
Adapting Publish/Subscribe Middleware
to Achieve Gnutella-like Functionality

Dennis Heimbigner
Department of Computer Science
University of Colorado, Boulder

dennis@cs.colorado.edu

Keywords
Middleware, peer-to-peer, publish-subscribe, Gnutella.

ABSTRACT
Gnutella represents a new wave of peer-to-peer applications
providing distributed discovery and coordinated sharing of
resources across the Internet. Gnutella is distinguished by its
support for anonymity and by its decentralized architecture. The
current Gnutella architecture and protocol have numerous flaws
with respect to efficiency, anonymity, and vulnerability to
malicious actions. An alternative design is described providing
Gnutella-like functionality but removing or mitigating many of
Gnutella's flaws. This design, referred to as Query/Advertise
(Q/A) is based upon a scalable Publish/Subscribe middleware
system called Siena. A prototype implementation of Q/A is
described. The relative benefits of this approach are discussed,
and a number of open research problems are identified with
respect to Q/A systems.

1. INTRODUCTION
Gnutella [9] represents a new wave of peer-to-peer [17][20]
applications providing distributed discovery and sharing of
resources in wide-area networks such as the Internet. Gnutella is
distinguished by its support for anonymity and by its
decentralized architecture. This is in contrast to Napster [19], for
example, which is similar, but is more centralized. The Gnutella
protocol provides a simple request-response paradigm for sharing
files directly between peer computers. Users send out requests for
files, and these requests are propagated to all peer nodes in the
Gnutella net. In response, nodes generate replies back to the query
originator indicating that they have the specified file or files.

Gnutella is biased towards the sharing of files, but it and similar
applications are being used for managing other kinds of resources.
Intel [15] for example, is using the technology to solve chip
design problems by finding and using spare cycles on the
company's machines. A Peer-to-Peer Working Group [20] has
been formed to standardize and exploit this kind of application,

with Hewlett-Packard, IBM, and Intel as founding members.

The promise of Gnutella is marred by a large number of flaws in
its protocol and architecture. In particular, the following problems
have been identified [10][11].

• Imperfect anonymity. In practice, the anonymity of Gnutella
is easy to compromise because peer node IP addresses are
revealed at various points in its operation.

• Malicious users. Since every node potentially routes
messages from other nodes, it is easy for malicious users to
seriously affect the core operation of the Gnutella net.

• Efficiency. Gnutella has a well-deserved reputation for
generating inordinate amounts of network traffic. In addition,
slow nodes can create serious performance bottlenecks in the
net.

• Query expressions. The format of Gnutella queries is not
standardized. A query contains an arbitrary character string
whose interpretation is entirely determined by any node that
receives it.

The goal of this paper is to demonstrate that these flaws in
Gnutella can be alleviated using a scalable Publish/Subscribe [4]
middleware system adapted for distributed routing of messages
across a wide-area network such as the Internet. The
Publish/Subscribe paradigm is implemented by such systems as
Siena [3], Tibco [23], and Elvin [22].

The Publish/Subscribe paradigm is normally used for
asynchronous coordination of distributed systems. Publishers
notify subscribers of interesting events. The subscribers may in
turn perform actions in response to those events. This paper
demonstrates that Publish/Subscribe can be used in quite a
different fashion: as a basis for what will be termed the
Query/Advertise (Q/A) paradigm.

In a Publish/Subscribe system, clients publish event (or
notification) messages with highly structured content, and other
clients make available a filter (a kind of pattern) specifying the
subscription: the content of events to be received at that client.
Event message distribution is handled by an underlying content-
based routing [6] network, which is a set of server nodes
interconnected as a peer-to-peer network. The content-based
router is responsible for sending copies of event messages to all
clients whose filters match that message.

Analogous to Publish/Subscribe, the Query/Advertise (Q/A)
paradigm is defined to represent Gnutella-like systems. Queries
are represented by the contents of messages describing attributes
of resources (e.g., files) of interest. Providers of resources

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC 2001, Las Vegas, NV.
Copyright 2000 ACM 1-58113-324-3/01/02…$5.00.

establish advertisements describing the attributes of their available
resources. Upon receiving a query, providers generate response
messages whose content describes the detailed attributes of their
specific resources. These responses are injected into the network
and routed back to the query originator. The provision for
responses represents a major difference between Q/A and
Publish/Subscribe.

This paper is organized as follows. First, the architecture,
operation, and problems of Gnutella are described in more detail.
Then the architecture and operation of a specific
Publish/Subscribe system is described. Next, it is shown how to
implement Query/Advertise on a such a system and how it solves
many of Gnutella's problems. A prototype implementation is also
described. After that, research issues for Q/A are discussed, and
finally there are some comparisons to related systems.

2. GNUTELLA ARCHITECTURE AND
PROTOCOL
The Gnutella architecture consists of a dynamically changing set
of nodes connected using TCP/IP. Each node acts as a client (an
originator of queries), a server (a provider of file information, and
as a router (a transmitter of queries and responses). The generic
term node1 will be used to refer to this combination of
functionality. At any given point in time, a Gnutella net consists
of a set of interconnected nodes. A new Gnutella user starts an
instance of the Gnutella node software. That node uses out-of-
band means to locate another node and establish a connection to
it. This extends the net and makes the new node's files available to
all other nodes in the net.

Once connections are established, nodes use the Gnutella protocol
to communicate. There is an initialization conversation following
which nodes send out typed packets into the Gnutella net to locate
and retrieve files. There are five kinds of packets.

1. QUERY − request to locate a set of files matching some filter
criteria.

2. HITS − response to a query giving a list of files matching the
filter criteria and the IP address of the provider; note that
there may multiple responders to a given query.

3. PING − request for the transitive closure of connected nodes
to identify themselves.

4. PONG − response by a node upon receiving a PING; the
responding node provides its IP address and number of
sharable files it contains.

5. PUSH − request for a file provider to contact the requester.
This provides a simple mechanism to attempt to get through
firewalls.

The PING, PONG, and PUSH packets are not considered further
as they are not essential to the core operation of Gnutella.

The query-response cycle for a Gnutella node involves three steps.
In the first step, a QUERY packet is sent out. The packet contains
a string specifying the set of files of interest. Each node that
receives the packet uses this string to determine which files, if
any, match the query. Unfortunately, Gnutella defines no standard
format or matching semantics for this string; its interpretation is

1 Some developers of Gnutella use the term Servent.

completely determined by each node that receives it. In practice,
the query string is interpreted as a literal substring or as a regular
expression that is to be matched against local file name paths.

In the second step, a node that matches a query generates one or
more HITS packets giving information about obtaining specific
files. Again, there is no standard format, except that it is a list of
null-terminated strings. As a rule, these strings specify URLs for
each file, but because URLs contain IP addresses, the HITS
packet breaks the anonymity of nodes.

In the third step, the query node connects directly to the response
node and uses a simplified version of the HTTP [8] protocol to
retrieve the file using the returned URL. Thus, it bypasses the
Gnutella net altogether.

Message passing in Gnutella represents a form of spreading
activation. That is, whenever a node receives a message, it sends
copies out to all of its other connections. Obviously this can
generate large amounts of redundant traffic. Gnutella relies on two
mechanisms to reduce traffic. First, each message has a time-to-
live (TTL) counter that is decremented on every transmission.
Secondly, Nodes are expected to cache information about
messages they receive and if they receive a duplicate, then they do
not forward it. In spite of these features, Gnutella still generates a
large number of messages. The protocol expects that response
messages, such as PONG and HITS will not be widely
disseminated, but will instead by returned along a specific path
back to the generator of the original PING or QUERY message.
This requires, of course, that intermediate sites track path
information so that this kind of directed reply can be
implemented. It has been observed that many available Gnutella
software packages do not keep such information, thus causing
reply messages to be widely propagated, which again increases
message traffic unnecessarily.

3. A PUBLISH/SUBSCRIBE
ARCHITECTURE
The Siena [3] Publish/Subscribe middleware system developed at
the University of Colorado, will be used to provide a canonical
architecture. Other similar systems exist and are discussed in
Section 8. We provide a somewhat detailed description of Siena
in order to present the features necessary for its use in
Query/Advertise.

Siena messages are structured as attribute-value pairs where
attributes can have one of many possible types, such as string,
date, integer, or double. An example message could be
represented as the following set of tuples.

{ (author, “Chandler”) (title, “Playback”) (firstedition, True) }

A client establishes a subscription by specifying a filter pattern
that specifies the kinds of messages it wishes to receive. A filter is
a set of triples of (attribute, operator, value), where the operator is
a comparison operator such as the usual arithmetic comparisons
for numbers, or substring for strings. In order for a message to
match a filter, every attribute in the message must satisfy all
corresponding filter triples when the message value is substituted
and the operator applied. Thus, all of the tuples may be
considered to be logically ANDed together. A logical OR can be
achieved by specifying multiple separate filters. An example filter
might be represented by the following set of tuples.

{ (author, =, “Chandler”) (firstedition, =, True) (price, >, 400) }

It is important to note that the attribute names used in events and
subscriptions have no inherent semantic meaning. As with all
such attribute-based systems, there must be some externally
defined and mutually agreed upon meaning for the attributes.

Siena adopts a peer-to-peer architecture where arbitrary Siena
servers connect to form a specific topology. In the simplest case, a
client connects to a server and establishes a subscription. The
server then forwards the subscription filter to all of its peers. Each
peer notes where the subscription came from, and forwards it to
its peers. Later, when some other client connects to a server and
generates an event message, the local copy of the filter can be
applied at that server to determine the next server to which the
message should be forwarded. Note that if a message is generated
for which no filter matches at the local server, then it will not be
forwarded at all and so will generate no inter-server traffic. This
kind of content-based routing is analogous to IP routing in the
Internet, but instead of specific IP addresses, the content of
messages of determines the destination (or destinations) for the
message − an important distinction with respect to anonymity.

Siena is specifically designed to scale well to wide-area networks.
One way this is achieved is by providing an important
optimization that can reduce the number of filters that a given
server must maintain. Key to this optimization is the Covers
relation over filters. At a given server, for any two filters, F1 and
F2, say, it can be determined if F1 Covers F2 or F2 Covers F1, or
neither. F1 Covers F2 if any message that matches F2 also
matches F1; F1 is more general than F2. Using this relationship, a
forest of partial order trees can be constructed over all filters.
Siena servers need only propagate the filters that are at the root of
each Covers ordering.

4. QUERY/ADVERTISE USING
PUBLISH/SUBSCRIBE
A query/advertise system has three primary concepts:
advertisements, queries, and responses. Using a Publish/Subscribe
messaging system as a substrate on which to implement
Query/Advertise (Q/A) involves mapping these three concepts to
the concepts of the underlying Publish/Subscribe system.

1. Advertisements. Advertisements map to subscriptions. A
client acting as a resource provider describes his available
resources using a filter pattern and establishes a subscription
based on that filter. In effect, the notion of a subscription is
generalized to become a kind of content-based address
where messages are sent to addresses based on their content.
For Q/A, this address represents an advertisement describing
queries for which it may be able to provide a response.

2. Queries. Queries map to event messages. A client constructs
a message describing the resource in which it is interested,
and then inserts the message into the Q/A system where it is
distributed to all clients with matching advertisements. As
with advertisements, the notion of event is being generalized
to a message and is not tied specifically to event semantics.
Note that the query must contain some kind of identification,
a “return address” if you will, so that responses can be
returned to the query originator.

3. Responses. Responses also map to (event) messages in the
underlying Publish/Subscribe system. Each advertiser that
receives a message must perform a detailed examination of

its stock of resources and construct a message describing
each available matching resource in more detail. This
response is then routed back to the query originator. The
response must include some identification for the matching
advertiser so that the query originator can obtain the actual
resource. For both query return addresses and advertiser
addresses, note that the identity is generally not an IP
address, but rather some arbitrary but unique set of attributes
sufficient for routing, but capable of maintaining anonymity.

The above discussion glosses over some mismatches between a
Publish/Subscribe system and a Q/A system. That discussion is
deferred to Section 7.

5. A PROTOTYPE IMPLEMENTATION
A prototype Q/A system called Quad was developed using the
existing publicly available Java-based Siena prototype [2]. As a
result, much of the underlying Siena architecture and design
shows through in Quad. This prototype supports query, advertise,
and response, but does not support actually copying a resource
such as a file from a responder to a query originator. See the
separate technical report [12] for details.

Key to the operation of the prototype is its use of return addresses
that mark queries with a “return address” (an arbitrary name) of
the query originator. This return address is implicitly copied into
the query, thus allowing the Q/A servers to properly and
efficiently route replies back to the query originator. Similarly, an
address for the advertiser is also copied into any reply, which
allows the query originator to communicate with the specific
provider to obtain access to the resource. Of course, the provider
could mimic Gnutella and provide a direct URL to the resource,
but that would seriously compromise anonymity.

6. COMPARING Q/A TO GNUTELLA
The primary operational distinction between Gnutella and Q/A is
the use of explicit advertisements. Gnutella file providers give no
previews about their available files. This forces all query
messages to be delivered to all providers, and the equivalent of
filtering is only performed at the last step by the provider.

The management of anonymity in Q/A differs from Gnutella in an
important way. As indicated in Section 2, Gnutella's anonymity is
limited since messages must sometimes use explicit IP addresses,
causing them to be visible to all clients. In Q/A, clients only need
to provide their IP address to the first level server to which they
connect. After that, all references to the client are in terms of
content-based advertisements and addresses. This effectively
hides the identity of clients from all other servers and clients
comprising the network.

The primary architectural distinction between Gnutella and Q/A is
the separation of clients and servers. Q/A assumes a set of
distinguished nodes that are running a specific server software
package. The servers are interconnected and use a protocol that is
different from the one used between client and server. Q/A clients
use some out-of-band mechanism to locate a server. The client
connects to that server and generates messages and provides
advertisements for receiving messages. It is important to note that
Q/A clients do not participate in message routing. That
functionality is reserved to the servers. The architecture is further
distinguished by its ability to selectively route messages based on

forwarding of advertisements and on optimizations provided by
the Covers relations among advertisements.

We can now revisit our list of Gnutella flaws and see how Q/A
solves many of these problems.

• Anonymity. Q/A's anonymity is more complete than is
Gnutella's because only a single server needs to know the IP
address of a client.

• Efficiency. The use of advertisements and the Covers relation
significantly reduces the traffic in a Q/A net as opposed to a
Gnutella net. Q/A also automatically routes replies along the
path from the advertiser to the query originator based on the
originators reply address.

• Malicious Users. If the set of servers is controlled carefully,
the impact of a malicious client can be limited because it can
only affect the first level client-server communication.
Malformed messages from a client can be caught and
suppressed by its server. Also, any attempt by a client to
flood the network with queries can be metered by a server,
and queries for which there is no possible provider will be
suppressed and not propagated since no filter will match.

• Query Expressions. Q/A query expressions are standardized
by the underlying Publish/Subscribe system so there is never
any misunderstanding about their interpretation. There is,
however an issue about their general expressiveness (see
Section 7.2).

The Q/A approach has many advantages and fixes many of the
problems of Gnutella-like systems, In fairness, however, there are
some advantages for the Gnutella approach that a Q/A system
would currently find difficult to emulate.

One advantage is the ability of clients also to act as servers and to
dynamically extend the Gnutella network. Q/A inherently requires
a separation of servers and clients, and it is this separation that
provides many of the Q/A advantages. Still, this is a very
desirable property and worthy of further study.

A second advantage concerns caching. Some variants of the
Gnutella architecture support caching of files at more than one
client. This is possible because of the spreading activation model,
because clients are part of the routing infrastructure, and because
many queries are requests for specific files. Adding caching to the
Q/A architecture is potentially possible, but would appear to
require major changes in the current message processing, and
would require the embedding of knowledge about resources into
the Q/A servers. In effect, a mobile resource would need to carry
its advertisement along with it.

7. RESEARCH ISSUES
Although this paper presents a reasonable design and
implementation for Q/A using a specific Publish/Subscribe
system, there is clearly much room for additional research and for
alternative designs with other desirable properties. This section
identifies some of those research issues and discusses some
possible alternatives.

7.1 Response Collection
Replies to queries are returned asynchronously with respect to the
original query. So an important problem is determining when all
responses to a query have been received. Depending on client

speed, client response size, server routing, and network size,
responses can appear arbitrarily long after the original query.

We can identify a number of standard solutions that help address
this problem of collecting responses.

• Timeout − wait for a specified period of time and take
whatever responses have been received by that time.

• Number-of-Responses − wait until a specified number of
responses have been returned. This assumes that the network
is reliable and that all − or enough − clients are up to provide
the required number of responses.

• Two-Phase-Query − wait for a period of time and then send
out a follow-up query that forces responders to generate an
immediate response.

• Quick-Reply − upon receiving a message, advertisers
generate an immediate reply saying, in effect, “I will reply.”

• Extended-Query − accept arbitrarily late responses. This
presumes that it makes sense to process query responses
individually.

In many cases, some solutions can profit from or require the use
of other solutions. Two-phase-query, for example, requires the use
of timeout, and number-of-responses could profit from quick-
reply information.

7.2 Expressiveness
Using simple attribute-value pairs for queries may not be as
expressive as required for realistic queries. Instead, one might
prefer to have queries that can specify such things as regular
expressions for strings or value ranges for numbers. On the
advertisement side, tuples with comparison operators are already
supported, but again expressiveness may be lacking. The problem
with moving to more expressive queries and advertisements is that
it can significantly complicate routing by the Q/A servers because
it makes computing the Covers relation difficult and reduces
opportunities for optimization.

In the event that an advertiser has multiple matching resources, it
must return multiple responses to the query originator. The
simplest approach is to generate multiple responses: one for each
matching resource. This is the approach taken in the prototype
(Section 5). The problem with this approach is that it leads to
significantly more message traffic. An alternative is to encode all
of the responses from a given advertiser into a single reply
message. Given the simple attribute-value pair format of our
prototype, this encoding is non-trivial. Solving this requires
adding some form of list or vector type to the current format.

7.3 Resource Retrieval
Even after a client has received responses to its query, it still has
the task of retrieving that resource from some responding client.
Conceptually, the simplest solution is for the provider of the
resource to send its contents back through the Q/A network to the
consumer of that resource. This assumes that such transmission
makes sense for the resource. Using the Q/A network maintains
complete anonymity and uses the same infrastructure for all
communications, but at the cost of increased message traffic.

In Gnutella, the retrieval process occurs out-of-band. That is, the
query node connects directly to the response node and uses a
simplified version of the HTTP protocol to retrieve the file. Q/A
could use such an approach, but naively implemented, it

significantly reduces client anonymity because one or the other of
the clients must reveal its IP address so the connection can be
made. One possible solution is to use a well-known (and trusted)
third party (e.g., one of the Q/A servers). Both clients connect to
the third party, which then provides a channel for passing
information from one client to the other. This has the advantage of
keeping the initial clients anonymous with respect to everyone
except the third party.

7.4 Malicious Activities
Although Q/A can prevent many malicious activities, it shares
with other Gnutella-like systems some vulnerabilities that are
harder to stop.

• False Advertising. Consider, for example, a client that
advertises for the equivalent of “all messages.” When it
receives a message, it responds with a bogus reply containing
an advertisement for a pornographic site. A Q/A server could
mitigate this by requiring all advertisements to have a degree
of specificity. For popular resources, this might not provide
much protection.

• Freeloading. It has been found empirically [1] that most
users of Gnutella retrieve resources, but do not themselves
ever provide any resources to others. A market-based
approach, such as used by MojoNation [16][18], might
alleviate this problem, but adding this kind of capability to a
Q/A system or to the routing infrastructure of a
Publish/Subscribe system remains an open research issue.

7.5 Performance
The performance of the simple Siena-based prototype is adequate
for small-scale use. Some Siena simulations [5] exist that provide
plausible evidence that the underlying content-based routing
network is scalable. Similar simulations combined with
performance measurements are needed to verify the scalability of
a Q/A system.

7.6 Long-Term Queries
The Q/A model as described in this paper requires a query client
to periodically send out a query in order to detect new replies that
may have become available since the last query. It would be more
desirable if this could be automated in some fashion so that new
replies could be sent as soon as they become available.

One way to achieve this is to combine Q/A directly with the
Publish/Subscribe paradigm. Thus, some queries could be marked
as, say, persistent, so that they would remain in force and would
continue to receive replies until rescinded. Operationally, this
would be implemented by turning the query into a subscription,
and introducing a mechanism by which advertising clients could
inform their interface of new resources. If the new resource
matched a persistent query, then an event message (in the
Publish/Subscribe sense) would automatically be generated and
sent to the query client.

8. RELATED WORK
The closest systems related to Gnutella and Q/A are Napster
[19][25] and Freenet [7]. Unfortunately, little information about
these systems exists outside of the World Wide Web. So for those
web-based references, the bibliographic citations in Section 11
include a specific URL.

The primary difference between Napster and Gnutella is in the
architecture. Napster uses a restricted set of centralized servers to
do the query and advertise matching. It is similar to Gnutella in
that the files are held in user established clients and the set of
clients can grow and shrink dynamically.

Freenet provides anonymous distributed file sharing, and it is
extensible by user-established clients. It has a much more
restricted notion of query than does Q/A: clients ask for specific
files (identified by a unique hash) and the search process stops
when that specific file is found. Caching is also supported.
Freenet uses message traffic about as efficiently as does Siena's
content-based routing, and far more efficiently than Gnutella. It is
not clear how Freenet could be extended to support more general
resource discovery because the only property supported by
Freenet is a hash of the file contents. All querying and caching is
based on this hash, and that hash has no semantic meaning. Thus
no form of relational query is possible.

MojoNation [16][18] is a more recent system that attempts to
reduce message traffic and freeloading by adding a charging
model. Downloading a file incurs “costs” and providing a file for
others provides “money” to use against costs. It is possible to add
such a capability to Quad since it is orthogonal to other issues that
MojoNation does not address: anonymity, scale, and query.

The Quad Q/A system is built upon Siena, but other
Publish/Subscribe systems are available as alternatives upon
which to build a Q/A system. There are two issues here:
scalability to wide-area networks and expressiveness. Most
Publish/Subscribe systems are designed for local-area network
use. Examples are Field [21] and ToolTalk [14]. Two systems
other than Siena address the wide-area network issue: TIBCO
[23] and Elvin [22]. The primary problem with both is their lack
of automatic Covers relation support. The equivalent of Covers
relations must be manually established and maintained.

Expressiveness is a problem for subject-based (also known as
topic-based) Publish/Subscribe systems. These systems, of which
TIBCO is an example, provide only a single content string (the
subject) for use in routing. This severely limits expressiveness,
and it is not clear if any sort of reasonable Q/A system could be
built using a subject-based system.

Resource discovery systems are tangentially related to Q/A.
Jini [13][24] is perhaps the best known of these systems. Jini
defines a collection of programming interfaces. The
implementations behind them are prototypes that do not appear to
have addressed issues such as wide-area scale and message traffic.
In principle, there is no reason that the resource discovery part of
Jini could not be realized by a Q/A system.

9. CONCLUSION
This paper demonstrates that Publish/Subscribe middleware can
be used to construct a Query/Advertise system with functionality
essentially equivalent to Gnutella. A prototype Q/A system was
implemented over the Siena Publish/Subscribe system to
demonstrate the feasibility of this approach.

Further, using a Publish/Subscribe system solves or mitigates
many of the known problems of Gnutella. On the negative side, a
number of research problems have been identified whose solution
would improve the ability of a Publish/Subscribe messaging
system to support the Query/Advertise paradigm.

10. ACKNOWLEDGEMENTS
Alexander Wolf, Richard Hall, and Antonio Carzaniga provided
valuable comments about the relationship of Gnutella and
Publish/Subscribe. Antonio Carzaniga also provided Siena.

This material is based upon work sponsored by the Air Force
Materiel Command, Rome Laboratory, SPAWAR, and the
Advanced Research Projects Agency under Contract Numbers
F30602-00-2-0608 and N66001-00-8945. The content of the
information does not necessarily reflect the position or the policy
of the Government and no official endorsement should be
inferred.

11. REFERENCES
[1] E. Adar and B. A. Huberman. Free Riding on Gnutella.

Technical report, Xerox PARC, 10 Aug. 2000.

[2] A. Carzaniga. Siena: A Wide-Area Event Notification
Service. University of Colorado Software Engineering
Research Laboratory (SERL).
http://www.cs.colorado.edu/serl/dot/siena.html.

[3] A. Carzaniga, D. Rosenblum, and A. Wolf. Achieving
Expressiveness and Scalability in an Internet-Scale
Event Notification Service. In Proc. of the 19th ACM
Symposium on Principles of Distributed Computing,
Portland OR., July 2000.

[4] A. Carzaniga, D. R. Rosenblum, and A. L. Wolf.
Challenges for Distributed Event Services: Scalability
vs. Expressiveness. In Engineering Distributed Objects
'99, Los Angeles CA, USA, May 1999.

[5] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf.
Interfaces and Algorithms for a Wide-area Event
Notification Service. Technical Report CU-CS-888-99,
Department of Computer Science, University of
Colorado, Oct. 1999. Revised May 2000.

[6] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf.
Content-based Addressing and Routing: A General
Model and its Application. Technical Report CU-CS-
902-00, Department of Computer Science, University
of Colorado, Jan. 2000.

[7] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong.
Freenet: A Distributed Anonymous Information
Storage and Retrieval System. In Proc. of the ICSI
Workshop on Design Issues in Anonymity and
Unobservability, Berkeley, CA, 2000. International
Computer Science Institute.

[8] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L.
Masinter, P. Leach, and T. Berners-Lee. Hypertext
transfer protocol − http/1.1. Technical Report
RFC2616, IETF, 1999.

[9] Gnutella Home Web Page. http://gnutella.wego.com/.

[10] Gnutella Developers Home Web Page.
http://gnutelladev.wego.com.

[11] Knowbuddy's Gnutella FAQ. http://www.lysator.liu.se/
~mitja/protest/gnutellafaq.html.

[12] D. Heimbigner. Adapting Publish/Subscribe
Middleware to Achieve Gnutella-like Functionality.
Technical Report CU-CS-909-00, Department of
Computer Science, University of Colorado, Sept. 2000.
http://www.cs.colorado.edu/serl/dot/Papers.html.

[13] Jini Specification, version 1.1 Beta, 1999.

[14] A. M. Julienne and B. Holtz. ToolTalk and Open
Protocols, Inter-Application Communication. Prentice-
Hall, 1994.

[15] L. Kahney. Intel Says: Think like Napster. Wired News,
2000. http://www.wired.com/news/technology/
0,1282,38413,00.html.

[16] D. McCullagh. Get Your Music Mojo Working. Wired
News, 2000. http://www.wired.com/news/technology/
0,1282,37892,00.html.

[17] P. McDougall. The Power of Peer-To-Peer.
Information Week, 2000.
http://informationweek.com/801/peer.htm.

[18] Mojo Nation Home Web Page.
http://www.mojonation.net/.

[19] Napster Home Web Page. http://www.napster.com/.

[20] The Working Group on Peer-To-Peer Computing.
http://www.peer-to-peerwg.org.

[21] S. P. Reiss. Connecting Tools Using Message Passing
in the Field Environment. IEEE Software, pages
57−67, July 1990.

[22] W. Segall and D. Arnold. Elvin Has Left the Building:
A Publish/Subscribe Notification Service with
Quenching. In Proc. of the 1997 Australian UNIX
Users Group, Brisbane, Australia, Sept. 1997.

[23] TIBCO, Inc. Rendezvous Information Bus, 1996.
http://www.rv.tibco.com/rvwhitepaper.html.

[24] J. Waldo. Jini Architectural Overview: Technical
White Paper. Technical report, Sun Microsystems,
1999.

[25] J. Zien. The Technology Behind Napster. About, 2000.
http://internet.about.com/library/weekly/2000/
aa052800b.htm.

