
Formalization of Commitment-Based Agent Interaction

Jie Xing
Operations Research

North Carolina State University
Raleigh, NC 27695-7913, USA

jxing@eos.ncsu.edu

Munindar P. Singh
Computer Science Department
North Carolina State University
Raleigh, NC 27695-7534, USA

singh@ncsu.edu

ABSTRACT
We develop a generic agent interaction model that sup-
ports agent coordination. We propose commitment pat-
terns, which accommodate revisions and exceptions, to model
agent interaction. We formalize commitment patterns declar-
atively in temporal logic. We apply statecharts to specify
behavior models of agents who follow our commitment pat-
terns. The statecharts provide an operational semantics,
which can be used as a rigorous basis for agent coordina-
tion. We propose a generic agent behavior model and prove
that it operationally supports our temporal logic semantics.
In this manner, we provide a basis for formally designing
coordinated multiagent systems.

Keywords
Multi agent; commitments; operational semantics;
Statecharts; temporal logic

1. INTRODUCTION
Current applications such as electronic commerce arise in
environments that are open, heterogeneous, distributed, dy-
namic, and with autonomous components. Such compo-
nents are naturally modeled as agents and solutions are nat-
urally built as multiagent systems. Agents are persistent
computations that can perceive, reason, act and communi-
cate. Agents can be autonomous and heterogeneous, and
represent different components and organizations. Conven-
tional software engineering lacks the abstractions necessary
to model multiagent systems. We consider the problem of
creating specifications for agent behavior and interaction to
achieve the necessary coordination to support various kinds
of communicative or “conversational” interactions. Follow-
ing [2][9], we propose to model the interactions among agents
in terms of agents’ commitments to one another. We show
how temporal logic [6] and statecharts [7] can be applied in
modeling and operationalizing commitments.

Example 1. The Contract Net Protocol (CNP) is among

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC 2001 Las Vegas, NV USA
c© 2001 ACM 1-58113-324-3/01/02 ..$5.00

the most well known protocols in DAI [4]. CNP involves one
manager agent and several contractor agents. The manager
calls for bids for a number of widgets with a defined price
and deadline. Some of the contractors propose bids. The
manager chooses a bid and assigns a task to the selected
contractor. When the contractor finishes its assigned task,
the manager evaluates the results. Traditional CNP specifi-
cations cannot handle the following revisions and exceptions.

• The manager may change its task assignment by re-
questing additional widgets with the same price and
deadline after it has awarded the task to the contrac-
tor. The contractor has to perform the revised task
again and send the revised results to the manager.

• The contractor may send requests to increase the price
if the manager changes the task assignment.

• The contractor may be unable to finish its task by the
specified deadline. The manager may either cancel the
task assignment or grant an extension.

This paper studies how to engineer flexible interactions among
agents. We rely on two crucial properties of agents. First,
the agents must interact at a high level by forming and man-
aging the commitments to one another. These commitments
are about the information that the agents exchange, about
the changes to that information, and about each other’s
needs. Second, the agents must be persistent. This is essen-
tial so that agents may form, manage, and act according to
their commitments. We model interactions as a set of com-
posable metacommitment patterns. We formalize the pat-
terns in temporal logic. Each pattern invokes commitment
operations. These patterns cover different requirements for
interactions.

Current approaches include only simple request-response in-
teractions, whereas our approach incorporates more flexible
interactions that are needed to accommodate exceptions and
revisions. We develop a generic agent behavior model in
statecharts. Statecharts provide an operational semantics.
Importantly, we show how the operational semantics relates
to the declarative semantics for agent coordination.

This paper is organized as follows. Section 2 introduces in-
teraction patterns and our specification language for agent
interactions. Section 3 formalizes metacommitment pat-
terns. Section 4 introduces the operational semantics. Sec-

tion 5 proves the soundness of operations semantics. Section
6 discusses the relevant literature.

2. SPECIFYING INTERACTION
We now discuss the main concepts of agent interactions.
A role is an abstract entity, which captures the underlying
organizational structure. A role can reason based on its local
knowledge and send results to other roles. Importantly, roles
are used to specify the applicable commitments. During
execution, an agent with matching capabilities is bound to
each role. Agents can volunteer to assume certain roles that
would require them to perform certain reasoning. Thus the
agent playing a role must implement all the capabilities that
the role provides and must honor the metacommitments of
that role.

A social commitment C(x, y, G, p) relates a debtor role x, a
creditor role y, and a condition p, in the scope of a context
group G. The condition p may involve relevant predicates
and commitments, allowing the commitments to be nested.
The context group G is the organization within which the
commitment exists. Making the context explicitly enables
us to specify which roles exist in it and what kinds of com-
mitments exist among them.

For example, the contractor ctr promises a bid to the man-
ager mgr. CNP is the context of the contract net protocol
and bidp is combination of predicates about the number,
price and date of the widgets. The commitment is C(ctr,
mgr, CNP, bidp).

Definition 1. A commitment can be viewed as an ab-
stract data type. The following operations are relevant in
the paper. Here, x and y denote roles, and c denotes a com-
mitment of the form C(x, y, G, p).

• Create(x, c) establishes the commitment c. The create
operation can only be performed by the debtor of the
commitment.

• Discharge(x, c) resolves the commitment c. Again, the
discharge operation can only be performed by the debtor
of the commitment to mean that the commitment has
successfully been carried out. Thus, after the discharge
operation the condition p starts to hold.

• Cancel(x, c) cancels the commitment c. Generally,
cancellation of a commitment is followed by the cre-
ation of another commitment to compensate for the
former one.

• Release(y, c) or Release(G, c) releases the debtor from
the commitment c. It can be performed either by the
creditor or the context group, to mean that the debtor
is no longer obliged to carry out his commitment.

A message carries information exchanged between roles. A
message is identified by its sender, receiver, content, and
type. We use the common agent communication language
primitives of inform (statements of facts), request (com-
mands, requests or advice), reject, and withdraw. We in-
troduce a primitive called correct, which can be used for
requesting updated results.

2.1 Interaction Patterns
Design patterns are valuable to object-oriented software de-
sign. Following similar situations, we define patterns of
interaction, each of which captures an important scenario.
These patterns specify in term of the participants’ commit-
ments. Different combinations of these patterns can yield
different kinds of agent interactions.

The patterns relate to conversation-intensive scenarios. An
agent can reason about its actions based on its local knowl-
edge. Each pattern involves two roles, a consumer and a
provider. An agent can plays different roles in different pat-
terns. Predicates with some arguments (i.e., data values) are
used to represent the information exchanged by the agents.

1. Notify the consumer. This comes into effect when a
role has just completed its reasoning for the first time.
It informs another role of the computed data values,
and becomes committed to the specified predicates.
For example, a contractor who proposes a bid will no-
tify the manager and commit to the price.

2. Entertain request. This means that a role will accept
requests from another role and reason about the re-
quest. For example, a contractor will entertain a call
for bids and start reasoning about the call.

3. Renotify the consumer. This comes into effect when a
role has just completed its reasoning for the second or
a later iteration, and some of its existing commitments
are violated by the recently completed reasoning. The
violation would typically occur because the predicates
to which the agent had committed have been falsified
by the results just obtained. For example, the contrac-
tor requests to correct a task assignment at a higher
price.

4. Entertain update. This comes into effect when a role
accepts requests to correct some data values that an-
other role may supply. For example, a manager may
request additional widgets at the same price and dead-
line. The contractor would reason again with the up-
dated data values.

5. Dissatisfaction. This comes into effect when a con-
sumer role is dissatisfied with the results. It sends a
reject to the provider. For example, the manager sends
a reject to the contractor to cancel the task assignment
and release the associated commitment.

6. Abort. A provider role may cancel its commitment
to a consumer role by sending a withdraw message to
the consumer role. For example, the contractor may
cancel its task assignment if it is unable to finish the
task by the deadline.

2.2 Specification Language
We define the syntax of the specification language through
the following grammar whose starting symbol is Specifica-
tion. The braces { and } indicate that the enclosed items
are repeated 0 or more times.

Syn 1. Specification −→ {Role}, {PatternSpec} � Sets
of roles and patterns �

Syn 2. PatternSpec−→ PatternFormula(Role,Role, Group,
Predicate) | PatternFormula (Role, Role, Group, Predicate,
Predicate) � Formula of commitment patterns �

A specification consists of sets of roles and pattern specifi-
cations. Each pattern specification is denoted by a formula
name along with roles involved in it, the context group these
roles are in, and the predicate. A pattern formula can be
expressed as a CTL [6] formula, which is introduced in Sec-
tion 3.

3. FORMALIZATION
We now define the domain-independent propositions that
correspond to actions for communications of a generic agent.
We formalize our communication primitives as propositions.
Pred, Pred1, and Pred2 are predicates with domain argu-
ments. As before, x and y denote two roles.

• inform(x, y, Pred): x informs y about Pred.

• request(x,y, Pred): x requests y for information about
Pred.

• correct(x,y, Pred2, P red1): x sends a correction to y,
replacing Pred1 by Pred2.

• reject(x,y, Pred): x rejects y’s information about Pred.

• withdraw(x, y, Pred): x retracts information about Pred
from y.

We define the following domain event propositions about
status changes of agent computation.

• computed done : a role finishes its computation for the
first time.

• recomputed done : a role finishes its computation for
the second or the later time.

• abort : a role aborts its computation.

• valid commitment : a role’s commitments with another
role are still valid after it just finishes its computation
for the second or the later time.

The formal declarative semantics for the metacommitment
patterns is given in Computation Tree Logic (CTL) [6], a
branching time logic. The following development suffices
for our purposes. We give a semantics to CTL in terms
of a CTL structure, roughly a finite rooted directed graph
whose paths correspond to different computations. One can
imagine the graph being unraveled into an infinite tree. In
the following, AP is a set of atomic propositions.

Definition 2. A CTL structure τ is a four-tuple (Q, R,
P , s0), where

• Q is a finite set of states.

• R is a binary relation on Q, which gives the possible
transitions between states and must be total; that is, ∀
x ∈ Q ∃ y ∈ Q. (x, y) ∈ R.

• P : Q → 2AP assigns to each state the set of atomic
propositions that are true at that state.

• s0 is the root state of Q. P (s0) = ∅.

Our formal language involves the usual boolean operations
plus some temporal operations. Roughly AGp holds in s iff p
holds at all future states on all paths through s. AFp holds
at s iff p holds eventually on each path through s. To check
if a CTL structure satisfies a formula f , we can apply the
model checker algorithm [3].

The communication propositions inform, reject, and with-
draw imply some commitment operations.

• ∀ x, y, Pred, �v: AG[inform(x,y, Pred(�v))→ AF [create
(x, C(x, y, G, Pred(�v)))]]

• ∀ x, y, Pred, �v: AG[reject(x, y, Pred(�v))→ AF [release
(x, C(y, x, G, Pred(�v)))]]

• ∀ x, y, Pred, �v: AG[withdraw(x, y, Pred(�v)) → AF
[cancel (x, C(x, y, G, Pred(�v)))]]

Based on the commitment operations and communication
primitives, we now give our specification language for com-
mitment patterns.

Syn 3. PatternFormula−→ AG[statusProp→ AF comm-
Prop] | AG [commProp → AFPatternFormula]

Syn 4. commProp −→ communicationOP(Role, Role,
Pred) | communicationOP(Role, Role, Pred, Pred)

Syn 5. communicationOP −→ inform | request | correct
| reject | withdraw �Domain Independent Propositions�

Syn 6. statusProp−→ computed done | recomputed done
| abort | valid commitment � status propositions �

Pred is defined as the predicate with a vector of domain
arguments �v. We now apply the specifications to formalize
our commitment patterns.

• notify (x, y, G, Pred) = ∀ �v. AG[computed done →
AFinform(x, y, Pred(�v))]

• entertain-request (x, y, G, Pred) = ∀ �v. AG[request(y,
x, Pred(v)) → AFnotify(x, y, G, Pred(�v))]

• renotify (x, y, G, Pred, Pred) = ∀ �v1, �v2. AG [recom-
puted done ∧ ¬valid commitment → AF[inform (x, y,
Pred(�v2)) ∧ withdraw(x, y, Pred(�v1))]]

• entertain-update (x, y,G, Pred, Pred) = ∀ �v1, �v2. AG
[correct (y, x, Pred(�v2), Pred(�v1)) → AF[renotify(x,
y, Pred(�v2), Pred(�v1)) ∨ abort (x, y, G, Pred(�v1))]]

• abort (x, y,G, Pred) = ∀ �v. AG[abort → AFwithdraw
(x, y, Pred(�v))]

• dissatisfy (x, y,G, Pred, Pred) = ∀ �v1, �v2. AG[reject(x,
y, Pred(v1)) → AF[abort (x, y, G, Pred(�v1)) ∨renotify
(x, y, Pred(�v2), Pred(�v1))]]

4. OPERATIONAL SEMANTICS
To support our operational semantics for agent interactions,
we require that the agents follow a generic behavioral model,
which is expressed as a statechart. Statecharts are well es-
tablished in software engineering as means to specify con-
current computations [7]. A statechart is composed of states
(OR-states, AND-states, and basic states) and transitions.

Definition 3. A state is the main element in a state-
chart. A state may be idle, perform actions, or invoke ac-
tivities. Each state s has a type. If type(s) is basic, s has
no child state. If type(s) is AND, s comprises a number of
child states; being in an AND state implies being in all its
child states simultaneously. If type(s) is OR, s consists of a
number of child states; being in an OR state means being in
exactly one of its states. A state is defined as a root state if
it isn’t a child state of any state. Activities are operations
performed in a state and are not represented graphically.

Definition 4. A basic configuration of a statechart is a
maximal set of basic states that the system can be in simul-
taneously. Sbc is the set of all legal basic configurations. An
initial configuration of a statechart is a basic configuration
with the root state.

Definition 5. Triggers are the dynamic elements of a
statechart. Triggers cause state transitions. Events, con-
ditions, or a combination can be triggers. The events are
classified into two types: external and internal events. An
external event occurs randomly outside a statechart while an
internal event is generated deterministically by the statechart
transition.

Definition 6. A transition label lbl is composed of an
event, E, a condition, C, and an action, A, and is written
as E[C]/A. E andA may be empty and C may be true(trivial
components may be omitted).

Definition 7. A transition t = (S1, S2, lbl) ∈ (2S × 2S ×
L) is composed of a source state set S1, a target state set S2,
and a transition label lbl. S1 and S2 are basic configurations.
L is a label set.

Definition 8. A statechart Sc is a four-tuple (S, Sbc,
T , c0). S is a set of states. Sbc ⊆ 2S is a set of legal basic
configurations. T is the set of transitions. c0 is the initial
basic configuration.

t3 t7

A

B

t0

t6

t3 computed_done/inform

t2 request

t4 correct

t5 reject

t6 recomputed_done
 [¬ valid_commitment]/
 inform ∧ withdraw

t7 withdraw

t0 default

t4

4

5 6

t5

t1

1

2 3

t2

t1 start

t8 [valid_commitment]

t8

Figure 1: Generic agent behavior model

Figure 1 represents our agent behavior models denoted by
Sca in a statechart. An agent can instantiate several threads
for different interaction scenarios. Each thread follows our
agent behavior model. For example, the contractor agent
has a thread for proposing bids and another thread for per-
forming tasks. Both threads use the same behavior model
Sca.

For the model Sca, on receiving an initial trigger signal, an
agent is in state 1. After the agent receives a start event, or
a request event, it begins reasoning in state 2 or the state
3. The start event means that the agent can start its rea-
soning by itself. The request event means that the agent
can start its reasoning by requests from other agents. Upon
completion of the reasoning, the agent sends the reasoning
results to some selected agents and commits to the results
sent. The agent is in state 4.

A correct event causes the agent to reexecute its reasoning
in state 5. After finishing its reasoning, the agent obtains
new results. If the results change substantially to invali-
date the agent’s commitments, the agent sends the updated
results again (canceling the old commitments and creating
new ones). If the agent receives a reject event in state 4,
the agent transits to state 6 and reasons in state 6. If an
abort event occurs, it withdraws the commitments with its
consumer agent. If a recomputed done event occurs and cur-
rent commitments are invalid, the agent sends a new results
to satisfy its consumer agent.

5. SOUNDNESS
To relate our operational semantics with the temporal logic
specifications, we must produce a CTL structure τ = (Q, R,
P , s0) from our statechart. It is difficult to prove eventu-
ality with statecharts. An external event may never occur
during the execution of a statechart. Thus eventuality of a
condition is always falsified if external events are required

to reach the condition. To address the problem and cap-
ture possible executions of a statechart, we separate states
in our CTL structure corresponding to the same basic con-
figuration. Further we introduce a state for each transition.
We add additional members of the relationships into R. We
provide the following rules for deriving CTL structure from
the statechart.

For each transition t = (S1, S2, lbl) and lbl = E[C]/A, we
create a state S′ which is between S1 and S2. S

′ has atomic
propositions (denoted by {E,C}) which can be derived from
E and C - for reason of space, we don’t elaborate this here.
Similarly action A generates atomic propositions (denoted
by {A}) in S2. We place the pair (S1, S

′), (S′, S2) into R.
If S2 is reached from different transitions and has different
propositions, we separate the basic configuration S2 into dif-
ferent states in the CTL structure. If E includes an external
event, we place the (S1, S1) into R. The propositions in S1

don’t change. This forces an execution from S1 to S1 if the
external event doesn’t occur. If there are a set of activities
{acts} in S2, each activity generates an atomic proposition
in state S2. We denote the set of atomic propositions as
{acts} ⊆ P (S2).

Now CTL structure τ = (Q,R, P, s0) may be derived from
a statechart Sc = (S, Sbc, T , c0) by the following rules.

1. We introduce a state S′ ∈ Q. P (S′) = {E,C}, P (S2)
= {A}

S
{acts}, (S1, S

′), (S′, S2) ∈ R iff t = (S1, S2,
lbl) ∈ T , S1, S2 ∈ Sbc and {acts} are a set of activities
in S2, where lbl = E[C]/A

2. If E consists of an external events in the transition t
= (S1, S2, lbl), we introduce a relationship, (S1,S1) ∈
R

3. If the basic configuration sbc ∈ Sbc is reached from dif-
ferent transitions and has different propositions gener-
ated by the first rule, we separate the sbc into different
states

Figure 2 shows the CTL structure derived from the state-
chart of Figure 1. To derive CTL structure from the state-
chart Sca, we have to know the event type of each transition.
start, computed done, recomputed done, and abort are inter-
nal events. Request, correct and reject are external events.

Definition 9. τ ,s |= φ means that the formula φ holds
at state s in the CTL structure τ .

Definition 10. A statechart Sc is sound with respect to
a formula φ iff (∀τ : (Sc generates τ) →τ, s0 |= φ). A
statechart Sc is sound with respect to a specification {φ1,
φ2, . . . , φn} iff Sc is sound with respect to each φi.

Theorem 1. Sca is sound with respect to any
specification consisting of the patterns {entertain-request,
entertain-update, dissatisfy, notify, renotify, abort}.

Proof. For agent behavior model Sca, the event type of
a transition is given by the above. In Figure 2, the derived
CTL structure τ shows that it has 19 states and 31 binary
relationships among these states. We can verify each
formula of our commitment patterns by hand or by the
model checker [3]. Thus we can show that the computation
τ derived from statechart Sca satisfies every formula φ of
commitment patterns. Thus we prove the theorem.

Example 2. The manager and contractor agents in CNP
can follow our agent behavior model. The manager has two
threads, for a call for bids and for task assignment. The
contractor has also two threads, which implement agent be-
havior model Sca, for proposing a bid and for performing a
task. For conventional CNP, we have the following:

• The manager initializes a thread. It sends out request
for a call for bids. To satisfy the request by entertain-
request, the contractor initializes a thread to reason
whether to bid.

• If contractor decides to bid, it send a bid to the man-
ager (notify).

• The manager chooses the optimal bid and sends a task
assignment to the willing contractor. The willing con-
tractor satisfies entertain-request for tasks by perform-
ing task assignment.

• When the task results are available, the contractor no-
tifies the manager.

To allow revisions in CNP, we have the following:

• If the manager changes its the number of widgets, it
can send the corrected information to the contractor
(renotify).

• The contractor reasons again (entertain-update). The
contractor may request to increase the price. If so, it
renotifies the manager.

To handle exceptions in CNP, we have the following:

• If the contractor does not finish its task by the dead-
line, it can withdraw the task assignment and cancel
its commitment by using abort.

6. DISCUSSION
Because of the autonomy and decentralization of the par-
ticipants represented by agents in dynamic environments,
specifying and managing agent interactions can be challeng-
ing. Conventional techniques fall into one of two extremes,
being either too rigid (over-restricting the designer) or too
unstructured (not helping the designer). Our commitment-
based approach takes the middle path, emphasizing the co-
herence desired from the activities of autonomous decen-
tralized entities, but allowing the entities to change their
mind in a controlled manner, which enables them to achieve
progress in a dynamic, unpredictable world. We formalize

s0 t0 1-1

 t2

t1

 3

 2

t3 4-1 t4

t8-1

 t5

 1-2

 t7

 6

 5 t6 4-2

Propositions in each point:

 t8-2

t2 {request}

t3 {computed_done}

t4 {correct}

t5 {reject}

t6 {recomputed_done,
 ¬valid_commitment}

t7 {abort}

t8-1 {valid_commitment}

t8-2 {valid_commitment}

1-2 {withdraw}
4-1 {inform}

4-2 {inform,withdraw}

Propositions in each point:

Other points ∅

Figure 2: CTL structure of the statechart Sca

agent interactions represented by commitment patterns. We
provide a behavioral model to execute autonomous, hetero-
geneous agents.

Dignum and van Linder [5] propose a framework for social
agents based on dynamic logic. Agents interact each other
based on deontic relationship among agents. They deal with
the motivational attitudes of agents and define many con-
cepts such as wishes, goals, intentions, and commitments
or obligations. This complements our approach. We focus
more on operational semantics. The reasoning results rep-
resented by predicates with data values as the arguments
trigger the interaction.

Barbuceanu and Fox [1] describe a language for specify-
ing coordination among agents. Their approach involves
finite state representations of an entire conversation. While
their approach is quite effective in coordinating agents, it
leaves open the question about how the given conversation
is acquired. For specifying agent behavior, we use a state-
chart to represent agent behavior, not using flat finite state
machine (FSM), which may cause state exposition problem
when there are a large number of states in FSM. For verifica-
tion purposes, we use temporal logic to verify our behavior
model.

Klein and Dellarocas exploit a knowledge base of generic
exception detection, diagnosis, and resolution expertise [8].
Specialized agents are dedicated to exception handling. This
approach is complementary to ours; special exception han-
dling roles could be included in our approach with commit-
ments by other roles.

7. REFERENCES
[1] M. Barbuceanu and M. S. Fox. COOL: A language for

describing coordination in multi agent systems. In
Proceedings of the International Conference on
Multiagent Systems, pages 17–24, 1995.

[2] C. Castelfranchi. Commitments: From individual
intentions to groups and organizations. In Proceedings

of the International Conference on Multiagent Systems,
pages 41–48, 1995.

[3] E. M. Clarke, E. A. Emerson, and A. P. Sistla.
Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM
Transations on Programming Languages and Systems,
8(2):244–263, 1986.

[4] R. Davis and R. G. Smith. Negotiation as a metaphor
for distributed problem solving. Artificial Intelligence,
20:63–109, 1983.

[5] F. Dignum and B. van Linder. Modelling social agents:
Communication as action. In Intelligent Agents III:
Agent Theories, Architectures, and Languages, pages
205–218. Springer-Verlag, 1997.

[6] E. A. Emerson. Temporal and modal logic. In J. van
Leeuwen, editor, Handbook of Theoretical Computer
Science, volume B, pages 995–1072. North-Holland,
Amsterdam, 1990.

[7] D. Harel and A. Naamad. The STATEMATE semantics
of statecharts. ACM Transactions on Software
Engineering and Methodology, 5(4):293–333, 1996.

[8] M. Klein and C. Dellarocas. Exception handling in
agent systems. In Proceedings of the 3rd International
Conference on Autonomous Agents, pages 62–68,
Seattle, Washington, 1999.

[9] M. P. Singh. An ontology for commitments in
multiagent systems: Toward a unification of normative
concepts. Artificial Intelligence and Law, 7:97–113,
1999.

