
Agent Reasoning: 
Knowledge, Plans and Flexible Control

Francesca Toni 

Department of Computing, Imperial College London, UK

DALT School 2011
Bertinoro, Italy

10-15 April, 2011



Outline

I. Agents
� Logic- and LP-based approaches

� KGP agents

II. Multi-agent systems

2

II. Multi-agent systems
� Communication

� (Negotiation)

III. Argumentative (KGP) agents
� Service-oriented architectures and Grid



Part I

Agents
�General Introduction 

�Logic- and LP-based approaches

�KGP agents



Agents

Autonomous systems that

� Perceive the environment in which they are situated 

(via sensors)

� Act upon the environment (via effectors)
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� designed with certain “performance” requirements

� maintain environment in a certain state

� achieve certain state of its environment

percepts

actions

agent
?

environment

Russel& Norvig, AI: a modern approach



Agents (cntd)

In general terms agents are often defined as 

(software or hardware) entities that are at least
� autonomous (no centralised control)

� reactive (to the environment)

� deliberative/pro-active (towards goals)
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� deliberative/pro-active (towards goals)

� social/interactive (via observation + communication 
with other agents in a multi-agent system)

Wooldridge, An introduction to multiagent systems



Autonomy

� To avoid problems with centralised control:

� Complexity of the solution 

� Maintenance (especially in open systems)

� Difficulty in tracking problems
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� Difficulty in tracking problems

� For applications whose components        
are by nature autonomous 

� electronic auctions, e-procurement .....

E.g. have a joint set of notes vs each lecturer 

prepares his/her own notes



Pro-activeness

� Agents have goals/objectives (e.g. be in 
Bertinoro on 10 April)

� Agents generate plans for the achievement of 
their goals
� “Partial” plans (e.g. book flight  and then arrange 
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� “Partial” plans (e.g. book flight  and then arrange 
stay (e.g. taxi+hotel or car+agriturismo)

� Partially instantiated plans (e.g. book hotel X in 
Bertinoro and transport to hotel X)

� Re-planning (e.g. booked flight is cancelled)

� Cooperative planning (e.g. share a taxi to stay 
within budget)



Reactivity

� Traditional AI: systems assuming

� complete and correct knowledge of the world

� goals and knowledge fixed at design time

Reactivity  to cope with
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� Reactivity  to cope with

� Incomplete/possibly incorrect  information at 

design time (e.g. gate at airport/weather 

forecast for Bertinoro)

� dynamically changing goals (e.g. get dinner/go 

to gate) and knowledge 



Social/interactive behaviour

� To acquire/share information (e.g. nice 

restaurants in Bertinoro?)

� To acquire/concede/share resources and 
services  (e.g. could you give me a lift?)
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services  (e.g. could you give me a lift?)

� To “join forces” with other agents (e.g. 
shall we share a taxi?)

� To provide/get explanations (e.g. you will 
need sun cream because it is going to be very 

sunny in Bertinoro)



Agents’ architecture

� Mind-body:
� co-routines, i.e. 

agent
? =

M
I
N
D
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� co-routines, i.e. 

concurrent  thinking 

and action;

� interruptibility.



Agents’ mind

� Data structures (“mental” state)
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� Data structures (“mental” state)

� Control structure (life “cycle”)

� I/O (sensing and acting, including 
social/communicative behaviour)



Logic-based agents

Logic for representing

� the agent’s mental state 

� the agent control (cycle)

� the agent social (communicative) behaviour
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the agent social (communicative) behaviour

Benefits:

� Declarative specification

� Formal specification and verification of 
properties



Logic programming-based agents

� (various extensions of) LP for

� designing logic-based agent systems with a clear 

operational and proof-theoretic counterpart which 

paves the way to their implementation

� (various extensions of)  LP to bridge the gap 

13

� (various extensions of)  LP to bridge the gap 

between 

� theory (high level specification) and 

� practice (execution model) of agents

� Note: the operational specification of many 

logic-based agent models is grounded in LP



Examples of LP-based MAS

� AgentSpeak(L): PRS (BDI) via Horn-clause logic 
programs

� IMPACT: agentification of legacy code

� 3APL and 2APL: imperative and declarative model

� KS-agents: IFF abductive proof procedure underlying the 
observe-think-act cycle of agents
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observe-think-act cycle of agents

� ALIAS: KM abductive proof procedure for distributed 
problem solving

� MINERVA: LP-based agents for belief revision-evolution

� DALI: event-based LPs for reactive and proactive 
behaviour

� AAA: ASP, recovering from unexpected observations

� KGP agents: abductive, constraint, preference-based LP



KS-agents

� Abductive Logic Programs (LPs) to 
represent agents beliefs, possible 
actions, observations

� LP queries to represent goals
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� LP queries to represent goals

� Cycle as (interactive) execution of 
abductive proof procedure  - IFF

•Kowalski, Sadri, From Logic Programming Towards Multi-Agent Systems. 

AMAI 1999

•Fung, Kowalski, The IFF proof procedure for abductive logic programming. 

Journal of Logic Programming 1997. 



Abductive LP (and Agents)

LOGIC PROGRAM : P

have(X,Y) ←←←← buy (X,Y).

have(X,Y) ←←←← steal (X,Y).

ABDUCIBLES  (HYPOTHESES): A
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ABDUCIBLES  (HYPOTHESES): A

buy, steal (actions)

no-money (observable)              

INTEGRITY CONSTRAINTS : IC

no-money ∧∧∧∧ buy(X,Y) ⇒⇒⇒⇒ false.

alarm(T) ⇒⇒⇒⇒ run(T+1).



Semantics of abductive LPs

Given an abductive logic program <P,A,IC> and  a query query Q, 

∆ is an abductive explanation for Q iff

1. ∆ ⊆ A 

2.    P ∪ ∆ “entails” Q        (Q is “provable” from P ∪ ∆)
3.    P ∪ ∆ “satisfies” IC    (e.g. IC is “provable” from P ∪ ∆)
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3.    P ∪ ∆ “satisfies” IC    (e.g. IC is “provable” from P ∪ ∆)

E.g.  Q=have(ft,dinner):         

∆ 1 = {buy(ft,dinner)}        ∆ 2 = {steal(ft,dinner)}

Q=have(ft,dinner) and no-money:   

∆1        not ok ( ∆ 2  ok)



Agents as abductive LPs

� LOGIC PROGRAMS represent beliefs

e.g. have(X,Y) ←←←←buy (X,Y).

� ABDUCIBLES represent observations and actions

e.g. honest, buy, steal

� INTEGRITY CONSTRAINTS represent
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� INTEGRITY CONSTRAINTS represent

- prohibitions (e.g. example)

- condition-action and commitment rules (e.g. example)

- obligations

e.g. request (A,B,X) ∧∧∧∧ have(X) ⇒⇒⇒⇒give(B,A,X).

� QUERIES include goals and observations



Agent behaviour via abductive proof procedure:

IFF, CIFF, SCIFF...

OBSERVATIONS GOALS ACTIONS

have(ft,dinner)

[steal(ft,dinner)] or

QUERY EXPLANATION

19

[ ] or

[buy(ft,dinner) and

[if no-money then false]]

no-money

[steal(ft,dinner)] or false

steal(ft,dinner)



IFF proof procedure: example

P: p ← a        q ← b r ← ¬c

A: a,b,c,d IC:  b ∧ r ⇒ d Q: p ∧ q

-----------------------------------------------------------------------------

1. p ∧ q ∧ IC unfolding p:

2. a ∧ q ∧ IC unfolding q:

a ∧ b ∧ IC propagating with b:

R

e R
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3. a ∧ b ∧ IC propagating with b:

4. a ∧ b ∧ IC ∧ (r ⇒ d) unfolding r :

5. a ∧ b ∧ IC ∧ (¬c ⇒ d) negation elimination:

6. a ∧ b ∧ IC ∧ (c ∨ d) splitting:

7. (a ∧ b ∧ IC ∧ c) ∨ (a ∧ b ∧ IC ∧ d) 

----------------------------------------------------------------------------

Two answers: {a,b,c}  {a,b,d}

CIFF also deals with constraints as in CLP

e

w

r

i

t

e

R

u

l

e

s



Execution of abductive proof procedures

Abductive logic  program

o Static (off-line queries/explanations)

o Interactive and resource-bounded (on-line queries/explanations)
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Rewrite

rulesQuery
Explanation



(Abductive) Agent behaviour: cycle

Query+<P, A, IC>
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Abductive proof procedure

Observe ActThink



Part I (revisited)

Agents
�General Introduction
�Logic- and LP-based approaches 

�KGP agents

•A. Kakas, P. Mancarella, F. Sadri, K. Stathis, F. Toni, 

Computational Logic Foundations of KGP Agents, Journal of Artificial 

Intelligence Research, Volume 33, pages 285-348, 2008



KGP: motivations and main features

� KGP is a general-purpose, highly modular 
architecture for agents with 
� an abstract model (“declarative” semantics) 

� a computational model (operational semantics)

� a prototype implementation (PROSOCS)

� KGP focuses on the needs of agents in a 
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� KGP focuses on the needs of agents in a 
dynamic and open setting

� KGP integrates various aspects of agency: pro-
activeness, autonomy, reactivity, social ability 
(communication)

� The computational model of KGP extends and 
integrates various existing LP theories and proof 
procedures



KGP agents’ mind: an overview

CYCLE 
THEORY

Plan Introduction, 

Action Execution, …

Planning, 

All components are specified 
and realised in 

(extensions of) LP Knowledge

•executed actions
•observed properties
Goals

Plans 

Dynamic, flexible control
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REASONING                CAPABILITIES

PHYSICAL CAPABILITIES

S
T
A
T
E

Sensing, Actuating

Planning, 
Reactivity, …

Goal selection, 

action selection, …



KGP agents: an overview (more)

� Agent behaviour is given by 
� a sequence of state-changing transitions (“calling” 

no/one/many capabilities)

� with inputs provided by selection operators

� as “decided” by the cycle theory
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� as “decided” by the cycle theory

� For example 

plan for a chosen goal

execute some chosen actions in the plan

observe the environment (possibly “actively”)

reassess your goals/react to any changes …



Goal decision/re-assessment

have dinner
be at gate

charge battery
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Last call to gate!

KGP agents adjust their goals to observations



Plan adjustment

have dinner

have money

…but no money..
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KGP agents adjust their plans to circumstances 



Reactivity and Interactivity

Could I use your laptop to read my e-mail?

what should I 
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what should I 

answer???..



KGP agents: an overview (more)

� Agent behaviour is given by 
� a sequence of state-changing transitions (“calling” 

no/one/many capabilities)

� with inputs provided by selection operators

� as “decided” by the cycle theory
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� as “decided” by the cycle theory

� Another example 

plan for a chosen goal

observe the environment (possibly “actively”)

plan a little more

execute some chosen actions in the plan,…



Interleaving planning and observation

be at gate•Go to security check at τ1
•Go to hall at τ2 

•Check gate at τ3

•Go from hall to gate at τ4
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gate is 55C

KGP plan “partially”, observe actively, adjust their plans

now<τ1<τ2<τ3<τ4<d

[d=departure time – 20 min]

•Get transfer to hallB at τ5

•Walk to gate 55C at τ6

τ3<τ5<τ6<d



KGP agents’ mind: an overview

CYCLE 
THEORY
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REASONING                CAPABILITIES

PHYSICAL CAPABILITIES

S
T
A
T
E



Mental state of an agent

� KB0 contains 
� a representation of observations 

in the environment (sensing 
capability)    

� a record of execution of actions 

Goals
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� a record of execution of actions 
by the agent (actuating capability)

� Goals is a concrete set of        
(mental/sensing) goals

� Plan is a concrete set of 
(physical / communicative / 
sensing) actions

Knowledge

Plan



Mental and sensing goals

� Mental goals: goals whose fluents represent 
properties the agent itself is able to plan for so 
that they can be satisfied, but can also be 
observed.

e.g. have(dinner,τ), have(money,3)
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e.g. have(dinner,τ), have(money,3)

� Sensing goals: goals whose fluents represent 
properties which are not under the control of 
the agent and can only be observed by 
sensing the external environment.

e.g. which-gate(t), request_accepted(τ)



Physical, Communicative, Sensing actions

� “Physical” actions: that the agent performs in 
order to achieve some specific effect (and 
typically causing changes in the environment) 

e.g. go(hall,τ)

� Sensing actions: that the agent performs in 
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� Sensing actions: that the agent performs in 
order to establish whether some properties 
(fluents) hold in the environment or not

e.g. sense(connection_on,τ)

� Communicative actions: that involve 
communications with other agents

e.g. request(x, y, give(laptop),τ)



Goals and Actions 

� Are assigned an explicit time (implicitly 
existentially quantified within the state) with 
associated temporal constraints in the state

� Are organised within a forest of trees structure 

– for ease of revision and to allow continual planning:
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– for ease of revision and to allow continual planning:

� Top-level goals/actions (the roots of trees)

� Sub-goals (goals with ancestors in the tree)

� Actions are leaves (but can be top-level)

� Roots (and their trees) may be reactive or not



Goals/actions concretely

� A goal G is a (timed) fluent l[τ] 

e.g. l[τ]= have(dinner, τ)

l[τ]= ¬have(money, τ)

� An action is a (timed) action literal a[τ]

e.g. a[τ]= request(x,y,give(laptop), τ)
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e.g. a[τ]= request(x,y,give(laptop), τ)

where 
� have is a fluent 

� request is an action operator

� τ is the time (a variable implicitly existentially 
quantified within the state)



A state formally

S = <KB0,F,C, Σ>

� F is the forest

� C is the set of temporal constraints

� Σ is a set of equalities (time var = time constant)

Notes:
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Notes:

� The valuation of C always take Σ into account

� Constraint solving capability �cs “uses” C and Σ:

S �cs TC iff �ℜ C ∧ Σ ∧ TC

e.g. C={} and Σ ={}: S �cs τ <10 ∧ τ > 3

C={} and Σ ={τ = 2}: S �cs τ <10 ∧ τ > 3



Example of a tree in the state

at_gate(τ) 

5 < τ < 10,
5 < τ1 < τ,

5 < τ2<τ, 

τ1< τ3

τ2< τ3
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go_to_hall(τ1)

check_gate(τ2) go_from_hall_to_gate(τ3)



Temporal constraints (an example)

TC  ::= AtomicTC | TC ∧ TC | TC ∨ TC | ¬TC

AtomicTC ::=  Variable RelOp Term

RelOp ::=  = | ≤ | < | 

Term  ::=  Time_Constant | 

Time_Variable | 
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Time_Variable | 

Term Op Term

Op  ::=  + | - | * | \

e.g. τ<3+τ'

τ<3+τ' ∧ τ' < 10

Constraint solving 

(reasoning )capability:

�cs ⋍⋍⋍⋍ �ℜ



KB0 

� KB0 revised as the agent  observes the world (via 

its sensing capability) and executes actions (via 

its actuating capability) 

� KB0 is the narrative part within the KBs underlying 

and reasoned upon by (most) reasoning
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and reasoned upon by (most) reasoning

capabilities

KBpre, KBeff , KB0 ⊂KBTR ⊂KBplan ⊆ KBreact 

KBTR ⊂KBGD



KB0

� KB0 of agent x records: 
� actions (timed action operator) which have been 

executed by x (+ time of execution τ = t in Σ)

executed(a[t]) (where t is ground)

� actions which have been executed by agents y other 
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� actions which have been executed by agents y other 

than x (+ time of execution by y, if known, + time of 

observation by x)

observed(y,a[t'], t) (where t , t' are ground)

� properties (fluent literals) observed (+ time of 

observation τ = t in Σ)

observed(l[t]) (where t is ground)



KGP agents’ mind: an overview

CYCLE 
THEORY
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REASONING                CAPABILITIES

PHYSICAL CAPABILITIES

S
T
A
T
E



Reasoning capabilities

� Planning, ����now
plan 

� generates partial plans (sets of actions and goals to be added to 
the State) for given sets of goals in the State 

� Reactivity, ����now
react

� reacts to perceived changes in the environment (KB0) by 
generating goals and actions to be added to the State

� Temporal reasoning, ����
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� Temporal reasoning, ����TR
� reasons about the perceived environment (KB0), and makes 

predictions about properties holding in the environment

� Identification of preconditions/ effects ����pre ,����eff
� for actions (before/after they are executed )

� Goal decision, ����now
GD

� revises the top-most level goals of the agent, taking into account 
its preferences & the perceived changes in the environment (KB0)



Reasoning capabilities: I/O view

� Planning: 
S,G1,…,Gn �

nownownownow
plan (As1,Gs1,TC1),…,(Asn, Gsn ,TCn) 

� Reactivity: 
S �nownownownow

react ( As,Gs,TC)

� Temporal reasoning: 
∧
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� Temporal reasoning: 
S �TR l[τ ] ∧ TC

� Goal decision: 
S �nownownownow

GD (Gs,TC)

� Identification of preconditions, effects : 
S, A �pre Gs

S, A �eff Gs



Reasoning capabilities and LP

� Constraint solving
� constraint programming �ℜ

� Identification of preconditions/effects
� logic programming, �LP

� Temporal reasoning

E

v

e

n

t
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� Temporal reasoning
� constraint logic programming, �LP(ℜ)

� Planning

� Reactivity
� abductive (constraint) logic programming, �LP

� Goal decision 
� (constraint) logic programming with priorities, �pr

c

a

l

c

u

l

u

s



Underlying (C)LP-based semantics

� The KGP model is parametric on: 
� ����LP, some semantics for logic programs with negation

� ����pr, some semantics for logic programs with priorities 

(and negation)

� ����ℜℜℜℜ, some constraint satisfaction tool

47

� ����ℜℜℜℜ, some constraint satisfaction tool

� The operational counterpart for KGP 
assumes:
� ����LP= 3-valued completion semantics

� ����pr= argumentation-based semantics for LPwNF (a 

concrete framework for logic programming with 

priorities)



Core Event Calculus:

domain independent part

holds-at(F,T2)    ←←←← happens(Op,T1), T1 < T2, 

initiates(Op, T1,F), 

not clipped(T1, F, T2)

holds-at(F,T)     ←←←← initially(F), 0 ≤≤≤≤T, holds-at(F,T)     ←←←← initially(F), 0 ≤≤≤≤T, 

not clipped(0,F,T)

clipped(T1,F,T2) ←←←← happens(Op,T), 

terminates(Op,T,F), T1 ≤≤≤≤ T < T2
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Core Event Calculus:

domain independent part (cntd)

holds-at(¬¬¬¬F,T2)    ←←←← happens(Op,T1), T1 < T2, 

terminates(Op, T1,F), 

not declipped(T1, F, T2)

holds-at(¬¬¬¬F,T)     ←←←← initially(¬¬¬¬F), 0 ≤≤≤≤ T, holds-at(¬¬¬¬F,T)     ←←←← initially(¬¬¬¬F), 0 ≤≤≤≤ T, 

not declipped(0,F,T)

declipped(T1,F,T2) ←←←← happens(Op,T), 

initiates(Op,T,F), T1 ≤≤≤≤ T < T2
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Core Event Calculus:

domain dependent part - example

initially(have_money)

precondition(buy_dinner,T,have_money)

initiates(get_cash,T,have_money)

terminates(buy_dinner,T,have_money)terminates(buy_dinner,T,have_money)
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Core Event Calculus:

bridge rules (connecting to KB0)
holds-at(F,T2) ←←←← observed(F,T1), T1 ≤ T2, 

not clipped(T1,F,T2)

holds-at(¬¬¬¬ F,T2) ←←←← observed(¬¬¬¬ F,T1), T1 ≤ T2, 

not declipped(T1,F,T2)
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happens(Op,T) ←←←← executed(Op,T)

happens(Op,T) ←←←← observed(_,Op[T],_)

clipped(T1, F, T2) ← observed(￢￢￢￢F, T), T1 ≤ T < T2

declipped(T1, F, T2) ← observed(F, T), T1 ≤ T < T



Temporal reasoning, identification of 

preconditions and effects

� KBTR = core EC

� S ����TR l[τ ] ∧ TC iff          KBTR �LP(ℜ) holds_at(l,τ) ∧ TC

� KBpre = rules for precondition in core EC

� S, a[τ ] ����pre Cs iff  � S, a[τ ] ����pre Cs iff  

Cs = {l[τ ] | KBpre �LP  precondition(a, l)}

� KBeff = rules for init./term. in core EC

� S, a[τ ] ����eff G iff  

KBeff �LP  initiates(a, f) and G=f          

KBeff �LP  terminates(a, f) and G= ¬¬¬¬ f
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KBplan : Abductive EC

KBplan = < Pplan, Aplan, Iplan > abductive logic program 

Pplan core EC + 

happens(Op,T) ← assume_happens(Op,T)

holds_at(F, T) ← assume_holds(F, T)
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Aplan: assume_happens(Op,T)

assume_holds(Op,T)

Iplan : 

holds_at(F,T) and holds_at(¬F,T) ⇒ false

assume_happens(Op,T) , precondition(Op,P) ⇒ holds_at(P,T)

assume_happens(Op, T), not executed(Op, T), time_now(T1)⇒ T > T1



Planning

� S, G  ����nowplan As,Gs, TC

iff “assume_happens(As)”+ “assume_holds(Gs)” +TC 

is an abductive explanation 

� wrt KB ∪ {time_now(now)} ∪ “assume_happens(F)”+ 
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� wrt KBplan ∪ {time_now(now)} ∪ “assume_happens(F)”+ 
“assume_holds(F)” 

� for query  “holds_at(G)”

� S, G  ����nowplan ⊥

iff no such abductive explanation exists



KBreact

KBreact = KBplan + Reactive Constraints

(as additional integrity constraints)

� Reactive constraints:

Triggers, Other-Conditions ⇒⇒⇒⇒ Reaction andandandand Constraints
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Triggers, Other-Conditions ⇒⇒⇒⇒ Reaction andandandand Constraints

� Triggers is a non-empty conjunction of items of the form observed ( l[T], T’ ), 
observed ( c, a[T], T’), happens(a[T],T’)

� Other-conditions is a conjunction of any of the following:

� holds-at (l,T’), where l[T’] is a timed fluent literal

� happens (a,T’), where l[T’] is a timed action operator

� temporal constraints

� Reaction is either a timed fluent literal or a timed action operator



Reactive Constraints in KBreact

Triggers, Other-Conditions ⇒⇒⇒⇒ Reaction andandandand Constraints

Observations timed fluent literal temporal

Executed actions timed action op.
constraints
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constraints

Planned actions

holds-at(l,T)

happens(a,T)

temporal constraints 



Examples of reactive constraints

Interaction policy:

observed(C, tell(C,a,request(R),D,T1),T) ∧
holds-at(have(R),T1)) ∧ not holds-at(need(R),T1))  ⇒

assume-happens(tell(a,C,accept(request(R)),D,T1),T2)  ∧
T+5>T2>T 
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Condition-action rule:

observed(alarm-sound(Room),T) ∧ holds-at(in(Room),T)) ⇒

assume-happens(leave(Room),T1) ∧
T1<T + 2



Reactivity

� S, G  ����nowreact As,Gs, TC

if “assume_happens(As)”+ “assume_holds(Gs)” +TC 

is an abductive explanation 

� wrt KB ∪ {time_now(now)} ∪ “assume_happens(F)”+ 
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� wrt KBreact ∪ {time_now(now)} ∪ “assume_happens(F)”+ 
“assume_holds(F)” 

� for  the empty query

� S, G  ����nowreact ⊥

if  no such abductive explanation exists



KBgd  (Example)

gd(dinner): have_dinner(T) ←
holds_at(hungry, T)

gd(gate): at_gate(T) ←
holds_at(boarding, T)

incompatible( have_dinner(T),at_gate(T))
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typeof(dinner,optional)

typeof(gate,required)

more_urgent_wrt_type(required, optional)

gd_pref(X,Y):gd(X)<gd(Y) ←
type_of(X,TX), type_of(Y,TY), 

more_urgent_wrt_type(TY,TX)



Goal decision (Example)

� If S ����TR holds_at(hungry,τ) then                                  

S ����nowGD have_dinner(τ) 

� If S ����TR holds_at(boarding,τ) then                               

S ����now at_gate(τ) 
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S ����nowGD at_gate(τ) 

� If S ����TR holds_at(hungry,τ) ∧holds_at(boarding,τ) 

then 

S ����nowGD at_gate(τ) 



KGP agents’ mind: an overview

CYCLE 
THEORY
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REASONING                CAPABILITIES

PHYSICAL CAPABILITIES

S
T
A
T
E



Physical capabilities

Link the agent to its environment

� sensing(L, now) = L'
� L is a set of fluent literals l or c:a (another agent 

has performed action a)

L' is a set of observations (l:true; l:false; c:a[t])

62

� L' is a set of observations (l:true; l:false; c:a[t])

� actuating(As, now) = As'

� As is a set of actions to be executed at time now

� As' is the subset of As that the body actually 

managed to execute



KGP agents’ mind: an overview

CYCLE 
THEORY
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Transitions: general idea

� Transitions are of the form

(T) S = <KB0,F,C, Σ>, X   now
S = <KB0’,F’,C’, Σ’>,

� T is the name of the transition

64

� X is some additional (possibly empty) input 

� now is the time of application of the transition

� Transitions typically call some capabilities

� Inputs computed by selection operators, also 
calling capabilities



Transitions in a nutshell

� Goal Introduction (GI), introduces new goals  
into the state

� Plan Introduction (PI), performs (partial) 
planning  for the input goals and extends the 
state accordingly

Reactivity (RE),  extends the state by means of 

65

� Reactivity (RE),  extends the state by means of 
generated reactions

� Action Execution (AE) executes (into 
environment) all actions in the input set

� State Revision (SR) revises the forest 
(goals/actions)



Transitions in a nutshell (cntd)

� Passive Observation Introduction (POI) 
senses the environment 

(about whatever it has to offer) 

� Active Observation Introduction (AOI) senses 
the environment 
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(about the input set of fluents, effects of some 
executed actions)

� Sensing Introduction (SI), introduces new 
sensing actions in the state 

(for sensing the preconditions, given in input,  
of some existing actions)



Transitions and capabilities

� Goal Introduction (GI), calling �now
GD and �cs

� Plan Introduction (PI), taking a set of goals in input and 
calling �now

plan

� Reactivity (RE), calling �now
react and �cs

� Sensing Introduction (SI), taking a set of preconditions 
of actions in input and calling �now

pre
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of actions in input and calling � pre

� Passive Observation Introduction (POI), calling sensing

� Active Observation Introduction (AOI), taking a set of 
fluent literals in input and calling sensing

� Action Execution (AE), taking a set of actions in input
and calling sensing and actuating

� State Revision (SR), calling �TR and �cs



An example: State Revision (informally)

(SR) S = <KB0,F,C, Σ>, {}   now
S = <KB0,F ',C, Σ>,

F' is the biggest subset of F consisting of all 
goals/actions G in F that

� Are not timed-out
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� Are not timed-out

� Have not been executed (if actions)/achieved (if 
goals)

� Their siblings (in trees) have not been removed 
because timed-out

� Their ancestors  have not been removed 

� They are not sensing actions for preconditions of 
actions that have been removed



KGP agents’ mind: an overview

CYCLE 
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Selection operators

� Compute inputs to transitions 

� Help cycle theories (control, see later) determine next 
transition

� 4 core selection operators
� Action selection (to execute, for AE) 
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Action selection (to execute, for AE) 

� Goal selection (to plan for, for PI) 

� Fluent selection (to sense, for AOI, effects of  executed 
actions) 

� Precondition selection (to plan for sensing, for SI, 
preconditions of actions under consideration for execution), 

� E.g. execute “urgent” actions



Precondition Selection (informally)

Selects all pairs (C,A) of (timed) preconditions 

C and actions  A ∈ nodes(F) such that:

1. C is a precondition of A  (�pre ) ,

2. C is not known to be true in S now (�cs ,�TR) , 2. C is not known to be true in S now (�cs ,�TR) , 

and

3. A is one of the actions that could be selected 

for execution if fAS would be called now

[where S = <KB0,F,C, Σ>]
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KGP agents’ mind: an overview

CYCLE 
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Cycle theory as declarative control

� Conventional agent control:
� Fixed sequence of transitions, e.g.

Cycle theory determines the sequences of 

Observe ActReason
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� Cycle theory determines the sequences of 
transitions dynamically and declaratively:
� Flexible control, e.g. tailored to mental 

state/environment 

� Different cycle theories give rise to different 
profiles of agent behaviour

� Control via cycle theories can in principle be 
adopted by any agent architecture



Flexible vs. Inflexible Control

� Inflexible control:   E.g. Observe-think-act

� Flexible control:
� Decide on the run what to do next, depending on

what you have just done, and
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� what you have just done, and

� the current circumstances

� Give different priorities to activities, e.g. give higher 
priority to

� planning for “critical” goals

� executing actions whose preconditions are known to hold

� meeting social obligations



Examples of Flexible control

Example of  transitions:

� Passive Observation Introduction (POI)

� Reactivity (RE)

� Plan Introduction (PI)

� Goal Introduction (PI)
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� Goal Introduction (PI)

� Action Execution (AE)

� State Revision (SR)

These allow us to represent, for example

� observe-think-act cycle:  POI,SR, RE,PI,AE

� cycle of a reactive agent:  POI,SR,RE,AE



Cycle Theories

� A cycle theory, TTTTcycle , is a (meta-)logic 
program with priorities to reason about which 
transition(s) should be chosen next. 

� The rules specify possible follow-ups of 
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� The rules specify possible follow-ups of 
(already-executed) transitions.

� The priorities express high-level preferences 
of the particular agent. These characterise 
the operational behaviour of the agent.



Components of Cycle theories

� An initial part TTTTinitial to reason about which transition 

could be the first (in some initial state S0)

� A basic part TTTTbasic to specify which transitions could

be next  (in some state S) after a transition that has just 

been executed)  
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� A behaviour part TTTTbehaviour to specify which 

transition(s) (amongst the many possible) is (are) the 

preferred next one(s). 

� An auxiliary part

� An incompatibility part specifying incompatible 

transitions



Predicative representation of transitions

Within the cycle theory and 

the agent behaviour,  a transition

(T) S, X   now

S'

78

S'

is represented as an atom in the predicate T:

T(S,X, S', now)



Cycle Theories at a glance

� TTTTbasic :   cycle step rules :

R T | T' (S',X') :       *T' (S',X') ←←←← T (S,X,S', t), EC(S', X')

� TTTTbehaviour : priority rules on cycle step rules:

RT : R (S,X1 )>R (S,X2)←←←← BC(S,X1,X2)
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RT
N1 | N2: RT|N1(S,X1 )>RT| N2(S,X2)←←←← BC(S,X1,X2)

� S, S’ are states, 

� X, X’, X1, X2 are inputs to transitions,

� EC are enabling conditions that also determine the inputs to the 
transitions (selection operators),

� BC are behaviour conditions,

� > is the preference (priority) relation over rules



Agent behaviour

Cycle theories determine the operational 
trace of the agent:

T1(S0,X1,S1,t1), …., Ti(Si-1,Xi,Si,ti),…. s.t.

TTTT T (S ,X ,S ,t ), now(t )���� T (S ,X )
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TTTTcycle , Ti(Si-1,Xi,Si,ti), now(ti+1)����pr *Ti+1(Si,Xi+1)

where ����pr is entailment for LP with Priorities, 

(also underlying the Goal Decision  reasoning capability)



Cycle theories: example of Tbasic

r PI|AE(S',As): AE(S',As) ← PI(S,Gs,S',t), 

As=fas(S', t'), As ≠ {},

time_now(t') 
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meaning: a Plan Introduction transition may be 

followed by an Action Execution transition, if there 

are actions to be executed (identified by the for 

action selection operator fas)



Cycle theories: example of Tbasic

r POI|RE(S',_): RE(S',_) ← POI(S,_,S‘,_) 

meaning: a Passive Observation 
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meaning: a Passive Observation 

Introduction transition may be followed by 

a Reactivity transition, unconditionally



Cycle theories: example of Tbehaviour

� r PI|AE(S,As) > rPI|N(S,X)) ← not unreliable_pre(As)

for all transitions N ≠ AE

� r PI|SI(S,Ps) > r PI|AE(S,As)) ← unreliable_pre(As)

83

� r PI|SI(S,Ps) > r PI|AE(S,As)) ← unreliable_pre(As)

meaning: After Plan Introduction,  the transition Action 

Execution should be given higher priority, unless there 

are actions amongst the actions selected for execution 

whose preconditions are “unreliable” and need 

checking, in which case Sensing Introduction will be 

given higher priority



Patterns of behaviour

� A cautious agent always checks that 
actions’ preconditions hold before 
executing them

� An interruptible agent always takes into 
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� An interruptible agent always takes into 
account new events in the environment 
(that its sensing capability can perceive)

� Focused, impatient, efficient, normal 
agents

Sadri ,Toni, Profiles of behaviour for logic-based agents, CLIMA VI, 2005



Careful and Focussed profiles:
examples and motivations

� Careful profile
Plan: cancel conference registration

Observation: invalid registration

Reaction: drop Plan (as unnecessary)

Plans and Goals are re-examined “often” –
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useful in dynamic and unpredictable environments

� Focussed profile
Goals: have book (10£) and have CD (15£)

Beliefs: only 20£ available

Reaction: drop one of the goals (as they cannot both be achieved)

Focus on one goal at a time –

useful if limited “resources” or “incompatible” goals



Careful profile: property

� If actions and goals never get timed-out 
between a SR and a RE (if next)

� Then careful agents will never react to

� A timed-out unexecuted action
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� A timed-out unexecuted action

� A timed-out unachieved goal

� An unexecuted action whose execution is 

no longer needed



Focussed profile: property

Consider focussed agent f and normal agent n,

with the same state. If, for both f and n:
� the plan is empty  and there are n>1 top-level goals

� goals g1...gk keep on being selected till achieved

� computed plans are total (have actions only)

� no joint plan exist for g ...g

87

� no joint plan exist for g1...gk

� plans exist for each gi in isolation

Then f will achieve at least one goal, while n will achieve none,

if, in addition:
� no actions and plans are generated by RE

� no POI is performed , and GI does not change top-level goals

� goals and actions are non-time critical



KGP model and Heterogeneity

� Allocation of “Expertise” to agents via different 
modules of knowledge

� Personality and social behaviour via a well 
separated module of the agent (control)

88

separated module of the agent (control)

� Overall Behaviour of an agent should be 
modularly regulated, able to exhibit different 
patterns of behaviour (we have seen two)



Evaluation of KGP model

� How useful/effective is an agent model? 

� What are the reasons for its design choices?

� We have identified three properties concerning 
the “welfare” of (KGP) agents:
� Is the agent effective in achieving its goals?             

(Goal achievement)

Sadri ,Toni, A formal analysis of KGP agents, JELIA06 89

(Goal achievement)

� Is the agent working towards achieving its goals? 
(Progress)

� Is the agents effective in reacting to changes in its 
environments? (Reactive awareness)



Goal achievement: preliminaries

� KGP agents go through sequences of states 

(generated by the application of transitions)

� A sequence S0,S1,…, Sn,… is improving wrt << iff 

For each Sj there exists Sl (l>j) with Sj << Sl
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For each Sj there exists Sl (l>j) with Sj << Sl

� We define <<1 and <<2 in terms of the number of 

achieved goals A+(S) in a state S:

S <<1 S′ iff aG+(S) ≤ aG+(S′)
S <<2 S′ iff aG+(S)< aG+(S′)

� We adopt a subjective notion of achievement



Goal achievement properties

� Every KGP agent is improving wrt <<1

� KGP agents may not be improving wrt <<2

but definitely:

� If S <<2 S′ then there exists an intermediate 

91

� If S <<2 S′ then there exists an intermediate 

(other) state S′′ in which one of 

OI, PI or AE has been performed

� Motivation of design choices (OI, PI, AE)



Properties: Some considerations

� We have studied some “welfare” 
properties of the KGP agent model 

� Can these properties be proven of other 
agent models?
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agent models?

� Are there any other interesting 
properties for agents?

� Can any formal verification technique be 
applied to prove properties of the KGP 
agent model?



KGP Implementation: PROSOCS

PROSOCS
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PROSOCS
Peer

Group



Technologies

� SICStus Prolog for inference-based 

components (e.g. LP, ALP and LPP);

� JXTA for communication(e.g. Medium 

API for sensors/effectors) 
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API for sensors/effectors) 

� Java to implement the Medium API, 

integrate Prolog into components, and 

build the GUIs.



A number of generic components:

� normal cycle theory on selecting transitions (LPP)

� transitions calling capabilities (KGP/Prolog)

� execution of capabilities and changes on the state 
(KGP/Prolog)

PROSOCS: Agent Mind
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(KGP/Prolog)

� LPP reasoning in GORGIAS (meta-interpreter)

� LP/ALP reasoning in CIFF (meta-interpreter)

� AEC with CIFF for temporal reasoning.



Some references

� Bracciali, Demetriou, Endriss, Kakas, Lu, Stathis, 
Crafting the Mind of a PROSOCS Agent. Applied 
Artificial Intelligence, 2005. 

� Mancarella, Terreni, Sadri, Toni, Endriss, The CIFF 
proof procedure for abductive logic programming with 
constraints: Theory, implementation and experiments. 
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constraints: Theory, implementation and experiments. 
Theory and Practice of Logic Programming, 9: 691-
750, 2009 

� Demetriou, Kakas, Argumentation with abduction, 4th

Panhellenic Symposium on Logic, 2003. (GORGIAS)



Part II

Multi-agent systems

�Communication

�Negotiation



Outline

� Some background on communication

� Communication for KGP agents

� Communication for ALP agents

Negotiation as an illustrative setting

F. Toni -MAS and LP 98

� Negotiation as an illustrative setting



Multiagent Systems

99
Wooldridge, An introduction to multiagent systems



Example (negotiation)

1: Can you give me a nail?

I want to 

hang a 

mirror

Thanks to P. Torroni 100

1: Can you give me a nail?

agent-2agent-1

2: OK



Example (negotiation) ctnd

1: Can you give me a nail?

I want to 

hang a 

mirror

I want to 

hang a 

picture
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2: OK, 

if you give me a hammer

agent-2agent-1

Thanks to P. Torroni



Resource Reallocation Problem 

(r.p.p.)
available and needed resources

missing resources

available and not needed resources

plan
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resources

plan

Resource sharing problem: r.r.p. over time intervals

Thanks to P. Torroni



Agent communication: 

Speech Act theory
� Utterance= performative+ content

� performative = request

content = “the door is closed”

speech act = “please close the door”

� performative = inform
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� performative = inform

content = “the door is closed”

speech act = “the door is closed!”

� performative = inquire

content = “the door is closed”

speech act = “is the door closed?”

Austin and Searle



FIPA

� Foundation for Intelligent Physical Agents 
(FIPA) - agent standards — the centerpiece is 
an agent communication language (ACL)

� Basic structure follows speech act theory:
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� Basic structure follows speech act theory:

� performative: 20 performative in FIPA

� housekeeping:e.g., sender… but also 

conversation-id…

� content:the actual content of the message



FIPA: Example

(inform

:sender agent1

:receiver agent5
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:receiver agent5

:content (price good200 150)

:language sl

:ontology hpl-auction

)



Communication language: 
high level description

� Utterances are atoms of the form

perf( Sender, Recipients, Content, Id, Time )
� Sender, Recipients: (sets of) agents

� Content in some content language
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� Content in some content language

� Id: (unique) dialogue identifier

� Time of the utterance (1, 2, 3, ...)

� perf : performative e.g. request, accept, …

� Content: give( r), ...

� Initial utterances

� Final (successful / unsuccessful) utterances



Inter-agent conversations/dialogues

� Flexible interaction pattern between agents

� Classification of dialogues [Walton & Krabbe, 
1995]
� Persuasion (clarification)
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Persuasion (clarification)

� Inquiry (hypotheses proving)

� Negotiation (settlement achieving)

� Information Seeking (information exchange)

� Deliberation (decision making)

� Discovery ... [McBurney&Parsons]



Example of ACL(for negotiation)

� request( x, Y, give( R, [Ts, Te] ) , Id, T )
used by x to request y a resource R from time Ts to time Te

� promise( x, Y, give( R , [Ts, Te],[Ts', Te'] ), Id, T )
used to propose deals: x will give R to Y from time Ts to time Te if Y

will give R to x from time Ts' to time Te'
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will give R to x from time Ts' to time Te'

� refuse- request ( x, Y, give( R, [Ts, Te] ), Id, T )

� accept-request( x, Y, give( R, [Ts, Te] ) , Id, T )

� accept-promise( x, Y, 

give( R , [Ts, Te], [Ts', Te'] ), Id, T )

� change-promise(x, Y, 

give( R , [Ts, Te], [Ts', Te'] ), Id, T )



Example of dialogue

request( x, y, give( nail, [10, 11] ), id, 1 )

accept( y, x, give( nail, [10, 11] ), id, 4 )
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(successful dialogue)



Another example of dialogue

request( x, y, give( nail, [10, 11] ), id, 1 )

promise( y, x, give( nail, [10, 11], [17, 18] ) ), id, 2 ) 

change-promise(x,y, give( nail,[10, 11], [17, 18] ) ), id, 3) 

refuse-request( y, x, give( nail, [10, 11] ) ) , id, 4 )
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refuse-request( y, x, give( nail, [10, 11] ) ) , id, 4 )

(unsuccessful dialogue)



Communication policies

� Policies as sets of logic-based rules 

(∀) u[T] ∧ C ⇒ (∃) u'[T'] ∧ TC[T,T']
� u [T] (the trigger event) and u'[T'] (the next utterance) are 

utterances (we ignore here many details, e.g. sender)

� TC[T,T'] is a temporal ordering constraint between T and T', for 
example T < T' or T<T' < T+10

Sadri, Toni, Torroni. Dialogues for negotiation: agent varieties 

and dialogue sequences. ATAL01 111

example T < T' or T<T' < T+10

� C, the condition, is a conjunction of literals in some logic 
language, equipped with an entailment operator; C is to be 
evaluated in a knowledge (belief) base K of the agent



Resource reallocation: a simple policy

request( X, a, give( R), Id, T)  ∧

have( R, T )

⇒ accept-request( a, X, give( R) ), Id,T1 ) ∧ T1>T
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request( X, a, give(R), Id,T) ∧

not have( R, T)

⇒ refuse- request(a, X, give( R) ), Id, T1 ) ∧ T1>T



From policies to protocols

� Policies: agents’ internal “rules” for (part of 
the) decision making about communication 
� private - encapsulated within agents’ minds 

� different agents might have different policies

� Protocols: “rules” of communication  amongst 
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� Protocols: “rules” of communication  amongst 
agents, providing a  “social”, non-mentalistic 
semantics to interaction:
� public

� shared amongst agents



Protocols

� There are several ways to define protocols:
� input-output pairs ;

� A-UML diagrams ;

� Petri Nets ;
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� commitment machines ;

� finite state machines ( FSM ) ;

� …

S
Fs

S
1

S
Fu

S
0

X:request:Y

Y:accept:X

Y:refuse:X



Conformance to protocols

� Are dialogues conformant to protocols?

� Are agents conformant to protocols? –
i.e. do they utter correct utterances in 
dialogues? 
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dialogues? 

� Are dialogues induced by policies 
conformant to protocols? – i.e.
are agents holding those policies 
guaranteed to utter correct utterances in 
all dialogues? (a-priori conformance) 



Dialogues conformant to protocols

S
Fs

S
1

S
Fu

S
0

X:request:Y

Y:accept:X

Y:refuse:X
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� request( x, y, give( nail) , id, 1 ), 

accept( y, x, give( nail) ), id, 4 )                     

is conformant

� request( x, y, give( nail ), id, 1 ),

?( y, x, give( nail) ), id, 4 )                                         
is not  

S
Fs

[IJCAI'03b] Endriss, Maudet, Sadri, Toni, 

Protocol conformance for logic-based agents



Agents conformant to protocols

� Weakly conformant agent: the agent never utters 
something “illegal” wrt the protocol – it will never give 
rise to non-conformant conversations while conversing 
with a weakly conformant agent

� Exhaustively conformant: weakly conformance + the 
agent always utters something correct when required by 
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agent always utters something correct when required by 
the protocol (not in final state)

� Robustly conformant: exhaustively conformance wrt to 
the protocol extended  by a special utterance  to reply to 
“illegal” utterances (according to the protocol) from other 
agents (which are not conformant to the original 
protocol)



Agents conformant to protocols

S
Fs

S
1

S
Fu

S
0

X:request:Y

Y:accept:X

Y:refuse:X
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� request( x, y, give(nail) , id, 1 ),                             
?( y, x, give( nail) ), id, 4 )                                          
y is not weakly conformant ,                                      
x is not robustly conformant 

� request( x, y, give( nail), id, 1 )                               
y is not exhaustively conformant



Agents conformant to protocols (cntd)

request( x, y, give( nail), id, 1 ),                 S
Fs

S
1

S
Fu

S
0

X:request:Y

Y:accept:X

Y:refuse:X
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request( x, y, give( nail), id, 1 ),                 

?( y, x, give( nail), id, 4 ) 

wrong( x, y, empty, id, 8 )                          

x is robustly conformant, cf:

S
Fs

S
1

S
Fu

S
0

X:request:Y

Y:accept:X

Y:refuse:X

Y:?:X S
2

X:wrong:Y



A priori protocol conformance

� How to design policies guaranteed to 
render agents 
(weakly/exhaustively/robustly) 
conformant to protocols?
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conformant to protocols?



A-priory conformance

request( X, a, give( R), Id, T) ∧ have( R, T )

⇒ accept ( a, X, give( R), Id,T1 ) ∧ T1>T

request( X, a, give( R), Id,T) ∧ not have( R, T)

⇒ refuse- (a, X, give( R), Id, T1 ) ∧ T1>T

Agent a will be exhaustively conformant to:
S
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Agent a will be exhaustively conformant to:

if its entailment notion is complete

S
Fs

S
1

S
Fu

S
0

X:request:Y

Y:accept:X

Y:refuse:X



A priori protocol conformance: result

� If logic-based representation of  
protocols is added to the knowledge 
base of (some kinds of) agents ...

� ...then these agents can be proven to be 

122

� ...then these agents can be proven to be 
weakly conformant to those protocols 
(prior to their involvement in any 
conversations)



Communication: KGP vs ALP agents

� KGP agents
� Communicative actions are special kinds of 

actions

� Communication policies are reactive 
constraints in Kbreact
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constraints in Kbreact

� Reactive constraints=integrity constraints 
in abductive logic programming 



Abductive logic programs  for communication

Abductive Logic Program = 
Logic Program (P)

+ Set of abducible predicates (A)
+ Integrity Constraints (IC )

124

<P,A,IC>

beliefs + past 

dialogues

policies (and 

protocols)

communication language

[JELIA'02] Sadri, Toni, Torroni. 

An abductive logic programming architecture for negotiating agents.



Example
Agent a:

Pa:   get(R, T) ← request(a,b,give(R),d(a,b,R,T'),T')∧

accept(b,a, give(R),d(a,b,R,T'),T'') ∧ T'' ≥ T' ≥ T

Aa:   request (a,X, give(R),D,T), accept(X,a, give(R),D,T)

ICa:  ∅

observables
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Agent b:

Pb:   have(r)

Ab:   accept (b,X, give(R),D,T), request (X,b, give(R),D,T), 

ICc: request(X,b, give(R),D,T) ∧ have(R) ⇒

∃T'[accept(b,X, give(R),D,T') ∧ T' ≥ T]

actions
observables



Example: generation of dialogue 
request (a,b, give(r),_,5), accept(b,a, give(r),_,10)

OBS GOALS ACTIONS

get(r,0)

request(a,b,r,T’) ∧∧∧∧
accept(b,a,R,T’’) ∧∧∧∧
T’’ ≥≥≥≥ T’ ≥≥≥≥ 0

request(a,b,r,5)

accept(b,a,r,10)

a:
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accept(b,a,r,10)

10 ≥≥≥≥ 5 ≥≥≥≥ 0 √√√√

OBSGOALSACTIONS

have(r) ⇒⇒⇒⇒ ∃∃∃∃ T [

accept(b,a,r,T) ∧∧∧∧
T ≥≥≥≥ 5]

request(a,b,r,5)

accept(b,a,r,10)

10 ≥≥≥≥ 5 √√√√

b:



Advantages of abductive logic 

programming for communication

Dialogues generated by interleaving two 
abductive derivations, obtained by applying an 
abductive proof procedure

• Existing semantics and proof procedures 
(e.g. CIFF proof procedure) can be used
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(e.g. CIFF proof procedure) can be used

• Existing theoretical results (e.g. about 
termination) for the procedures can be 
exploited to prove results of communication



Part III

Argumentative (KGP) agents
� Service-oriented architectures and 

Grid



Service-oriented computing

� Agent-based semantic grid/service-
oriented architecture
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Services/

resources/

Users (requesting 

services/resources)

Argumentation-based Agents

Communication

Negotiation/workflows/VOs/contracts/disputes



ARGUGRID

WP6



Scenarios

� Earth observation 

� Select appropriate sensors/satellites e.g. for 

dealing with oil spill

� Combine sensors/satellites + other services 

(weather) e.g. for fire monitoring 
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(weather) e.g. for fire monitoring 

� E-procurement 

� Select (combinations of)  appropriate  

products/service to be purchased

� Features of products/services influence business 

strategic benefits for the buyer 



Analysis of (EO) scenarios

� defeasible, conflicting information/ beliefs (it will be 
cloudy; it won’t be cloudy; if cloudy then radar sensors )

� mutually exclusive decisions (sensor s1 or sensor s2?) 
for the achievement of goals (I need images every hour)

� preferences over beliefs (I trust weather forecast by abc 
more than by xyz), over decisions (s1 is typically more 
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preferences over beliefs (I trust weather forecast by abc 
more than by xyz), over decisions (s1 is typically more 
reliable than s2), over goals (quality of images more 
important then cost) 

� negotiation (I need images every hour for a week, can I 
get a special price?) 



The case for argumentation

� Decision-making:
� Alternative decisions, e.g.

� Requestors: Which (combination of ) services? From 
which providers? (Which protocol for asking? Which 
registries?)

� Providers: Which request to accept? etc

� Conflicting beliefs. Defeasible rules.
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� Conflicting beliefs. Defeasible rules.

� Preferences

� Negotiation
� Justification of decisions

� Persuasion

� Increase the chance of success while striving for 
privacy



(Computational) argumentation

� Abstractly: given framework (arguments,attack)
� A subset S of arguments is

� Admissible iff S does not attack S and
S attacks each X that attacks S

� Preferred iff S is maximally admissible
� Grounded iff S is minimal such that it contains every a such 

S
…

X1

X2
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� Grounded iff S is minimal such that it contains every a such 
that S attacks every X that attacks a

� Ideal iff S is admissible and contained in each preferred set
� …

� Concretely: 
� arguments built from facts/rules

� attack ~conflict/inconsistency/contradiction



Argumentation in philosophy and law

� Parties plead for and against conclusions

� Law:

Simpson is the murderer as DNA tests showA. Simpson is the murderer as DNA tests show

� Simpson’s blood at the murder scene and

� the victim’s blood on Simpson’s glove

B. But the glove does not fit Simpson’s hand

C. Also, the key police officer who collected the 

evidence is a racist
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Abstract argumentation

� Given (Arguments , Attacks),
� Arguments:

A. Simpson is the murderer as …

B. The glove does not fit ...
(Dung, 1995)

B. The glove does not fit ...

C. The police officer is a racist...

� B Attacks A, C Attacks A

� Determine “winning” arguments, e.g.

arguments that defeat all attacks against them
� B and C are winning
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A

B C



Rule-based argumentation

� Arguments are deductions 
� of claims 

� from premises 

� using rules

� Attacks may be  on claims, premises or rules

� Simpson is a murderer

� DNA shows it

� If DNA shows X is M then X is M

Bondarenko, Dung, Lowalski, Toni 1997
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� Attacks may be  on claims, premises or rules

Assumption-based argumentation (ABA)

� premises are assumptions

� attacks are reduced to attacks on 
assumptions, via a notion of contrary



Arguments and attacks in ABA

Simpson is a murderer because

� DNA shows it 

� If DNA shows X is M then X is M

� assuming  DNA from evidence correctly  collected

m

e

m

e

evidence was not correctly collected because

� the officer collecting the evidence is a racist

� If X is a racist then typically X cannot be objective 

� assuming the officer  was a typical racist
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Simpson in ABA

m

i

-g

“innocent untess proven guilty”
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e
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Computation in ABA

� (Various kinds of) dispute derivations:
� Dispute between proponent and opponent

� Outcomes: 

� initial claim is supported by a “winning” set of 
arguments or not

Dung, Kowalski, Toni 2006,  Dung, Mancarella, Toni 2007. Gaertner, Toni 2008
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arguments or not

� Arguments + attacks constructed during the 
dispute

� Assumptions supporting the proponent’s 
arguments 

� Prototype system: CaSAPI



ARGUGRID agents (specialised KGP)

Argumentation

Argumentation
Argumentation-based 

protocols
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Representation of 

service types

Representation of 

link: services/agents



(Standard) KGP agents

CYCLE 
THEORY

Plan Introduction, 

Action Execution, …

Planning, 

Goal selection, 

action selection, …

Dynamic, flexible control 

(argumentative) 

All components are specified 
and realised in 

(extensions of) LP
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REASONING                CAPABILITIES

PHYSICAL CAPABILITIES

S
T
A
T
E

Sensing, Actuating

Planning, 
Reactivity, … Knowledge

•executed actions

•observed properties
Goals

Plans 



Argumentative KGP agents

CYCLE 
THEORY

•Abstract decision making

•Knowledge: 
•utterances

•registries consultation

•contracts 
•Goals: user reqs 

•Plans: workflows 

•Arguments: for goals and plans

•ADM,  SDM,  CR,  RC, R

•Li, Ta, Con

Reasoning capabilities defined 
and realised in some 

argumentation framework
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REASONING                CAPABILITIES

PHYSICAL CAPABILITIES

S
T
A
T
E

Listening, Talking, 
Consulting

•Abstract decision making
•Social decision making

•Communicative reactivity

•Registry consultation
•Revision

•Arguments: for goals and plans
•Li, Ta, Con

AITA2008 



Workflows and contracts

� Abstract workflows (with annotations) – outcome of 
abstract decision making reasoning capability
� satellite(S1, I1) & processing-software(S2, I1,I2) &     jpeg-

format(I2) 
� computer-system(S1) & internet-provider(S2)

� Concrete workflows (with annotations) – outcome of social 
decision making+registry consultation reasoning 
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� Concrete workflows (with annotations) – outcome of social 
decision making+registry consultation reasoning 
capabilities
� satellite(meteosat, I1) & processing-software(such-and-such,I1,I2)
� computer-system(abc) & internet-provider(wind)

� Contracts: workflows + “contractual features” (e.g. cost, 
delivery date) – outcome of communicative reactivity 
reasoning capability



Registries

� Registry query language, e.g.

� consult( agent-such-and-such,

registry-such-and-such,

Query)
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Query)

� Query may be “is there a satellite providing 

jpeg images”?

� Determine the registry consultation 
reasoning capability



Decision-making for e-procurement

� ABA:
� features of  services to purchase
� uncertain/customisable features in services on offer

� links from features to benefits for the buyer

� “control information”

� e.g. rules may include (s5,s8 concrete services)

146

� e.g. rules may include (s5,s8 concrete services)
� f1(s5)         f2(s8)
� f2(S) ← guarantee(S)
� b(S) ← f1(S), f2(S),choose(S)
� not-choose(s5) ←b(s8),not-b(s5)

not-choose(s5) ←choose(s8)

with contrary of: choose(s5)=not choose(s5)

not-b(s5)= b(s5), …

assumptions

AAMAS 2008 – industrial track



Decision-making for e-procurement

� ABA framework
f1(s5)      f2(s8)          f2(S) ← guarantee(S)
b(S) ← f1(S), f2(S),choose(S)
not-choose(s5) ←choose(s8)
not-choose(s8) ←b(s5),not-b(s8)

� arguments 

contrary: not choose(S)

contrary: b(s8) 
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� arguments 
1: {choose(s5), guarantee(s5)} ├ b(s5)
2: {choose(s8)}├ not-choose(s5)
3: {choose(s5),guarantee(s5),not-b(s8 )}├not-choose(s8) 

� attacks: 2 attacks 1, 3 attacks 2

� admissible arguments = 

optimal choice+contracts (customisable features)



Decision-making for e-procurement

� arguments 
1. {choose(s5), guarantee(s5)} ├ benefit(s5)

“choosing some concrete offer (of a service) will provide some given 
benefit if  that offer is extended with some additional (contractual) 
feature”  …..argument in favour of a specific offer (s5)

2. {choose(s8)}├ not-choose(s5)

“choosing some offer (of a service) is a reason against choosing some 
other offer”  …..argument against of a specific offer (s )
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other offer”  …..argument against of a specific offer (s5)

3. {choose(s5),guarantee(s5),not-benefit(s8 )}├not-choose(s8)

“choosing some (suitably extended) concrete offer (of a service) giving 
some benefit is a reason against choosing some other offer  without 
that benefit”

� attacks: 2 attacks 1, 3 attacks 2
� “admissible” arguments = 

optimal choice+contracts (customisable features)



Contract negotiation

� Two agents, a buyer and a seller, each using 

� an argumentation framework describing

� how to achieve “structural” goals (e.g. which satellite) and 

“contractual” goals (e.g. cost)

� Uncertainties

Defeasible rules
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� Defeasible rules

� Ranking of goals (preferences)

� Two-phase negotiation:

1. (Sceptical preferred) argumentation semantics (equivalent to 
minmax preference for structural goals)  for deciding services

2. Negotiation protocol (of alternating offers and counter-offers) 
leading to agreement  (using a Nash equilibrium strategy)

COMMA 2008



� trust = willingness of an entity (evaluator) to engage in 

a “risky” relationship with another entity (target)

� Hybrid approach: belief function combining

� Statistics on past behaviour of target 

arguments (according to their strength) about 

Argumentation for trust

� arguments (according to their strength) about 

predictable trustworthiness of target

� one argument for trusting if contract by target to evaluator 
has clause guaranteeing QoS

� otherwise one argument for not trusting

� optionally one argument against trusting if, in the past, 
contract clause was most often violated

Matt, Morge, Toni, AAMAS10



Higher percentage of correct decisions (by 
evaluator) using argumentation

(cautiousness)



Non-fulfilment of contractual agreements (by 

target) is reduced by argumentation

(cautiousness)



Summary

I. Agents
� Logic- and LP-based approaches

� KGP agents

II. Multi-agent systems
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II. Multi-agent systems
� Communication

� Negotiation

III. Argumentative (KGP) agents
� Service-oriented architectures and Grid
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