Description Logics and Ontologies: myths and challenges

Enrico Franconi
Free University of Bozen-Bolzano, Italy

http://www.inf.unibz.it/~franconi

Bertinoro, April 2011
Summary

- What is an Ontology
- (Description) Logics for Conceptual Modelling
- Querying a DB via a Conceptual Schema
Ontologies and Constraints

- An ontology is a formal conceptualisation of the world: a conceptual schema.
- An ontology specifies a set of constraints, which declare what should necessarily hold in any possible world.
- Any possible world should conform to the constraints expressed by the ontology.
- Given an ontology, a legal world description (or legal database instance) is a finite possible world satisfying the constraints.
An ontology language usually introduces concepts (aka classes, entities), properties of concepts (aka slots, attributes, roles), relationships between concepts (aka associations), and additional constraints.

Ontology languages may be simple (e.g., involving only concepts and taxonomies), frame-based (e.g., UML, based on concepts, properties, and binary relationships), or logic-based (e.g. OWL, Description Logics).

Ontology languages are typically expressed by means of diagrams.

Entity-Relationship schemas and UML class diagrams can be considered as ontology languages.
UML Class Diagram

Employee
- PaySlipNumber: Integer
- Salary: Integer

Manager

AreaManager

TopManager

Project
- ProjectCode: String

Manager
- Works-for: Employee (1..1)

AreaManager

TopManager

Project
- Manages: Manager (1..1)

Manager

{disjoint, complete}

Work-for

AreaManager

TopManager

Project

Description Logics and Ontologies: myths and challenges. E. Franconi.
Entity-Relationship Schema

PaySlipNumber (Integer)
Salary (Integer)

Manager

AreaManager TopManager

(1,1)

Works-for

(1,n)

Project

ProjectCode (String)

Manages

(1,1)
Ontologies, Constraints, and Logic

- A database instance is a (finite) relational structure (an interpretation).
- Constraints can be seen as (first-order) logic formulas
 - → satisfaction
 - → querying
Ontologies, Constraints, and Logic

- A database instance is a (finite) relational structure (an interpretation).
- Constraints can be seen as (first-order) logic formulas → satisfaction
- → querying

- Incomplete specification of a world description: incomplete database as a set of database instances
- An incomplete database can be expressed by means of logic formulas → entailment
- → querying
Ontologies, Constraints, and Logic

- A database instance is a (finite) relational structure (an interpretation).
- Constraints can be seen as (first-order) logic formulas → satisfaction
- → querying
- Incomplete specification of a world description: incomplete database as a set of database instances
- An incomplete database can be expressed by means of logic formulas → entailment
- → querying
- (By the way, also a single database instance can be expressed by means of logic formulas → Reiter)
The role of a Conceptual Schema: an Ontology based application
The role of a Conceptual Schema: an Ontology based application

Constraints

Conceptual Schema

Logical Schema

Data Store
The role of a Conceptual Schema: an Ontology based application

Constraints

Conceptual Schema

Logical Schema

Query

Result

Data Store
The role of a Conceptual Schema: an Ontology based application

Deduction

Constraints

Conceptual Schema

Logical Schema

Query

Result

Data Store
The role of a Conceptual Schema: an Ontology based application

- Deduction
- Constraints
- Conceptual Schema
- Logical Schema
- Query
- Result
- Data Store

Description Logics and Ontologies: myths and challenges.
E. Franconi.
The role of a Conceptual Schema: an Ontology based application
The role of a Conceptual Schema: an Ontology based application

- Deduction
 - Constraints
 - Conceptual Schema

- Query
 - Logical Schema
 - Data Store

- Query
 - Result
The role of a Conceptual Schema: an Ontology based application
The role of a Conceptual Schema: an Ontology based application
The role of a Conceptual Schema: an Ontology based application
The role of a Conceptual Schema: an Ontology based application

Description Logics and Ontologies: myths and challenges. E. Franconi.
Reasoning

Given an ontology – seen as a collection of constraints – it is possible that additional constraints can be inferred.

- A class is **inconsistent** if it denotes the empty set in any legal world description.
- A class is a **subclass** of another class if the former denotes a subset of the set denoted by the latter in any legal world description.
- Two classes are **equivalent** if they denote the same set in any legal world description.
- A **stricter** constraint is inferred – e.g., a **cardinality** constraint – if it holds in any legal world description.
- ...
Simple reasoning example

- Person
 - Italian
 - Lazy
 - LatinLover
 - English
 - Gentleman
 - Hooligan

Relationships:
- \{disjoint\}
- \{disjoint, covering\}
Simple reasoning example

Person

{disjoint}

Italian

{disjoint, covering}

Lazy

LatinLover

Gentleman

Hooligan

LatinLover = ∅

Italian ⊆ Lazy

Italian ≡ Lazy

Description Logics and Ontologies: myths and challenges. E. Franconi.
Reasoning: cute professors

Description Logics and Ontologies: myths and challenges. E. Franconi.
Reasoning: cute professors

\[\text{ItalianProf} \subseteq \text{LatinLover} \]

Description Logics and Ontologies: myths and challenges. E. Franconi.
Managers do not work for a project (she/he just manages it):

\[
\forall x. \text{Manager}(x) \rightarrow \neg \exists y. \text{WORKS-FOR}(x, y)
\]

\[
\text{Manager} \subseteq \neg \exists \text{WORKS-FOR.} \top
\]

\[
\text{Manager} \subseteq \text{Employee} \setminus \pi_1 \text{WORKS-FOR}
\]
Managers do not work for a project (she/he just manages it):

$$\forall x. \text{Manager}(x) \rightarrow \neg \exists y. \text{WORKS-FOR}(x, y)$$

Manager $$\subseteq \neg \exists \text{WORKS-FOR} \cdot \top$$

Manager $$\subseteq \text{Employee} \setminus \pi_1 \text{WORKS-FOR}$$

If the **minimum cardinality** for the participation of employees to the works-for relationship is increased, then...
The democratic company

```
Supervisor  2..2
  
  supervises

Employee  0..1

Employee ≠ ∅
```
The democratic company

implies

“the classes Employee and Supervisor necessarily contain an infinite number of instances”.

Since legal world descriptions are finite possible worlds satisfying the constraints imposed by the conceptual schema, the schema is inconsistent.
How many numbers?

Natural Number \[\overset{1..1}{\rightarrow}\] rel \[\overset{1..1}{\rightarrow}\] Even Number
How many numbers?

implies
“the classes Natural Number and Even Number contain the same number of instances”.
How many numbers?

implies
“the classes Natural Number and Even Number contain the same number of instances”.

Only if the domain is finite: Natural Number \equiv Even Number
Summary

- What is an Ontology
- *(Description) Logics for Conceptual Modelling*
- Querying a DB via a Conceptual Schema
Encoding Conceptual Schemas in (Description) Logics

- Object-oriented data models (e.g., UML and ODMG)
- Semantic data models (e.g., EER and ORM)
- Frame-based and web ontology languages (e.g., OWL)
Encoding Conceptual Schemas in (Description) Logics

- Object-oriented data models (e.g., UML and ODMG)
- Semantic data models (e.g., EER and ORM)
- Frame-based and web ontology languages (e.g., OWL)

Theorems prove that a conceptual schema and its encoding as DL knowledge bases constrain every world description in the same way – i.e., the models of the DL theory correspond to the legal world descriptions of the conceptual schema, and vice-versa.
Description Logics and Ontologies: myths and challenges. E. Franconi.

\[\text{Works-for} \sqsubseteq \text{emp}/2:\text{Employee} \sqcap \text{act}/2:\text{Project} \]

\[\text{Manages} \sqsubseteq \text{man}/2:\text{TopManager} \sqcap \text{prj}/2:\text{Project} \]

\[\text{Employee} \sqsubseteq \exists^=1[\text{worker}] (\text{PaySlipNumber} \sqcap \text{num}/2:\text{Integer}) \sqcap \exists^=1[\text{payee}] (\text{Salary} \sqcap \text{amount}/2:\text{Integer}) \]

\[\top \sqsubseteq \exists^=1[\text{num}] (\text{PaySlipNumber} \sqcap \text{worker}/2:\text{Employee}) \]

\[\text{Manager} \sqsubseteq \text{Employee} \sqcap (\text{AreaManager} \sqcup \text{TopManager}) \]

\[\text{AreaManager} \sqsubseteq \text{Manager} \sqcap \neg \text{TopManager} \]

\[\text{TopManager} \sqsubseteq \text{Manager} \sqcap \exists^=1[\text{man}] \text{Manages} \]

\[\text{Project} \sqsubseteq \exists^=1[\text{act}] \text{Works-for} \sqcap \exists^=1[\text{prj}] \text{Manages} \]

...
Relational algebra constraints

Employee/1, Manager/1, Project/1, Works-for/2

Manager ⊆ Employee

π₁ Works-for ⊆ Employee
π₂ Works-for ⊆ Project

Project ⊆ π₂ Works-for
Set-based Constraints

\begin{align*}
\text{Works-for} & \subseteq \text{Employee} \times \text{Project} \\
\text{Manages} & \subseteq \text{TopManager} \times \text{Project} \\
\text{Employee} & \subseteq \{ e | \#(\text{PaySlipNumber} \cap (\{e\} \times \text{Integer})) \geq 1 \} \\
\text{Employee} & \subseteq \{ e | \#(\text{Salary} \cap (\{e\} \times \text{Integer})) \geq 1 \} \\
\text{Project} & \subseteq \{ p | \#(\text{ProjectCode} \cap (\{p\} \times \text{String})) \geq 1 \} \\
\text{TopManager} & \subseteq \{ m | 1 \geq \#(\text{Manages} \cap (\{m\} \times \Omega)) \geq 1 \} \\
\text{Project} & \subseteq \{ p | 1 \geq \#(\text{Manages} \cap (\Omega \times \{p\})) \geq 1 \} \\
\text{Project} & \subseteq \{ p | \#(\text{Works-for} \cap (\Omega \times \{p\})) \geq 1 \} \\
\text{Manager} & \subseteq \text{Employee} \\
\text{AreaManager} & \subseteq \text{Manager} \\
\text{TopManager} & \subseteq \text{Manager} \\
\text{AreaManager} \cap \text{TopManager} & = \emptyset \\
\text{Manager} & \subseteq \text{AreaManager} \cup \text{TopManager}
\end{align*}
Managers are employees who do not work for a project (she/he just manages it):

\[
\text{Employee} \sqcap \neg (\exists^{\geq 1}[\text{emp}]\text{Works-for}) \sqsubseteq \text{Manager}, \quad \text{Manager} \sqsubseteq \neg (\exists^{\geq 1}[\text{emp}]\text{Works-for})
\]
Managers are employees who do not work for a project (she/he just manages it):
\[\text{Employee} \sqcap \neg(\exists^\geq 1[\text{emp}]\text{Works-for}) \sqsubseteq \text{Manager}, \quad \text{Manager} \sqsubseteq \neg(\exists^\geq 1[\text{emp}]\text{Works-for}) \]

\[\text{For every project, there is at least one employee who is not a manager:} \]
\[\text{Project} \sqsubseteq \exists^\geq 1[\text{act}] (\text{Works-for} \sqcap \text{emp} : \neg \text{Manager}) \]
i•com: Intelligent Conceptual Modelling

- i•com allows for the specification of multiple EER (or UML) diagrams and inter- and intra-schema constraints;
- Complete logical reasoning is employed by the tool using a hidden underlying DLR inference engine;
- i•com verifies the specification, infers implicit facts and stricter constraints, and manifests any inconsistencies during the conceptual modelling phase.

http://www.inf.unibz.it/~franconi/icom/
What is an Ontology

(Description) Logics for Conceptual Modelling

Querying a DB via a Conceptual Schema

- We will see how an ontology can play the role of a “mediator” wrapping a (source) database.
- Examples will show how apparently simple cases are not easy.
- We will learn about view-based query processing with GAV and LAV mappings.
- We introduce the difference between closed world and open world semantics in this context.
- We will see how only the closed world semantics should be used while using ontologies to wrap databases, in order for the mediated system to behave like a database (black-box metaphor)
- We will see that the data complexity of query answering can be beyond the one of SQL.
Summary

- What is an Ontology
- (Description) Logics for Conceptual Modelling
- Querying a DB via a Conceptual Schema
The role of a Conceptual Schema

Conceptual Schema → Logical Schema → Data Store
The role of a Conceptual Schema

Constraints

Conceptual Schema

Logical Schema

Data Store
The role of a Conceptual Schema

Constraints

Conceptual Schema

Logical Schema

Query

Result

Data Store
The role of a Conceptual Schema

Description Logics and Ontologies: myths and challenges.
E. Franconi.
The role of a Conceptual Schema

- **Deduction**
 - **Constraints**
 - Conceptual Schema

- Logical Schema

- Data Store

- Query

- Result
The role of a Conceptual Schema
The role of a Conceptual Schema

Deduction

Constraints

Conceptual Schema

Logical Schema

Data Store

Query

Result

Query

Result
The role of a Conceptual Schema

Description Logics and Ontologies: myths and challenges.

E. Franconi.
The role of a Conceptual Schema

Diagram:
- Conceptual Schema
- Logical Schema
- Query
- Data Store
- Deduction
- Constraints
- Result
The role of a Conceptual Schema
The role of a Conceptual Schema

Description Logics and Ontologies: myths and challenges. E. Franconi. (24/47)
Querying a Database with Constraints

- Basic assumption: _consistent_ information with respect to the constraints introduced by the conceptual schema
- A Database with Constraints: _complete information_ about each term appearing in the conceptual schema
- _Problem_: answer a query over the conceptual schema vocabulary
Querying a Database with Constraints

- Basic assumption: consistent information with respect to the constraints introduced by the conceptual schema
- A Database with Constraints: complete information about each term appearing in the conceptual schema
- Problem: answer a query over the conceptual schema vocabulary
- Solution: use a standard DB technology (e.g., SQL, datalog, etc)
Querying a Database with Constraints

Employee ⏯ Works-for ⏯ 1..* ⏯ Project

Manager
Querying a Database with Constraints

Employee = \{ John, Mary, Paul \}
Manager = \{ John, Paul \}
Works-for = \{ ⟨John, Prj-A⟩, ⟨Mary, Prj-B⟩ \}
Project = \{ Prj-A, Prj-B \}
Querying a Database with Constraints

Employee

Manager

Works-for

Project

1..*

Employee = \{ John, Mary, Paul \}
Manager = \{ John, Paul \}
Works-for = \{ \langle John, Prj-A \rangle, \langle Mary, Prj-B \rangle \}
Project = \{ Prj-A, Prj-B \}

Q(X) :- Manager(X), Works-for(X,Y), Project(Y)
⇒ \{ John \}
Querying a Database with Constraints over an extended signature (DBox)

- Having a classical database with constraints is against the principle that a conceptual schema presents a richer vocabulary than the data stores (i.e., it plays the role of an ontology).
Querying a Database with Constraints over an extended signature (DBox)

- Having a classical database with constraints is against the principle that a conceptual schema presents a richer vocabulary than the data stores (i.e., it plays the role of an ontology).
- A Database with Constraints over an extended signature (or conceptual schema with exact views, or DBox): complete information about some term appearing in the conceptual schema
- Standard DB technologies do not apply
- The query answering problem in this context is inherently complex
Querying a Database with Constraints over an extended signature (DBox)

Manager = \{ John, Paul \}
Works-for = \{ ⟨John,Prj-A⟩, ⟨Mary,Prj-B⟩ \}
Project = \{ Prj-A, Prj-B \}
Querying a Database with Constraints over an extended signature (DBox)

Manager = \{ John, Paul \}
Works-for = \{ \langle John, Prj-A \rangle, \langle Mary, Prj-B \rangle \}
Project = \{ Prj-A, Prj-B \}

Q(X) :- Employee(X)
Querying a Database with Constraints over an extended signature (DBox)

Manager = \{ \text{John, Paul} \}
Works-for = \{ \langle \text{John,Prj-A} \rangle, \langle \text{Mary,Prj-B} \rangle \}
Project = \{ \text{Prj-A, Prj-B} \}

Q(X) :\neg \text{Employee(X)}
\implies \{ \text{John, Paul, Mary} \}
Querying a Database with Constraints over an extended signature (DBox)

Manager = { John, Paul }
Works-for = { ⟨John, Prj-A⟩, ⟨Mary, Prj-B⟩ }
Project = { Prj-A, Prj-B }

Q(X) :- Employee(X)
⇒ { John, Paul, Mary }

⇒ Q’(X) :- Manager(X) ∪ Works-for(X,Y)
Andrea’s Example

Description Logics and Ontologies: myths and challenges. E. Franconi.
Andrea’s Example

Employee = \{ Andrea, Paul, Mary, John \}
Manager = \{ Andrea, Paul, Mary \}
AreaManager_p = \{ Paul \}
TopManager_p = \{ Mary \}
Supervised = \{ \langle John, Andrea \rangle, \langle John, Mary \rangle \}
Friend = \{ \langle Mary, Andrea \rangle, \langle Andrea, Paul \rangle \}
Andrea’s Example

Employee = \{ Andrea, Paul, Mary, John \}
Manager = \{ Andrea, Paul, Mary \}
AreaManager_p = \{ Paul \}
TopManager_p = \{ Mary \}
Supervised = \{ \langle John, Andrea \rangle, \langle John, Mary \rangle \}
Friend = \{ \langle Mary, Andrea \rangle, \langle Andrea, Paul \rangle \}
Andrea’s Example (cont.)

Description Logics and Ontologies: myths and challenges. E. Franconi. (30/47)
Andrea's Example (cont.)

Description Logics and Ontologies: myths and challenges. E. Franconi.
Description Logics and Ontologies: myths and challenges. E. Franconi.
Andrea's Example (cont.)

\[\text{Q} : \text{Supervised}((\text{John}, Y), \text{TopManager}(Y), \text{Friend}(Y, Z), \text{AreaManager}(Z)) \]

\[\implies \text{YES} \]
Querying a sound DB with Constraints over an extended signature (ABox)

1. Classical DB with constraints: **complete information about all** terms appearing in the conceptual schema

2. DB with constraints over an extended signature (i.e., conceptual schema with *exact views*, or DBox): **complete information about some** term appearing in the conceptual schema

3. Sound DB with constraints over an extended signature (aka conceptual schema with *sound views*, or ABox): **incomplete information about some** term appearing in the conceptual schema

 - Sound databases with constraints over an extended signature are crucial in data integration scenarios.
Exact vs Sound views

![Entity-Relationship Diagram](image)

Description Logics and Ontologies: myths and challenges. E. Franconi.
Exact views (DBox):

\[
\text{Works-for} = \{ \langle \text{John}, \text{Prj-A} \rangle, \langle \text{Mary}, \text{Prj-A} \rangle \} \\
\text{Project} = \{ \text{Prj-A}, \text{Prj-B} \}
\]
Exact vs Sound views

Exact views (DBox):

Works-for = \{ \langle John, Prj-A \rangle, \langle Mary, Prj-A \rangle \}
Project = \{ Prj-A, Prj-B \}

\implies \text{INCONSISTENT}
Exact views (DBox):

\[
\text{Works-for} = \{ \langle \text{John}, \text{Prj-A} \rangle, \langle \text{Mary}, \text{Prj-A} \rangle \} \\
\text{Project} = \{ \text{Prj-A, Prj-B} \}
\]

\[\Rightarrow \text{INCONSISTENT}\]

Sound views (ABox):

\[
\text{Works-for} \supseteq \{ \langle \text{John}, \text{Prj-A} \rangle, \langle \text{Mary}, \text{Prj-A} \rangle \} \\
\text{Project} \supseteq \{ \text{Prj-A, Prj-B} \}
\]
Querying a sound DB with Constraints over an extended signature (ABox)

\[
\text{Works-for} \supseteq \{ (\text{John}, \text{Prj-A}), (\text{Mary}, \text{Prj-A}) \} \\
\text{Project} \supseteq \{ \text{Prj-A}, \text{Prj-B} \}
\]
Querying a sound DB with Constraints over an extended signature (ABox)

\[Q(X) :- \text{Works-for}(Y,X) \]

\[\text{Works-for} \supseteq \{ \langle \text{John}, \text{Prj-A} \rangle, \langle \text{Mary}, \text{Prj-A} \rangle \} \]

\[\text{Project} \supseteq \{ \text{Prj-A}, \text{Prj-B} \} \]
Querying a sound DB with Constraints over an extended signature (ABox)

\begin{align*}
\text{Works-for} \supseteq & \{ \langle \text{John}, \text{Prj-A} \rangle, \langle \text{Mary}, \text{Prj-A} \rangle \} \\
\text{Project} \supseteq & \{ \text{Prj-A}, \text{Prj-B} \} \\
Q(X) :&= \text{Works-for}(Y,X) \\
\implies & \{ \text{Prj-A}, \text{Prj-B} \}
\end{align*}
Querying a sound DB with Constraints over an extended signature (ABox)

\[
\text{Works-for} \supseteq \{ \langle \text{John}, \text{Prj-A} \rangle, \langle \text{Mary}, \text{Prj-A} \rangle \} \\
\text{Project} \supseteq \{ \text{Prj-A}, \text{Prj-B} \}
\]

\[
Q(X) :- \text{Works-for}(Y,X) \\
\implies \{ \text{Prj-A}, \text{Prj-B} \} \\
\implies Q'(X) :- \text{Project}(X) \cup \text{Works-for}(Y,X)
\]
DBox vs ABox

Additional constraint as a standard view over the data:

- \(\text{Bad-Project} = \text{Project} \setminus \pi_2 \text{Works-for} \)
- \(\forall x. \text{Bad-Project}(x) \leftrightarrow \text{Project}(x) \land \neg \exists y. \text{Works-for}(y,x) \)
- \(\text{Bad-Project} = \text{Project} \sqcap \neg \exists \text{Works-for} \cdot \top \)
DBox vs ABox

- **Employee** ➞ **Works-for** ➞ **Project**

- **Additional constraint as a standard view over the data:**

 \[
 \text{Bad-Project} = \text{Project} \setminus \pi_2 \text{Works-for} \\
 \forall x. \text{Bad-Project}(x) \leftrightarrow \text{Project}(x) \land \neg \exists y. \text{Works-for}(y,x) \\
 \text{Bad-Project} = \text{Project} \cap \neg \exists \text{Works-for}^- \cdot \top
 \]

- **DBox:**

 \[
 \begin{align*}
 \text{Works-for} &= \{ \langle \text{John}, \text{Prj-A} \rangle, \langle \text{Mary}, \text{Prj-A} \rangle \} \\
 \text{Project} &= \{ \text{Prj-A}, \text{Prj-B} \}
 \end{align*}
 \]

- **Q(X) :- Bad-Project(X)**

- **ABox:**

 \[
 \begin{align*}
 \text{Works-for} &\supseteq \{ \langle \text{John}, \text{Prj-A} \rangle, \langle \text{Mary}, \text{Prj-A} \rangle \} \\
 \text{Project} &\supseteq \{ \text{Prj-A}, \text{Prj-B} \}
 \end{align*}
 \]

- **Q(X) :- Bad-Project(X)**

Description Logics and Ontologies: myths and challenges. E. Franconi.
DBox vs ABox

- Additional constraint as a standard view over the data:
 \[
 \text{Bad-Project} = \text{Project} \setminus \pi_2 \text{Works-for}
 \]
 \[
 \forall x. \text{Bad-Project}(x) \leftrightarrow \text{Project}(x) \land \neg \exists y. \text{Works-for}(y, x)
 \]
 \[
 \text{Bad-Project} = \text{Project} \cap \neg \exists \text{Works-for}^-. \top
 \]

- **DBox:**
 \[
 \text{Works-for} = \{ \langle \text{John}, \text{Prj-A} \rangle, \langle \text{Mary}, \text{Prj-A} \rangle \} \\
 \text{Project} = \{ \text{Prj-A}, \text{Prj-B} \}
 \]

- **Q(X) :- Bad-Project(X)**
 \[
 \rightarrow \{ \text{Prj-B} \}
 \]

- **ABox:**
 \[
 \text{Works-for} \supseteq \{ \langle \text{John}, \text{Prj-A} \rangle, \langle \text{Mary}, \text{Prj-A} \rangle \} \\
 \text{Project} \supseteq \{ \text{Prj-A}, \text{Prj-B} \}
 \]

- **Q(X) :- Bad-Project(X)**
DBox vs ABox

- **Additional constraint as a standard view over the data:**
 \[
 \text{Bad-Project} = \text{Project} \setminus \pi_2\text{Works-for} \\
 \forall x. \text{Bad-Project}(x) \leftrightarrow \text{Project}(x) \land \neg \exists y. \text{Works-for}(y, x) \\
 \text{Bad-Project} = \text{Project} \sqcap \neg \exists \text{Works-for}^{-}. \top
 \]

- **DBox:**
 \[
 \text{Works-for} = \{ \langle \text{John}, \text{Prj-A} \rangle, \langle \text{Mary}, \text{Prj-A} \rangle \} \\
 \text{Project} = \{ \text{Prj-A, Prj-B} \}
 \]

- **Q(X) :- Bad-Project(X)**
 \[
 \implies \{ \text{Prj-B} \}
 \]

- **ABox:**
 \[
 \text{Works-for} \supseteq \{ \langle \text{John}, \text{Prj-A} \rangle, \langle \text{Mary}, \text{Prj-A} \rangle \} \\
 \text{Project} \supseteq \{ \text{Prj-A, Prj-B} \}
 \]

- **Q(X) :- Bad-Project(X)**
 \[
 \implies \{ \}
 \]

 does not scale down to standard DB answer!
Compositionality of Queries

- **ABox:**
 - \(\text{Works-for} \supseteq \{ \langle \text{John}, \text{Prj-A} \rangle \} \)
 - \(\text{Project} \supseteq \{ \text{Prj-A}, \text{Prj-B} \} \)
Compositionality of Queries

- **ABox:**

 \[
 \text{Works-for} \supseteq \{ \langle \text{John}, \text{Prj-A} \rangle \} \\
 \text{Project} \supseteq \{ \text{Prj-A}, \text{Prj-B} \}
 \]

- Query as a standard view over the data:

 \[
 Q(X) :- \text{Works-for}(Y,X) \quad Q = \pi_2 \text{Works-for}
 \]
Compositionality of Queries

- **ABox:**

 Works-for $\supseteq \{ \langle John, Prj-A \rangle \}$

 Project $\supseteq \{ Prj-A, Prj-B \}$

- **Query as a standard view over the data:**

 $Q(X) :- \text{Works-for}(Y,X)$

 $Q = \pi_2 \text{Works-for}$

 - $Q = \text{EVAL}(\pi_2 \text{Works-for})$

 - $Q = \pi_2(\text{EVAL(Works-for)})$
Compositionality of Queries

- **ABox:**
 \[
 \text{Works-for} \supseteq \{ \langle \text{John}, \text{Prj-A} \rangle \} \\
 \text{Project} \supseteq \{ \text{Prj-A}, \text{Prj-B} \}
 \]

- **Query as a standard view over the data:**
 \[
 Q(X) : - \text{Works-for}(Y,X) \quad Q = \pi_2\text{Works-for}
 \]
 \[
 Q = \text{EVAL}(\pi_2\text{Works-for}) \\
 \implies \{ \text{Prj-A, Prj-B} \}
 \]
 \[
 Q = \pi_2(\text{EVAL(Works-for))}
 \]
Compositionality of Queries

- **ABox:**

 - \(\text{Works-for} \supseteq \{ \langle \text{John}, \text{Prj-A} \rangle \} \)
 - \(\text{Project} \supseteq \{ \text{Prj-A}, \text{Prj-B} \} \)

- **Query as a standard view over the data:**

 \[Q(X) :- \text{Works-for}(Y,X) \]

 \[Q = \pi_2\text{Works-for} \]

 \[Q = \text{EVAL}(\pi_2\text{Works-for}) \]

 \[\implies \{ \text{Prj-A}, \text{Prj-B} \} \]

 \[Q = \pi_2(\text{EVAL}(\text{Works-for})) \]

 \[\implies \{ \text{Prj-A} \} \]

Queries are not compositional wrt certain answer semantics!
Complexity of Query answering

DBox:
Region = \{ Italy, France, \ldots \}; has-border = \{ (Italy, France), \ldots \};
Colour = \{ Red, Green, Blue \}
Complexity of Query answering

DBox:
Region = \{Italy, France, \ldots\}; has-border = \{(Italy, France), \ldots\};
Colour = \{Red, Green, Blue\}

Q :- has-colour(R1, C), has-colour(R2, C), has-border(R1, R2)

Is it unavoidable that there are two adjacent regions with the same colour?
Complexity of Query answering

DBox:
Region = \{Italy, France, \ldots\}; has-border = \{\langle Italy, France \rangle, \ldots\};
Colour = \{Red, Green, Blue\}

Q :- has-colour(R1,C), has-colour(R2,C), has-border(R1,R2)

Is it unavoidable that there are two adjacent regions with the same colour?

YES: in any legal database (i.e., an assignment of colours to regions) there are at least two adjacent regions with the same colour.
Complexity of Query answering

DBox:

Region = \{Italy, France, ...\}; has-border = \{(Italy, France), ...\};
Colour = \{Red, Green, Blue\}

Q: \(\text{has-colour}(R_1, C), \text{has-colour}(R_2, C), \text{has-border}(R_1, R_2)\)

Is it unavoidable that there are two adjacent regions with the same colour?

- **YES:** in any legal database (i.e., an assignment of colours to regions) there are at least two adjacent regions with the same colour.
- **NO:** there is at least a legal database (i.e., an assignment of colours to regions) in which no two adjacent regions have the same colour.
Complexity of Query answering

DBox:
Region = \{Italy, France, \ldots\}; has-border = \{(Italy, France), \ldots\};
Colour = \{Red, Green, Blue\}

\(Q\) :- has-colour(R1,C), has-colour(R2,C), has-border(R1,R2)

Is it unavoidable that there are two adjacent regions with the same colour?

- **YES**: in any legal database (i.e., an assignment of colours to regions) there are at least two adjacent regions with the same colour.
- **NO**: there is at least a legal database (i.e., an assignment of colours to regions) in which no two adjacent regions have the same colour.
- With *ABox semantics* the answer is always **NO**, since there is at least a legal database (i.e., an assignment of colours to regions) with *enough* distinct colours so that no two adjacent regions have the same colour.
Complexity of Query answering

DBox:
Region = \{Italy, France, \ldots\}; has-border = \{(Italy, France), \ldots\};
Colour = \{Red, Green, Blue\}

Q :- has-colour(R1, C), has-colour(R2, C), has-border(R1, R2)

Is it unavoidable that there are two adjacent regions with the same colour?

- **YES**: in any legal database (i.e., an assignment of colours to regions) there are at least two adjacent regions with the same colour.
- **NO**: there is at least a legal database (i.e., an assignment of colours to regions) in which no two adjacent regions have the same colour.
- With *ABox semantics* the answer is always **NO**, since there is at least a legal database (i.e., an assignment of colours to regions) with enough distinct colours so that no two adjacent regions have the same colour.

Query answering with DBoxes is co-np-hard in data complexity (3-col), and it is strictly harder than with ABoxes!
View based Query Processing

- Mappings between the conceptual schema terms and the information source terms are not necessarily atomic.
- **Mappings** can be given in terms of a set of sound (or exact) views:
 - **GAV** (*global-as-view*): sound (or exact) views over the information source vocabulary are associated to terms in the conceptual schema
 - both the DB and the partial DB assumptions are special cases of GAV
 - an ER schema can be easily mapped to its corresponding relational schema in some normal form via a GAV mapping
 - **LAV** (*local-as-view*): a sound or exact view over the conceptual schema vocabulary is associated to each term in the information source;
 - **GLAV**: mix of the above.
- It is non-trivial, even in the pure GAV setting - which is wrongly believed to be computable by simple view unfolding.
- It is mostly studied with sound views, due to the negative complexity results with exact views discussed before.
Sound GAV mapping

Employee

- PaySlipNumber: Integer
- Salary: Integer

Project

- ProjectCode: String

Works-for 1..*
Sound GAV mapping

1-Employee(PaySlipNumber, Salary, ManagerP)
2-Works-for(PaySlipNumber, ProjectCode)
Sound GAV mapping

1-Employee(PaySlipNumber, Salary, ManagerP)
2-Works-for(PaySlipNumber, ProjectCode)

Employee(X) :- 1-Employee(X, Y, false)
Manager(X) :- 1-Employee(X, Y, true)
Project(Y) :- 2-Works-for(X, Y)

Works-for(X, Y) :- 2-Works-for(X, Y)
Salary(X, Y) :- 1-Employee(X, Y, Z)
Sound GAV mapping

Employee
- PaySlipNumber: Integer
- Salary: Integer

Project
- ProjectCode: String

Manager

1-Employee(PaySlipNumber, Salary, ManagerP)
2-Works-for(PaySlipNumber, ProjectCode)

Employee(X) :- 1-Employee(X, Y, false)
Manager(X) :- 1-Employee(X, Y, true)
Project(Y) :- 2-Works-for(X, Y)

Works-for(X, Y) :- 2-Works-for(X, Y)
Salary(X, Y) :- 1-Employee(X, Y, Z)

Q(X) :- Employee(X)
Sound GAV mapping

1-Employee(PaySlipNumber, Salary, ManagerP)
2-Works-for(PaySlipNumber, ProjectCode)

Employee(X) :- 1-Employee(X, Y, false)
Manager(X) :- 1-Employee(X, Y, true)
Project(Y) :- 2-Works-for(X, Y)

Q(X) :- Employee(X)

⇒ Q'(X) :- 1-Employee(X, Y, Z) ∪ 2-Works-for(X, W)
Sound GAV mapping

1-Employee(PaySlipNumber,Salary,ManagerP)
2-Works-for(PaySlipNumber,ProjectCode)

Employee(X) :- 1-Employee(X,Y,false)
Manager(X) :- 1-Employee(X,Y,true)
Project(Y) :- 2-Works-for(X,Y)

Works-for(X,Y) :- 2-Works-for(X,Y)
Salary(X,Y) :- 1-Employee(X,Y,Z)

Q(X) :- Employee(X)

\[Q'(X) := 1\text{-Employee}(X,Y,Z) \cup 2\text{-Works-for}(X,W)\]

\[\Leftarrow \text{not coming from unfolding!}\]
Sound LAV mapping

- **Employee**
 - PaySlipNumber: Integer
 - Salary: Integer

- **Manager**

- **Project**
 - ProjectCode: String

Relationships:
- Works-for 1..*
Sound LAV mapping

1-Employee(PaySlipNumber, Salary, ManagerP)
2-Works-for(PaySlipNumber, ProjectCode)
Sound LAV mapping

1-Employee(PaySlipNumber, Salary, ManagerP)
2-Works-for(PaySlipNumber, ProjectCode)

1-Employee(X, Y, Z) :- Manager(X), Salary(X, Y), Z=true
1-Employee(X, Y, Z) :- Employee(X), ¬Manager(X), Salary(X, Y), Z=false
2-Works-for(X, Y) :- Works-for(X, Y)
Sound LAV mapping

1-Employee(PaySlipNumber, Salary, ManagerP)
2-Works-for(PaySlipNumber, ProjectCode)

1-Employee(X,Y,Z) :- Manager(X), Salary(X,Y), Z=true
1-Employee(X,Y,Z) :- Employee(X), Manager(X), Salary(X,Y), Z=false
2-Works-for(X,Y) :- Works-for(X,Y)

Q(X) :- Manager(X), Works-for(X,Y), Project(Y)
Sound LAV mapping

1-Employee(PaySlipNumber, Salary, ManagerP)
2-Works-for(PaySlipNumber, ProjectCode)

1-Employee(X,Y,Z) :- Manager(X), Salary(X,Y), Z=true
1-Employee(X,Y,Z) :- Employee(X), ¬Manager(X), Salary(X,Y), Z=false
2-Works-for(X,Y) :- Works-for(X,Y)

Q(X) :- Manager(X), Works-for(X,Y), Project(Y)

⇒ Q'(X) :- 1-Employee(X,Y,true), 2-Works-for(X,Z)
Reasoning over queries

\[Q(X,Y) :\neg \text{Employee}(X), \text{Works-for}(X,Y), \text{Manages}(X,Y) \]

\[∀x. \text{Manager}(x) \rightarrow \neg ∃y. \text{WORKS-FOR}(x, y) \]

Manager \subseteq \neg ∃\text{WORKS-FOR}. \top

Manager \subseteq \text{Employee} \setminus π_1\text{WORKS-FOR}
Reasoning over queries

\[Q(X,Y) : - \text{Employee}(X), \text{Works-for}(X,Y), \text{Manages}(X,Y) \]

\[\forall x. \text{Manager}(x) \rightarrow \neg \exists y. \text{WORKS-FOR}(x,y) \]

\[\text{Manager} \subseteq \neg \exists \text{WORKS-FOR}. \top \]

\[\text{Manager} \subseteq \text{Employee} \setminus \pi_1 \text{WORKS-FOR} \]

\[\leadsto \text{INCONSISTENT QUERY!} \]
Summary

- Logic and Conceptual Modelling
- Description Logics for Conceptual Modelling
- Queries with an Ontology
- Determinacy
Determinacy (implicit definability)

A query Q over a DBox is implicitly definable under constraints if its extension is fully determined by the extension of the DBox relations, and it does not depend on the non-DBox relations appearing in the constraints.

Checking implicit definability under first-order logic constraints of a query over a DBox can be reduced to classical entailment.
Determinacy (implicit definability)

A query Q over a DBox is implicitly definable under constraints if its extension is fully determined by the extension of the DBox relations, and it does not depend on the non-DBox relations appearing in the constraints.

Checking implicit definability under first-order logic constraints of a query over a DBox can be reduced to classical entailment.

Definition (Implicit definability)

Let DB_i and DB_j be any two legal databases of the constraints T which agree on the extension of the DBox relations. A query Q is *implicitly definable* from the DBox relations under the constraints T iff the answer of Q over DB_i is the same as the answer of Q over DB_j.

Description Logics and Ontologies: myths and challenges. E. Franconi. (42/47)
Rewriting - or explicit definability

If a query is implicitly definable, it is possible to find an equivalent reformulation of the query using only relations in the DBox. This is its explicit definition.

It has been shown that under general first-order logic constraints, whenever a query is implicitly definable then it is explicitly definable in a constructive way as a first-order query.
Example

\[\text{Employee} \}

\{ \text{disjoint, complete} \}

\text{Manager} \quad \text{Clerk}
Example

▶ \(Q(x) :\neg \text{Clerk}(x) \) is determined by the extension of the DBox relations under the constraints
Example

- $Q(x) :\neg\text{Manager}(x)$ is determined by the extension of the DBox relations under the constraints.

- $Q'(x) :\neg\text{Manager}(x)$ is equivalent to $Q(x) :\text{Employee}(x) \land \neg\text{Manager}(x)$.
The query rewriting under constraints process

1. Check whether the database is consistent with respect to the constraints and, if so,
2. check whether the answer to the original query under first-order constraints is solely determined by the extension of the DBox relations and, if so,
3. find an equivalent (first-order) rewriting of the query in terms of the DBox relation.
4. It is possible to pre-compute all the rewritings of all the determined relations as SQL relational views, and to allow arbitrary SQL queries on top of them: the whole system is deployed at run time as a standard SQL relational database.
Domain independence & range-restricted rewrites

I cheated so far! 😊
Domain independence & range-restricted rewritings

I cheated so far! 😊

Unless the rewriting is a domain independent (e.g., a range-restricted) first-order logic formula, it cannot be expressed in relational algebra or SQL!
Domain independence & range-restricted rewritings

I cheated so far! 😊

Unless the rewriting is a domain independent (e.g., a range-restricted) first-order logic formula, it can not be expressed in relational algebra or SQL!

- We prove general conditions on the constraints and the query in order to guarantee that the rewriting is domain independent
- All the typical database constraints (e.g., TGDs and EGDs) satisfy those conditions
- All the ontology languages in the guarded fragment satisfy those conditions
Conclusions
Conclusions

Do you want to exploit conceptual schema knowledge (i.e., constraints or an ontology) in your data intensive application?
Conclusions

Do you want to exploit conceptual schema knowledge (i.e., constraints or an ontology) in your data intensive application?

Pay attention!