
Extending the MaSE Methodology for the Development
of Embedded Real-Time Systems

Iman Badr1, Hisham Mubarak1, and Peter Göhner1

1 Universität Stuttgart, Institute of Industrial Automation and Software Engineering (IAS),
Pfaffenwaldring 47

70550 Stuttgart, Germany
{Iman.Badr, Hisham.Mubarak, Peter.Goehner}@ias.uni-stuttgart.de

Abstract. Embedded real-time systems play an important role in various
application areas like plant automation, product automation or car
electronics. In recent years a considerable growth in the functionality
has been observed. At the same time, expectations on systems’
flexibility at runtime are growing steadily. The paradigm of agent-
oriented software engineering is a well suited approach for the
development of decentralised, complex software systems with high
flexibility. A number of software engineering methodologies have been
introduced for developing agent oriented systems. However, none of the
existing methodologies is intended for the development of embedded
real-time systems. This work presents an extension to the Multi-agent
Systems Engineering (MaSE) methodology that tackles domain-specific
weaknesses and defines a systematic procedure for the development of
agent-oriented embedded real-time systems.

Keywords: Agent-Oriented Software Development, Real-Time Systems,
Embedded Systems

1. Introduction

Embedded systems are systems that are integrated logically and physically in a device
or a larger system. Their application spectrum ranges from simple devices like mobile
phones and house held devices up to the complex ones like aircrafts and industrial
process controllers, to name a few. Regardless of the diversity of their application
domain, all embedded systems are required to synchronise their execution with the
technical process of the encapsulating device. Traditionally, the development of real-
time systems was targeted for closed predefined hardware structures. More and more
the structure of systems hardware becomes dynamic with the addition, removal and
upgrade of components. Current systems are thus required to adapt to dynamic
changes in the structure of the hardware as well as to flexibly deal with unforeseeable
events that may occur in the working environment. Therefore, the development of
such systems represents a challenge of achieving flexibility without violating

invariant requirements, especially real-time requirements which are considered crucial
for these systems.

With their special nature in tackling the complexity of distributed applications and
adapting their behaviour to stochastic, dynamically changing environments, software
agents represent a suitable approach for developing flexible embedded systems. Such
development is supposed to be based on and guided by systematic methodologies that
result in exhibiting the required controlled flexibility. However, the appealing
concepts of agents are not complemented with powerful comprehensive
methodologies that provide the needed support along the different application
domains. Concerning the embedded real-time systems domain, the available agent-
oriented methodologies provide no support for indispensable features namely,
timeliness and concurrency. Therefore, the employment of agents in real-time systems
may lead to possible violations of the timeliness requirements. Consequently, the
potential of the agent-based paradigm in dealing with complexity and adapting to
dynamic conditions has not been utilised in the embedded systems field.

In order to pave the way for the employment of agents in the embedded real-time
systems domain and capitalise on their flexibility, this work aims at bridging the gap
between the embedded systems domain and the available agent oriented software
engineering. Towards achieving this objective, the Multi-agent Software Engineering
(MaSE) methodology [1] was extended with timeliness concepts that customise it for
the embedded systems domain. .

This paper is organised as follows. Section 2 overviews the special requirements
and conventional development trends of embedded systems. Section 3 focuses on the
MaSE methodology by first reviewing the comparative study that led to its selection
and then discussing its limitations in capturing the special characteristics of embedded
systems. Section 4 proposes a set of extensions that overcome these limitations.
Section 5 illustrates the proposed extensions with a case study. Section 6 presents
concluding remarks and an outlook on future work.

2. Embedded Systems

Unlike information systems whose development is targeted basically to the
satisfaction of the customer needs, embedded systems have to satisfy the goals and
desires of the customer while at the same time complying with the requirements and
constraints enforced by its controlled process. To illustrate, consider an embedded
system of a typical automatically controlled washing machine. Such system is
expected to provide a user interface controlling the required washing program. In
addition, it is obliged to react on the right time to the events continually emerging
from the technical washing process like an event signaling the fall of the water level
under a certain threshold. Failing to react to such events on the right time may cause
undesired effects or for safety critical systems may bring about dangerous or even
fatal effects.

2.1. Distinguishing Characteristics

In light of the previously mentioned example, two basic distinguishing characteristics
of embedded systems could be identified

2.1.1. Timeliness
To synchronise their operation with the controlled physical process, embedded
systems are required to work under timing constraints that stem basically from the
technical system. In other words, embedded systems are real-time systems whose
input, processing and output have to be performed under predefined timing
requirements [2]. Timing requirements usually result from the physical laws
governing the controlled technical process. For example, an automobile engine
system controls the amount of proper fuel to be injected into the combustion chamber
of each cylinder. For such an example, a delay in terms of a few microseconds may
lead to opening the valve at an incorrect point of time which results in the mechanical
damage of the engine [3]. This example demonstrates how significant the timeliness
requirements of real-time systems could be. In general, real-time systems are
classified according to the nature of their real time requirements into soft and hard
real-time systems. While soft real-time systems work under relatively flexible timing
constraints which when violated can lead to lowering the performance but can still be
tolerated, hard real-time systems have much more strict constraints whose violation
can lead to a failure or can be dangerous.

2.1.2. Concurrency
Embedded real time systems are concurrent by nature in that they have to react to
several sensors and control multiple actuators simultaneously to achieve the required
performance on the right time. Concurrency raises several challenges like scheduling,
synchronisation, and communication of tasks. Tasks are either executed periodically
or are triggered by events whose occurrence time is not determined a priori. Each task
works under timing constraints and has to meet a certain deadline [2]. The objective
of a real-time system is to satisfy the requests of all tasks in a way that all deadlines
can be met. However, due to limited resources, this is not always possible. Therefore,
priorities of tasks have to be considered in scheduling to make sure that time critical
tasks with hard deadlines are not delayed. In case embedded real-time systems are
distributed the problem becomes more complex with the need to synchronise the
execution of parallel tasks in addition to synchronising the clock of all nodes [3].

2.2. Conventional Development Trends

The engineering trends of embedded systems have featured major changes all over the
years. During its early stages, embedded systems were developed in an ad-hoc
manner, where the system was realised by engineers having little knowledge of
computer science. They tended to satisfy the requirements at hand by sketching a
block diagram of the system to be implemented with special considerations to saving
hardware resources at the expense of the software capacity. Software was just limited

to stand-alone implementation running on a microcontroller with no operating system.
With increasing market needs, more attention was given to adding software
functionalities to enhance the utilisation of the system which resulted in an increasing
complexity of the software [3]. Currently, the industrial trend is characterised by
designing embedded systems with in-house methods that are specifically tailored to
their application domain. In general, a co-design approach is adopted as a natural
model for conceiving the strong interrelation between hardware and software [4].

2.3. Modelling Techniques

Due to their inherent complexity, embedded real-time systems depend heavily on
computational models for their analysis and design. They serve in formally specifying
the temporal and concurrent aspects of the behaviour of the system in an
unambiguous manner that simplifies implementation and testing. In general, real-time
systems are usually modelled by state-oriented models that stress the control and
reactive aspects of the system by capturing the effect of the external events coming
from the environment on the states of the system. These models attach special
importance to temporal and concurrency issues. Out of the existing models, finite
state machines and Petri-nets are most commonly used for modelling the behaviour of
embedded systems [5].

2.4. Flexibility Requirement

The embedded systems industry is featuring exponential growth motivated by the
increasing availability of cheaper and more powerful hardware components. Due to
the relatively long lifetime of devices incorporating embedded systems, it is highly
demanding to design an embedded system in such a way that modifications to the
hardware structure by adding or removing components should have no or minimal
effects on the existing software. Consequently, the conventional approach of
designing closed software which is tightly coupled with the underlying hardware
components does not offer sufficient flexibility in face of the new challenges. This
motivates investigating new approaches of software engineering like the agent-
oriented approach which deals with uncertainty in the working environment and
complexity in behaviour and functionality by designing autonomous and
communicating entities called software agents. Agent oriented software engineering is
a good approach for distributed, ill-structured and dynamic systems [6].

3. The MaSE Methodology

Mulit-agent Systems Engineering (MaSE) is a generic agent-oriented software
development methodology [1]. The engineering process of MaSE is based on a top-
down software engineering approach that supports the analysis and design phases
through seven steps, which are be performed in an iterative fashion. The whole
process with the steps and the corresponding artefacts is depicted by Fig. 1. As

illustrated in the figure, MaSE adopts a goal-oriented analysis by deriving the system
goals from a set of system requirements – whose generation is assumed to be outside
the scope of MaSE. The system is next modelled as a set of roles which are assigned
the identified goals. During the design phase, the identified roles are grouped together
to form agents that are designed to play the incorporated roles. The design phase
extends up to the deployment stage, where a decision on the distribution of agents to
the available physical platforms is taken.

Applying use
cases

A
nalysis

D
esign

Goal
hierarchy

Use cases

Capturing
goals

Refining
rolesRoles Concurrent tasks

Agent classes

Constructing
conversations

Creating agent
classes

Assembling
agent classes

Deployment
diagrams

Conversations

Agent architecture

Requirements

Sequence diagrams

System design

Fig. 1. The software engineering process of MaSE [1]

3.1. The Selection of MaSE

This work builds on a previous study of agent-oriented development methodologies
that resulted in the selection of MaSE as the agent-oriented methodology with the best

relative potential for the embedded systems domain [7]. During the course of this
work, a two-phase evaluation process was conducted.

The first phase served in deciding on an initial set of methodologies that represent
good candidates for further deeper investigation out of the excessive number of the
currently available methodologies that amount to twenty different methodologies [8].
The evaluation criteria for this phase considered broad aspects like the soundness of
concepts, the suitability to the embedded systems domain, the coverage of the
development process, and the tool support. This initial evaluation resulted in the
selection of Gaia [9], MaSE [10], Prometheus [11], and PASSI [12].

During the second phase, the four methodologies were assessed against a
framework of attributes according to the well-known feature-based evaluation
method. The evaluation criteria covered twenty seven different features grouped into
five categories that examine the support of the methodologies to aspects related to the
application domain, the development process, the agent-oriented features, the system
to be developed, and the flexibility this system is supposed to exhibit. Assessing the
four methodologies according to this evaluation framework resulted in the choice of
MaSE.

3.2. Limitations of MaSE for the Embedded Systems Domain

In spite of its good support for agent-oriented concepts like goals and roles, MaSE
fails to capture some of the essential characteristics of the embedded real-time
systems domain. By examining the applicability of MaSE to the flexible embedded
systems, a number of limitations have been identified.

3.2.1. Requirements Engineering
The lack of support to the requirements engineering phase may not have a noticeable
impact on the modelling of traditional information systems whose development is
based on user requirements that can be acquired based on conventional methods of
software requirements engineering. However, the integrated nature of the embedded
systems results in a set of constraints that stem from the technical system and from the
existing system hardware. Such constraints may conflict with or limit the user
requirements and need thus to be considered at early development stages. The
temporal requirements of the technical system, the response time of the computational
nodes, as well as the topology of the hardware components are all examples of
possible factors that can greatly constrain the required system behaviour.The formal
specification of these constraints is not straightforward and should be based on a
careful analysis of the physical aspects of the system. Therefore, a methodology that
attempts to cater for the embedded real-time application domain has to give clear
support to how requirements are to be specified in light of the enforced constraints.

3.2.2. Environmental Support
In spite of the important role played by the environment in the agent-oriented
paradigm, where an agent is by definition situated in an environment with which it
interacts, MaSE fails to support this feature and provides no mechanism for explicitly

modelling the environment, nor for modelling the interaction between the system and
its environment. Considering the embedded systems domain, the role of the
environment becomes even stronger because of its integrated nature within an
encapsulating device or system. Consequently, identifying the boundaries of the
modelled system and designating it from its environment aids in a better
understanding of the system concerned. In addition, modelling the interaction
between the system and its environment is of a big significance to embedded systems
due to their reactive nature, where the internal behaviour of the system is highly
shaped by external events emerging from the environment.

3.2.3. Temporal Dimension of the Modelled Behaviour
While real-time requirements and constraints greatly shape the behaviour of an
embedded real-time system whose performance is always judged by how far it
satisfies its temporal requirements, this aspect is totally absent from the development
process of MaSE and from the other methodologies that have been surveyed [7]. This
is viewed as the greatest obstacle hindering the application of agent-oriented
methodologies to the embedded systems domain. Hence all aspects of the system
behaviour including internal behaviour of agents as well as inter-agent
communications have to explicitly consider the temporal factor as a central shaping
factor in the analysis and design phases.

The concurrent behaviour of the system is another aspect which is closely related
to timeliness since it deals with the way the system works on satisfying several
temporal requirements simultaneously. MaSE provides limited support by the
concurrent tasks model generated during the analysis phase (see Fig. 1). It is assumed
that each role fulfils its goals through the concurrent execution of a number of tasks
whose execution details are modelled during this step. Each task is then modelled
with a finite state automaton. However, the concurrency involved in managing the
collective execution of these parallel tasks is not explicitly supported.

4. Proposed Extensions

In order to deal with the limitations of MaSE in conceiving flexibility to embedded
systems, the whole engineering process has been refined as illustrated in Fig. 2. 1First,
a new phase for requirements engineering has been introduced. Second, modifications
have been suggested to the already existing analysis and design phases.

4.1. Requirements Engineering Phase

Requirements serve in the identification of the qualitative along with the quantitative
characteristics of the system [13]. They are usually viewed from two levels of
abstraction. At a higher level of abstraction, requirements are described from the user

1 New and modified artefacts are differentiated from conventional ones by denoting them with

grey background and dashed boarders respectively.

view and are referred to as the user requirements. This view however is refined by the
system developer in light of the existing constraints which results in a detailed
modelling of system services and constraints which is referred to as the system
requirements [14].

R
equirem

ents
Engineering

System modelUser
requirements

Refining
requirements

System
requirements

Modeling
requirements

Goal
hierarchy

Capturing
organizational
structure

Organizational
model

Capturing
goals

Refining
roles

Roles

Agent model
Creating
agents

System
design

Agent architecture

ConversationsConcurrent tasks

A
nalysis

D
esign

Detailed
design

Deployment
diagrams

Fig. 2. The software engineering process of the extended MaSE methodology

The objective of this phase is hence to generate a refined set of systems
requirements that takes the constraining effects of the technical system as well as the
system hardware into consideration. This phase covers two steps that involve
modelling and refinement of requirements. During the first step, requirements are
modelled in the form of two artefacts: the user requirements model which
incorporates user needs along with the system model which captures the system
constraints, as illustrated in Fig. 2. During the modelling step, a gradual generation of

the systems requirements occurs by iterating back and forth between the modelling
and the refining steps.

Basically, user requirements can be classified into process requirements and
flexibility requirements. While the former relates to the basic operation of the system,
the latter is associated with extra requirements that serve in exhibiting a degree of
flexibility during operation. While both classifications of requirements should be
analysed in light of the existing constraints, flexibility requirements are subject to
feasibility analysis that might result in the elimination or modification of some of
these requirements that turn out infeasible under consideration of the system
constraints.

For the generation of the system requirements out of the user requirements and the
system model, the following steps are proposed:
1. Elicitation and analysis of process requirements

This step is concerned with the classification of the user requiremts into process
and flexibility requirements. Process requirements are further analysed and refined
to serve in the development of the initial set of the system requirements.

2. Elicitation and analysis of systems constraints
The goal of this step is to extract the system constraints which results in the
generation of the system model. This involves physical as well as behavioural
analysis of the system concerned. While the former considers the static
characteristics of the technical as well as the automation system, the latter
attempts to study the expected behaviour of the system based on the process
requirements in order to extract the relevant constraints.

3. Analysis of the flexibility requirements
At the end, the flexibility requirements which resulted from the classification of
the first step undergo a feasibility test based on the generated system model with
the corresponding constraints. Since different aspects of flexibility may be catered
for, the system modeller is advised to focus on the required aspects of flexibility.
For this purpose, this step aims at establishing a view of the required flexibility.
Two modelling artefacts of the SysML [15] notation are to be used for this
purpose: view and viewpoint diagrams. While a view captures a certain
perspective of the system, a viewpoint embodies the rules for developing a certain
view. The refined flexibility requirements serve in complementing the system
requirements.

The system requirements are modelled by a requirements diagram based on the
SysML notation. One of the advantages of this notation is the support for associating
the identified requirements with the corresponding constraints.

4.2. Environmental Support

During the requirements engineering phase, a systematic analysis of the physical
structure of the automation system along with the expected behaviour of the system is
carried out to extract the enforced constraints. For the sake of this analysis, the system

boundaries are identified in the form of a context diagram. By defining the boundaries
of the system, a distinction is made between the system and the external environment
represented in the form of external terminators that may be affected by or have an
effect on the analysed system. These terminators could symbolise external systems,
input/output devices, or people. A decision should be made during this stage on
whether to model sensors and actuators as part of the system or as external
terminators.

Interactions between the system and its external environment are captured in the
form of finite state machines (FSMs). The reactive nature of the system is modelled
by analysing external events and how they affect the internal state of the system. This
analysis of events is performed under consideration of the temporal characteristics of
these events and whether they are periodic or sporadic. The resulting FSMs are
complemented with a set of events descriptors.

4.3. Adding Timeliness and Concurrency Support

In this section, the extensions that serve in overcoming the drawbacks of MaSE with
respect to the support of timeliness and concurrency are highlighted.

4.3.1. Extending Goals
A goal in MaSE represents a “system-level objective” which is formulated in a way
that reflects what the system is trying to achieve [16]. Analysing the system from the
point of view of “what” the system is trying to achieve fails to explicitly capture the
essence of the embedded real-time systems whose correctness depends not only on
fulfilling the required goals but also on the timeliness of that fulfillment. It follows
that goals of real-time systems have to be specified in a two-fold formulation: what is
being aimed at, and when it is supposed to be achieved. In other words, while
identifying goals, it is important to reason about the existence of possible deadlines
for these goals. A deadline can either be absolute or relative; periodic or aperiodic; at
a specified point in time or during an interval. In addition, a goal may reflect a hard or
a soft real-time requirement. For example, one of the goals of a fire alarm system
could be the activation of alarm in no more than time t. This reflects a hard
requirement which, when violated, could lead to dangerous consequences like the
spread of fire. It is worth noting that though not all goals can be assigned temporal
parameters, it is recommended to examine possible temporal requirements or
constraints and write them explicitly while specifying goals.

4.3.2. Extending Roles
Roles in MaSE are defined by an abstract model that associates roles with the
corresponding goals which they are supposed to achieve. However, this model fails to
capture the internal characteristics of roles that help in achieving the assigned goals.
Therefore, the role model of the Gaia methodology [17] was adopted and extended to
represent these characteristics. Roles in Gaia are defined in terms of four attributes:
permissions, activities, protocols, and responsibilities. First, permissions are access
rights of this role to software or hardware resources. Second, activities and protocols

represent functionalities of this role. While activities can be carried out internal to the
role, protocols describe the interaction of this role and other roles. Finally,
responsibilities are categorised into liveness and safety properties describing the
expected behaviour that an agent playing that role should bring about and the
undesired behaviour which should be avoided respectively. Under this field, the
temporal constraints associated with the goals assigned to the role of concern are
formulated in the form of temporal logic.

Next, the way a role achieves its goals is analysed by deciding on one of the set of
alternative actions. This is made possible by first establishing a list of the role’s
activities that were identified in the role schema along with any relevant temporal
parameters in the form of a tentative time table. Such parameters can be retrieved
from the temporal constraints recorded under the responsibilities field. It is worth
noting that not all activities are governed by predetermined temporal constraints and
thus not all fields can be filled. However, it is worth establishing this partial list to
serve in capturing the temporal requirements of the role concerned.

The dynamics of roles is then modelled by capturing how it deals with concurrent
events and activities and how it decides among alternative actions. Timed Petri nets
[18] were selected as a computational model that possesses the power of modelling
concurrency and timeliness. Possible temporal requirements of the role recorded by
its time table are to be considered and annotated in the associated Petri net.

The specification of the internal behaviour of each role is described in the
concurrent tasks model in section 4.4.2.

4.3.3. Organisational Model
In complement to extending goals and roles with temporal requirements, the whole
system should be realised in such a way to guarantee the satisfaction of these
requirements at run time. Enforcing temporal requirements at run-time is considered
starting from the analysis phase by viewing the system as an organisation of agents
similar to human organisations where the freedom of members in selecting their
actions is controlled by the policies and rules of their organisation. This organisational
view has been proposed by other agent-oriented methodologies like Gaia [19] and
Message [20]. From our point of view, a multi-agent system is conceived as a set of
groups sharing a set of goals that they strive to achieve. The system as a whole as well
as the individual groups are constrained by policies and rules. In order to allow for the
satisfaction of these constraints, additional coordination roles may be identified. The
multi-agent organisation is modelled during the analysis phase through the
identification of groups, policies and roles which results in the generation of the
organisational model (see Fig. 2). In addition, interaction patterns among
organisational members are modelled by timed Petri-nets and incorporated into the
organisational model.

4.4. Process-Related Extensions

In addition to the aforementioned extensions which were motivated by the need to
tailor MaSE for the embedded real-time systems domain, a number of slight

modifications to the process were necessary for the sake of consistency and
convenience.

4.4.1. Integration of the System Model
The proposed system model which captures the constraints enforced by the
underlying hardware and technical system was integrated in the engineering process.
As illustrated in Fig. 2, the generation of several artefacts is based either directly or
indirectly on the system model. Referring to this model during the analysis and design
of the system is crucial due to the constrained nature of embedded systems.

4.4.2. The Concurrent Tasks Model
This model captures the details of the internal tasks of each role in the form of finite
state machines. Traditionally, this model is generated in MaSE during the analysis
phase based on the role model. The system analysis should be abstracted away from
such deep details which can lead to immature design decisions. Consequently, in the
proposed extended methodology, this generation of this model is shifted to the design
phase.

To further support the specification of temporal requirements, the finite state
machines are replaced with timed automata [21]. Adopting timed automata at this
stage allows for keeping compatibility with the traditional notation of finite state
machines, while at the same time giving the possibility to specify all relevant
temporal requirements. These temporal requirements for internal tasks of each role
are directly derived from the refined role model as described in section 4.3.2.

4.4.3. Detailed Design
The support of MaSE extends up to the system deployment by capturing the
distribution of agents along the available platforms in the form of a UML-based
deployment diagram. This step is complemented in the extended methodology by
accompanying it with the generation of the agent architecture model to form the
detailed design step. The role of the agent architecture diagram in MaSE is the
identification of the internal architecture of agent classes. This is either done by
defining components from scratch or by the reuse of existing architecture templates
[1]. With respect to the embedded systems domain with its various computational
platforms and limited resources, such a decision is greatly affected by the deployment
platform. Therefore, in the extended MaSE methodology, the agent architecture is
generated based on the deployment diagram to design the internal architecture of
agents under consideration of the characteristics of the computational platform they
are going to be deployed on.

5. Evaluation of the Extended MaSE Methodology

To assess its applicability to embedded systems, the extended MaSE methodology has
been evaluated based on an elevator system model. This model consists of two shafts
each of which is controlled by a microcontroller and consists of four floors. The two

microcontrollers are interconnected to each other and to the peripherals by means of a
CAN bus. Traditionally, each microcontroller is responsible for the separate control of
one of the corresponding shaft. However, the development of a flexible control is
highly desirable to improve the availability and robustness of the system by detecting
and handling failures of system elements that might occur during run-time.

The development of agent-oriented software for the flexible control of the elevator
system has been guided by the extended MaSE. A comprehensive coverage of the
modelling process is beyond the scope of this work. The evaluation of the proposed
concepts is rather illustrated by demonstrating two artefacts. First, the flexibility view
is focused on to illustrate the newly introduced requirements engineering phase and
how it serves in the early analysis of the flexibility requirements. Second, light is shed
on the extended goal-hierarchy due to its central effect on the remaining artefacts as
well as its significance in capturing the temporal constraints.

Fig. 3 captures the fault tolerance view developed during the requirements
engineering phase. As illustrated in the figure, analysing the requirement of tolerating
a failure of one of the microcontrollers results in the generation of three further
derived requirements. These derived requirements serve in elaborating on and
possibly in limiting the original requirement. Relevant constraints that govern the
realisation of these requirements are identified and recorded.

Fig. 3. Illustration of the view / viewpoint modeling of the fault tolerance aspect of

flexibility

The goal hierarchy of the system is depicted in Fig. 3. Constraints that were extracted
during the requirements engineering phase and incorporated in the requirements
diagram are propagated to the corresponding goals in the goal hierarchy. Goal 1.1.1 is
an example of a time-constrained goal which states that a passenger request has to be

acknowledged within 500 ms. The distinction between hard and soft real-time
requirements is visualised by colouring each of them with a different colour.

Fig. 4. The goal hierarchy of the elevator control system

6. Conclusion and Future Work

The development of flexible embedded systems – which tailor their behaviour to their
dynamic environment while meeting their strict temporal requirements – is gaining an
increasing attention from academia and industry. One possibility of realising
flexibility is through the employment of autonomous software agents which have
shown proved potential in exhibiting flexibility in the information technology field.
However, the application of agents in the embedded systems domain has been
hindered by the lack of concepts and methodologies that equip agents with real-time
capabilities that facilitate the development of embedded real-time systems and allow
for fulfilling temporal requirements at run time. This limitation of the agent-oriented
software engineering has motivated this research whose objective was to extend an
agent-oriented methodology for the embedded real-time systems domain.
This work is an extension to a previous study which resulted in the selection of the
MaSE methodology for showing the best relative potential for the embedded systems
domain based on a criteria-based evaluation specially tailored to the embedded
systems domain [7]. During the course of this work, weaknesses of MaSE with
respect to the development of flexible embedded real-time systems were identified
and analysed. Basically, MaSE was found to suffer from a lack of support to the
requirements engineering, the environmental modelling, and real-time specifications.
These weaknesses have been tackled by the introduction of a requirements
engineering phase which captures the timeliness constraints enforced by the
underlying technical system and system hardware Environmental modelling is
supported as well during the requirements engineering phase through the

identification of the boundaries of the system as a step in analysing its physical
characteristics. In addition, timeliness support was proposed by extending goals and
roles with real-time specifications. Finally, process-related modifications have been
applied to MaSE to allow for the integration of the proposed concepts.
The extended methodology has been applied to the development of an agent-oriented
flexible control of an elevator system model. Further application examples from the
embedded systems domain are being currently worked on, such as the control for an
industrial continuous wood press. Results of this practical evaluation will be used to
further improve and refine the extended MaSE methodology.

Acknowledgement

This work has been carried out in the scope of the project AVE [19] on agent-oriented
real-time systems. The project AVE is kindly funded by the German Research
Council (DFG, Deutsche Forschungsgemeinschaft) under GO 810/15-1 and VO
937/5-1.

References

1. Wood, M. F.: Multiagent systems engineering: A methodology for analysis and
design of multiagent systems. Master's thesis, School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB Ohio, USA, (2000)

2. Lauber, R., Göhner, P.: Prozessautomatisierung 1, 1st Edition.. Springer-Verlag.
(1999)

3. Kopetz, H.: Real-Time Systems Design Principles for Distributed Embedded
Applications. Kluwer Academic Publishers, (1997)

4. Voros, N. S. et. al.: Hardware/Software Co-Design of Complex Embedded
Systems. An Approach Using Efficient Process Models, Multiple Formalism
Specification and Validation via Co-Simulation. Design Automation for
Embedded Systems, 8, 5-49, (2003)

5. Gajski, D. et. al.: Specification and Design of Embedded Systems. P.T.R.
Prentice Hall, (1994)

6. Parunak, H. V. D.: Practical and industrial applications of agent-based systems,
Environmental Research Institute of Michigan (ERIM), (1998)

7. Mubarak, H., Göhner, P., Wannagat, A., Vogel-Heuser, B.: Evaluation of agent
oriented methodologies for the development of flexible embedded real-time
systems in automation. atp international, issue 1/2007, Oldenbourg
Industrieverlag, München (2007)

8. Henderson-Sellers, B., Giorgini, P.: Agent-Oriented Methodologies, Idea Group
Publishing, Hershey (2005)

9. Zambonelli, F, Jennings, N. and Wooldridge, M. Developing Multiagent
Systems: The Gaia Methodology ACM Transactions on Software Engineering
and Methodology, Vol. 12, No. 3, July 2003, Pages 317–370.

10. DeLoach, S. A.: Analysis and Design using MaSE and agentTool. In 12th
Midwest Artificial Intelligence and Cognitive Science Conference (MAICS),
2001

11. Padgham, L.; Winikoff, M.: The Prometheus Methodology. Chapter 11 in
"Methodologies and Software Engineering for Agent Systems. The Agent-
Oriented Software Engineering handbook." Edited by Federico Bergenti, Marie-
Pierre Gleizes and Franco Zambonelli. Kluwer Publishing, 1-4020-8057-3, July
2004. p. 217-234

12. Cossentino, M., Potts, M. A CASE tool supported methodology for the design of
multi-agent systems in Proc.2002). In Proceedings of the 2002 International
Conference on Software Engineering Research and Practice (SERP'02) Las
Vegas, USA, June.

13. Balzert, H.: Lehrbuch der Software-Technik. Band 1. 2. Auflage. Elsevier-
Verlag, (2001)

14. Sommerville, I.: Software Engineering. 6th Edition. Addison Wesley (2001)
15. OMG SysML Specification. http://xml.coverpages.org/OMG-SysML-

Specification060504.pdf
16. DeLoach, S. A., Wood, M.: Multiagent Systems Engineering: the Analysis Phase.

Technical Report, Air Force Institute of Technology, AFIT/EN-TR-00-02, (2000)
17. Wooldridge, M., Jennings, N., Kinny, D.: The Gaia Methodology for Agent-

Oriented Analysis and Design. Autonomous Agents and Multi-Agent Systems, 3,
285.312, (2000)

18. David; R. and Alla, H. Discrete, continuous, and hybrid Petri nets. Berlin ;
Heidelberg ; New York : Springer (2005)

19. Zambonelli, F., Jennings, N., Wooldridge, M.: Multi-Agent Systems as
Computational Organizations: The Gaia Methodology. In Agent-Oriented
Methodologies, edited by B. Henderson-Sellers and P. Giorgini, Idea Group,
(2005)

20. Garijo, F. et. al.: The MESSAGE Methodology for Agent-Oriented Analysis and
Design. In Agent-Oriented Methodologies, edited by B. Henderson-Sellers and
P.Giorgini, Idea Group, (2005)

21. Carlson, J.: Languages and methods for specifying real-time systems, MRTC
report, Mälardalen Real-Time Research Centre, Mälardalen University, (2002)

22. AVE - Agenten für flexible und verlässliche eingebettete Echtzeitsysteme.
http://www.ias.uni-stuttgart.de/forschung/projekte/ave.html, (2007)

http://www.omgsysml.org/#Specification

