
Measuring Complexity of Multi-Agent
Simulations – An Attempt Using Metrics

Franziska Klügl

Department for Artificial Intelligence,
University of Würzburg

Am Hubland, 97074 Würzburg

kluegl@informatik.uni-wuerzburg.de

Abstract The variety of existing agent-based simulations is overwhelm-
ing. However – especially when comparing agent-based simulation to
other simulation paradigms, a reference frame is missing that allows char-
acterizing shortly and discriminating between simulation models. In this
contribution, I address this problem by introducing metrics for measuring
properties of agent-based simulations for finally being able to character-
ize the complexities involved in developing such a model.

1 Introduction

Multi-agent simulation forms an innovative modeling and simulation paradigm
that possesses a great potential for developing models to on a level of detail and
in application areas, where it was not possible neither to formulate nor to handle
models before. Due to the intuitive structure of a model based on the analogy
between agents and the active elements in the original system, modeling and
simulation may become a research and analysis method for domain experts that
ignored such approaches before.

However, there are several drawbacks that hinder people from constructing
and experimenting with valid and useful multi-agent models [Klügl et al., 2004].
Most of these drawbacks are consequences of the flexible design and possibly
high level of detail which is resulting in formal and conceptual arbitrariness.
Meanwhile, there is an uncountable set of existing agent-based models which can
not be compared directly. Even re-implementation attempts often fail because
the documentation of the models is incomplete, although the particular dynamics
are depending on modeling decisions on a detailed level.

The actual complexity of a model is hidden which hinders systematic utilizing
agent-based simulations. In this paper, we will tackle one approach for charac-
terizing complexity of an agent-based simulation residing in the environmental
characteristics, the agent structure and dynamics and the overall organization
and interaction design. Instead of discussing the sources for complexity on a
coarse level, we will define metrics that can be used for measuring different as-
pects of agent-based models. The aim of our attempt for defining metrics is



basically to analyze and compare aspects of complexity of agent-based simula-
tion. At this point of research, we are not addressing issues like classical software
metrics, like deriving production cost etc.

In the remainder of the paper we will characterize agent-based simulation
in general, followed by a short introduction to software and especially the state
of art in agent software metrics. Before section 5 gives a list of suggestions for
metrics of agent-based simulation models, we shortly introduce examples that
we will use for their illustration. After a list of example computations, a short
conclusion is given.

2 Agent-based Simulation

Agent-based simulation applies the concept of multi-agent systems to the ba-
sic structure of simulation models. Active components are identified as agents
and programmed using agent-related concepts and technologies. An agent-based
model consists of simulated agents that “live” in a simulated environment in vir-
tual time. The environment may play an important role as it frames the agent
behaviors and interactions. The individual environment of an agent may consist
of other agents, but also may be enriched with resources or objects without agent
characteristics related to flexible, autonomous behavior [Klügl, 2001].

Agent-based simulation forms a very attractive paradigm for several sim-
ulation application domains. The most obvious is the simulation of emergent
phenomena in social science, traffic, biology, etc. Emergent phenomena are “un-
foreseen” patterns or global behaviors [Holland, 2000] which are not derivable
from properties of its constituents.

Agent-based simulations allow the observation of model dynamics on at least
two levels: the agent level and the global level. Locality of interaction can be
based on explicit representation of space or on abstract non-spatial relationships.

The potential of agent-based simulation is not only restricted to emergent
phenomena or self-organization studies. It also forms a elegant basic paradigm
for variable structure models [Uhrmacher, 1996]. Additionally, systems that are
quite successfully treated using traditional methods can be modeled using agent-
based simulation in a more precise and detailed way. A good example is the
influence of human workers onto production throughput, especially integrating
“intelligent” strategies to cope with non-standard situations.

Due to its attractiveness, the number of available and published agent-based
simulation became uncountable. Thus, a kind of language is needed for charac-
terizing the models and their respective complexity in a concise way.

3 Metrics for Agent-based Software

3.1 Metrics in General Software Engineering

The idea of measuring general properties of software has been attracting re-
searcher for many years. Software metrics hereby can be seen as the mapping



from a piece of software to the domain of numbers. Such functions characterize
certain properties concerning size, complexity, cost, design, etc.

The mostly known metric in software engineering, and basically the one that
is generally used, is the Lines Of Code (LOC) metric that forms the basis for
different heuristics about duration of implementation/modifications, cost, over-
all error probabilities, etc. A description of such conventional metrics can be
found in [Conde et al., 1986] or [Thaller, 2000]. They also give a introduction to
the Halstead metrics that are based on operator and operand numbers for pre-
dicting program volume and effort. However, their expressiveness is discussed
controversially.

Also in the simulation area, early attempts for defining metrics for simulation
models have been tried. J.C. Wallace [Wallace, 1987] e.g. suggests a “Control
and Transformation Metric” that basically consists of counting input/output
variables per node combined with the number of nodes in a graphical represen-
tation.

As multi-agent systems are often implemented using/based on object-oriented
programming languages, metrics for those languages may be useful also in the
agent context. However, as expected, structural metrics like weighted methods
per class, depth of inheritance tree or coupling between object classes etc., like
suggested in [Chidamber and Kemerer, 1994]. These and metrics that focus on
the coupling between classes ([Briand et al., 1997]) seem to be too low-level for
being meaningful for agent-based software, as well as for agent-based simulation
models.

3.2 Metrics in Agent-based Software Engineering

From sources of complexity in agent-based system design, like discussed in
[Wooldridge, 2002], only a small step seems to be necessary to suggestions of
measuring complexity. Indeed, there are several suggestions. The work of Wille
and Dumke and co-workers ([Wille et al., 2004], [Dumke et al., 2000]) seems
to be the most extensive; however they only give a long list of informal metric
suggestion without detailing the way for computing them. [Far and Wanyama,
2003] introduce metrics for measuring agent complexity in order to facilitate sys-
tem decomposition based on a survey of sources of complexity for agent-based
systems. Gómez-Sanz et al. [Gómes-Sanz et al., 2006] focus on cost estimation.
They identify different descriptive variables, e.g. number of rules or number of
state machines for characterizing behavior or number of mental entities or num-
ber of goals for describing the informational complexity of the agents. They also
relate these variables to the LOC metric based on data from three EU projects.
The systems are also treated using metrics for early development phases. Metrics
are actually applied resulting in figures that are also related to actual costs.

Particular metrics for measuring performance of organizational design were
suggested in [Robby et al., 2006]. Another example for the use of specific metrics
in agent-based system engineering is [Woodside, 2001] that evaluates scalability
of systems of mobile agents.



However, agent-based simulation models can not be treated like most other
agent software at least for two reasons: the first is the relevance of the simulated
environment [Klügl et al., 2005], the second is determined by the relation with
a reference or original system that has to be guaranteed. Thus, simplicity of a
model is essential as a minimal set of assumptions is a prerequisite for feasi-
ble validation. The ability for comparing model complexity is thus central for
evaluating model design.

4 Example Application

Before presenting our suggestions for metrics, we shortly give information about
models that we will use as examples for illustration throughout the metric in-
troduction and later to test the metrics.

Our first example is the Sugarscape model [Epstein and Axtell, 1996]. Agents
move over the discrete Sugarscape map, locally searching and harvesting sugar.
Sugar is a renewable resource carried by every cell characterized by a maximum
capacity. Only the current sugar stock is perceivable by the agents within some
individual range. The cells are arranged so that two sugar hills exist. Agents
possess a sugar-consuming metabolism and personal sugar storage. They always
move to the next perceivable cell with maximum sugar stock that is not yet
occupied. Agents may starve or die of some age limit and produce offsprings.
This is the model that is described in the first chapters of the Epstein & Axtell
book. In later chapters, this model is enhanced by a second resource, named
spice, for modeling trade and other social phenomena. We will only deal with
the basic versions of the model. To show how small details affect the metrics
we compare two slightly different stages of the Sugarscape model: a first one
without maximum age and reproduction, the second with maximum age and
sexual reproduction.

The second example we are using for illustration, is the Tribute model of
R. Axelrod [Axelrod, 1995]. Activated agents evaluate the vulnerability of direct
neighbors or neighbors of committed agents for deciding whether to demand
tribute or not. The addressed agent evaluates the costs of fighting and decides
for paying tribute or fighting. These actions have effect on the wealth of the
agent and on their commitment to each other, later influencing their decision
making. A central environment distributes a small value of wealth as a basic
income after three activations.

These two models can be seen as basic prototypes for agent-based simula-
tions. The Sugarscape model resembles a very simple land-use-type model where
agents interact with their local environment in the first instance and only sec-
ondly with other agents depending on the resources they have acquired form their
environment. Interaction is mainly mediated by the environment. The Tribute
model can be seen as a representative for a second kind of models that focus on
interaction-induces structures. Locality is modeled based on agent-agent rela-
tions resulting in network-type structures. Interactions between agents produce



some legacy in the mental structures of the agents that again influences future
interactions.

The third example we use for demonstrating is the SBBpedes model. It was
developed for a large simulation study of the pedestrian behavior in the SBB
railway station Bern [Klügl and Rindsfüser, 2007]. It is particular as the agent be-
havior has integrated also simple planning activities beyond pure locomotion as
in most other pedestrian simulations. In contrast to the two previously sketched
models, it is a model used in a successful real-world application. Agents deter-
mine their final destination as far as possible (e.g. they cannot select the door of
the train they will board when the train did not yet arrive at the platform) and
then construct a coarse plan on the area-level (which stairway to take ...). This
plan is executed using some standard collision-free locomotion model. Depend-
ing on the current situation, a simulated pedestrian adapts its individual coarse
plan or uses intermediate destinations on a lower level for bypassing obstacles,
etc. The simulation reproduced the real situation during the most busiest morn-
ing hours with about 80 trains on 12 platforms and all together about 45000
boarding, alighting and transferring travelers. It was used for evaluating layout
alternatives and a planned change in train schedule and platform assignment.

5 Suggestions for Metrics

Even this small list of three possible agent-based simulation models shows that
there are a variety of dimensions for characterizing them – starting from en-
vironmental structures, to organizational forms, agent architectures, but also
in more technical terms of agent interaction, communication language... Thus,
the question arises, whether considerations about detailed characterizing, but
informal descriptions may help for characterizing the complexity involved in the
design and implementation of such an agent-based simulation. Metrics have the
advantage of being objective and exact – if they are appropriate for capturing
the intended properties. Model metrics – in analogy to software metrics – can
be seen as functions that map the model to a numeric value that characterizes
some property of the model.

What does complexity of an agent-based model in relation to a user (modeler,
stake-holder, domain expert, etc.) mean? Basically it consists of understandabil-
ity for the human and is connected with the predictability of the model dynamics
and output. Understandability means clarity of structures and relations. It is also
influenced by size and heterogeneity of the individual agents as well as of the
overall system. Predictability refers to the effort and skills of the modeler needed
for traceability of behavior and interactions.

5.1 Automatically Computable Metrics

Based on these thoughts, we can identify the following metrics. We may distin-
guish between overall system-level metrics (including metrics for measuring the



complexity of the environment) that are relevant for the complete model, agent-
level metrics and agent-system-level. The latter involve interactions or relations
between agents.

On the overall system level one may tackle metrics that are not surpris-
ing, starting from the population sizes and their dynamics. However, even those
metrics are not trivial as their values are scenario-dependent. That means, the
metrics can only be used to characterize one particular, completely specified
simulation run, for characterizing a complete model, especially with stochastic
elements - means over more than one run have to be used.

NAT: Number of Agent Types is a measure for heterogeneity of the model.
It basically resembles the number of classes like an object-oriented metric
and can be easily computed in simulation models, respectively in their im-
plementations. The highest heterogeneity occurs when all agents are struc-
turally different, i.e. NAT equals the number of agents. However, typification
is not the only way to represent heterogeneity among agents. Thus, this mea-
sure may not be sufficiently valid to characterize all forms of heterogeneity.
For example, if only parameters like thresholds or weights are set individ-
ually, but all agents structurally belong to the same class, then NAT = 1,
although the effectively observable behavior of all agents is different.

NRT: Number of Resource Types like the NAT-Metric, but for passive en-
tities of the environment.

MNA: Maximum Number of Agents is probably the most obvious mea-
sure for the size of the model – the maximum number of agents concurrently
present during a simulation run. However, there is a conceptual problem
when the maximum number is only adopted at the beginning of the simu-
lation. This happens e.g. when the question is tackled how many agent can
be subsisted by a particular environment. This is already happening in sim-
ulations like Sugarscape. In such cases, one may doubt the meaningfulness
of such a measure as the number of agents is intentionally set too high. The
number of agents to which the simulation is converging to, would make more
sense. Another idea may be to use the sum of agents that are existing in the
simulated environment over the complete simulation time. In the SBBpedes
example, the maximum number of agents concurrently tackled is about 9000,
the overall number sums up to about 45000. Also this difference accents the
dynamics of a system.

MNR: Minimum Number of Resources is the analogue for the maximum
number of agents. Here, one may argue that in particular, only resources
should be counted that may be actually used by an agent – see e.g. in the
Sugarscape world there are 2500 cells, but a not negligible share of them
does not carry any sugar (cell capacity equals zero). In some simulations,
inanimate objects are used for decorating the environment in order to pro-
duce nice animations. Whereas in the first example the relation between cells
with and without sugar may be interesting, decoration elements should be
ignored.



MDA: Maximum Delta of Agent Population is a measurement for deter-
mining the variability of population numbers over a given interval of time,
typically one simulation step. Thus, it forms the rate of population change.
In models that contain probabilistic aspects related to agent lives, the actual
dynamics may vary from time interval to interval as well as between runs.
Also here, the initial phase with potentially higher death rates should be
distinguished from the converged state.

MDR: Maximum Delta of Resource Population is the analogue to the
MDA metric.

ARR: Agent-Resource Relation is the number of agents divided by the
number of resources. Here mean and variation is interesting.

NASh: Number of Agent Shapes This is a measure for spatial complexity.
How many different geometries may agents possess? This makes only sense
in simulation with map-based spatial representation.

NRSh: Number of Resource Shapes is the analogue to the NASh metric:
How many different geometries do occur in the set of resources?

MRS: Maximum Resource Status Size Resources may be differently com-
plex. Whereas obstacles may only possess purely spatial attributes like ex-
tent, form and position. Others may carry more sophisticated information.
This metric counts the maximum number of status variables a resource may
possess. The question what are status variables, may arise. In the simple
Sugarscape model, a cell may possess one status variables. However, every
cell needs two additional parameter, namely the growth rate and maximum
sugar capacity. Although the latter two influence the status, they are pa-
rameter, no state variables. The state of a resource may also be used as data
container for agents; for example in the SBBpedes simulation (see below) a
train is a resource that carries data about length or number of doors which
would be counted as parameters. But, a train is also used to collect infor-
mation about its travelers. How many have currently arrived at their goal?
Information like this forms the status of a train resource.

MRP: Maximum Resource Parameter This metric computes the maximum
number of parameter that influence the values of the status variables. Fol-
lowing the examples of MRS, the growth rate or maximum stock form pa-
rameters. Other examples are initial values. In other scenarios, resources
carry (static) information used not to update the status of the resource, but
used by agents to guide their behavior according to this information. This
constant information items are also subsumed under this metric.

Whereas the metrics above aim at measuring population and environmental com-
plexity, the agents and their interactions naturally form a source of complexity
for an agent-based model that is worth of being measured. However, evaluating
agent complexity with quantitative values results in more sophisticated met-
rics than those above. All following metrics are measures for individual agents.
Thus, for characterizing a complete model, they have either to be aggregated or
computed for a “typical” agent. Aggregation can consist of averaging using the
maximum or minimum over the complete agent population, or simply summing
up.



ACR: Architectural Complexity Rank Complexity of the agent architec-
ture might be a reasonable measure. Unfortunately, indicators for it are not
obvious. We suggest to simply rank the architectures into three sets along
their complexity and use this as a metric.:

1. Behavior-describing architectures are all rule-based structures that
aim at reproducing individual behavior based on directly describing it.
They do not claim to resemble actual cognitive processes of decision
making but are more like a black box description of observed behavior.
Examples are rule- and activity-based descriptions of behavior.

2. Behavior-configuring architectures are quite common in agent-based
simulation as they form a flexible goal- or utility-based architecture with
efficient reasoning based on task- or activity representations like skeletal
plans. Actually, this is the category of BDI architectures.

3. Behavior-generating architectures are using traditional AI plan-
ning. The behavior of an agent is actually planned by an agent based
on operator representations with pre-conditions and post-conditions. The
agent generates a sequence of actions leading to its explicitly represented
goal.

APM: Action Plasticity Metric For being really sensitive, the ACR metric
has be combined with additional measures concerning the behavioral plastic-
ity and variability. Plasticity denotes the potential adaptivity of behavior in
reaction to environmental influences. That means predominantly the extent
of the behavioral repertoire and the flexibility in its application: For discrete
actions, this metric is computed by simply counting possible actions. When
actions are parameterized, the range of the parameters has to be multiplied.
As an illustration take the following example of a simple pedestrian simula-
tion: the agents may move with a standard speed. In addition, they have the
possibility to turn in reaction to obstacles. The angle is a parameter for the
turn action. If e.g. only turning actions with a angle of 45◦ and 90◦ in both
directions are allowed, this action space metric would return 1 + 1 ∗ 4 = 5.
If the angle has a continuous range, the metric would return ∞. Unfortu-
nately, an additional continuous parameter would not affect the outcome of
the metric. In this case, it could be more descriptive to introduce an ad-
ditional metric describing the basic types of actions. Yet, the idea of APM
consists in denoting the most basic degree of freedom in action selection.

SPK: Size of Procedural Knowledge Another metric related to behavior
plasticity is the size of the procedural knowledge that is available for an
agent. Its computation must be dependent on the particular form of archi-
tecture.
The first idea would be counting possible extensions of plan skeletons in
behavior-configuring architectures. However, behavior-describing as well as
the behavior-generating architectures are difficult to characterize in a cor-
responding way: the number of possible rule or operator chains would be a
comparable measure. But how to compute it? Its determination is depending
on the life span of agents, whether the environment poses episodic behavior,



etc. In worst case, one has to suppose that at every point of time, every rule
in the behavior description of an agent can be applied.
Thus, we reduce the computation of SPK to the following computations: In
behavior-describing architectures, it equals the number of rules that define
the agent behavior, in behavior-configuring architectures, the number of plan
skeletons is counted, including explicitly represented partial plan skeletons.
In these two cases, a set of additional metrics is useful for characterizing the
complexity of the rules or plan skeletons, as the rules, as well as the plan
skeletons may be differently complex. These metrics may count the number
of conditions, generality of conditions, number of branching elements in the
skeleton, etc. Metrics for rule-based systems were developed in the early
90ies, see for example [Chen and Suen, 1994].
The computation of the SPK of behavior-generating architectures also needs
some discussion: The number of possible action sequences is the first idea for
a definition, but would be not comparable to the number of plan skeletons
as the latter may contain more than one paths per skeleton according to
conditioned expansion in hierarchical representations. Also, the number of
operators would not be a good measure, as it does not represent the potential
complexity of the procedural knowledge of the agent. Despite of the potential
combinatoric explosion, there seems to be no other reasonable way than
to define the SPK for behavior-generating architectures as the number of
possible action sequences.

NCR: Number of Cognitive Rules The share of actions that affect the in-
ternal beliefs or status of an agent. One may also denote these as cognitive
rules. Updates of mental models can be an interesting indicator for the rea-
soning complexity of the agent, although it is ignoring the variety of used
algorithms. At least, one may derive derive a measure for independence of
actions from that information – as far as the environment is not used as
an external memory. However, in general the usefulness of this metric can
be doubted. Often, mechanisms for updating the mental model use different
procedural structures than the actual action selection procedure. Thus, we
leave the problem of formulating a metric general at this point for future
research.

Interactions between agents are highly dynamic. It is questionable if they can
be handled in an expressive way at all beyond pure message counting. Whereas
the measures above can be computed based on static model code, the values of
the following measures can be determined during a simulation run.

SPII: Sum of Public Information Items A good measure for the size of ex-
ternal interfaces seems to be the number of concurrently publicly accessible
variables or information items. In the Tribute model, the wealth and com-
mitments of every agent is common knowledge. That means, every agent
knows about the wealth and all the commitment status of every other agent.
Consequently, we have a value of 1 × n + n × (n − 1) as the available in-
formation items for a single agent; As the status is equal for every agent,



the resulting metric returns 100 for n = 10. Sugarscape [Epstein and Ax-
tell, 1996] is another example that illustrates the dilemma of this approach.
Here, interaction is strictly local. Every agent interacts only with its local
neighbors or the cells within its perception radius. It can only perceive the
current sugar stock of such a cell. Thus, there is no global knowledge, but
information is in principle publicly accessible – just restricted to those who
are there. In the very first scenarios, agent may just perceive the sugar stor-
age of cells within their range – which consists of an area of k × k cells.
With k = 6 and 300 agents - this would mean that for the complete agent
population 10800 data items are concurrently available.

This kind of metric becomes more meaningful, if we divide this value by the
number of shared data units. In the Tribute model this would result in the
same value as all data units are accessible for all agents at every point in time.
The sugarscape model we have to divide it by the number of all available
status units. This results in 10800/2500 = 4.32 - basically this means that
with the initial agent numbers the intersection between two sets of perceived
sugar cells contains in the mean a little bit more than 4 cells. However, after
only a few steps, the population is decreasing and concentrating on the cells
with higher sugar values. In a population of only 50 agents, this measure
would result in a value of 50 × 6/2500 = 0.12. When the relation between
environmental information and agent needs is lower than 1, it indicates that
the perception radius of agent do not intersect in mean. However, as the
agents concentrate on a small region, this measure might be misleading.

One might think, that this metric does not work for purely message-based
multi-agent systems. However, it is a question of abstraction. The SPII met-
ric deals with information units independently whether they are transferred
via the environment or message-based.

NEA: Number of External Accesses In addition to the number of avail-
able information units, an interesting property is how often external data
is accessed by the agent in its behavior definition. Basically this is an ab-
straction from some message counting metric. Especially together with the
SPII metric, these metric promises to form an interesting measure for the
amount of external information that the agent may actually processes per
time step. It nicely discriminates between highly interactive simulations and
models where the agents only once access information and then process these
potentially outdated information.

NAR: Number of Agent References A metric addressing the coherence of
the agent system is the mean number of agents contained in one agents in-
ternal model: This is basically a measure for the degree of connection within
the agent system. As this value may be varying over time, we may distin-
guish between NAR-mean and NAR-stdev. Also, minimum and maximum
number of references as well as the time-related delta of these values may be
interesting as it indicates the dynamics of the system in terms of relations
between agents.



NRR: Number Resource References The number of references of an agent
holds towards addressing resources. Using this metric, we can distinguish
between models contain more or less detailed elements of ownership.

NMA: Number of Mobility Actions This metric only makes sense when
there is an actual map where the agents may change their local position
and thus surroundings. It is measured in number of move actions per agent
per time step. In combination of the SPII and NEA metrics, it shows the
dynamics of relations.

This compilation of suggestions for metrics in agent-based simulations covers a
variety of relevant aspects, yet is far for being complete. Metrics quantifying as-
pects of protocols and conversations are missing. Number of conversations, mean
number of message per conversation, etc. Such metrics would support the higher
level description of interactions. Another area that is under-represented is a dis-
tinction according to different relations (acquaintance, dominance,...) between
the agents – number of relational categories ...

One aspect that complicates the computation of relevant quantities are varia-
tions of a model for experimentation. Often the number of agents and resources,
etc. are modified during experimentations, the maximum number of agents de-
pends on the concrete environmental conditions of the scenario, etc.

Most of the metrics given tackle pure size of a model. The complexity of
designing, treating and understanding of a model lies in the existence and trans-
parency of feedback loops. However, it is even hard for a human being to identify
existing feedback loops in a piece of simulation specification or especially in a
already coded model.

5.2 Tackling Feedback Loops?

Although the metrics above are attractive due to the possibility of automatic,
non-human-done computation, one notices that they are able to capture mostly
subordinate features - the core properties that determine complexity, under-
standability, etc. of a multi-agent model are not addressed by them: How to
count feedback loops?

Even for humans, the existence of feedback loops – especially multi-level loops
– is hard to determine just based on a static model specification or implementa-
tion. Hidden feedback loops form the backbone for every complex problem Every
change of a status value, every interaction can be part of an feedback loop.

Thus, the number of positive and negative feedback loops, sub-divided into
one-level and multi-level feedback loops can be determined by a human knowing
about the contents and design of the model. However, as mentioned before the
identification of a feedback loop is a complex task, especially without the neces-
sary variety of instruments for capturing the core dynamics in an abstract way
beyond message counting.



5.3 Language-Specific Metrics

When using traditional programming languages for implementing an agent-based
simulation only general metrics can be applied. If the simulation is based on
particular tools and architectures, more specific and meaningful metrics can be
defined. This specially applies to the APM (Action Plasticity Metric), the SPK
(Size of Procedural Knowledge) and the NCR (Number of Cognitive Rules)
metrics that tackle details about the decision making and behavioral flexibility
of the agent. Without reference to specific architectures, the identification of such
variables is quite hard. Sometimes, it even violates the requirement of objectivity
and automatic computation.

Thus, in an agent-based system implemented using the JADE framework
(jade.tilab.com), the number of “behaviors” of agent may be interesting. Such
”behaviors” form here the basic structure for behavior definition. Also for agents
using the PRS architecture [Ingrand et al., 1992] or one of its legacies like JACK
(www.agent-software.com), the number and size of Knowledge Areas per agent
determines the complexity and sophisticated-ness of agent behavior. Similar met-
rics may be meaningful for agents designed based on the RAP architecture [Firby,
1989]. Analogous metrics may be found in any agent system and simulation that
is based on some form of high-level structure.

This is also the case with SeSAm (www.simsesam.de) which is used as im-
plementation basis for all example computations in the next section. We did
this to avoid tampering based on different implementation styles. In SeSAm, the
behavior of agents is structured along a graph, named “reasoning engine” that
contains activities – which are some form of script – and rules that are used
for controlling the transition between activities. The state of an agent consists
of a set of state variables with potentially complex data structures. Thus, in
SeSAm, among others, the number of parallel reasoning engines, number and
size of activities and rules per graph, number of variables, may provide interest-
ing measures of the size and complexity of a model. A set of specific metrics for
SeSAm has been suggested in [Bülow, 2005].

5.4 Test and Assessment

One may notice that the use of metrics in standard software engineering is ac-
tually hardly established and their usefulness is still subject to discussion.

For demonstrating potential of metrics for agent-based simulation, we want
to give some example computations for the models shortly described in section
4. For reducing effects of potentially hidden implementation details, all models
were implemented using the same simulation environment: We used the above
mentioned SeSAm, as it provides a convenient high-level languages combined
with visual programming. The main reason was, that we were quite familiar
with the modeling facilities provided by it. Thus, re-implementation implied
minor effort for the Sugarscape and Tribute model. The SBBpedes project was
originally done using SeSAm.



Metric Sugarscape I Sugarscape II Tribute SBBpedes

NAT 1 1 1 5
NRT 1 1 0 5
Initial NA 300 300 10 110
MNA ca. 15 (conv.) ca 1350 10 ca. 9000
MNR 2500 2500 0 140
MDA -13, +0 -40, +74 -0, +0 -14,+21
MDR 0 0 0 0
ARR 0.12 0.56 indef. 36
NASh 1 2 1 1 + 250
NRSh 1 1 0 250
MRS 1 1 0 11
MRP 2 2 0 16

ACR 1 1 1 1+3
APM 26 27 12 ∞
SPK 2 4 4
NCR 0 0 2 3 (plan) + 2 (move)

SPII 4.32 4.32 100 0
NEA 36 (for k = 6) 36 9+9=18 min. 1
NAR 0 2+23 9 0
NRR 1 1 0 1 to 8 (planned path)
NMA 1 1 0 1

SeSAm-NA 2 5 8 23
SeSAm-NR 3 7 11 59

Table 1. Application of metrics onto three example model implementations. All models
contain stochastic elements, therefore at some places only rough numbers are given,
when the exact number slightly varies between two runs.



The results of our computations are shown in table 1. Hereby, one has to
keep in mind that we did not aim at studying the outcome of the model, but we
were searching for general measures of complexity for these models.

One may see that the Sugarscape models are quite simple but show an in-
teresting population dynamic. The number of agents is dynamic - with a higher
dynamic in variant II than variant I, even higher than in the SBBpedes model.
The Tribute model does not possess any form of explicit population dynamics.
However, some agents become incapable of acting due to their low wealth. This
is not expressed by the current set of metrics - a metric denoting the effective
number of active agents would be necessary.

From the point of view of population dynamics and environmental represen-
tation and agent-environment interaction, the Tribute model is simple - there
is no relevant environment, however it exhibits the highest complexity in avail-
able information about other agents (SPII) and possible full connectivity as the
NAR-value correspond to the number of agents minus 1 (no self-reference).

The SBBpedes model is larger than the others in terms of mere agent numbers
as well as in extend of agent behavior. However, the interaction between agents is
comparatively simple. No agent possess explicit information about other agents
within its belief model. Direct interactions are seldom.

The main question that remains is - of what use are these numbers? Up to
now, the metrics can be used for demonstrating “areas” (in terms of subsets of
metrics) of higher complexity relative to other models. We have seen that they
are able to discriminate between models. For an absolute complexity measure,
the set of isolated metrics has to be re-considered, potentially extended and so-
licited. Then, these basic metrics have to be weighted and combined resulting in
a characteristic that can be used for supporting the management of a simulation
study, for estimating simulation effort or for evaluating simulation tools.

6 Conclusion

Despite of a lot of scientific effort, software metrics are still controversially dis-
cussed in practice. In this paper we suggested a set of metrics and illustrated
them by applying them to a set of existing, and partially well-known models.
Although we concentrated on mere size-related metrics, their application allowed
to expose details of complexity characterizing the individual models. The metrics
also allowed to discriminate between two slightly different variants of the Sug-
arscape model. Consequently, one may state that these set of metrics seems to be
a good starting point towards evaluating and comparing agent based simulation
models although several aspects were left to future efforts. The next steps clearly
involve the development of more dynamics-related metrics and the application
to more simulation models for finally reaching the goal of a short and precise
characterization of agent-based simulation model complexity.



References

[Axelrod, 1995] Axelrod, R. (1995). A model of the emergence of new political actors.
In Gilbert, N. and Conte, R., editors, Artificial Societies: The Computer Simulation
of Social Life, page 19ff. UCL Press.

[Briand et al., 1997] Briand, L., Devanbu, P., and Melo, W. (1997). An investigation
into coupling measures for C++. In Proceedings of the 1997 (19th) International
Conference on Software Engineering, pages 412–421.

[Bülow, 2005] Bülow, M. (2005). Metriken für Multiagentensimulationen in SeSAm.
Master’s thesis, Institute of Computer Science, University of Würzburg.

[Chen and Suen, 1994] Chen, Z. and Suen, C. Y. (1994). Complexity metrics for rule-
based expert systems. In International Conference on Software Maintenance, 1994,
pages 382–391.

[Chidamber and Kemerer, 1994] Chidamber, S. R. and Kemerer, C. F. (1994). A met-
rics suite for object oriented design. IEEE Trans. Software Engineering, 20:476–493.

[Conde et al., 1986] Conde, S. D., Dunsmore, H. E., and Shen, V. Y. (1986). Software
Engineering Metrics and Models. Benjamin/Cummings.

[Dumke et al., 2000] Dumke, R. R., Koeppe, R., and Wille, C. (2000). Software agent
measurement and self-measuring agent-based systems. Technical Report 11, Fakultät
für Informatik, Uni. Madgeburg.

[Epstein and Axtell, 1996] Epstein, J. M. and Axtell, R. (1996). Growing Artificial
Societies. Social Science from the Bottom Up. Random House Uk Ltd.

[Far and Wanyama, 2003] Far, B. H. and Wanyama, T. (2003). Metrics for agent-based
software development. In IEEE CCECE 2003. Canadian Conference on Electrical
and Computer Engineering, May 2003, volume 2, pages 1297–1300.

[Firby, 1989] Firby, J. (1989). Adaptive Execution in Complex Dynamic Worlds. PhD
thesis, Yale University.

[Gómes-Sanz et al., 2006] Gómes-Sanz, J. J., Pavón, J., and Garijo, F. (2006). Esti-
mating cost for agent-oriented software. In Müller, J. and Zambonelli, F., editors,
Agent-oriented software engineering V. 5th International Workshop, AOSE 2005,
Utrecht, The Netherlands, July 2005, Revised Selected Papers, number 3950 in LNCS,
pages 218–230.

[Holland, 2000] Holland, J. H. (2000). Emergence. From Chaos to Order. Oxford
University Press.

[Ingrand et al., 1992] Ingrand, F. F., Georgeff, M. P., and Rao, A. S. (1992). An
architecture for real-time reasoning and system control. IEEE Expert, 7(6):34–44.

[Klügl, 2001] Klügl, F. (2001). Multiagentensimulation – Konzepte, Anwendungen,
Tools. Addision Wesley.

[Klügl et al., 2005] Klügl, F., Fehler, M., and Herrler, R. (2005). About the role of
the environment in multi-agent simulations. In Weyns, D., Parunak, H. V. D., and
Michel, F., editors, Environments for Multi-Agent Systems, number LNCS in 3374,
pages 127–149. Springer.

[Klügl et al., 2004] Klügl, F., Oechslein, C., Puppe, F., and Dornhaus, A. (2004).
Multi-agent modelling in comparison to standard modelling. Simulation News Eu-
rope, 40:3–9.

[Klügl and Rindsfüser, 2007] Klügl, F. and Rindsfüser, G. (2007). Large-scale agent-
based pedestrian simulation. In Müller, J. P., Petta, P., Klusch, M., and Georgeff,
M., editors, Multi-Agent Technologies V, Proceedings of the MATES 2007, number
4687 in LNAI. Springer.



[Robby et al., 2006] Robby, DeLoach, S. A., and Kolesnikov, V. A. (2006). Using de-
sign metrics for predicting system flexibility. In Proceedings of the 2006 International
Conference on Fundamental Approaches to Software Engineering (FASE 2006).

[Thaller, 2000] Thaller, G. E. (2000). Software-Metriken – einsetzen, bewerten,
messen. Verlag Technik, 2nd edition.

[Uhrmacher, 1996] Uhrmacher, A. M. (1996). Object-oriented and agent-oriented
simulation-implications for social science applications. In Doran, J., Gilbert, N.,
Müller, U., and Troitzsch, K. G., editors, Social Science Micro Simulation- A Chal-
lenge for Computer Science, Lecture Notes in Economics and Mathematics, pages
432–447. Springer, Berlin.

[Wallace, 1987] Wallace, J. C. (1987). The control and transformation metric: Toward
the measurement of simulation model complexity. In Thesen, A., Grant, H., and
Kelton, W. D., editors, Proceedings of the 1987 Winter Simulation Conference, pages
597–603.

[Wille et al., 2004] Wille, C., Brehmer, N., and Dumke, R. R. (2004). Software mea-
surement of agent-based systems - an evaluation study of the agent academy. Tech-
nical Report Preprint No. 3, Faculty of Informatics, University of Magdeburg.

[Woodside, 2001] Woodside, M. (2001). Scalability metrics and analysis of mobile
agent systems. Lecture Notes in Computer Science, 1887:234ff.

[Wooldridge, 2002] Wooldridge, M. (2002). An Introduction to Multi-Agent Systems.
John Wiley.


