
Adjusting a Knowledge-based Algorithm for
Multi-agent communication for CPS

E. van Baars & R. Verbrugge

Ordina Vertis B.V., Kadijk 1, 9747 AT Groningen, The Netherlands,
egon@vanbaars.com.

Department of Artificial Intelligence, University of Groningen,
Grote Kruisstraat 2/1, 9712 TS Groningen, The Netherlands,

L.C.Verbrugge@rug.nl.

Abstract. Using a knowledge-based approach we adjust a knowledge-
based algorithm for multi-agent communication for the process of cooper-
ative problem solving (CPS). The knowledge-based algorithm for multi-
agent communication [1] solves the sequence transmission problem from
one agent to a group of agents, but does not fully comply with the dia-
logue communication involved during a CPS process. A property of the
CPS dialogue communication is that the number of messages being com-
municated during one-on-one communication between the initiator and
each other agent from the group can differ. Furthermore the CPS process
can require the communication algorithm to handle changes of initiator.
We show the adjustments that have to be made to the knowledge-based
algorithm for multi-agent communication for it to handle these proper-
ties of CPS. For the adjustments of this new multi-agent communication
algorithm it is shown that the gaining of knowledge required for a suc-
cessful CPS process is still guaranteed.

1 Introduction

For cooperative problem solving (CPS) within multi-agent systems, Wooldridge
and Jennings give a model of four consecutive stages [2]. Dignum, Dunin-Kȩplicz
and Verbrugge give a more in-depth analysis of the communication and dia-
logues that play a role during these four stages [3, 4]. At every stage one agent
of the group acts as an initiator which communicates with the other agents of
the group. For a successful process of CPS the agents have to achieve an ap-
proximation of common knowledge through communication. This makes reliable
knowledge based communication essential for a CPS process. Agents communi-
cate to each other by a communication system which consists of a connection in
a communication medium between agents, together with a protocol by with the
agents send and receive data over this connection. To be reliable the connection
has to satisfy the fairness condition, leaving the protocol responsible for the
liveness and safety properties [5, 6]. Besides the liveness and safety properties a
protocol used in a CPS process has to satisfy the requirements of CPS.

In [1], Van Baars and Verbrugge derive a knowledge-based algorithm for
multi-agent communication which ensures the liveness and safety property but

does not satisfy the other requirements of CPS 1. This algorithm solves the se-
quence transmission problem [5] from one agent to a group of agents. However,
the communication during CPS is not a one-way transport of data as in the
sequence transmission problem but a dialogue type of communication. The next
message is not predefined but depends on what the answers are from the re-
ceivers [4]. A CPS process starts with an initiator communicating individually
to the other agents, referred to as one-on-one communication. After a success-
ful one-on-one communication the initiator communicates the outcome to all the
agents of the group, referred to as one-on-group communication. After a success-
ful one-on-group communication the initiator starts to communicate one-on-one
again. Although ‘one-to-group’ is a more common term used in for example com-
puter science to refer to broadcasting protocols, we rather use ‘one-on-group’ to
underline that dialogue type protocols are used.

One of the properties of the CPS dialogue communication is that the number
of messages communicated between the initiator and the other agents can differ
per agent during one-on-one communication. If for example the initiator asks if
the abilities of the agents are sufficient for a certain goal, some of the agents will
be able to answer directly. Other agents will need more information to determine
whether their abilities are sufficient or not and will answer with a request. This
property will be referred to as the asynchronous communication property.

Another property of a CPS process is the fact that the initiator can change.
At the different stages of CPS the initiator has to have different abilities [2, 4]. If
an agent has all the required abilities it can fulfill the role of initiator throughout
the whole process of CPS. If not, then different agents can fulfill the role of
initiator at different stages. During the transition from one-on-one to one-on-
group communication, the initiator always stays the same, because the initiator
agent during one-on-one communication is the only agent who has sufficient
group knowledge to start communicating one-on-group [3]. At the transition
from one-on-group to one-on-one communication however, any agent from the
group can bid to become the initiator. This property will be referred to as the
changing initiator property.

The knowledge-based algorithm from [1] cannot handle asynchronous com-
munication because it uses only one index. Introducing a separate index for each
sender-receiver pair solves this problem, but only for the situation where the ini-
tiator does not change. The initiator is the sender and it increments the indexes,
the other agents are the receivers. When the initiator changes the sender becomes
one of the receivers and one of the receivers becomes the sender. This means that
another agent now increments the indexes which can lead to several messages
with the same index but containing different data, or to parallel communication
processes. Introducing a two-index mechanism where the sender and a receiver
both increment their own index partially solves these problems. The remaining
problem is that an initiator change does not become general knowledge. The
solution for this problem is a procedure which is not embedded in the algorithm.
In this paper we will show that the algorithm from [1] can be modified to handle

1 A simulation of the protocol can be found at www.ai.rug.nl/alice/mas/macom.

the asynchronous communication property and the changing initiator property.
The modified multi-agent communication algorithm guarantees a stream of ac-
cumulating messages during a CPS process, meeting the requirements of CPS
concerning the gaining of group knowledge.

As to the methodology of this research, we use knowledge-based protocols
based on epistemic logic and analyse them using the formalism of interpreted
multi-agent systems. In this formalism, one views the sender and receivers as
agents, and the communication channel as the environment. For each of these,
their local states, actions and protocols can be modeled. The semantics is based
on runs, which can be seen as sequences of global states (tuples of local states
of agents plus environment) through discrete time. This knowledge-based ap-
proach to communication protocols has been pioneered in the work of Halpern
and colleagues [5, 7]. Because of the use of epistemic logic, it fits very well to
multi-agent systems based on BDI architectures. Nowadays in theoretical com-
puter science, another formalism, that of strand spaces, has become very pop-
ular, especially in the context of security protocols. Halpern and Pucella have
shown that strand spaces can be translated into interpreted multi-agent systems,
but not vice versa, because strand spaces are less expressive: some interesting
interpreted multi-agent systems cannot be expressed as a strand space [8].

The rest of the paper is structured as follows. Section 2 and 3 present the
problems that arise in the flexible context of teamwork and their possible so-
lutions, while section 4 gives the new knowledge-based algorithm incorporating
the feasible solutions. Section 5 presents a proof that approximations of common
knowledge are indeed attained. Finally, section 6 closes off the paper with some
conclusions and ideas about further research.

2 Adjusting the algorithm for asynchronous
communication

To handle the asynchronous communication property a separate index is needed
for every sender-receiver communication. This solution works for the situation
where the initiator stays the same agent. For example we take one group G
consisting of three agents R1, R2, and R3, G = {R1, R2, R3}. Agent R3 is the
initiating (sending) agent, temporarily denoted as S3, and the two other agents
R1 and R2 are the receivers. The index that S3 uses to communicate with R1

starts at 100 and the index that S3 uses to communicate with R2 starts at 200.
Let us work out an example. S3 sends three messages to R1, which are received
and answered by R1. These answers can be an answer to a question or request
sent by S3 or just an acknowledgement if S3 sent a statement.

In the notation below, the agents are identified by the numbers 1,2 and 3. If
an agent acts as a sender or receiver, this is denoted by S1 or R1 respectively.
The agents exchange messages and the arrow -> indicates the direction of each
message. The messages are of the form (100,_,data). The first field contains
a sequence number. The second field contains the group information. In the case
of one-on-one communication the value of this field is ‘_’ and in the case of
one-on-group communication the value of this field is ‘G’. The last field contains
the data that is sent.

1. S3 (100,_,data)-> R1

2. S3 <-(100,_,answ) R1

3. S3 (101,_,data)-> R1

4. S3 <-(101,_,answ) R1

5. S3 (102,_,data)-> R1

6. S3 <-(102,_,answ) R1

This brings the index for the next message to be sent to R1 to 103. S3 commu-
nicates two messages with R2, which are answered by R2, as follows:

1. S3 (200,_,data)-> R2

2. S3 <-(200,_,answ) R2

3. S3 (201,_,data)-> R2

4. S3 <-(201,_,answ) R2

This brings the index for the next message to be sent to R2 by S3 to 202. During
both these one-on-one communications, S3 has reached the goal for this phase
and is now ready to communicate the outcome one-on-group to R1 and R2. To
communicate the outcome, S3 has to communicate two messages one-on group,
which are answered by R1 and R2:

1. R1 <-(103,G,data) S3 (202,G,data)-> R2

2. R1 (103,_,answ)-> S3 <-(202,_,answ) R2

3. R1 <-(104,G,data) S3 (203,G,data)-> R2

4. R1 (104,_,answ)-> S3 <-(203,_,answ) R2

After this successful one-on-group communication, S3 enters the next stage in
order to communicate one-on-one again with the others in G. The indexes for the
next message to R1 and R2 are 105 and 204, respectively. Introducing a separate
index for each sender-receiver pair in the communication solves the problem
of the different number of messages sent during the one-on-one communication
phase. Does this solution also work for the situation where the initiator changes
after the one-on-group communication?

3 Adjusting the algorithm for changing initiators

The last example from the previous section ended with a successful one-on-group
communication. Let us go from there while R2 now takes over the role of ini-
tiator, temporarily denoted as S2, and the previous initiator S3 will be denoted
again as R3. The communication between S2 and R1 is straightforward. Because
S2 did not communicate tot R1 before, S2 sets a new index. The last commu-
nication between S2 and R3 was the message (203, ,answ), sent from R2 to S3.
Now, S2 wants to send some data to R3. Which index does it have to use? One
possibility could be that S2 sets a new index for this communication, starting for
example at 400. Another possibility is that S2 continues with the index used by
S3 while communicating one-on-group to R2. In this case S2 can use the same
index number, 203, as used during its last answer message to S3. Alternatively
S2 can use the next index number, 204. Let us work out these three options.
The last two communication lines of the previous one-on-group communication
are taken as a starting point and will be repeated in the examples.

Option 1, S2 sets new index:
1. R1 <-(104,G,data) S3 (203,G,data)-> R2

2. R1 (104,_,answ)-> S3 <-(203,_,answ) R2

3. R3 <-(400,_,data) S2

4. R3 (400,_,answ)-> S2

5. R3 <-(401,_,data) S2

Option 2, S2 reuses the last index number:
1. R1 <-(104,G,data) S3 (203,G,data)-> R2

2. R1 (104,_,answ)-> S3 <-(203,_,answ) R2

3. R3 <-(203,_,data) S2

4. R3 (204,_,answ)-> S2

5. R3 <-(204,_,data) S2

Option 3, S2 uses the next index number:
1. R1 <-(104,G,data) S3 (203,G,data)-> R2

2. R1 (104,_,answ)-> S3 <-(203,_,answ) R2

3. R3 <-(204,_,data) S2

4. R3 (204,_,answ)-> S2

5. R3 <-(205,_,data) S2

All the above options show some anomalies in the index numbering with respect
to being an accumulating stream of messages. For option 1, there are two different
consecutive communication streams between agent 2 and 3. This can lead to
parallel communication streams if agent 3 continues communicating as initiating
agent S3 to agent 2, while agent 3 as receiver R3 also receives messages from
S2. Two parallel communication processes between two agents about the same
process are prone to communication errors and should be avoided.

For option 2, there are two anomalies. The first one is that in the one-on-
one communication the receiver is the agent who increases the index with every
answer instead of the sender. So, when R3 sends an answer, it acknowledges
an index it did not receive yet. The second anomaly can arise at the second
time agent 2 sends a message with the same index. If the previous message
was just an acknowledgement, then there is no problem. Acknowledgements do
not occupy an index number, otherwise we would end up with acknowledging
acknowledgements [9]. If R2 sent data instead of just an acknowledgement to
agent 3 in the first message, then agent 2 cannot send another message with the
same index number. When agent 3 answers with just an acknowledgement, agent
2 does not know whether agent 3 acknowledged the first or the second message.
For option 3, agent 3 might send a next message (204, ,data) to agent 2 and
receive from agent 2 a message (204, ,data) instead of (204, ,answ). Both agents
then sent a data message with index 204 and also received a data message while
both agents expected an answer message. This situation should be avoided.

3.1 Two-index mechanism to the rescue

How can these problems be solved? The transmission control problem (TCP)
makes use of two indexes per connection [10, 9]. One index is configured by the
sender and the other index is configured by the receiver. Thus every message
contains a sequence number as well as an acknowledgement of the last consec-
utive sequence number that is received. Could this two-index system solve the
index numbering problems? Let us look at a one-on-one communication process
ending with a one-on-group communication. Agent S3 sends two messages to
agent R1 which are answered by agent R1, and sends one message to agent R2

which is answered by agent R2. Next agent S3 sends one message one-on-group
to agent R1 and R2 which is answered by both agents after which agent S3 starts
communicating one-on-one to agent S1 and S2 again. In his first message to an
agent, the sender conveys only its own sequence number. When the receiver re-
ceives this, it initiates its own sequence number and answers with a message
containing this number together with the acknowledged sequence number from
the sender. Thus after two messages, the sender and receiver know each other’s
sequence numbers. The messages are now of the form (100,200,_,data). The
first field contains the sequence number of the agent that sends the message.
The second field contains the acknowledged sequence number of the message the
agent is reacting to. The third field contains the group information and the last
field contains the data that is sent.

1. R1 <-(100,_,_,data) S3

2. R1 (200,100,_,answ)-> S3

3. R1 <-(101,200,_,data) S3 (300,_,_,data) --> R2

4. R1 (201,101,_,answ)-> S3 <-(400,300,_,answ) R2

5. R1 <-(102,201,G,data) S3 (301,400,G,data)-> R2

6. R1 (202,102,_,answ)-> S3 <-(401,301,_,answ) R2

This works straightforwardly, so let us look how this two-index mechanism works
when the initiator changes. Lines 5 and 6 from the previous communication
schema are used as starting point, and agent 2 becomes the sender. The first
option with the one index mechanism was that S2 set a new index to commu-
nicate with R3. There are already two indexes between S2 and R3, so it is not
necessary to set a new index. S2 and R3 start communicating one-on-one, contin-
uing the use of the indexes they already used during the previous one-on-group
communication. This eliminates the problem of two parallel communication pro-
cesses between both agents. There are now two options left for S2 when using
the two-index number mechanism. The first one is that it reuses the last index
number and the other one is that it uses the next index number. Worked out,
these options look as follows.
Option 1, S2 reuses the last index number:
1. R1 <-(102,201,G,data) S3 (301,400,G,data)-> R2

2. R1 (202,102,_,answ)-> S3 <-(401,301,_,answ) R2

3. R3 <-(401,301,_,data) S2

4. R3 (302,401,_,answ)-> S2

5. R3 <-(402,302,_,data) S2

Option 2, S2 uses the next index number:
1. R1 <-(102,201,G,data) S3 (301,400,G,data)-> R2

2. R1 (202,102,_,answ)-> S3 <-(401,301,_,answ) R2

3. R3 <-(402,301,_,data) S2

4. R3 (302,402,_,answ)-> S2

5. R3 <-(403,302,_,data) S2

For option 1, the anomaly of the receiver increasing the index (as happened with
one index) does not occur. However, the second anomaly still exists. Agent 2 still
sends two messages with the same index number containg different data. For
option 2, agent 2 sends two messages with the same acknowledgement number
but increases its own sequence number. Again a similar problem can arise as
with the single index number mechanism. It is possible that agent 3 sends a next
message, (302,401, ,data), to agent 2 while it receives from agent 2 a message
(402,301, ,data) instead of (402,302, ,answ). As can be seen, the index numbering
is now completely messed up. Both agents won’t know how to proceed so this
situation should be avoided.

3.2 Who’s the ‘boss’

Using a two-index mechanism solves some but not all of the problems that arise
while the initiator changes. The problems that are left have one and the same
cause. When another agent becomes the initiator, this is not general knowledge.
Another agent from the group can start acting as an initiator while the current
initiator continues acting as an initiator as well. This leads to problems between
these two agents as discussed in section 3.1, but also leads to problems for the
other agents in the group which continue to act as receivers. These agents start
getting one-on-one communication messages about the next stage from different
agents acting as initiator. Obviously this is not a workable situation. To solve
this problem, the algorithm has to provide a mechanism that prevents that more
than one agent acts as initiator.

An initiator change takes place at the transition from a successful one-on-
group communication to the next one-on-one communication process. The solu-
tion for preventing multiple concurrent initiators is that if any new agent wants
to act as initiator, this agent notifies the current initiator of this fact. Every
potentially new initiator sends a request with its acknowledgement of the last
one-on-group message. The current initiator now knows whether there are other
candidate initiators and can decide whether it continues as an initiator itself, or
allows one of the other agents to act as initiator. If the current initiator decides
to stay on, it continues communicating one-on-one concerning the next stage. As
soon as an agent that announced itself as a new initiator receives the first one-
on-one communication message from the sender, it knows that it should not act
as initiator. If the current initiator decides that one of the other agents can take
over, it sends a message one-on-one to this agent confirming that it is the new
initiator. After the initiator for the next stage receives this message, it knows
its new role and starts communicating messages one-on-one concerning the next
stage. As soon as the other agents that announced themselves as new initiator
receive the first one-on-one communication message from the new initiator they

know that they should not act as an initiator. We assume that agents involved
in CPS are cooperative, so if one of the other agents has better resources for
being the new initiator, the current initiator shall transfer the role of initiator
to that agent.

Let us work two examples. In both, the current initiator and two other agents
want to act as initiator. In the first example, the initiator changes and in the
second example, the initiator stays the same. The fact that an agent announces
itself as a potential initiator for the next stage is represented by the value init
in the data field. If the current initiator decides that another agent can have the
role of initiator, it sends a message containing answ into the data field.
Example 1, S2 as initiator after init request from R1 and R2.
1. R1 <-(102,201,G,data) S3 (301,400,G,data)-> R2

2. R1 (202,102,_,init)-> S3 <-(401,301,_,init) R2

3. S3 (302,401,_,answ)-> R2

4. R3 <-(402,302,_,data) S2 (500,_,_,data)-> R1

5. R3 (303,402,_,answ)-> S2 <-(600,500,_,answ) R1

6. R3 <-(403,303,_,data) S2 (501,600,_,data)-> R1

Example 2, S3 stays the initiator after init request from R1 and R2.
1. R1 <-(102,201,G,data) S3 (301,400,G,data)-> R2

2. R1 (202,102,_,init)-> S3 <-(401,301,_,init) R2

3. R1 <-(103,202,_,data) S3 (302,401,_,data)-> R2

4. R1 (203,103,_,answ)-> S3 <-(402,302,_,answ) R2

5. R1 <-(104,203,_,data) S3 (303,402,_,data)-> R2

6. R1 (204,104,_,answ)-> S3 <-(403,303,_,answ) R2

In the above two examples, no anomalies in the index numbering are present.
The combination of the two-index mechanism together with the mechanism that
regulates the change of the initiator handles the problems that could occur when
the initiator changes during the CPS process.

4 CPS specific Algorithm

In sections 2 and 3 it was shown which adjustments had to be made to ensure
the group’s appropriate gain of knowledge for the asynchronous communication
and the changing initiator. Let us have a look at the adjusted algorithm. The
messages from the algorithm from [1] have the following form:

Ksource(destination,−, group, position,−, data).
The fields filled with “−” are the checksum and window size fields which deal
with package mutation errors and congestion control [11, 10]. As discussed in
section 3, an algorithm for CPS needs an index mechanism consisting of two
indexes. The window size is used for the sliding window [9] mechanism which
will not be used during dialogue type of communication. This allows us to use the
window size field as the second index field. Because the checksum field does not
contribute to the gaining of knowledge it will be filled with “−”. The first index
contains the sequence number of the agent who is sending the message, and the
second index field contains an acknowledgement of the sequence of the message
this agent is reacting to. These fields will be called the sequence field and the

acknowledgement field, respectively. The message used by the CPS algorithm
has the following form:

Ksource(destination,−, group, sequence, acknowledgement, data)
Here follows a description of the fields in the message from the CPS algorithm.
source = source port where this message is sent from [S,Ri];
Ksource = the source who sends this message knows this message;
destination = destination port of message [S,Ri];
group = group receivers to which the message is sent [RG,−] (“−” means that
the sender communicates only to the destination (one-on-one communication));
sequence = sequence number of message from agent who sends this message;
acknowledgement = sequence number of message that agent is reacting to;
data = data that has to be transmitted.

The next table explains variables and functions as used in the CPS algorithm:
Acknowledgement

ack Ri : Used by S. Acknowledged sequence number received from Ri

seqSRi : Used by S. Sequence number of messages S is sending to Ri

seqS : Used by Ri. Sequence number of messages Ri is receiving from S
seqRi : Used by Ri. Sequence number of messages Ri is sending to S
seqRi : Used by S. Sequence number of messages S is receiving from Ri

Data
compose() : Used by S and Ri. Agent makes up the data it wants to send

4.1 CPS algorithm

The algorithm consists of four parts. Both sender and the receiver have an algo-
rithm that handles incoming messages and an algorithm that handles outgoing
messages. The lines in bold face are the lines from the algorithm and the lines
between curly brackets contain some comments on them. The numbers at the
beginning and at the end of the comments represent the line numbers at which
the commented block of code begins or ends, respectively.

Sender (incoming packages)
1 for (i = 1 to n) do
{For all agents who sender is sending to, ... }

2 ack Ri = seqSRi

{... initialize the acknowledgement number.}
3 end
{ack Ri’s initialized}

4 while true do
{Get ready for receiving acknowledgements from the receivers, ... [11]}

5 when received KRi(S,−,−, seqRi, seqSRi, data) do
{You have received a package. Prepare for processing, ... [10]}

6 if (seqSRi = ack Ri + 1) do
{If this acknowledgement from Ri is equal to the next ack Ri, ... [9]}

7 ack Ri = seqSRi

{... this is the new current acknowledgement from Ri, ...}
8 store KSKRi(S,−,−, seqRi, seqSRi, data)

{... store the fact that you know that Ri knows it.}

9 end
{[6] ... acknowledgement from Ri, and highest group acknowledgement
updated.}

10 end
{[5] ... finished processing of incoming package.}

11 end
{[4].}

Sender (outgoing packages)
1 for (i = 1 to n) do
{For all receiving agents.}

2 if not seqSRi do
{If S did not communicate to Ri before}

3 seqSRi = x
{Initiate own sequence number for Ri at x}

4 end
{seqSRi initiated.}

5 end
{seqSRi for all receiving agents initiated.}

6 while true do
{Start sending sequence of messages, ... [20]}

7 compose(data)
{... ,make up the data for this package, ...}

8 store KS(−,−, G,−,−, data)
{... and store this information in your knowledge base.}

9 while (∃ ack Ri 6= seqSRi) do
{While not all receivers acknowledged the package with sequence seqSRi, ... [15]}

10 for (i = 1 to n) do
{... and for all receiving agents, ... [14]}

11 if not KSKRi(−,−, G, seqRi + 1, SeqSRi, data) do
{... check if package ‘seqSRi’ has not been acknowledged yet by Ri, ... [13]}

12 send KS(Ri,−, G, seqSRi, seqRi, data)
{... (re)send the package to Ri.}

13 end
{[11] ... A package that was unacknowledged by Ri, has been resent.}

14 end
{[10] ... A package has been resent to all agents that didn’t acknowledge it.}

15 end
{[9] ... all agents Ri have acknowledged package with sequence number seqSRi.}

16 for (i = 1 to n) do
{For all receiving agents, ... [19]}

17 seqRi = seqRi + 1
{Sequence number of next message from Ri is known. Increment seqRi.}

18 seqSRi = seqSRi + 1
{Increment own sequence number for Ri.}

19 end
{[16] ... Sequence numbers for and from Ri updated.}

20 end
{[6].}

Receiver (incoming packages)
1 while true do
{Get ready for receiving sequence of messages, ... [5]}

2 when received KS(Ri, G,−, seqS, seqRi, data) do
{You have received a package (from S). Prepare for processing, ... [4]}

3 store KRiKS(−,−, G, seqS, seqRi, data)
{Store the received package.}

4 end
{[2] ... finished processing incoming package.}

5 end
{[1].}

Receiver (outgoing packages)
1 when KRiKS(Ri,−, G, x, ∅, data)
{The first message is received.}

2 seqS = x
{The first sequence number from S is x.}

3 seqRi = y
{Initiate own sequence number at y.}

4 while true do
{Get ready to acknowledge incoming packages, ... [11]}

5 compose(data)
{Make up the data for this message. (Possibly a request to act as initiator.)}

6 while not KRiKS(Ri,−, G, seqS + 1, seqRi, data) do
{Still not received package with ’seqS+1’ (and ’seqRi’), ... [8]}

7 send KRi(S,−,−, seqRi, seqS, data)
{... (re)send data package.}

8 end
{[6] ... You’ve received message seqS+1 wiht acknowledgement seqRi}

9 seqS = seqS+1
{You know the sequence number of the next message. Increment seqS.}

10 seqRi = seqRi+1
{Increment own sequence number, seqRi.}

11 end
{[4].}

5 Analysis of epistemic properties of the algorithm

For the adjustments as discussed in section 2 and 3 we showed informally that
they ensure the required knowledge gaining for CPS. In this section we will
prove for the adjusted algorithm that if it is used during CPS communication,
the agents achieve an approximation of general knowledge.

5.1 Logical background: knowledge and time
When proving properties of knowledge-based protocols, it is usual to use seman-
tics of interpreted systems I representing the behaviour of processors over time
(see [7]). We give a short review. At each point in time, each of the processors
is in some local state. All of these local states, together with the environment’s
state, form the system’s global state at that point in time. These global states

form the possible worlds in a Kripke model. The accessibility relations are de-
fined according to the following informal description. The processor R “knows”
ϕ if in every other global state which has the same local state as processor R,
ϕ holds. In particular each processor knows its own local state; for the environ-
ment, there is no accessibility relation. The knowledge relations are equivalence
relations, obeying the well-known epistemic logic S5C

n (see [7]), including e.g. the
knowledge axiom Kiϕ⇒ ϕ, i = 1, ..., n, as well as axioms governing general and
common knowledge such as EGϕ ⇔

∧
i∈GKiϕ and CGϕ ⇒ EG (ϕ ∧ CGϕ). We

use abbreviations for general knowledge at any finite depth. Inductively, E1
Gϕ

stands for EGϕ and Ek+1
G ϕ is EGϕ

(
Ek

Gϕ
)
.

A run is a (finite or infinite) sequence of global states, which may be viewed as
running through time. Time here is taken as isomorphic to the natural numbers.
There need not be any accessibility relation between two global states for them
to appear in succession in a run. Time clearly obeys the axioms of the basic
temporal logic Kt (see [12]), in which the following principle (A) is derivable:
(A) P (2ϕ)→ 2ϕ
To further model time, we extend S5C

n with the following mixed axiom:
KT1. Ki2ϕ→ 2Kiϕ, i = 1, ..., n
This axiom holds for systems with perfect recall [13]. Halpern et al. [13] present
a complete axiomatization for knowledge and time, however in this article we
only need the axiom KT1.
As for notation, global states are represented as (r,m) (m-th time-point in run
r) in the interpreted system I. In particular for the temporal operators, we have
the following truth definitions:
(I, r,m) |= 2ϕ iff (I, r,m′) |= ϕ for all m′ ≥ m
(I, r,m) |= Pϕ iff (I, r,m′) |= ϕ for some m′ < m

5.2 Proof of the increase of group knowledge

For the readability of the proof, the form of the package is shortened to
Ksource(sequence, data). We assume that the group stays unchanged and we
assume that the sender S sends to a receiver Ri and vice versa, so the destination
and group field are left out. Further it is assumed that no mutation errors occur
so the checksum field is also left out. For the proof we only use the sequence num-
ber; the acknowledgement number is left out. In the next table some formulas
with their informal meanings are given, that will be used in the rest of the article.

Formulas Descriptions
KRi

(p, α) Receiver i knows that the p-th data segment is α;
similar for KS (p, α)

KRi (p,−) Receiver i knows the value of the p-th data segment;
similar for KS (p,−)

EG (p, α) Every agent in group G knows that the p-th data segment is α
EG (p,−) Every agent in group G knows the value of the p-th data segment
Ek

Gϕ Group G has depth k general knowledge of ϕ
RG G is the current group of receivers
Pϕ At some moment in the past on this run, ϕ was true
2ϕ ϕ is now and will always be true on this run

Theorem 1. Let R be any set of runs consistent with the knowledge-based al-
gorithm from section 4 where:
– the environment allows for deletion and reordering errors, but no other kinds;
– The safety property holds (so that at any moment the sequence Y of data

elements received by each Ri is a prefix of the infinite sequence X of data
elements on S’s input tape).

Then for all runs in R and all k ≥ 0, j ≥ 0 the following hold:
[Forth]: Ri stores KRi

KS (j + k, α)→ 2KRi
KS (EGKS)k (j, α) .

[Back i]: S stores KSKRi (j + k,−)→ 2KSKRiKS (EGKS)k (j,−) .
[Back G]: S stores KSEG (j + k,−)→ 2KS (EGKS)k+1 (j,−) .

In the proof below we use a general principle from temporal logic (A), and
some consequences we can derive from the assumptions of the theorem (B & C).

A P (2ϕ)→ 2ϕ
B Because R is consistent with the knowledge-based algorithm, S and Ri store

all relevant information from the packages that they receive. Moreover, pack-
ages that are sent have the following form: KRiϕ or KSϕ, from which the
following can be concluded. If Ri receives KSϕ, then Ri stores KRiKSϕ,
thus also 2KRi

KSϕ. Similarly for S.
C Under the same assumption of R being consistent with the knowledge-based

algorithm, system R can be viewed as a system of perfect recall. Now we
have in general that KS2ϕ→ 2KSϕ, see axiom KT1.

Proof
We prove theorem 1 by induction on k. First we look at the situation for k = 0.
From B follows the Forth-part for (k = 0) namely

Ri stores KRi
KS (j, α)→ 2KRi

KS (j, α) . (1)
Ri sends an acknowledgement only if it received a package. Together with A and
B we have:

if Ri sends KRi
(j,−) then P (Ri stores KS (j, α)) , (2)

so P2KRi
KS (j, α) , and 2KRi

KS (j, α) .
S only stores an acknowledgement if it also received it from Ri, thus it knows
that Ri has sent it in the past.

If S stores KSKRi
(j,−) then KSP (Ri sends KRi

(j,−)) ... (3)
With A, C and the fact proven at (2) it can now be derived that:
KSP (2KRiKS (j,−)) , and KS2KRiKS (j,−) , so 2KSKRiKS (j,−) . (4)

If (3) and (4) are put together, then we have the Back i-part of the theorem for
the j-th data segment (k = 0).
S receives acknowledgements from all the receivers and is able to retrieve infor-
mation out of this. We go back two steps and look at another knowledge level
of S instead of the knowledge level between S and just one receiver.
S only stores acknowledgements if it did receive those. If S has received acknowl-
edgements of a certain package from RG where G = {1, ..., n} then S knows that
Ri<i=1..n> have sent these acknowledgements in the past.

If S stores KSEG (j,−) then KSP (Ri<i=1..n> sends KRi
(j,−)) ... (5)

With A, C and the fact proven at (2) it can now be deduced that:

KSP (2EGKS (j,−)) , and KS2EGKS (j,−) , so 2KSEGKS (j,−) . (6)

If (5) and (6) are put together, then we have the Back G-part of the theorem
for the j-th data segment (k = 0). What knowledge about the j-th data segment
will emerge for k 6= 0? This will be shown in the induction step.

Induction step Suppose as induction hypothesis that Back i, Back G and
Forth are valid for k− 1, with k ≥ 1. Now a proof follows that Forth, Back i,
and Back G are also valid for k.

[Forth]: S only starts sending packages with position mark (j + k) if it has re-
ceived from all the receivers Ri an acknowledgement for package with position
mark (j + (k − 1)):.

S sends KS (j + k, α)→ P (S stores KSEG (j + (k − 1) ,−)) . (7)

With the Back G-part of the theorem for k − 1 and A, the following can be
deduced:

S sends KS (j + k, α)→ 2KS (EGKS)k (j,−) . (8)
Ri knows this fact. So if Ri receives a package from S with position mark j + k,
then Ri knows that S has sent this package somewhere in the past. From the
fact given at (8) together with A and B, the following can be derived:

Ri stores KRi
KS (j + k, α)→ 2KRi

KS (EGKS)k (j,−) . (9)

This is exactly what the Forth-part of the theorem says.

[Back i]: Ri only sends an acknowledgement for the (j + k)-th data element if
he did store KRi

KS (j + k,−) in the past. With A, now the following can be
derived:

Ri sends KRi
(j + k,−)→ 2KRi

KS (EGKS)k (j,−) . (10)
S knows this fact. So if S receives an acknowledgement from Ri for the (j + k)-th
data segment, then S knows that Ri has sent this acknowledgement in the past.
Using A and B it can now be concluded that:

S stores KSKRi
(j + k,−)→ 2KSKRi

KS (EGKS)k (j,−) . (11)

and this is exactly the Back i-part of the theorem.

[Back G]: S receives acknowledgements from all Ri. At a certain time S will
have received an acknowledgement for the (j + k)-th data segment from all Ri.
Thus,

S stores KSEG (j + k,−) .
With A and B it can now be concluded that:

S stores KSEG (j + k,−)→ 2KS (EGKS)k+1 (j,−) . (12)

and this is exactly the Back G-part of the theorem.

6 Conclusion and Future Work

This research falls in the tradition of using interpreted multi-agent systems to
analyze communication protocols, and extends knowledge-based analysis of file
transmission protocols such as [5, 10, 14]. Our aim has been to make commu-
nication protocols much more flexible than file transmission protocols, in order
to adapt them to dialogue-based cooperative problem solving (CPS). There,
more interactive inter-group communication is needed than can be achieved by
simple broadcasts from an initiator to the rest of his team. In this paper a
knowledge-based algorithm for multi-agent communication [1] is adjusted for di-
alogue communication in teamwork. It is shown how the protocol handles the
different numbers of messages between the initiator and different members and
the changing initiator property, guaranteeing the knowledge gain required for
CPS. An algorithm supporting the dynamic properties of CPS communication
provides a flexible approach for CPS.

This research complements other literature that aims to make Wooldridge’s
and Jennings’ CPS model [2] more flexible, for example, [15] where the needed
group attitudes for teamwork are adjusted to properties of the environment and
the organization. Durfee et al. present another model of CPS [16]. Their idea
of partial global planning, where plan execution is interleaved with stages of
gradually specifying the global plan in more detail, seems to be an appropriate
model for, e.g., long term software development projects, where teams change
over time. It would be interesting to see whether communication during CPS
based on such more flexible models can be handled similarly to the knowledge-
based algorithm presented here, by a modular approach that can be instantiated
for specific models of CPS.

In the present work, we have concentrated on the types of dialogues needed
during team formation. Future work will be to investigate how protocols estab-
lishing binary social commitments during plan formation can be developed and
analyzed in an interpreted multi-agent systems framework. Chopra and Singh
have presented relevant work on commitment protocols, based on the formalism
of transition systems [17]. Lomuscio and Sergot [14] investigate the possibility
to use deontic logic in order to study agents’ violations of file transmission pro-
tocols, an issue that we have not yet investigated for our protocols but that
would make for interesting future research. It will also be interesting to design
a logic exactly suited to communication protocols such as the one-to-many pro-
tocol from [1] and the CPS adjusted algorithm given here, in a similar fashion
as the sound and complete system TDL developed by Lomuscio and Woźna
in [18] for authentication protocols. For such a system with a computationally
grounded semantics of interpreted systems, it may even be possible to develop
model checking techniques in order to check relevant properties automatically.

Acknowledgements

We would like to thank three anonymous referees for their helpful comments.

References

1. van Baars, E., Verbrugge, R.: Knowledge-based algorithm for multi-agent commu-
nication. In Bonanno, G., et al., eds.: Proceedings of the 7th Conference on Logic
and the Foundations of Game and Decision Theory, University of Liverpool (2006)
227 – 236

2. Wooldridge, M., Jennings, N.R.: The cooperative problem-solving process. Journal
of Logic and Computation 9(4) (1999) 563–592

3. Dignum, F., Dunin-Kȩplicz, B., Verbrugge, R.: Creating collective intention
through dialogue. Logic Journal of the IGPL 9(2) (2001) 289–303

4. Dunin-Kȩplicz, B., Verbrugge, R.: Dialogue in teamwork. In et al., J.M.F., ed.: Pro-
ceedings of The 10th ISPE International Conference on Concurrent Engineering:
Research and Applications, Rotterdam, A.A. Balkema (2003) 121–128

5. Halpern, J.Y., Zuck, L.D.: A little knowledge goes a long way: Simple knowledge-
based derivations and correctness proofs for a family of protocols. In: Proceedings
of the 6th ACM Symposium on Principles of Distributed Computing. (1987) 269–
280 Full version including proofs appeared in Journal of the ACM 39(3) (1992)
449–478.

6. van Baars, E.: Knowledge-based algorithm for multi-agent communication. Mas-
ter’s thesis, Department of Artificial Intelligence, University of Groningen (2006)
www.ai.rug.nl/alice/mas/macom.

7. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.: Reasoning About Knowledge. MIT
Press, Cambridge (MA) (1995)

8. Halpern, J.Y., Pucella, R.: On the relationship between strand spaces and multi-
agent systems. ACM Trans. Inf. Syst. Secur. 6(1) (2003) 43–70

9. Postel, J.: Transmission control protocol (TCP). Technical Report RFC 793,
Internet Society (September 1981) ftp://ftp.rfc-editor.org/in-notes/rfc793.txt.

10. Stulp, F., Verbrugge, R.: A knowledge-based algorithm for the internet protocol
TCP. Bulletin of Economic Research 54(1) (2002) 69–94

11. Douglas, D.E.: Internetworking with TCP/IP, Volume 1: Principles, Protocols and
Architectures. Pearson Prentice Hall, Upper Saddle River, NJ, USA (2006)

12. Goldblatt, R.: Logics of Time and Computation. Number 7 in CSLI Lecture Notes.
Center for Studies in Language and Information, Palo Alto (CA) (1992)

13. Halpern, J., van der Meyden, R., Vardi, M.: Complete axiomatizations for rea-
soning about knowledge and time. SIAM Journal on Computing 33(3) (2004)
674–703

14. Lomuscio, A., Sergot, M.: A formulation of violation, error recovery, and enforce-
ment in the bit transmission problem. Journal of Applied Logic 2 (2004) 93–116

15. Dunin-Kȩplicz, B., Verbrugge, R.: A tuning machine for cooperative problem solv-
ing. Fundamenta Informaticae 63 (2004) 283–307

16. Cox, J.S., Durfee, E.H., Bartold, T.: A distributed framework for solving the
multiagent plan coordination problem. In Dignum, F., Dignum, V., Koenig, S.,
Kraus, S., Singh, M.P., Wooldridge, M., eds.: AAMAS, ACM (2005) 821–827

17. Chopra, A.K., Singh, M.P.: Contextualizing commitment protocols. In Nakashima,
H., Wellman, M.P., Weiss, G., Stone, P., eds.: AAMAS, ACM (2006) 1345–1352

18. Lomuscio, A., Woźna, B.: A complete and decidable security-specialised logic and
its application to the TESLA protocol. In Stone, P., Weiss, G., eds.: Proceedings
of the Fifth International Joint Conference on Autonomous Agents and Multiagent
Systems, ACM Press (2006) 145–152

