– Dimension: Software; autonomy comes from the agent implementation (ex-

amples 1 to 4) or Hardware, autonomy cannot come from hardware but
can influence it (examples 5 and 6).

– Phenomenological cause: Natural ; autonomy does not allow a human be-
ing to dictate its behavior to the agent.

– Objective: Non-malicious (examples 3 and 4) or Malicious (examples 1, 2,
5 and 6).

– Capability: Deliberate fault; results from the decision of an agent.
– Persistence: Transient ; if the decision context is bounded in time (exam-

ples 1, 3 and 5) or Permanent (examples 2, 4 and 6).

This classification is represented by the tree of fault classes number 32 to 37 on
Fig.5, for a more global view see Fig.7.

Fig. 5. External behavioral faults



3.3 System centered analysis

The frame of the study from an external point of view is defined as follows:

– System: MAS.
– Environment: other MAS or a human user.
– System boundaries: MAS interface.
– User: other agents, MAS or a human user.

A behavioral fault in the ”external MAS”-centered point of view is compa-
rable to the incompetence to handle the autonomy of other agents. This refers
to how an agent can handle the autonomous behavior of the agents it is in in-
teraction with. Faults are observable for an ”external MAS” point of view only
if an agent is incompetent to handle some autonomous behavior. We give six
examples to illustrate some corresponding situations.

1. An agent overloads the network creating temporary problems considering
messages transmission time.

2. Same as example 1 but not bounded in time.
3. An agent is incompetent to realize its goal because of another agent reaction

(request refusal) and temporarily has no other way to realize his goal.
4. Same as example 3 but permanent.
5. An agent creates voluntarily a temporary fault to prevent another agent

from accomplishing his goal.
6. Same as example 5 but permanent.

For these faults the values of the attributes are:

– Phase of creation or occurrence: Autonomy.
– System boundaries: Internal ; because its source is into the MAS.
– Dimension: Software; autonomy comes from the agent implementation (ex-

amples 3 to 6),or Hardware, autonomy cannot come from hardware but
can influence it (examples 1 and 2).

– Phenomenological cause: Natural ; autonomy does not allow a human be-
ing to dictate his behavior to the agent.

– Objective: Non-malicious (examples 3 and 4) or Malicious (examples 1, 2,
5 and 6).

– Capability: Incompetence fault; results of an agent incompetence to adapt
itself to the non-expectable behavior of the other agents or to changes
in the environment.

– Persistence: Transient ; if the decision context is bounded in time (exam-
ples 1, 3 and 5), or Permanent (examples 2, 4 and 6).

This classification is represented by the tree of fault classes number 26 to 31 on
Fig.6, for a more global view see Fig.7.



Fig. 6. Internal behavioral faults

3.4 Faults review

To begin a review of new faults introduced, named AAFaults (Autonomous
Agent Faults) in this paper, Fig.7 shows the new fault classification tree.
As shown at the bottom of Fig.5 and Fig.6 (and summarized on last line of
Fig.8), some faults can be gathered into fault classes examples. Malicious soft-
ware fault group is named intentional fault group, as they are faults committed
intentionally by agents. External non-malicious deliberate fault group is named
answer mistake, as they are faults committed without bad intention. Internal
non-malicious incompetence fault group is named incompetence fault group as
this faults result from the agent incompetence in front of other agents autonomy.
Hardware fault group is named physical interference as they are close to this ex-
ample class. Moreover some behavioral faults can be classified as development,

Fig. 7. New fault classes combinations



physical or interaction faults like shown on Fig.8.
Faults 26 to 31 are development faults as these faults come from agents or system
incompetence to handle autonomous behavior of agents. They can create some
service outage and can force system in a degraded mode or it can, at worst, stop
its execution.
Faults 32 to 37 are interaction faults because these all are external to the consid-
ered system. They can create some local service failure (not always observable
from an external point of view).
Some of these faults can also be viewed as physical faults (faults 26, 27, 36 and
37) because of their influence on hardware.

Fig. 8. Behavioral faults example classes

4 Validity of our approach

4.1 Faults comparison

In order to analyze the relevance of the behavioral faults (named AAFaults) we
propose, we made a comparison to evaluate their similarity with regard to the
pre-existing DSFaults. To do this, we compute a similarity measurement repre-
senting the number of common values of the attributes describing two faults,
and defined as:

Similarityab =
∑

ij δij

With i (resp. j) in the set of values describing fault a (resp. b) and δij the
Kronecker symbol 3.

For example, the similarity measurement of faults 20 and 32 is shown on
Fig.9. Fault 20 is described as: ”Operational, External, Software, Human-made,
Malicious, Deliberate, Temporary”, and fault 32 is described as: ”Autonomy,
External, Software, Natural, Malicious, Deliberate, Temporary”, their similarity
score is equal to 5. The biggest possible similarity score is six since the first at-
tribute (”phase of creation or occurence”) always have a different value between
DSFaults and AAFaults. Results are presented on Tab.1, lines are AAFaults,
3 δij = 0 if i 6= j; δij = 1 if i = j



Fig. 9. Comparison of fault 32 to DSFaults

columns are similarity scores and the values are the DSFaults having with
AAFault the corresponding similarity score.

AAFaults/Similarity 3 4 5

26 5, 8, 9, 13, 17, 19 11
27 3, 4, 6, 7, 12, 16, 18 5, 8, 9, 10
28 8, 9, 13, 17, 22, 23 3, 11, 25
29 4, 6, 7, 12, 16 10, 9, 8, 1, 2, 24 3
30 3, 4, 11, 20, 25
31 1, 2, 5, 8, 9, 10, 21, 24 3, 4
32 4, 13, 15, 18, 22, 25 19, 21, 23 20
33 2, 5, 12, 19, 23, 24 4, 18, 20 21
34 2, 11, 12, 14, 17, 19, 21, 24 13, 15, 22, 25 23
35 1, 3, 4, 7, 9, 10, 13, 18, 22, 25 2, 12, 16, 21, 23, 24
36 5, 11, 12, 14, 17, 21, 23 13, 15, 20 19
37 4, 7, 9, 10, 13, 15, 16, 20 5, 12, 21 18

Table 1. Faults comparison

General review: Tab.1 shows that some DSFaults are very similar to AAFaults.
But the first observation is that there are no similarity score better than 5. This
tends to confirm the necessity of introducing AAFaults as they are not redun-
dant what would have been the conclusion if a similarity score was 6.
Another observation that can be done is that fault number 3 (a development
fault) is most present as similar fault. It is not possible to make some conclu-
sions right now but some questions can be raised. Did this means that autonomy
is, in term of software development, near to the capability to violate specifica-
tions, what is the characteristic of fault 3? Did the fact this fault is viewed four
times implies that MAS are more subject to some kind of faults than classical
distributed systems?



As different fault classes can lead to very similar errors, comparison of faults
is a good mean to improve MAS fault tolerance. If behavioral faults can be
considered similar to other faults in the given classification, we can think that
being tolerant to these faults gives some tolerance to the other faults.

4.2 Analysis of the difference between DSFaults and AAFaults

The similarity score study we made underlines some similarities between DS-
Faults and AAFaults but also some differences that are now explained.

On natural faults: All faults introduced by our study are natural faults since
autonomy is a natural component of the agents. Difference is that, for natural
faults in DSFaults, phenomenological cause being natural does imply only non-
malicious and physical faults. Some explanation comes when taking into account
the fact that agents are programs allowed to be malicious; they can act not only
at physical level but also at interaction level. The consideration we made on
autonomy would tend to unify humans-made faults and faults made by agents.

On malicious faults: Malicious faults are now not anymore human-made. Au-
tonomy and, more generally agents, introduces into the MAS entities that have
some specificities usually belonging to humans (autonomy and independence).
Particularly in open MAS, agents are not always cooperative, they are able to
decide to make malicious actions towards other agents.

One interesting point to emphasize here is behavioral faults prevention. A
simple way to prevent all non-malicious behavioral faults is to send a preventing
message. For example if an agent has too many messages to consider, it can
send (without reading the messages to save some time) a cancel message or if
it cannot deliver a result in time, ask for a delay. Prevention messages does
not increase the number of messages exchanged since they are only used for
exceptional situations and since if they did not exist it would be required some
fault handling mechanism. However this is not well suitable to malicious faults,
because the prevention can be useless if a fault is made with a malicious objective.

On interaction faults: Half of AAFaults faults are interaction faults. These be-
havioral faults are really close to DSFaults interaction faults; one outstanding
point is that they differ according to their classification as natural (Fig.7). The
closeness of DSFaults and AAFaults drives us towards the conclusion that, at
least for interaction faults, some DSFault tolerance methods can be used, or
adapted to MAS in order to handle groups of interaction faults belonging to
DSFaults and AAFaults. These adapted methods could be able to handle inter-
action faults due to autonomy as well as those due to operational context.

All these observations lead to the consideration that faults related to agent
autonomy can be treated partly as human interaction faults and partly as de-
velopment or physical faults because their effects will be very similar.



Conclusion We have seen first that the autonomy of the agents is source of
faults. But theoretically, with fault comparison and connection it seems possible
to consider that if agents are tolerant to behavioral faults they can be tolerant
to some other faults, particularly development and interaction faults making it
possible to factorize the processing necessary to tolerate these faults. It seems
that, contrary to what would be expected, fault tolerance methods used for dis-
tributed systems cannot guaranty the handling of behavioral faults because of
the fundamental difference of assumptions made by interacting with autonomous
agents. But some practical tests must be done to confirm these expectations.

Since the aim of this paper is to study fault tolerance suitable for MAS we
will next present some perspectives based on the classification and factorization
of faults we introduced.

5 Prospect about building fault tolerant MAS

As we said before our final goal is a fault tolerant method adapted to agents. A
first direct use of the classification is to determine what faults must be handled
by agents to be able to interact with autonomous agents in a dependable way.
Designing MAS with autonomous agents does not allow to ignore these faults.
A first step for a MAS designer would be to choose which faults the system (all
the MAS including the agents and the platform) must be tolerant to. Especially
a significant piece of work must be done on defining which faults must be handle
by the platform or by the agents. The classification will then facilitate MAS
specifications. Folliwing are some examples of specification of faults depending
on MAS specificities:

– The platform would have to deal with all physical faults 5 to 19 plus 26, 27, 36
and 37 (because aware of hardware problems). But agents will have to handle
the interaction faults not contained into physical faults as 20 to 25 plus 28
to 35. And development faults must be handled at their corresponding level
(development faults occurring respectively into the platform/agent handled
by the platform/agent level).

– In a closed MAS, if there are no malicious agents there are no reason that
faults 26, 27, 30 to 33, 36 and 37 occur.

– For some other MAS it will not be considered that agents can commit phys-
ical faults. So faults 26, 27, 36 and 37 have no reason to be taken into
consideration by agent designer.

We will consider next the issue of diagnosing faults. Effectively, as other pro-
grams, MAS would have to make some assumptions on faults they face because
of the difficulty to diagnose exactly the faults.

Classification of the handlers : In the domain of fault handling, diagnosis is
the first step to be able to choose the fault corresponding handler. For practical
purpose, general classification methods exist. Some are particularly based on



temporal duration of faults [LS90] and evaluate faults as permanent, intermittent
or transient to evaluate appropriate handler.
Principal existing methods for fault diagnosis are:

– Bayesian classification [LS90] and other classification techniques as k-nearest
neighbor or neural networks are, for example, discussed in [CCT04].

– Comparison between an expected behavior, with some methods for detecting
deviations from those expectations and faculties for diagnose these deviations
[HLV+00].

– Social monitoring comparing own state (beliefs, goals, behavior) with socially
similar peers’ state [KT98].

– Model based diagnosis applied to software debugging [FFJS04].

After fault diagnosis an agent or a sentinel [Häg96,KD99] would have to choose
some handlers to manage exceptions. This could be a way of using this classifi-
cation. It would be possible to classify handlers with the same value and same
attributes as the faults they can handle. Making so, the choice of the handler
can be done by matching diagnosed properties of a fault and classification of the
handlers.

Illustration of our expectations: the ReSend protocol. ReSend protocol is a proto-
col presented in [PTFS07]. It was designed for agents to handle some interaction
faults based on the argument that a retry method can be used in a cooperative
way. The agent can obtain by this way some information useful at its knowledge
level, presumptions also made by [DG06]. When an agent thinks that it should
have received a response to a message it sent before, it can send another message
encapsulating the previous message to explain the issue to the other agent. The
message encapsulation makes this method different from a retry.
We classified this protocol with regard to the values of the attributes of the faults
it can handle. These faults are4: external, time bounded and non-malicious as
faults: 13, 14, 15, 17, 22, 23, 25, 28 and 34.
But in the case of behavioral faults this protocol can be viewed as a method to
point out the necessity of the previous message to have a response. So it can
also be useful with some malicious behavioral faults since they can change agent
decision like for 32 and 36.

6 Conclusion

After a summary of the existing fault classification which prevails in fault toler-
ance community, this paper has shown that autonomy induces a need of signifi-
cant extension to this classification. To do so, it studied one of the consequence
of autonomy, the most salient property of agents, that the behavior of an agent is
not completely foreseeable for the other interacting agents. It implies that agents

4 Since some attributes does not look discriminating as ”phenomenological cause” we
did not enumerate them.



taking their decisions by themselves can, voluntarily or not, be responsible for
faults which other agents will experience.
Then the paper has pointed out the pertinent faults and demonstrated which
specific faults were possible for MAS. Autonomy was added as a value of ”phase
of creation” attribute, representing faults occurring during an autonomous be-
havior. We defined a new group of faults named Behavioral faults. It has also
made a special review of these 12 faults and presented some expectations since
the fault classification presented in this paper is a first tool for designers to spec-
ify systems.
Finally this paper pointed out the use of the classification to determine what
faults must be handled by agents to be able to interact with autonomous agents
in a dependable way.

We would conclude citing [ALRL04]: ”More combinations may be identified
in the future”.

References

[ACD+06] Jean Arlat, Yves Crouzet, Yves Deswarte, Jean-Charles Fabre, Jean-
Claude Laprie, and David Powell. Tolérance aux fautes. In I.Comyn-
Wattiau J.Akoka, editor, Encyclopédie de l’Informatique et des Systèmes
d’Information, pages 241–270. Vuibert, 2006.

[ALRL04] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr.
Basic concepts and taxonomy of dependable and secure computing. In IEEE
computer society, editor, IEEE Transactions on dependable and secure com-
puting, pages 11–33, 2004.

[CCT04] M.Y. Cheng, S.C. Cheung, and T.H. Tse. Towards the application of clas-
sification techniques to test and identify faults in multimedia systems. In
Proceedings of the 4th International Conference on Quality Software (QSIC
2004), pages 32–40. IEEE Computer Society Press, 2004.

[CF03] Cristiano Castelfranchi and Rino Falcone. From automaticity to autonomy:
the frontier of artificial agents. In Kluwer Academic, editor, Agent Auton-
omy, pages 103–136. Hexmoore H., Castelfranchi C., Falcone R, 2003.

[CFST06] Caroline Chopinaud, Amal El Fallah-Seghrouchni, and Patrick Taillibert.
Prevention of harmful behaviors within cognitive and autonomous agents.
In European Conference on Artificial Intelligence, pages 205–209, 2006.

[DG06] Nicola Dragoni and Mauro Gaspari. Crash failure detection in asynchronous
agent communication languages. Autonomous Agents and Multi-Agent Sys-
tems, 13(3):355–390, November 2006.

[dL96] Mark d’Inverno and Michael Luck. Understanding autonomous interaction.
In W. Wahlster, editor, 12th European Conference on Artificial Intelligence,
pages 529–533. John Wiley and Sons, 1996.

[FD02] Alan Fedoruk and Ralph Deters. Improving fault-tolerance by replicating
agents. In Proceedings of the first international joint conference on Au-
tonomous agents and multiagent systems: part 2, pages 737–744, Bologna,
Italy, 2002. ACM Press.

[FFJS04] Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, and Markus
Stumptner. Consistency-based diagnosis of configuration knowledge bases.
In Artificial Intelligence, pages 213–234, 2004.



[GFB05] Zahia Guessoum, Nora Faci, and Jean-Pierre Briot. Adaptive replication of
large-scale multi-agent systems: towards a fault-tolerant multi-agent plat-
form. In Proceedings of the fourth international workshop on Software engi-
neering for large-scale multi-agent systems, pages 1–6, St. Louis, Missouri,
2005. ACM Press.

[Hex01] Henry Hexmoor. Stages of autonomy determination. In IEEE computer
society, editor, IEEE Transactions on Systems, Man, and Cybernetics, pages
509–517, 2001.

[Häg96] Staffan Hägg. A sentinel approach to fault handling in multi-agent systems.
In Second Australian Workshop on Distributed AI in conjunction with the
Fourth Pacific Rim International Conference on Artificial Intelligence, pages
181–195, 1996.

[HLV+00] Brian Horling, Victor Lesser, Régis Vincent, Ana Bazan, and Ping Xuan.
Diagnosis as an integral part of multi-agent adaptability. In DARPA Infor-
mation Survivability Conference and Exposition, volume 2, pages 211–219,
2000.

[KD99] Mark Klein and Chrysanthos Dellarocas. Exception handling in agent sys-
tems. In Oren Etzioni, Jörg P. Müller, and Jeffrey M. Bradshaw, editors,
Proceedings of the Third International Conference on Autonomous Agents
(Agents’99), pages 62–68, Seattle, WA, USA, 1999. ACM Press.

[KT98] Gal A. Kaminka and Milind Tambe. What is wrong with us? improving
robustness through social diagnosis. In fifteenth national/tenth conference on
Artificial intelligence/Innovative applications of artificial intelligence, pages
97–104. American Association for Artificial Intelligence, 1998.

[Lap85] Jean-Claude Laprie. Dependable computing and fault tolerance: Concepts
and terminology. In 15th IEEE Symposium on Fault-Tolerant Computing
(FTCS-15), pages 2–11. Vuibert, 1985.

[LS90] Tein-Hsiang Lin and Kang G. Shin. A bayesian approach to fault classi-
fication. In ACM SIGMETRICS Performance Evaluation Review archive
Volume 18 , Issue 1, pages 58–66. ACM Press, 1990.

[PSH06] Eric Platon, Nicolas Sabouret, and Shinichi Honiden. A definition of excep-
tions in agent-oriented computing. In Gregory O’Hare, Michael O’Grady,
Oguz Dikenelli, and Alessandro Ricci, editors, Engineering Societies in the
Agent World’06, 2006.

[PTFS07] Katia Potiron, Patrick Taillibert, and Amal El Fallah-Seghrouchni. Gestion
des exceptions dans les conversations entre agents autonomes. In JFSMA’07
(to appear), 2007.


