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ABSTRACT
Coordination systems, in particular Linda, have established
themselves as important tools for developing applications
for open systems such as the Internet.
This paper shows how to tackle a forgotten, yet crucial

problem in open coordination systems: memory manage-
ment. As with any system which intends to be of wide use,
coordination systems have to address the problems of mem-
ory exhaustion since memory is a finite resource. This paper
first explores the separation between coordination and com-
putation in order to make it clear that the problem of mem-
ory exhaustion in coordination systems cannot be solved us-
ing garbage collection schemes implemented at the compu-
tation language — a garbage collection scheme must exist
in the coordination environment as well.
As Linda is arguably the most successful coordination sys-

tem, this paper will focus on the Linda-like family of sys-
tems. By showing how the problem can be tackled in Linda
it is expected that a solution for other coordination system
could be implemented by adapting the method described.
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1. INTRODUCTION
Linda has surely caused an impact in the computer sci-

ence community. Since its proposal by Gelernter [11] the
basic idea of Linda has evolved to a point of even attract-
ing the attention of the industry. Recently two major com-
puter companies have released commercial packages based
on Linda: Sun Microsystems with JavaSpaces [29] and IBM
with T Spaces [16].
The path to achieve such a recognition was not easy and

it was necessary nearly 15 years of research to convince
the world of Linda’s abilities. In its evolution, Linda has
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changed from a model aimed at parallel computing to a
model aimed at distributed computing, in particular, inter-
esting for open distributed computing.
The first implementations of Linda were confined to closed

(controlled) environments [27, 26]. In the closed case most
of the problems are of little concern as they can be dealt
with at compile-time. However the same is not true in open
implementations of Linda. Any existing problem handled
at compile-time in closed systems becomes a concern in the
open case as the solutions have to be implemented at run-
time involving dynamic reconfiguration of data structures
and more control over race-conditions.
Additionally, problems in closed systems are confined to

the boundaries of a single computation language, which hides
the idea that coordination and computation are orthogonal
concepts because the computation language defines a bound-
ary to coordination giving the impression that the compu-
tation language itself deals with coordination. In open sys-
tems the situation is rather different. Open applications can
be implemented over different languages, different machines,
different operating systems, that is, a complete heteroge-
neous environment. This heterogeneity stops computation
languages from being able to deal with coordination prob-
lems since the problems break the boundaries of computa-
tion languages. Hence, coordination problems need to be
tackled at the coordination level — within the coordination
environment.
The aim of this paper is twofold:

1. Develop a way of keeping enough information about
Linda objects within the kernel so that optimizations
can be implemented based on this information.

2. Describe how the information maintained can be used
to tackle the memory management problem in Linda.

Garbage collection of coordination objects cannot be per-
formed at the computation language level. Instead, a garbage
collection scheme has to be implemented so as to collect
solely coordination objects. With the introduction of the
multiple tuple spaces concept in Linda [12], processes be-
came able to create tuple spaces via a primitive provided.
However, in open implementations of Linda, these tuple
spaces remain ‘forever’ in the system once they are created.
This paper argues that the implementation of a garbage col-
lection system within Linda is the only possible solution to
avoid memory exhaustion of happening when large applica-
tions are implemented in open Linda systems.



This paper is divided as follow. In Section 2 the back-
ground work is discussed. First the orthogonality argument
of Gelernter and Carriero [13] is explained as this is an es-
sential concept for the understanding of why the memory
resources at the coordination level cannot be managed by
computational languages. Then a brief introduction to the
Linda models is given followed by a discussion on open im-
plementations of this model. Section 3 explains the memory
exhaustion problem and why it can only be solved if more
information becomes available at the kernel level. Section
4 shows how information about accessibility of tuple spaces
by processes can be gathered in a distributed graph struc-
ture. Section 5 shows how one should go about implement-
ing garbage collection using the distributed graph present
at the kernel level. Section 6 presents some experimental
results extracted from the implementation of the garbage
collection described. Finally, Section 7 presents the conclu-
sion of this paper.

2. BACKGROUND

2.1 Computation vs. Coordination
Although for some the orthogonality between computa-

tion and coordination may be very clear, only recently this
concept has been formally proposed. After the introduction
of the Linda model [11] and its subsequent extension to the
multiple tuple space model, the idea of Linda as a model
exclusive for parallel computing was replaced by the idea of
having Linda as a model for distributed computing. How-
ever, Linda does not represent a distributed system by itself,
its implementation has to be embedded in languages like C
[28], Prolog [31], ISETL [8], and others.
Gelernter and Carriero observing this characteristic ar-

gued that Linda does not deal with computation but only
with coordination aspects of a distributed system — Linda
is a coordination model [13]. The idea can be easily observed
with an example: if two processes are each generating a
number that will be added by a third process, coordination
models are not interested in how the addition is carried out
but in how the two numbers are obtained before the op-
eration — coordination is the process of managing depen-
dencies between distributed activities. Soon after the term
coordination become accepted by the computer science com-
munity, other existing models, like Actors [1] and CHAM [2]
were also classified as coordination models since they, like
Linda, are not concerned with computation.
In reality, Gelernter and Carriero, did not create the term

coordination, they have only described how the coordination
idea introduced by Malone and Crowston [19], could be ap-
plied on the design of distributed computer systems. They
have described a distributed language in terms of coordina-
tion and computation and have shown that a coordination
model (or language) when put together with a computation
language form a complete distributed language.

2.2 The Linda Coordination Model
The Linda coordination model [11, 12] is based on the

concept of generative communication via distributed asso-
ciative shared memories. The shared memories are called
tuple spaces and behave like bags (unordered multi-sets) of
tuples. There is no direct communication between processes;
all communication is done via tuple spaces. The model
provides the processes with primitives to access the tuple

spaces: storing and retrieving tuples, creating tuple spaces,
and spawning other processes.
Tuples in Linda are ordered lists of valued-objects (ac-

tuals). The generative communication model is based on
associative matching implemented on the primitives. The
matching implemented in Linda is based on templateswhich
are no different from tuples except for being able to have
non-valued objects (formals) represented by ?type. For in-
stance the template [?int, "Hello"] matches the tuple
[1,"Hello"].
The primitives provided are1: out (stores a tuple in a tu-

ple space), in (removes a tuple from a tuple space matching
the template provided), rd (gets a copy a tuple from a tuple
space matching the template provided), collect (moves all
tuples matching the template from a tuple space to another),
copy (copies all tuples matching the template from a tuple
space to another) and eval (spawns a new process). By us-
ing these primitives, Linda unifies the concepts of process
creation, communication and synchronization since they are
all implemented as tuple space operations.
There are several variants of the Linda model (called nowa-

days the Linda family of models) among which deserve men-
tioning: Melinda [15], Bauhaus [5], PageSpace [6] and Bonita
[25]. Despite their differences all the models would suffer
from the same problem should they be implemented in open
environments: memory exhaustion.

2.3 Open Implementations
One might wonder why the memory exhaustion problem

has not been felt to a great extent so far. The answer is sim-
ple; only recently open implementations of Linda started to
appear and even the ones already available have not yet been
used on the implementation of large applications. However
the increase of commercial open implementations of Linda
— like JavaSpaces and T Spaces — will in a short period of
time make Linda a viable commercial product for the devel-
oping of open applications. An example of this phenomenon
can be observed with Sun Microsystems’ Jini [30] which in-
cludes JavaSpaces as one of its components. Yet, Jini is not
“the” perfect example because JavaSpaces (coordination) is
confined to a single computation language (Java).
In open implementations of coordination systems prob-

lems that were previously solved at compile-time, are now
required to be solved separately, by a run-time sub-system.
To make matters worse, even vital information necessary for
the implementation of these sub-systems is no longer avail-
able. For instance, in a closed system, it is possible for
the kernel to built at compile-time a structure containing
the information of which processes are likely to access which
tuple spaces. With this information in hand, decisions (op-
timizations or garbage collection for instance) can be made
without interfering in the execution of the system.
Generally speaking one can say that due to the existence

of enough information in closed systems the solutions for
possible problems are easier. In other words, the degree of
difficulty of problems in open systems is higher than the
same problems for closed systems. As the majority of prob-
lems in closed systems can be dealt with at compile-time, the
solutions can use stable (passive) structures containing the
information. In open systems not only the information has

1collect and copy are not standard primitives but the con-
cept of bulk primitives is well accepted for them to be in-
cluded here.



to be maintained at run-time but also the solutions have
to be careful to use the information available at the right
time when the information is coherent with the state of the
system.

3. MEMORY EXHAUSTION
Memory management hunts every large application de-

veloper. As computers becomes cheaper, systems tend to
be larger and use more of the memory resources. However
the bottom line is that memory being a finite resource, its
utilization is (and always will be) a concern.
As mentioned before, the problem has not yet been ob-

served in Linda systems. There are a number of reasons for
this:

• as the first commercial implementations of Linda were
closed [27, 26], compile-time optimizations implemented
at the kernel level were used to manage memory usage;

• in closed system the orthogonality of coordination and
computation is not observed since both concepts are
mingled into one distributed/parallel language;

• large, memory demanding applications have not been
implemented using closed Linda implementations be-
cause most of them demand open systems;

• open implementations of Linda are largely research
prototypes where only small applications (test pro-
grams) are implemented making memory management
not and issue;

• only recently companies like Sun [29] and IBM [16]
started to explore the possibilities of open Linda-like
implementations in the Internet context but their im-
plementation are still to be used in the development
of large open applications.

Still, the applicability of coordination systems to the Web
and the benefits they can bring to the Internet are well
known and accepted. Therefore, it is correct to think that it
will not be long until the problem of memory management
start to appear. Palliative solutions can be implemented but
this paper looks ahead and identify the core of the problem:
lack of information within the system.

4. INFORMATION GATHERING
Open implementations of the Linda model have to find

means of building up information about processes, tuple
spaces and tuples in the kernel. This can be done by using
for instance pre-processing, using active agents for gathering
information at run-time [18], or gathering the information
using the messages in transit within the system [22].
The use of pre-processing can, in some cases, build an

initial amount of information that allows some optimization,
however, as pre-processing is normally done from a single
process point of view it does not help in the solution of global
problems like the problem of memory management. The
solution based on active agents although very elegant might
add undesirable overhead to the system. This paper explores
how to solve the problem of memory management based
on the idea of gathering information using the messages in
transit between the Linda processes and the Linda kernel.
It is trivial to see that most of the information necessary to

build a structure that could be made available to sub-system
processes (such as garbage collection) is already in transit
in the Linda case. The problem is that this information is
volatile — because it is not stored, it is lost.
In order to add some persistence to the information in

transit within the system, a distributed graph2 with the in-
formation of which processes access which tuple spaces is
built in the Linda kernel.

4.1 Consideration of Tuples
Before discussing how the graph is build it is worth clari-

fying why tuples will not be considered. One could naively
think that as tuples are the basic elements being stored and
retrieved in Linda, any memory management should be done
at the tuple level. The reason for not doing this is that tu-
ples in Linda are not uniquely identified. A tuple is just an
ordered list of values and processes do not keep references to
them. Yet, processes do keep references to tuple spaces (bag
of tuples) as their name have to be of a process knowledge
if this intends to stored/retrieve tuple in/from them.
One solution that is worth mentioning is the idea of leases

used in JavaSpaces. The basic idea is that resources can be
allocated for a fixed period of time. For instance, a tuple is
created with a “expiration date”. Freeman et Al. [10] argue
that leases are ideal for unreliable distributed applications
where processes can fail before resources are explicitly freed.
While lease can be used in certain cases where the behavior
of the application is known, it cannot be used when the
behavior is unpredictable. In asynchronous system a process
cannot predict for how long a tuple will be required in the
system nor can the process delete any tuple explicit due
to the same reason. This paper argues that not even the
kernel can free resources at the tuple level because tuples
are accessed associatively — there is no handle to a tuple.
Leases work in JavaSpaces because tuples are confined to a
single language and are represented as Java objects.

4.2 Using the Messages in Transit
This paper therefore concentrates in having a graph with

information about tuple spaces and processes only. The con-
struction of the distributed graph is based on two concepts
that need to be introduced within the kernel, so that the
information in transit does not get lost.

Process Registration/Check-out: The kernel should be
aware of all processes willing to coordinate using Linda
primitives. Process registration consists of having each
process communicating with the kernel so that this can
assign them with a unique name. From the point of
registration onwards all processes will use their inter-
nal names in all communication with the kernel.

The dual of the process registration is the process
check-out where the processes informs the Linda ker-
nel that it does not intend to use Linda facilities any
longer.

Tuple Monitoring: Tuple monitoring is the idea of hav-
ing the Linda kernel analyzing all relevant information
in transit. It is called tuple monitoring because the
basic information in transit in Linda are tuples. Since

2Despite being called a graph, the name stands only for the
pictorial representation of the data structure containing the
information itself.



processes can be identified by their names, the tuple
monitoring is effective in extracting information stored
within tuples.

With the implementation of the concepts above, Linda
is being given more power as it becomes aware of what is
happening in all communications. As processes and tuple
spaces are uniquely identified the so-called distributed graph
can be built to hold information about the system.
Although the implementation of the concepts above is cru-

cial for the solution of the memory management problem
they are not just a commodity that is being implemented
only to satisfy the garbage collection scheme. The graph
is building up information on the kernel that can be made
available to other optimization run-time systems.

4.3 Creating Distributed Graphs
Clearly, with the information available in the kernel after

the introduction of the concepts described in Section 4.2 a
data structure can be built. As said before the intention is
to build a data structure (pictorially seen as a distributed
graph) with the information of tuple spaces usage by pro-
cesses. Due to the distributed characteristic of this graph
some rules have to be clarified:

• all existing tuple spaces and processes are represented
in the graph;

• there is only one representation for a process and a
tuple space across all distributed components of the
graph;

• in order to observe the distributed components as part
of a whole (connected) graph the representation of the
Universal Tuple Space (UTS)3 is repeated in all com-
ponents to serve as the connection among all compo-
nents;

• processes hold references to tuple spaces and tuple
spaces might store references to other tuple spaces but
processes do not hold references of other processes —
references are represented as edges in the graph;

• for the purpose of garbage collection algorithm, edges
linking a processes and a tuple space are undirected
whereas edges linking two tuple spaces are directed,
outgoing from the tuple space that contains the refer-
ence;

• directed edges are weighted with the number of refer-
ences stored in the outgoing tuple space;

• both directed and undirected edges are never dupli-
cated — given two nodes there is a maximum of one
undirected edge between them or two directed edges
(one in each direction).

Based on what has been described above, Figure 1 could
represent the situation of the data structure in one of the lo-
cations (one component of the graph). The figure represents
a scenario where four processes are executing and because
they all are aware of the existence of UTS there is an edge
(undirected) linking each one of them to UTS. The figure is

3Its is generally the case that Linda systems have a medium
of communication which is known to all processes.

p3

p4p2

p1

UTS

Figure 1: Simple graph situation.

equivalent to have the following adjacency matrix {{p1 {UTS
}},{p2 {UTS }},{p3 {UTS }},{p4 {UTS }},{UTS {p1,p2,p3,p4
}}}.
There are several ways to get to a particular graph con-

figuration. The one shown in Figure 1 may have got to this
configuration by having the four processes starting soon af-
ter the kernel was initialized. During the initialization the
node UTS is created. Then when a processes registers with
the kernel a name is attributed to the processes, a node is
created representing it and the necessary edges are added,
in this case only the edge linking them to UTS.
For a better understanding of the garbage collection algo-

rithm used, the nodes of tuple spaces in the graph contains
also an extra field which represents the number of references
from other objects (tuple spaces and processes) to this tuple
space. In the UTS case it is set as ◊ to represent that UTS
has infinite number of references — by default, all processes
know about UTS.
Undirected edges are not weighted. A process (an active

object) once it knows about a tuple space it can generate as
many references (tuple space handles) as it likes. Therefore
the undirected edges can be understood as having infinite
weight.
A more complex graph is shown in Figure 2. Again there

are numerous ways of getting to the situation depicted. Be-
fore explaining in more details how the structure is built it is
important to be convinced of the importance of keeping this
information in the kernel. The graph in Figure 2 holds im-
portant information that is normally not available in Linda
systems. For instance it is easy to see that tuple space ts7

is not being used by any process and that its handle is not
available within any other tuple space. Basically, this tu-
ple space is garbage and could be garbage collected — the
kernel now maintains information that was not available be-
fore. Observe that although the system being considered is
fully open, because tuple spaces are accessed by their names
it is impossible to any process to get the handle of ts7.
As another example suppose that both processes p4 and p5
terminate. Should this happen, their representations will
be removed from the graph causing tuple spaces ts3, ts6
and ts9 to be unreachable to all other processes and conse-
quently be considered garbage.
Consider yet just another example as shown in Figure

3. This scenario shows how the distributed graph can help
on the implementation of mobility in Linda. There is a
big interest on mobile computing today mainly due to the
availability of the Web as a distributed network for imple-
mentation of systems that span the globe. Static techniques
adapted from Local Area Networks (LANs) like RMI/RPC
and Corba, although successful in fairly large Wide Area
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Figure 2: A more complex graph situation.

Networks (WANs) are not well adapted to the Web context
[4]. If mobility is to be implemented in Linda the informa-
tion provided by the distributed graph considered here is
of utterly importance. Figure 3 shows a simple case where
process p5 is the sole process accessing the tuple space ts1.
Since p5 is in a different location this might say to a mobile
system that ts1 should migrate to location B or alterna-
tively process p5 should migrate to location A (given that
this process is also not accessing other tuple spaces in loca-
tion B).

Location B

Location A

UTS

p3

p4p2

p1

ts1 1

p5

Figure 3: A simple case of distributed graphs.

The information put together in the graphs depicted so far
is made available by the two concepts described in Section
4.2. First process registration allows the kernel to create
a node for the process in the graph as well as identify all
messages related to this process from the moment of regis-
tration onwards. During the registration some links can also
be created to existing tuple spaces if the process is spawned
receiving handles as parameters.
Tuple monitoring is used to keep the graph updated. It

behaves as an independent process that basically listens to
the messages being transmitted between the Linda kernel
and processes and vice-versa. Although all messages in tran-
sit are potentially important, it is possible for messages to
be identified so that only three types of messages are con-
sidered:

• messages requesting process registration;

• messages storing or retrieving tuples containing han-
dles;

• messages requesting process check-out;

Although process registration and check-out is dealt with
separately, it is up to the tuple monitoring to identify the
message as a registration or a check-out request. The mes-
sages are marked when they are mounted at the Linda pro-
cess side. This flagging does not impose big overhead to the
system as it occurs when the tuple is packed to be sent to
the server.
The tuple monitoring update the graph in several ways.

For every message storing a tuple that contains a handle
(via out, copy or collect) a directed edge has to be cre-
ated in the graph to represent a dependency between the tu-
ple spaces involved — if a tuple space tsx contains a handle
of tsy, any process with access to tsx has potential access
to tsy by retrieving its handle. If a directed edge already
exist linking the two tuple spaces, its weight is modified ac-
cordingly since the weight represents the number of handles
stored in the tuple space. The other messages monitored
are the ones retrieving handles from a tuple spaces (in, rd,
copy and collect)4. If a handle is removed from a tuple
space the weight has to be updated to reflect the change,
and if the weight of the directed edge gets to zero the edge
is removed altogether. The retrieval of handles can grant
a process access to a tuple space, therefore not only the
necessary directed edges are updated but, if necessary, an
undirected edge between th process and the tuple space has
to be created.

4.4 Avoiding Race-Conditions
The operations that update the graph must be done with

care in order to avoid race conditions. Observe for instance
a case with primitive in. Suppose that in the scenario de-
picted in Figure 2 process p5 removes the tuple containing
the handle of ts9 from ts6. If a garbage collection scheme is
using the graph to decide on what is garbage and what is not,
a race condition might occur between the garbage collector
and the update of the graph. When process p5 removes the
handle it automatically gains access to ts9, however if the
order of update of links is not observed tuple space ts9 can
be considered garbage. If the edge linking ts6 to ts9 is
removed before one linking p5 and ts9 is created.
One of the characteristics of the update method used is

that garbage is only created by process termination. Re-
moval of directed edges does not, in any circumstance, gen-
erate garbage. The edges in the graph represent knowledge
of a particular tuple space, if one is removed due to some
process operation another will be created (or modified in
terms of weight). References to a particular tuple space are
never lost due to execution of Linda primitives.
On the other hand process termination is an operation

that can generate garbage as references may be lost. Race
conditions between garbage collection and graph update is
a well know problem in distributed system and has been
solved using various approaches developed through the years
[14, 3, 24]. The adaptation of these models for the Linda
case would avoid the race-condition. Yet, this paper uses
a different approach and instead of adapting one of these

4Bulk primitives, collect and copy, both store and retrieve
tuples from tuple spaces.



(more complex) algorithms, uses a simple one and avoids
the race conditions by guaranteeing that at any time the
graph is consistent with the system situation.
Douglas et Al. [9] have described the out-ordering prob-

lem showing that this is a problem that must be solved in
any Linda-like coordination system. The problem consists
of guaranteeing that the order of execution of a sequence
of outs to a tuple space tsx is the same order that this
tuples appear within tsx. The solution for avoiding race
conditions in the graph can be seen as an extension of this
problem where some ordering is also imposed to the check-
out message sent by the Linda processes. Race conditions
are removed if the system guarantees that after the check-
out message arrives in the kernel, no other message from the
same process can arrive. The experiments shown in Section
6 show that this solution does not impose a great overhead
to the system.
The argument that can be used to show that little over-

head is added by this extra ordering is based on the fact
that only the primitive out needs to be considered in the
ordering. Other primitives always return something to the
process therefore ordering already exists as part of the se-
mantics of the primitive. For instance, suppose that a prim-
itive in is the last primitive executed before the process
checks-out. As in returns a tuple the check-out operation
immediately following would not even be executed at the
process side until the primitive in is completed, thus guar-
anteeing the ordering of execution. The primitive out is the
only one that does not return a value and consequently the
only one that needs to be considered in the ordering with
termination (check-out).

5. GARBAGE COLLECTION
Garbage collection in Linda is implemented at the kernel

level as this is the only way to guarantee that the scheme
would not be restricted to boundaries of computation lan-
guages. The scheme implemented aims at finding garbage
tuple spaces but some consideration is given to what would
be required to garbage collect Linda processes as well.

5.1 Finding Garbage Tuple Spaces
Given that the information now available in the kernel the

implementation of a garbage collection scheme for finding
tuple spaces which are no longer necessary in the system
is simple. The most popular garbage collection algorithms
available are variations of one of the two basic methods:
Reference Counting[7] and Mark-and Sweep[20].
The scheme implemented in Linda is based on a two-phase

garbage collection. The first phase uses reference counting
to find tuple spaces that are not required within the system.
Basically any tuple space that has its counter field (num-
ber of processes with knowledge of this tuple space) zero is
wasting memory space and can be removed. Figure 4 shows
a scenario where two tuple spaces, ts7 and ts13, can be
removed by the garbage collector since their counters are
zero.
However, reference counting methods do not always find

all garbage; they do not work well in cyclic structures since
cyclic garbage are not identified. Yet, reference counting is
cheap to be implemented in distributed environments [17]
therefore justifying the option of implementing a scheme in
two phases. The phases are implemented in such a way
that the reference counting runs more frequently and ideally
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Figure 4: Reference counting identifies two tuple
spaces as garbage.

collects most of the garbage.
A second phase is nevertheless important so that cyclic

garbage is collected. Mark-and-sweep is able to collect cycles
because it does not decide on the need of an object based
on its counter. Instead, mark-and-sweep traverses the graph
marking everything that can be reached from special nodes
called roots. In Linda UTS can be nominated as root because
it represents the boundary to the outside world (non-linda
environment). Processes, being active objects, could also
act as roots in the search but because they are all linked
to UTS this is not necessary — if a node is reached from a
process this node is also reached from UTS.
The mark-and-sweep has been implemented using a con-

cept based on sets. In the marking step, any node reached
is included in a set that represent the nodes alive. In the
end of the marking the nodes left outside the set are con-
sidered garbage and can be collected by the sweep step. By
performing a marking in the scenario depicted in Figure 4
more garbage can be found, as shown in Figure 5.
It should be clear why the tuple spaces identified as garbage

(crossed) in this phase are indeed garbage. Take for instance
the case of tuple spaces ts3, ts6 and ts9. Although ts3 con-
tains a reference to UTS, the traversal that started from the
UTS cannot reach any of these tuple spaces — the search
respects the direction of the edges. Also there are no pro-
cesses accessing them, in fact if there were, the search from
UTS would have reached the tuple spaces.
The mark-and-sweep phase itself can be divided in two

stages: a local and a global mark-and-sweep. Given that
the representations of tuple spaces in the graph contain some
information about the location of the objects with access to
a particular tuple space, local and global mark-and-sweep
can be used. In the scenario shown in Figure 5, ts3, ts6
and ts9 would be collected by a local mark-and-sweep since
none of them have links to other locations whereas ts1 and
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Figure 5: Marking identifies five tuple spaces as
garbage and the sweep step collects them.

ts4 would be collected by a global mark-and-sweep, as this
would have the view of the whole distributed graph.

5.2 Considering Active Processes
Extending the concept of memory management to resource

management, can the graph help on garbage collecting pro-
cesses which although running are only wasting processor
time? In other words, is it possible to have a process in
Linda that although active cannot communicate with other
processes and therefore whatever it is doing it is just waste of
time? The way Linda is usually implemented, this does not
happen because as all processes are linked to UTS they can
always side-effect other processes. Surely if this condition
is relaxed by having not all processes aware of the existence
of UTS the graph would provide information so that garbage
collection of active processes can be done.
It should be noticed that the concept of garbage collec-

tion of processes here does not include garbage collection of
deadlocked processes which are for instance blocked (via in

or rd) waiting for a tuple. This should not be dealt with
by a garbage collection scheme, instead the semantics of the
primitive should foresee this situation and deal with it.
UTS as a tuple space has handles that can be passed to

other processes via tuple spaces. This would mean to say
that the assumption that all processes know by default about
UTS can be considered too general and unnecessary.
In order to garbage collect processes the scheme described

in Section 5.1 can be used but processes have now to be
considered as roots of the graph as not all of them are linked
to UTS. As active objects, even if they are not linked to UTS
they can get access to UTS by retrieving its handle. This has
to be considered in the mark-and-sweep phase which need
to search the graph starting from the processes nodes as well
as UTS. However UTS remains the center of the algorithm. In
the end of the search a given node x is garbage if:

1. it is not contained in any set generated during the
search; or,

2. it is contained in a set but UTS is not an element of it.

The creation of the sets during the marking is very simple.
If the search has started from a node y, all nodes reached in
this search will be elements of the set Y and they are marked
as reached by y. Given a set Y and a set Z if Y ∩ Z �= ∅
then Y and Z have to merge forming a single set.
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Figure 6: Scenarios showing how sets merge during
the marking.
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Figure 7: Scenarios showing how sets merge during
the marking.

Suppose the two scenarios in Figures 6 and 7 which are
now feasible given that not all processes are linked to UTS.
Figure 6 shows three sets A, C and B that were generated by
the marking phase starting from UTS, p1 and p2 respectively.
In this figure none of the objects are garbage because the
sets can merge forming one single set which contains UTS



as one of its elements. Using the property described above,
because B ∩ C = {ts5 }, they merge forming one single
set, say D. Now D ∩ A = {UTS } means that A and D
also merge. In the end of all merge operations a single set
given by {UTS,p1,p2,ts1,ts2,ts4,ts5 } is formed. This set
represents the nodes that are not garbage.
Figure 7 shows how the marking phase can find garbage

nodes. Similar to the case in Figure 6 sets B and C merge
because they have elements in common. However the set
resulting of the merge, say D, does not have an element in
common with A, that is, D ∩ A = ∅. Therefore in the end
of the marking the following applies:

• ts1 and ts2 are garbage because they do not belong
to any set;

• p1, p2, ts5 and ts4 are also garbage because UTS is
not an element of the set they belong, D;

• UTS will be the only node left in the graph.

5.3 The I/O Side-Effect
Given the method described so far a last question remains:

what happens if a process is not linked to UTS but intends
to display some result on the screen? This in fact might be
a very common situation where a process px starts, creates
a tuple space tsx, spawns another process pz passing the
tuple space handle of tsx, and terminates. pz, in turn, will
access information in tsx and display some result. Surely
one does not want to garbage collect processes doing I/O
even though they are not linked to UTS in anyway.
Menezes and Wood [21] have shown that I/O is a coordi-

nation problem and must be addressed within the coordina-
tion model. The authors described how can devices and files
be abstracted in terms of tuple spaces allowing Linda pro-
cesses to deal with them using Linda primitives. In the con-
text of garbage collection this can be represented by adding
a tuple space that represents I/O within the model. If a
process has the handle of this I/O tuple space this process is
able to do I/O operations or in other words abstract devices
and files as tuple spaces.
This slightly modifies the concept of garbage defined in

Section 5.2. The modification is due to the existence of a
new tuple space which is root of the graph: I/O. A node that
is element of a set that does not contain UTS but contains I/O
as element is not considered garbage. The practical reason
for this is that a node that can reach the I/O tuple space
can in the Linda model affect the outside world (non-Linda
environment) by doing I/O operations.
Figure 8 shows the case where an I/O tuple space exist.

In the scenario shown p6 and p7, although not linked to UTS
in anyway are not garbage because the definition of garbage
has to consider the reachability of the I/O tuple space in the
same way used to UTS — the set formed from a search from
either p6 or p7 will include I/O as an element.

6. EXPERIMENTAL RESULTS
The system described in the previous sections was imple-

mented using Java. All the concepts described were imple-
mented in a Linda-like kernel called Ligia [23].
The first experiment, described in Figure 9, aims at show-

ing that garbage collection is in fact avoiding early memory
exceptions due to the existence of unnecessary information
in the memory.
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Figure 8: Graph showing the UTS and the I/O tuple
space where not all process have their handles.
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Figure 9: Avoiding early memory exhaustion.

The experiment described was performed using several
Linda processes that basically start, create n tuple spaces
and terminates. For each new process starting the number
of tuple spaces created is incremented by 10. The system
was configured in a manner that memory exhaustion hap-
pens when around 450 tuple spaces are stored in memory
(10+20+30+...+90). Figure 9 shows that when the garbage
collector is not active, the memory exhaustion problem hap-
pens when a process is about to create 100 tuple space be-
cause there are already 450 tuple spaces stored in memory.
When the garbage collector is active the exception does not
happen at the same point because the garbage tuple spaces
are removed from memory when the processes terminate.
With garbage collector active the exception occurs when a
process start and tries to create 370 tuple spaces.
Although the capacity of the memory is around 450 tu-

ple spaces the exhaustion happens when 370 are being cre-
ated due to concurrent nature of the garbage collector. The
garbage collector is running concurrently with the execution
of Linda processes which means that some garbage may still
be in the memory when the exception happened. This could
be avoided by implementing an exception handling system
which calls the garbage collector and only if this cannot free
any memory the exception takes place. However, the system



used was implemented in Java and the OutOfMemoryError
is one of the exception that cannot be handled in Java.
Overhead is one of the biggest concerns when implement-

ing a garbage collection scheme. Figure 10 demonstrates the
raw overhead of the garbage collector described previously.
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Figure 10: Worst case overhead added by the
garbage collector.

The experiment shown in Figure 10 was performed by
having a Linda process storing tuples in a single tuple space.
The process loops and in each interaction its increases the
number of tuple being stored by 10. Because all tuples are
being stored by a single processes into a single tuple space,
no garbage is created until the process terminates. There-
fore the overhead observed in Figure 10 accounts for the
tuple monitoring and the overhead of having the garbage
collector running. Process registration/check-out is not con-
sidered because it only happens once per process; it adds a
startup time which does not have influence on the process
total running time.
The average overhead observed in Figure 10 was around

5% which is bellow what Jones and Lins have argued as ac-
ceptable in terms of overhead due to garbage collection [17].
Yet, this is the worst case of the overhead observed because
the system is not benefiting from any improvement done by
the garbage collector. It is natural to believe that if a system
generates an excessive amount of garbage, the execution of
the garbage collector can improve the performance of the
system by keeping the memory tidy.
Figure 11 shows a scenario which is the opposite of the

case in Figure 10. The process loops similarly to the pre-
vious case, but instead of storing the tuples within a single
tuple space the process spawns another processes which in
turn create a tuple space, store the tuples and terminate —
garbage is created.
Although the results shown in Figure 11 may be surpris-

ing, it should be noticed that the situation is the best case
analysis for the garbage collection because, as opposed to the
case in Figure 10, all tuple spaces created become garbage
very quickly. Without garbage collection, the data structure
of tuple spaces and tuples become very ‘heavy’ and opera-
tions take longer to complete. When the garbage collector
is running and collecting all the garbage, the structure is
most of the time ‘clean’, and operations take less time to
complete.
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Figure 11: Garbage collector improving the system
performance.

One should expect that in average case the overhead added
by the the garbage collection scheme together with infor-
mation gathering system is minimum (if existing). Several
factors accounts for these results; first the garbage collector
runs as a low priority thread which tries to use the pro-
cessors idle time to run; second, the tuple monitoring only
monitors tuples which contains handles and from experience
it can be said that operations involving handles are not the
commonest; finally, process registration and check-out only
adds four extra messages (two for registration and two for
check-out) between the given process and the kernel, and
in the long run this adds practically nothing to the total
execution time of a process.

7. CONCLUSION
This paper has proposed an efficient way of gathering in-

formation in open Linda-like systems which can be used as
a source of information for optimizations. The paper has
explored how garbage collection can be implemented using
the distributed data structure containing the information
gathered at run-time.
Due to the way the data structure is maintained a sim-

pler garbage collection can be used as race-conditions are
dealt with at the level of the data structure construction.
The results have shown that not only the garbage collection
does not add overhead to open Linda systems, the informa-
tion gathering system does not have influence on its overall
performance.
It has been argued that this solution is expected to work

well under different assumptions. One case that is worth
mentioning are models in which processes may not maintain
references to tuple spaces as they can use lookup services
to “discover” tuple spaces. It is important to realize that
“something” must have a reference to the tuple space if it
is still required. The solution proposed can easily adapt to
consider lookup services as active processes with references
to tuple spaces.
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