Scheduling With Constraint Programming

Pascal Van Hentenryck
Brown University
Outline

- Motivation
- Jobshop Scheduling
- Asymmetric TSP with Time Windows
- Cumulative Scheduling

Pascal Van Hentenryck
Scheduling

- Very successful application area for CP
- Minimize project duration subject
 - Precedence constraints
 - Disjunctive constraints: no two tasks scheduled on the same machine cannot overlap in time

Pascal Van Hentenryck
Scheduling

Pascal Van Hentenryck
Vertical Extensions

- Model-based computing
- Based on concepts of
 - activities,
 - resources
 - precedence constraints
 - ...
- Encapsulates variables and global constraints
- Support search procedures

Pascal Van Hentenryck
Outline

- Motivation
- Jobshop Scheduling
- Cumulative Scheduling
Jobshop Scheduling

- Problem formulation
 - a set of tasks is given, e.g., 1..100
 - each task t has a duration $d(t)$
 - each task t has a machine $m(t)$ to execute
 - a set of precedence constraints (b,a)
 - a can only start when b is completed

- Goal
 - minimize the project completion time
Jobshop Scheduling

- A machine handle activities in sequence
 - Find a activity *ordering* on each machine

Pascal Van Hentenryck
Jobshop Scheduling

- Solution = a directed acyclic precedence graph

Pascal Van Hentenryck
Jobshop Scheduling

- Why is an ordering for each machine sufficient?
 - only precedence constraints left?
 - easy to solve in polynomial time
 - topological sorting (PERT)
 - transitive closure (Floyd-Warshall)
Jobshop Scheduling Model

range Jobs = 0..nbJobs-1; range Tasks = 0..nbTasks-1; range Machines = Tasks;
range Activities = 0..nbActivities+1;
int duration[Jobs,Tasks];
int machine[Jobs,Tasks];
int horizon = sum(j in Jobs,t in Tasks) duration[j,t];

Scheduler<CP> cp(horizon);
Activity<CP> a[j in Jobs,t in Tasks](cp,duration[j,t]);
Activity<CP> makespan(cp,0);

UnaryResource<CP> r[Machines](cp);

Decision Variables

Resources

Pascal Van Hentenryck
range Jobs = 0..nbJobs-1; range Tasks = 0..nbTasks-1; range Machines = Tasks;
range Activities = 0..nbActivities+1;
int duration[Jobs, Tasks];
int machine[Jobs, Tasks];
int horizon = sum(j in Jobs, t in Tasks) duration[j, t];

Scheduler<CP> cp(horizon);
Activity<CP> a[j in Jobs, t in Tasks](cp, duration[j, t]);
Activity<CP> makespan(cp, 0);

UnaryResource<CP> r[Machines](cp);
Jobshop Scheduling Model

minimize<cp>
 makespan.end()
subject to {

 forall(j in Jobs, t in Tasks: t != Tasks.getUp())
 a[j,t].precedes(a[j,t+1]);
 forall(j in Jobs)
 a[j,Tasks.getUp()].precedes(makespan);

 forall(j in Jobs, t in Tasks)
 a[j,t].requires(r[machine[j,t]]);
}
Jobshop Scheduling Modeling

\[t[1] \text{ precedes } t[2]; \]
\[\ldots \]
\[t[99] \text{ precedes } t[100] \]

\[\text{disjunctive}(t[1], \ldots, t[10]) \]
\[\text{disjunctive}(t[11], \ldots, t[20]) \]
\[\ldots \]
\[\text{disjunctive}(t[91], \ldots, t[100]) \]

end\[t[1]\] \leq \text{start}[t[2]]
Computational Model

Constraint Store

Domain store

Pascal Van Hentenryck
Disjunctive Scheduling

- A combinatorial constraint with each machine
 - all the tasks executing on the machine
- Two tasks
 - determining feasibility
 - reducing the domain of the variables
 - bound reduction
Disjunctive Constraint

- One-Machine Feasibility
Disjunctive Constraint

- **Pruning: edge finder rules**
 - select a set T of tasks and a task i such that $i \notin T$
 - determine whether i must start after all tasks of T
 - update its starting date: $E(T) + D(T)$
 - determine whether i must finish before all tasks of T
 - update its ending date: $L(T) - D(T)$
- **The edge-finder rules can be enforced in strongly polynomial time**

Pascal Van Hentenryck
Disjunctive Constraint

- Pruning: Can A_1 start first?
Disjunctive Constraint

- Pruning: Can A_1 start first?

Pascal Van Hentenryck
Disjunctive Constraint

- Pruning: A_1 must start after A_2 and A_3
Branching

- How to branch?
 - choose a machine
 - choose a task to rank first on the machine
 - on backtracking, rank not first

- Which machine?
 - tightest machine
 - e.g., the least slack

- Which task?
 - a task that can be scheduled first
 - a task which is as tight as possible

Pascal Van Hentenryck
Search Strategies

- Branching
 - specifies the tree to explore
 - does not specify how to explore it

- Search strategies
 - specifies how to explore the search tree
 - default: depth-first search
 - others:?
Limited Discrepancy search

- Assume that we have a good heuristic which make few mistakes
- Follow the heuristic (left branch)
- Trust the heuristic less and less
 - assume that it makes 1 mistake
 - then assume that it makes 2 mistakes
- The search tree is explored in waves

Pascal Van Hentenryck
Limited Discrepancy Search

Pascal Van Hentenryck
Jobshop Scheduling Search

Pascal Van Hentenryck

```plaintext
cp.setSearchController(BDSController(cp,3));
minimize<cp>
    makespan.end()
subject to {
    ...
} using {
    forall(m in Machines)  by (r[m].localSlack())
    r[m].rank();
    cp.post(makespan.end() == makespan.end().getMin());
}
```

Search

exploration

nondeterministic

ordering
The input: we are given
- a set of locations to visit
- a service time for each location
- a time window when to serve a location
- the (asymmetric) travel distance between locations

The goal: find a hamiltonian path
- satisfying the time windows
- minimizing the travel distance

Asymmetric TSP with Time Windows

Pascal Van Hentenryck
Asymmetric TSP with Time Windows
Asymmetric TSP with Time Windows

Pascal Van Hentenryck
The CP Model

Scheduler<CP> cp(0,horizon);
Activity<CP> act[i in Activities](cp,service[i],i);
UnaryResource<CP> vehicle(cp,transitionTimes);
minimize<cp>
 vehicle.getSumTransitionTimes()
subject to
 forall(i in Activities) {
 cp.post(act[i].start() >= ws[i]);
 cp.post(act[i].start() <= we[i]);
 act[i].requires(vehicle);
 }
using {
 vehicle.sequenceForward();
 forall(i in Activities) label(act[i].start());
}
Dual Modelling

- Scheduling Model
 - reasons about the start dates, time windows
 - disjunctive constraint
- Routing Model
 - reasons about the successor/predecessor
 - Hamiltonian path constraints
 - assignment constraint for the transition times
- Communication constraints

Pascal Van Hentenryck
The Assignment Constraint

\[\text{succ}_0 \rightarrow t_{12} \rightarrow 1 \]
\[\text{succ}_1 \rightarrow t_{23} \rightarrow 2 \]
\[\text{succ}_2 \rightarrow 3 \]
\[\text{succ}_3 \rightarrow 4 \]
\[\text{succ}_4 \rightarrow t_{54} \rightarrow 5 \]

\[\leq B \]

Pascal Van Hentenryck
Constraint Solving

Constraint Store

Domain store

Assignment

disjunctive

start

successors

path

Pascal Van Hentenryck
Large Neighborhood Search

- Combination of local search and CP
 - start with a feasible solution (CP)
 - relax part of the best solution found so far
 - select a subpath in the solution
 - select a random set of variables
 - optimize the resulting problem using CP
 - it is a very constrained combinatorial space
 - iterate the last two steps

Pascal Van Hentenryck
Asymmetric TSP with Time Windows

Pascal Van Hentenryck
Asymmetric TSP with Time Windows

Pascal Van Hentenryck
Experimental Results

<table>
<thead>
<tr>
<th></th>
<th>BK</th>
<th>300s</th>
<th>600s</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>386</td>
<td>386</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>492</td>
<td>487</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>488</td>
<td>484</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>414</td>
<td>414</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>1048</td>
<td>1048</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>1052</td>
<td>1051</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>1111</td>
<td>1093</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>1410</td>
<td>1409</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>1400</td>
<td>1382</td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>1792</td>
<td>1783</td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>1897</td>
<td>1870</td>
<td>1799</td>
</tr>
<tr>
<td>193</td>
<td>2452</td>
<td>2433</td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>2296</td>
<td>2234</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>2786</td>
<td>2683</td>
<td></td>
</tr>
</tbody>
</table>

- Ascheuer, Fischetti, Grötschel, 2001
- Industrial application in robotic
- 5 hours of CPU Time

Pascal Van Hentenryck
Cumulative Scheduling

Problem formulation
- A set of tasks is given, e.g., 1..100
- Each task t has a duration $d(t)$
- Each task t has a machine $m(t)$ to execute
- A set of precedence constraints (b,a)
 - a can only start when b is completed
- Each machine has a capacity, i.e., a maximum number of activities that can be executed simultaneously

Goal
- Minimize the project completion time
int capacity = 8; int nbTasks = 34;
range Tasks = 1..nbTasks;
int duration[Tasks] = …
int totalDuration = sum(t in Tasks) duration[t];
int demand[Tasks] = …
tuple P { int before; int after; }
set{P} setOfPrecedences = …

Scheduler<CP> cp(totalDuration);
Activity<CP> a[t in Tasks](cp,duration[t]);
DiscreteResource<CP> d(cp,capacity);
Activity<CP> makespan(cp,0);
minimize<cp>
 makespan.end()
subject to {
 forall(t in Tasks)
 a[t].precedes(makespan);
 forall(p in setOfPrecedences)
 a[p.before].precedes(a[p.after]);
 forall(t in Tasks)
 a[t].requires(d,demand[t]);
} using {
 setTimes(a);
}
Cumulative Scheduling Search

- **Basic ideas**
 - Not sufficient to order the tasks
 - Must choose starting times for the tasks

- **Value/Variable Search**
 - Choose the earliest time at which an activity can be scheduled
 - Nondeterministically choose an activity to start there
 - May use dominance rules to decide which activities to consider
Large Neighborhood Search

- Key idea: partial order schedule

 - First step
 - relax a number of activities
 - remove them from the schedule

 - Second step
 - use the resources to impose new precedence constraints
 - do not fix variables to their values
Cumulative Scheduling

```
minimize<cp>
    makespan.end()
subject to { ...}
using setTimes(a);
onRestart {
    Solution s = cp.getSolution();
    if (s!=null) {
        set{Activity<CP>} R();
        forall(a in Activities)
            if (distr.get() <= Pr)
                R.insert(a);
        cp.relaxPOS(s,R);
    }
}
```
The Trolley Problem

Pascal Van Hentenryck
The Trolley Problem

- Model the trolley as a state resource
 - the state represents the location of the trolley
 - all activities use the trolley except the actual processing on the machine
The Trolley Problem (I)

```pascal
enum Jobs = {j1,j2,j3,j4,j5,j6};
enum Tasks =
  {loadA,unload1,process1,load1,unload2,process2,load2,unloadS};
enum Locations = {m1,m2,m3,areaA,areaS};

Locations location[Jobs,Tasks];
int duration[Jobs,Tasks];

Scheduler<CP> cp(horizon);
StateResource<CP> trolley(cp,Locations);
UnaryResource<CP> machine[Locations](cp);
Activity<CP> act[j in Jobs,t in Tasks](cp,duration[j,t],location[j,t]);
Activity<CP> makespan(cp,0);```

Pascal Van Hentenryck
The Trolley Problem (I)

```pascal
minimize<cp> makespan.end()
subject to {
 forall(j in Jobs, t1 in Tasks, t2 in Tasks: t1 < t2)
 act[j,t1].precedes(act[j,t2]);
 forall(j in Jobs) {
 act[j,process1].requires(machine[job[j].machine1]);
 act[j,process2].requires(machine[job[j].machine2]);
 }
 forall(j in Jobs, t in Tasks: t != process1 && t != process2)
 act[j,t].requires(trolley,location[j,t]);
 forall(j in Jobs)
 act[j,unloadS].precedes(makespan);
}
using {
 setTimes(all(j in Jobs, t in Tasks) act[j,t]);
 label(makespan.start());
}
```

Pascal Van Hentenryck
The Trolley Problem (II)

- Adding transition times between the machines

```plaintext
int tt[Locations,Locations] = [
 [0, 50, 60, 50, 90],
 [50, 0, 60, 90, 50],
 [60, 60, 0, 80, 80],
 [50, 90, 80, 0, 120],
 [90, 50, 80, 120, 0]
];
```
The Trolley Problem (II)

```c
enum Jobs = {j1,j2,j3,j4,j5,j6};
enum Tasks =
 {loadA, unload1, process1, load1, unload2, process2, load2, unloadS};
enum Locations = {m1,m2,m3,areaA,areaS};
Locations location[Jobs,Tasks];
int duration[Jobs,Tasks];

Scheduler<CP> cp(horizon);
StateResource<CP> trolley(cp, Locations, tt);
UnaryResource<CP> machine[Locations](cp);
Activity<CP> act[j in Jobs, t in Jobs](cp, duration[j, t], location[j, t]);
Activity<CP> makespan(cp, 0);

Pascal Van Hentenryck
```
The Trolley Problem (III)

- Adding a capacity on the Trolley
  - Use activities to track when a job uses the trolley
  - Use a discrete resource

- The trolley is modeled by two resources
  - a state resource to denote its location
  - a discrete resource to denote its load

- Synchronization constraints

Pascal Van Hentenryck
The Trolley Problem (III)

- Resources + Activities

```cpp
eenum TrolleyTasks = {onTrolleyA1, onTrolley12, onTrolley2S};
Scheduler<CP> cp(horizon);
UnaryResource<CP> machine[Locations](cp);
StateResource<CP> trolley(cp, Locations);
DiscreteResource<CP> trolleyCapacity(cp, 3);
Activity<CP> act[j in Jobs, t in Jobs]
 (cp, duration[j, t], location[j, t]);
Activity<CP> tact[j in Jobs, t in TrolleyTasks]
 (cp, 2*loadDuration..horizon);
Activity<CP> makespan(cp, 0);
```

Pascal Van Hentenryck
The Trolley Problem (III)

Specifying the trolley activities

forall(j in Jobs) {
    cp.post(tact[j,onTrolleyA1].start() == act[j,loadA].start());
    cp.post(tact[j,onTrolleyA1].end() == act[j,unload1].end());
    cp.post(tact[j,onTrolley12].start() == act[j,load1].start());
    cp.post(tact[j,onTrolley12].end() == act[j,unload2].end());
    cp.post(tact[j,onTrolley2S].start() == act[j,load2].start());
    cp.post(tact[j,onTrolley2S].end() == act[j,unloadS].end());
}
forall(j in Jobs, t in TrolleyTasks)
    tact[j,t].requires(trolleyCapacity,1);