Synchronous Coordination in the ;uLog Coordination
Model

Koen De Bosschere
ELIS Department, Ghent University, Belgium

kdb@elis.rug.ac.be

ABSTRACT

In this paper we investigate the effects of synchronous com-
munication in the pLog coordination framework. We start
by defining the concept of synchronous coordination and
then introduce it into the pLog framework. We formally
present the transition rules for the synchronous coordina-
tion, and discuss some of the consequences of the choices
we have made. From the transition rules follows that syn-
chronous tell and synchronous get are actually very similar
and can be expressed in terms of two elementary primitives:
put and wait. It turns out that these two primitives are pow-
erful enough to also support the other pLog communication
primitives.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Parallel Programming;
D.1.6 [Programming Techniques]: Logic Programming;
D.4.4 [Operating Systems]: Communications Manage-
ment

General Terms
Languages, Theory

Keywords

Coordination, uLog, semantics, synchronicity

1. INTRODUCTION

When comparing coordination languages, one quickly comes
to the conclusion that most proposals only differ in the set
of coordination operations they offer [8]. Some operations
work on a point-to-point basis, while others are working on
a global data space; some communication operations can
have complex embedded conditions; the communication can
be asynchronous or synchronous.

According to Bal [2], asynchronous communication is be-
lieved to be less deadlock-prone than synchronous commu-
nication as producers will never block. In practice, most co-

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on serversor to redistribute to lists, requires prior specific
permission and/or afee.

SAC 2001 Las Vegas, NV USA

© 2001 ACM 1-58113-324-3/01/02 ..$5.00

Jean-Marie Jacquet
Institute of Informatics, FUNDP, Belgium

jmj@info.fundp.ac.be

ordination languages are asynchronous. There are however
some notable exceptions: the programming languages Ada
(Rendez-vous), Delta-Prolog [7], Quintus Prolog [16], and
PMS-prolog [21] have synchronous communication primi-
tives. In logic programming languages, the choice for syn-
chronous communication is often motivated by the require-
ment to support unification during communication.

In this paper we investigate the effects of a synchronous co-
ordination model in pLog, and prove that synchronous com-
munication creates similarity between producers and con-
sumers, up to the point that producers and consumers could
even be interchanged under certain conditions. This raises
the question whether there is redundancy in the set of co-
ordination operations, and whether they can be reduced to
a smaller set. It turns out that one primitive to create sus-
pension terms, together with an active blackboard that can
autonomously combine suspension terms and notify a gen-
eralized wait-primitive are sufficient to express the complete
set of synchronous and asynchronous coordination primi-
tives in puLog. To the best of our knowledge, this approach
is novel, and has not been presented elsewhere. This pa-
per is based on the pLog coordination model that we have
developed earlier [9, 13, 14].

We first start by introducing the basic uLog framework, fol-
lowed by the introduction of a synchronous tell-primitive.
We then formally present the transition rules for all com-
munication primitives. In section 5, we investigate the sim-
ilarities between synchronous tell and get, and this leads us
to a more primitive set of communication primitives (put
and wait) that allows us to to express the full set of uLog
communication primitives. The paper is concluded with a
conclusion and an overview of related work.

2. THE proc COORDINATION MODEL

The pLog coordination model is based on communication
with a global data space or blackboard. It has evolved from
Multi-Prolog, a Prolog-based coordination language. On the
blackboard, there are three primitives that deal with terms,
namely, tellt to put a term on a blackboard, gett to remove
a term from the blackboard, and readt to check the presence
of a term on the blackboard. Similar primitives (tellp, getp,
and readp) exist that work on processes (to create a process,
to remove it, and to check its presence). In this paper,
we will concentrate on tellt-, gett-, and readt-primitives,
which we will call tell, get and read for short. Their informal
semantics is as follows:

1. get consumes a term on the blackboard, and if no suit-
able term is available, it suspends until a suitable term
is being told on the blackboard (this is comparable to
the Linda in-primitive).

2. read checks the presence of a term on the blackboard,
and if no suitable term is available, it suspends until a
suitable term is being told on the blackboard (this is
comparable to the Linda rd-primitive).

3. tell puts a term on the blackboard, where it resides
until it is consumed by a get. tell never suspends, but
immediately succeeds after having told the term to
the blackboard (this is comparable to the Linda out-
primitive) [1]. Before physically telling a term on the
blackboard, the uLog system will first try to directly
communicate it to a suspended primitive (first to the
suspended read-primitives as these do not consume the
term, and afterwards to a get-primitive). If there is
a suspended get-primitive, the term will thus never
appear on the blackboard.

The semantics of this basic puLog coordination framework
has been described elsewhere [13]. We will now change the
semantics of the tell-primitive.

3. SYNCHRONOUS tell

The informal semantics of the synchronous tellprimitive is
as follows:

tell produces a term on the blackboard, and if no
suitable get-operation is waiting, tell suspends
until the term that is told on the blackboard is
consumed by the appropriate get-operation.

This behavior is quite different from the tell-behavior in the
basic pLog model. There are some immediate consequences.

1. Since tell cannot continue unless its term has been con-
sumed, there is no more need for a blackboard as a
term buffer. We will however keep the blackboard as
synchronization buffer (see below).

2. Since there is no more need to store terms on the black-
board, the get-operations and read-operations do not
have to look for a term on the blackboard anymore,
but for a suspended tell-operation.

3. The basic operation of tell and get is now more simi-
lar. Both can suspend, and be resumed by the other
one. The only major difference is that tell produces a
value, while get consumes a value. If we would use full
term unification to find a matching term, the commu-
nication could be bi-directional, or in other words, tell
could be used to get information, while get could be
used to produce information. In that case, tell and get
can actually be interchanged. For the sake of simplic-
ity we will limit terms to ground terms in this paper.

In order to be able to manipulate suspended operations, we
here introduce the concepts of suspension record and sus-
pension term [11]. A suspension record is a Multi-Prolog

implementation detail that is made explicitly visible in the
uLog coordination model. A suspension record contains all
the information that is needed to resume a suspended pro-
cess, such as the term on which it is suspended. This in-
formation is made visible in the pLog framework by means
of a so-called suspension term. On suspension, a suspension
term is put on the blackboard.

1. the suspension term for a blocked get-operation on a
term ¢; is represented by v(;),

2. the suspension term for a blocked read-operation on a
term ¢; is represented by p(¢;),

3. and the suspension term for a blocked tell-operation
on a term ¢; is represented by 7(¢;).

The basic blackboard operations on terms are generalized to
also deal with suspension terms. In particular, a suspension
term can be removed (get), forcing the associated process to
backtrack.

The suspension term o can disappear on two occasions:

1. a get(o) is executed, in which case the suspended op-
eration fails,

2. a matching blackboard operation is issued in which
case the associated operation succeeds. Hence, 7(t;) is
resolved by get(¢;), while v(¢;) is resolved by tell(t;).

4. FORMAL TREATMENT

The intuition just sketched may be abstracted in very gen-
eral terms by assuming the existence of a set of tokens, this
set being Prolog terms as in the pLog model or tuples in
the case of Linda. Based on it, we define the communica-
tion primitives tell, get and read by the following grammar:

o u= t | 7(t) | (o) | plo)
C == tell(t) | get(o) | read(o)

There, ¢t denotes a token and C' a communication primitive.
It is worth noting that we allow get and read primitives
to take tokens as well as suspension terms as arguments
whereas we limit the tell primitive to tokens only. This
restriction is motivated by the fact that suspension terms
are the side-effect of a suspended communication primitive,
and we do not want this side effect being created by anything
but a suspended communication primitive. The semantics
of the get and read primitives is extended to also work on
suspension terms.

The statements of our abstract language £ are defined as
follows:

S == C|S;S|S+S

The symbols ; and + denote the sequential composition
operator and the sequential choice operator.®

!By sequential choice we mean that first the left alterna-
tive is tried, and only if this fails, the right alternative is
tried. This semantics allows us to model the backtracking
semantics of e.g. Prolog.

The careful reader will have noticed that we only treat finite
processes. This is done for simplicity of the presentation.
Our model can be naturally generalized to infinite processes
using classical techniques, as exemplified for instance in [12].

This given, a computation consists of the parallel resolution
of statements. It may be described by using transition rules
written in Plotkin’s style [19]. The configurations

(R | bb)

to be considered here are composed of a multiset of state-
ments R, together with a multiset of suspension terms bb.
The latter denotes the current contents of the blackboard
during the computation. The former denotes the set of
statements executed in parallel. To allow for the modelling
of backtracking, statements are generalized so as to make
alternative continuations explicit. This is done according to
the following rules, where S denotes a statement.

SS == 0O|S-SS
AC == A|SS<CAC

Sequences of statements are thus represented by the symbol
SS with O denoting the empty sequence and “-” denot-
ing the concatenation operator. Alternative statements are
represented by the AC symbol with A denoting the empty
stack of alternatives. Hence, the multiset of statements ac-
tually consists of elements of AC. The “-” and “&” are the
semantic operators corresponding to the “ ; 7 and “ 4+ 7
syntactic operators, respectively.

The transition rules are defined by case analysis of the first
statement of the alternative statement for the process under
consideration. They are listed in Figures 1-4.

Rules of Figure 1 define the reduction of tell-primitives. Rule
T1 copes with telling a token on the blackboard in the pres-
ence of a suspension term p(t) ~ Y. The notation p(o) ~ X
is used to specify a suspension term, consisting of a gener-
alized term o, and a continuation X. This continuation is
needed to be able to resume the process when the coordina-
tion primitive is unblocked (and either succeeds or fails). In
this case, the process associated with the suspension term
is resumed (Y). Rule 7> deals with telling a token ¢ on the
blackboard in the presence of a blocked get-primitive. In this
case, the process associated with the blocked get-primitives
is resumed, and the tell-operation succeeds. Notice that the
primitive tell(t) is only consumed in Rule 75 in the presence
of a suspension term for a get-operation while it is not in
Rule T for a suspension term corresponding to a suspended
read-operation. Rule T3 describes the case where there is a
process waiting for the suspension term 7(t) to appear on
the blackboard. The process will have no further impact on
the tell-operation, and simply resume (Y'). Rule T4 considers
the case where a process is waiting to kill the suspended tell-
operation. As a result, the tell-operation backtracks, con-
tinuing with AC, and the suspended get-operation resumes
its own execution (Y). Finally, T5 creates the T-suspension
term.

Rules of Figure 2 handle the get-primitives. The first two
rules deal with get-primitives for which there is a match-
ing term (either token or suspension term) on the black-

board. As a consequence, the corresponding primitives suc-
ceed. Rules G3 — G5 deal with the case in which there is
no matching term on the blackboard, but there are match-
ing meta-terms (p(v(c)) or v(v(s))). First of all, G tries
to resume all suspended read-primitives. Then, if no more p
suspension terms are found, either Rule G4 or G5 is applied,
depending on the presence or absence of a -y suspension term.
Here too, when there is a choice between resuming a get-
primitive either by consuming its argument, or allowing it
to be canceled by a meta-primitive, we prefer the former
option. The rationale behind it is that the meta-primitive
requires a suspension term to succeed, but a suspension term
should only be created when a primitive suspends.

Rules of Figure 3 are completely analogous to the G;-rules
of Figure 2.

Rules C and S in Figure 4 finally describe the transition
rules for sequential choice and sequential composition of
communication primitives in the classical way.

Note that it is easy to verify that Rules T4 and G2 are dual
rules. Rule Ty describes the effect of a tell-operation when
a get-operations is waiting to force the tell-operation to fail.
Rule G2 describes the effect of such a get-operation on an
existing suspension record (in this case for a tell-operation).

The careful reader will have realized that the transition rules
suggest a global state. However, they can be generalized to
a distributed model following the lines of [10]. This has not
been done in this paper because it is an orthogonal issue.

5. TOWARDSCOORDINATION WITH
TWO PRIMITIVES

Given the similarity between the synchronous get and tell-
operations, we can try to further reduce the number of black-
board operations in the synchronous pLog-model.

Let’s first start by comparing the synchronous tell and get-
operations. In the following example

sendtoken = tell(token)
receivetoken = get(token)

sendtoken and receivetoken can be used to realize an ele-
mentary synchronization between two processes. Due to the
similarity between get and tell, the same synchronization
could be realized by means of the following implementation:

sendtoken = get(token)
receivetoken = tell(token)

Depending on the relative order of execution, one process
will put a y(token), resp. 7(token) on the blackboard, which
will be consumed by the corresponding tell(token), resp.
get(token). Hence, in order to realize this type of synchro-
nization, the only condition is that the two communication
primitives are complementary.

However, the actual execution is internally non-deterministic.
This means that although the result of the computation is

{(tell(t) - $S) O ACYUR | bbU {p(t) ~ Y}
— {{(tell(t) - SS) © ACYU{Y}UR | bb)

VX (p(t) ~ X) & bb

{@ell(t) - 59) 0 ACTUR [BbU (7 () ~ Y1)
— ({88 O ACYU{Y}UR | bb

VX (p(t) ~ X) & bb
VX (7(t) ~ X) & bb

{(teli(t) - 88) © AC}UR | bbU {p(r (1)) ~ Y)
— ({(tell(t) - SS) © ACYU{Y} UR | bb)

VX (p(t) ~ X) & bb
VX ((t) ~ X) & bb
VX (p(r(t)) ~ X) & bb

({(tell(t) - SS) © ACYUR | bbU {~(7(t)) ~ Y})
— ({AC}YU{Y}UR | bb)

X(p
(
((
X(v(

t)~ X) & bb
t)~ X) & bb
(t)~ X) & bb
()~ X) g bb

*\‘\/—\/—\

<{(tell() -
— (R [bb

CCQ

S) S ACYUR | bb)
{r(t) ~ 85 & ACY})

Figure 1: Tell primitives

(Ga)

{(get(t) - SS) O ACYUR | bbU {r(t) ~ Y})
— ({SS O AC}U{Y}UR | bb)

{(get(o) - SS) O ACYUR | bbU{o~ X O Y})
({85 O ACYU{Y}UR | bb)

VX (7(0) ~ X) ¢ bb
VX (0~ X) ¢ bb

({(get(o) - 55) © ACTUR [U {p(1(0)) ~ Y]
— ({(get(o) - SS) O AC}U{Y}UR | bb)

VX (7(0) ~ X) ¢ bb
VX (0~ X) ¢ bb
VX (p(y(0)) ~ X) & bb

({(get(o) - SS) © ACYUR [bbU {y(v(0)) ~ Y})
— ({AC}U{Y}UR | bb)

VX (1(0) ~ X) & bb
VX (o~ X) ¢ bb
X(p(v(0)) ~ X) & bb

X(v(y(9)) ~ X) £ bb

({(get() - SS) O AC}UR | bb)
— (R [bbU {y(c) ~ SS & ACY})

Figure 2: Get primitives

{(read(t) - SS) O ACYUR | bbU {7(t) ~ Y1)

(R1) — ({88 © ACYUR | bbU {r(t) ~ Y})

" {({(read(c) - §8) © AC}UR | bbU {o ~ Y})

(R2) — ({SS © ACYUR [bbU {0~ Y})
VX (1(0) ~ X) & bb

(Rs) VX (0~ X) ¢ bb

{(read(o) - SS) O ACYUR | bbU{p(p(c)) ~Y})
— ({(read(c) - SS) & AC}U{Y} UR | bb)

VX(1(o) ~ X) & bb
VX (o~ X) & bb
(Ra) VX (p(p(0)) ~ X) & bb
({(read(o) - S5) © AC}UR | bbU{7(p(0)) ~ Y})
— ({AC}U{Y}UR | bb)

VX (1(0) ~ X) € bb
VX (o~ X) & bb
(Rs) VX (p(p(0)) ~ X) & bb
° VX (y(p(o)) ~ X) & bb
({(read(o) - SS) O AC}UTR | bb)
— (R |bbU{p(c) ~ SS O ACY)

Figure 3: Read primitives

. ((s1 - S8) © ((s2 - SS) O AC) | bb) — (AC" | b')
©) (51 + 52) - 59) © AC [bb) — (AC" [6

(8) (517 52) - 59) O AC|B) = (AC | o0)

Figure 4: Sequential choice and composition

identical in both cases, there are two internal paths that
can be followed: either generating ~y(token) that is to be
consumed by tell(token), or generating 7(token) that is to
be consumed by get(token). In order to remove this non-
determinism, we can introduce an active blackboard, i.e., a
blackboard that will autonomously combine the matching
suspension terms and notify the corresponding operations.
In this case sendtoken and receivetoken simply put their
suspension terms on the blackboard. The blackboard then
combines the two suspension terms, and unblocks the two
blocked communication primitives. In this model, the two
primitives are actually identical, except for the kind of sus-
pension terms they generate. This allows us to rewrite the
three basic puLog primitives in terms of just two lower level
primitives: one to create a suspension term (called put), and
a generalized wait-primitive that waits for a signal from the
blackboard to continue. In practice the wait operation will
wait for a suspension term to be combined with another
suspension term on the blackboard.

Notice that put is quite different from tell. The tell primi-
tive only accepts tokens as arguments because it is not al-
lowed to create a side effect (suspension term) for which
there is no corresponding process. This is different for the
put-primitive. Suspension terms are now no longer consid-
ered side effects of a suspended coordination primitive, but
data on an active blackboard. The successful combination
of some suspension terms will create signals that are used
to unblock wait-primitives. Since the suspension terms are
no longer side-effects, they can now be created in their own
right.

Using these two primitive operations, the synchronous plLog-
operations can be re-expressed.

tells(t) = put(7(t)); wait(r(t))
gets (t) = put(v(t)); wait(y(t))
reads(t) = put(p(t)); wait(p(t))

Since this model makes a clear distinction between putting
a suspension term on the blackboard, and waiting for the
associated signal from the blackboard, is now possible to also
express the asynchronous primitives from the basic pulLog-
model.

telly (t) = put(7(¢))
geta(t) = put(y(t)); wait(y(t))
reada(t) = put(p(t)); wait(p(t))

as well as any other intermediate quasi-synchronous form
where there can be some computation between the creation
of the suspension term, and the synchronization point where
the process waits for the result. These can be modeled as:

telly(t) = put(7(t)); P;wait(7(t))
get(t) = put(y(t)); P wait(+(t))
readq(t) = put(p(t)); P;wait(p(t))

In this example, P represents an arbitrary computation that
can take place between the put-operation and the wait-
operation. This allows the program to do some useful work

during the reaction time of the active blackboard. This is
a standard technique to allow for maximal overlap between
communication and computation, as it is used in e.g. PVM
or MPI. Since signals generated by the blackboard are per-
sistent, they will never get lost, even in the case where the
computation P would take longer than the active blackboard
needs to react on the suspension terms. We will now look
into the transition rules.

Formally, two sets of new rules need to be added. Rule (P) of
Figure 5 states that the execution of a put(o) primitive con-
sists of adding the suspension term o on the blackboard bb.
Rules (W1), (W), and (Ws) of the same figure describe the
behavior of the wait primitives. Essentially, they suspend
until their suspension term reacts with a matching suspen-
sion term on the blackboard and creates a notification term.
For read, get, and tell operations these notification terms
correspond respectively to k, v and u terms. They are pro-
duced by the rules of Figure 6. In Rule (C1), a suspension
term p(o) coming from a read operation is combined with a
suspension term 7(o) coming from a tell operation to create
a notification term k(o) which in turn allows the wait prim-
itive associated with the read operation to resume. Note
that the 7(o) suspension term is not consumed. Rule (C5)
is similar for the get operation. However, here two new no-
tification terms are created to resume the wait operations
while the 7(o) suspension term is consumed. This forces
the communication between one and only one pair of tell-
get primitives. The condition p(c) & bb additionally ensures
that all the read operations concerned by the communica-
tion have been previously treated.

6. CONCLUSION AND RELATED WORK

In this paper we have investigated the effects of synchronous
communication in the plLog coordination framework. We
started by defining the concept of synchronous coordination
and then introduced it into the pLog framework. We then
formally presented the transition rules for the synchronous
coordination. Two basic communication primitives (put and
wait) have also been introduced. They have been proven
expressive enough to translate the newly introduced syn-
chronous version of the plLog primitives but also to code
other forms including the existing asynchronous version of
nLog primitives. This translation scheme relies on an active
blackboard inspired by the chemical metaphor used in the
CHAM machine [4] and in Gamma [3].

Related work includes the CCS language which also features
the similarity between tell and get primitives. However,
in contrast to it, our framework also incorporates a read
primitive. Moreover, no equivalent is given for an explicit
treatment of suspension terms. This is also a distinguishing
feature of our work with those related to coordination lan-
guages. The CBS calculus [20], the Gamma calculus [3], and
the Pi-calculus [17] presents similar features to our work but
do not include mechanisms related to suspension terms and
in general do not incorporate reification of suspensions.

Finally, a variety of tell, get, and read-operations are studied
from the theoretical perspective of expressiveness in [5, 6,
18, 22]. However, no counterparts are given for primitives
explicitly handling suspension records as we do in this paper.

U(put(o) - 8S) © AC}UR | bb)

(P) ({55 © ACYUR | bbU {o})
(W1) {(wait(p(c)) - SS) O ACTUR |bbU{k(o)})
! — ({SS O AC}UR | bb)
(Wa) {(wait(y(o)) - SS) O ACYUR | bbU {v(o)})
— ({SS O AC}UR | bb)
(Ws) {(wait(r(c)) - SS) O ACYUR |bbU{pu(o)})
3 — ({SS O AC}UR | bb)
Figure 5: Put and wait primitives
- (R |90 ()} U {p(o))
' — (R0 U{T(0)} U{r(0o)})
p(o) & bb
(Ca)

(R0 U{r(0)} U{r(o])*

)
= (R bbU{r(o), u(o)})

Figure 6: Reaction rules

7.
(1]

2l

3l

(4]

(7l

(9]

(10]

(11]

REFERENCES
S. Ahuja, N. Carriero, and D. Gelernter. Linda and
friends. IEEE Computer, 19(8):26-34, Aug. 1986.

H. Bal, J. Steiner, and A. Tanenbaum. Programming
languages for distributed computing systems. ACM
Computing Surveys, 21(2):261-322, Sept. 1989.

J.-P. Banatre and D. Le Metayer. Programming by
Multiset Transformation. Commun. ACM,
36(1):98-111, Jan. 1993.

G. Berry and G. Boudol. The Chemical Abstract
Machine. Theoretical Computer Science, 96:217-248,
1992.

N. Busi, R. Gorrieri, and G. Zavattaro. On the Turing
Equivalence of Linda Coordination Primitives.
Electronic Notes in Theoretical Computer Science, 7,
1997.

N. Busi, R. Gorrieri, and G. Zavattaro. A Process
Algebraic View of Linda Coordination Primitives.
Theoretical Computer Science, 192(2):167-199, 1998.

J. Cunha, P. Medeiros, M. Carvalhosa, and L. Pereira.
Delta-Prolog: A distributed logic programming
language and its implementation on distributed
memory multiprocessors. In Kacsuk and Wise [15],
pages 335-356.

K. De Bosschere. Process-based Parallel Logic
Programming Languages: A Survey of the Basic
Issues. The Journal of Systems and Software,
39:71-82, 1997.

K. De Bosschere and J.-M. Jacquet. Extending the
pLog Framework with Local and Conditional
Blackboard Operations. The Journal of Symbolic
Computation, 21(4):669-697, Apr. 1996.

K. De Bosschere and J.-M. Jacquet. p2log: Towards
Remote Coordination. In P. Ciancarini and C. Hankin,
editors, Proceedings of Coordination’96, volume 1061
of Lecture Notes in Computer Science, pages 142—159,
Cesena/Italy, Apr. 1996. Springer-Verlag.

K. De Bosschere and J.-M. Jacquet.
Meta-coordination in the plog coordination model. In
H. Arabnia, editor, Proceedings of the International
Conference on Parallel and Distributed Processing
Techniques and Application, volume 2, pages 761-767,
Las Vegas, June 2000.

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

21]

E. Horita, J. de Bakker, and J. Rutten. Fully abstract
denotational models for nonuniform concurrent

languages. Information and computation,
115(1):125-178, 1994.

J.-M. Jacquet and K. De Bosschere. On the Semantics
of uLog. Future Generation Computer Systems,
10:93-135, Apr. 1994.

J.-M. Jacquet and K. De Bosschere. Blackboard
relations in the plog coordination model. New
Generation Computing, 2000. Accepted for
publication.

P. Kacsuk and M. Wise, editors. Implementations of
Distributed Prolog. Series in Parallel Computing.
Wiley, Chichester, 1992.

R. Keller. A position on multiprocessing in prolog. In
Proceedings of the Joint Japanese/American
Workshop ICOT/NSF, pages 27-49, Oct. 1989.

R. Milner, J. Parrow, and D. Walker. A Calculus of
Mobile Processes. Information and Computation,
100(1):1-77, 1992.

C. Palamidessi. Comparing the Expressive Power of
the Synchronous and the Asynchronous Pi-Calculus.
In Proc. of the 24th ACM Symposium on Principles of
Programming Languages (POPL), pages 256-265.
ACM, 1997.

G. Plotkin. A structured approach to operational
semantics. Technical Report DAIMI FN-19, Computer
Science Department, Aarhus University, 1981.

K. V. S. Prasad. A Calculus of Broadcasting Systems.
Science of Computer Programming, 25(2-3):285-327,
1995.

M. Wise, D. Jones, and T. Hintz. PMS-Prolog: A
Distributed Coarse-grain-parallel Prolog with
Processes, Modules and Streams. In Kacsuk and Wise
[15], pages 379-403.

G. Zavattaro. Towards a Hierarchy of Negative Test
Operators for Generative Communication. Electronic
Notes in Theoretical Computer Science, 16(2):83-100,
1998.

