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Abstract. This paper presents a multi agent-oriented prototyping ap-
proach. It is a generic approach, applicable to a wide range of multi-agent
systems. This approach relies on a few assumptions, the most important
is that MAS must be described by an organizational model which seman-
tics is given in term of a formal framework. This model allows for a simple
description of both individual and collective multi-agent system aspects.
The framework we use to give a formal description of this model is based
on a multi-formalism approach. We illustrate this approach through a
case study.
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1 Introduction

Agent-based systems are new paradigm for modeling and building many com-
puter systems ranging from complex distributed systems to intelligent software
applications. It proposes new ways for analyzing, designing and implementing
such systems based upon the central notions of agents, their interactions and
the environment which they perceive and in which they act. Although many
Multi-Agent Systems (MAS for short) have been designed, there is a crucial lack
concerning specification and development methodologies.
Process of specification is fundamental to handle the complexity related to build
such systems and specifying the desirable behavior of MAS before their imple-
mentation phase. The specification process must fulfill two roles. The first is to
provide the underlying rationale for the system under development. The second
is to guide subsequent design, implementation and verification phases. A variety
of specification formalisms are available in the multi-agent field. Such formalisms
put the emphasis on the first role and do not provide a basis to fulfill the second.



As stated in [2], they are often abstract and unrelated to concrete computational
models. We believe that one way to bridge the gap between the abstract and the
concrete level is to build the system specification using a prototyping process
[13]. This process provides a support for incremental specification leading to an
executable model of the system being built. Indeed, in many areas of software
and knowledge engineering, the development process putting emphasis on proto-
typing and simulation of complex systems before their effective implementation
is proven to be a valuable approach.
The purpose of this paper is to present a formal approach to MAS that fits in
with prototyping and simulation oriented processes. The first step towards such
approach is to choose or to build a formalism for specifying MAS. Harel and
Pnueli [10] split systems in two classes : transformational systems which can be
described by a functional mapping input to output values and reactive systems
which do not compute functions but perform a continuous interaction with their
environment. Due to their complexity, MAS have reactive and transformational
features. A formalism which : specifies easily and naturally both aspects, enables
prototyping and simulation and guides the implementation phase which is to be
defined yet. We have thus chosen to use a multi-formalism approach that results
of the composition of Object-Z [3] and statecharts [11]. This formalism enables
the specification of reactive and transformational aspects of MAS and their pro-
totyping by simulation.
Even though it has enough expressive power to specify MAS aspects, this lan-
guage does not provide any methodological guidelines. A specification method
is essential to manage MAS complexity by decomposition and abstraction. We
use an organizational model [5, 18] that consider organizations, interactions and
roles as first class citizen. This model allows to go from the requirements to de-
tailed design and helps to decompose a MAS in terms of roles and organizations.
Model concepts are specified by a framework which has to be refined to specify
a MAS particular application. These concepts are illustrated by the Aphtous
Ulcer Fever example which has been presented in [4]. This example consists in
cattles disease modeling by using roles and organizations.
The paper is organized as follows. Section 2 introduces the methodological ap-
proach proposed which results from an organizational model and formal specifi-
cation framework. Section 3 gives the specification of the Aphtous Ulcer Fever
example. Section 4 is devoted to a summary, and prospects for further research.

2 Specification approach

2.1 Role/Organization model

Our specification approach uses an organizational model which is based on three
interrelated concepts: role, interaction and organization. Roles are generic be-
haviors. These behaviors can interact mutually according to interaction pattern.
Such a pattern which groups generic behaviors and their interactions constitutes
an organization. Organizations are thus descriptions of coordination structures.
Coordination occurs between roles as and when interactions takes place. In this
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Fig. 1. Ulcer Aphtous Fever semi-formal model

context, an agent is only specified as an active communicative entity which plays
roles [5]. In fact agents instantiate an organization (roles and interactions) when
they exhibit behaviors defined by the organization’s roles and when they interact
following the organization interactions. An agent may instantiate one or more
roles and a role may be instantiated by one or more agents. The role playing
relationship between roles and agents is dynamic. We make no assumptions on
agent architectures. The generality of the agent definition allows the specification
of many agent types. More specific choices can be introduced in more accurate
models. This model enables a modular approach by prototyping separate parts
of the MAS. The behavior of the MAS as a whole is the result of the role playing
by agents. This methodology deals with both the macro (organizations) level and
micro (roles) level. Moreover, this MAS decomposition enables the prototyping
of only part of the MAS. In fact, the smallest entity one can prototype is a role.
The roles, interactions and organizations of the Aphtous Ulcer Fever example
are described by figures 1. To describe these organizations we borrow from the
OOram notation [16]. A box that represents an organization encloses a set of
boxes representing its roles. An interaction is materialized by a line connect-
ing two roles. On each extreme of this line there may be nothing, a circle or a
double circle to indicate the interactions arities. In our example, arities are all
one to one, i.e concrete interactions always happen between two agents playing
the respective roles. We present only a part of the Aphtous Ulcer Fever MAS
model of [4]. In the part we present there are two organizations : Herd orga-
nization which deals with aspects related to cattles and Disease organization
which models aspects related to disease spread and cure. The former organiza-



tion is composed of two roles : CattlesHandling (placing cattles either in farm or
field and selling calfs) and Production (simulating calfs birth). The latter orga-
nization is composed of three roles : HealthCare (searching and cure of infected
animals), ContaminantSite (simulating of possible contagions) and Anademie
(simulating self-cures and contaminations). Three agents type play these roles.
STOCKBREEDER agent plays CattlesHandling and HealthCare roles. HERD
agent plays Production and ContaminantSite roles. Eventually DISEASE agent
plays Anademie role. The roles played by these agents are shown in figure 1 by
the arrows from roles to agents.

While this model is represented in a well structured and easy to understand
manner, it lacks of formal semantics and means of rigorous analysis such as
verification and prototyping. The section 2.3 introduces a formal framework
fulfilling those needs.

2.2 Multi-formalism based specification language

Many specification formalisms can be used to specify entire system but few, if
any, are particularly suited to modeling all aspects of such systems. For large or
complex systems, like MAS, the specification may use more than one formalism
or extend one formalism. The multi-formalism approaches [19, 15] compose two
or more formalisms in order to specify more easily and naturally than with a
single formalism. Indeed, the multi-formalism approach deals with complexity
by applying formalisms to problem aspects for which they are best suited and
to prove properties with proofs rules and transformation techniques available in
a specific formalism.
Our choice is to use Object-Z to specify the transformational aspects and stat-
echarts to specify the reactive aspects. Object-Z extends Z with object-oriented
specification support. The basic construct is the class which encapsulates state
schema with all the operation schemas which may affect its variables. Statecharts
extend finite state automata with constructs for specifying parallelism, nested
states and broadcast communication for events. Both language have constructs
which enable refinement of specification. Moreover, statecharts have an opera-
tional semantic which allows the execution of a specification.
Our method for composition of Object-Z and statecharts relies on the meta-
method of Paige [15]. The main step of this method is the definition of an
heterogeneous basis which is a set of notations, translations and formalizations
that provides a formal semantics to multi-formalism specifications. In our case
the main concept of the heterogeneous basis is the integration of statecharts in
Object-Z classes. We have extended the expressive capabilities of each formalism
by features available in the other. The role of the heterogeneous basis is to pro-
vide formal means of expression without translating a formalism in the other. In
other words the heterogeneous basis furnishes mean of communication between
partial specifications written in either Object-Z or statecharts.
The class describes the attributes and operations of the objects. This description
is based upon set theory and first order predicates logic. The statechart describes



the possible states of the object and events which may change these states. A
statechart included in an Object-Z class can use attributes and operations of
the class. The sharing mechanism used is based on name identity. Moreover,
we introduce basic types [Event ,Action,Attribute]. Event is the set of events
which trigger transitions in statecharts. Action is the set of statecharts actions
and Object-Z classes operations. Attribute is the set of objects attributes. These
types also belong to the heterogeneous basis.
The LoadLock class illustrates the integration of the two formalisms. It specifies
a LoadLock composed of two doors which states evolve concurrently. Parallelism
between the two doors is expressed by the dashed line between DOOR1 and
DOOR2. The first door reacts to activate1 and deactivate1 events. When some-
one enter the LoadLock he first activate the first door enter the LoadLock and
deactivate the first door. The transition triggered by deactivate1 event execute
the inLL operation which sets the someoneInLL boolean to true. Someone which
is between the first and the second door can activate the second door so as to
open it. The temporal invariant at the end of the class specifies that the state-
chart must not be in DOOR1.opened and DOOR2.opened states simultaneously.
This invariant uses the predicate instate(S ) which is true whenever S state is
active.

LoadLock

behavior

ClosedOpened

DOOR2

ClosedOpened

DOOR1
deactivate1/inLL

activate1

deactivate2/outLL

activate2[someoneInLL]

someoneInLL : B

INIT

¬ someoneInLL

inLL
∆someoneInLL

someoneInLL′



outLL
∆someoneInLL

¬ someoneInLL′

¬3(instate(DOOR1.opened) ∧ instate(DOOR2.opened))

The notation for attribute modification consists of the modified attributes
which belongs to the ∆-list. In any operation sub-schema, attributes before their
modification are noted by their names and attributes after the operation are
suffixed by ’.
The result of the composition of Object-Z and statecharts seems particularly
suited in order to specify MAS. Indeed, each formalism have constructs which
enable complex structure specification. Moreover, aspects such as reactivity and
concurrency can be easily dealt with. In fact, available constructs enable natural
specification of “low” level aspects inherent to MAS. Higher level aspects like
coordination are expressed by roles, interactions and organizations classes which
we present in the following section.

2.3 Framework

For specifying MAS described with the role/organization meta-model we build
a framework based upon Object-Z and statecharts. Our framework is composed
of a set of such classes which specify all meta-model concepts: role, interaction
and organization.
The structure of the framework as a class hierarchy allows to inherit from de-
fined classes in order to specify more specific model concepts or to extend ex-
isting concepts. Every model concept is given a formal semantics by a class of
the framework. The framework provides specifiers with a structured approach
committed to the organizational model.
We present three classes of the framework: Role, Interaction and Organization.
The first concept of the model is role. A role is defined by a behavior schema
which has to be refined in order to define the role behavior. Typically it’s in
a specialized behavior schema where the specifier integrate a statechart. State
schema is composed by sets of Attribute, Event it can react to and Action it can
execute.

Role

behavior

attributes : PAttribute
stimulus : PEvent
actions : PAction



An interaction is composed of two roles and an interaction content, namely
content , from a role origin of the interaction to a role destination of the interac-
tion. Moreover, one may extend interaction to take into account more than two
roles or more complex interactions involving plan exchange.
An organization is composed of a set of roles and their interactions. All interac-
tions must only take places between two roles belonging to the same organization.

Interaction
orig == first roles
dest == second roles

roles : Role × Role
content : Event
∀ e ∈ msg•
(e ∈ (dest .stimulus)
∧(e ∈ orig .actions))

Organization

behavior

roles : PRole
env : P envRole
interactions : P Interaction

∀ i ∈ interactions • (i .orig ∈ roles ∧ i .dest ∈ roles)

In order to specify interaction protocols within an organization one has to refine
the Organization class by introducing, for instance, temporal logic predicates
known as temporal invariants.

3 Specification and prototyping

3.1 Aphtous Ulcer Fever specification

This section gives a formal description about Aphtous Ulcer Fever specification
by refinement of the specification framework described previously. This formal
description is then used as a basis for prototyping.
Production class inherits from Role. As described in the following it replace
behavior sub-schema by PRODUCTION statechart. PRODUCTION behavior
consists in waiting in Idle state for january to occur and then the Idle to Birth
transition is triggered. This transition execute the birth operation which sim-
ulate calfs birth. On February the Birth to Idle transition is triggered. The
class state is composed of sets of Animal . Each set specify an animal type, cat-
tles for example are all animals, this constraint is specified by the expression
cattles = adult ∪ calfs. These sets belong to the attributes set of the role. The
birth operation modifies calfs set. So calfs belongs to the ∆-list of the operation.
This operation augments the calfs set size in order to simulate the increase of
calfs count.

The same remarks stand for the role CattlesHandling except behavior sub-
schema is replaced by CATTLESHANDLING statechart and sellCalfs operation
diminishes calfs size. CATTLESHANDLING statechart specify two parallels pro-
cess (shown as dashed line) : cattles localization and calfs selling. Indeed, calfs
can be either in farm or in field and every october calfs are to be sold. The
entering of Farm and Field states trigger respectively contagion − possible and
contagion − impossible events.



Production
Role[PRODUCTION /behavior ]

PRODUCTION

Birth

month(1)/birth

month(2)

PRODUCTION

Idle

cattles : PAnimal
adult : PAdult
calfs : PCalf

{cattles, adult , calfs} ∈ attributes
cattles = adult ∪ calfs

birth
∆calfs

#calfs ′ ≥ #calfs

CattlesHandling
Role[CATTLESHANDLING/behavior ]

CATTLESHANDLING

C
[4<i<9] [9<i or i<4]

Farm

CATTLESHANDLING

month(4)

month(9)

Idle

month(11)

month(10)/calfsSelling
Selling

Field

m
on

th
(i

)

cattles : PAnimal
adult : PAdult
calfs : PCalf

{cattles, adult , calfs} ∈ attributes
cattles = adult ∪ calfs

sellCalfs
∆calfs

#calfs ′ ≤ #calfs

HealthCare role consists, each month, in simulating herd scanning. Indeed, the
Idle to Testing transition is triggered every month and if infected animals are
detected, a cure is initiated by executing the Cure operation. The cure is efficient
as soon as it is done and will last for three month. If there are no infected animals
the Testing to Idle transition is triggered.

HealthCare
Role[HEALTHCARE/behavior ]

HEALTHCARE

Idle

any(month)
Testing

[infected]/Cure

HEALTHCARE

[not infected]

infected : PAnimal
reminiscence : N



Cure
∆reminiscence

#infected 6= 0 ∧ reminiscence ′ = 3

Anademie role describes the disease evolution which consists, for any month
and if infected animals are detected, of two parallel processes: contamination
and cure. The former tests if contagion is possible. If contamination is possible
then the noContamination to COntamination transition is triggered and then,
each month, the infected animals number may augment. Whenever there are
infected animals the latter process simulates their cure, in other word it may
decrease the infected animals number. If there are no infected animals the role
is in Default state.

Anademie
Role[EPIDEMIC/behavior ]

EPIDEMIC

Default

EPIDEMIC

Contamination

co
nt

ag
io

n-
po

ss
ib

le

co
nt

ag
io

n-
im

po
ss

ib
le

any(month)/Cure

[#infected!=0]

noContamination

month(i)

CURE

any(month)/Contamination

cattles, sanes, infected : PAnimal

cattles = sanes ∪ infected

Cure
∆(infected , sanes)

#infected −#infected ′ = #sanes ′ −#sane]

Contamination
∆(infected , sanes)

#sanes −#sanes ′ = #infected ′ −#infected

Eventually, ContaminantSite role decrement the reminiscence of cure and
establish if contagion is possible.



ContaminantSite
Role[CONTAMINANTSITE/behavior ]

CONTAMINANTSITE
CONTAMINANTSITE

ReminiscenceEnd

Reminiscence

Contagion Cure reminiscence

infected : PAnimal
reminiscence : N

cureReminiscence
∆reminiscence

reminiscence ′ ≤ reminiscence

3.2 Specification analysis

The analysis is performed by using STATEMATE [12]; an environment which
allows the prototyping and the simulation of the statechart specifications. The
specification analysis is based upon execution of the statecharts and can be done
using two techniques. The first technique is simulation and the second is anima-
tion. In our case simulation would consist in assigning probabilities to events or
actions occurrences. With this technique one can evaluate quantitative parame-
ters of the specified system. For the Aphtous Ulcer Fever example probabilities
can be associated to calfs selling or birth so one can evaluate how many animals
are involved in each operation. Probabilities can be useful in different disease
steps to simulate curing or infections of sane animals. Animation technique con-
sists of testing the specification with predefined interaction scenarios. It enables
one to test if the system behavior is consistent with requirements. For example,
we have tested that if there is at least one infected animal the Health Care role
executes Cure operation.

The simulation tool offers an interactive simulation mode and a program con-
trolled mode. In the latter a program written in a high level language replaces
the user. One feature of this programming language is the breakpoint construct.
Breakpoint stop the specification execution when a condition is verified. Pos-
sible uses of breakpoints are, for example, configuration tests with predefined
interaction scenarios and output of statistics. For the former one can test if all
role reactions correspond to months schedule. For the latter one can associate
probabilities for different illness phase so one can simulate illness evolution. The
figure 2 is the result of such simulation. On x-axis we have month of the sim-
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Fig. 2. Statistics of Aphtous Ulcer Fever simulation

ulation and on y-axis animals count. The two curbs are for Sane and Infected
animals. One may see that each time animals are at farm the number of infected
animals augment and then drop when they return at field. Indeed, contagion is
only possible when animals are at farm.

4 Related Work and Conclusion

In this paper, we have presented a formal specification approach for MAS based
upon an organizational model. The organizational model describes interaction
patterns which are composed of roles. When playing these roles, agents instan-
tiate interaction patterns. For the sake of clarity we have only presented roles
specification. But there are an agent class in our framework which enables the
specification of evolving behaviors. This model is well suited for describing com-
plex interactions which are among MAS main features. Furthermore, each model
concepts are given a formal semantic within our specification framework. The
language used by the specification framework can describe reactive and func-
tional aspects. It is structured as a classes hierarchy so one can inherit from
these classes to produce its own specification. The used specification language
allows prototyping of specification. Prototyping is not the only means of analysis,
indeed, in another work [7], we have introduced a formal verification approach.
Moreover, the specification structure enables incremental and modular valida-
tion and verification through its decomposition. Eventually, such a specification
can be refined to an implementation with multi-agent development platform like
MadKit [9] which are based upon an organizational model [5].
Formal theories are numerous in the MAS area but they are not all related
to concrete computational models [2]. Temporal modal logic, for example, have
been widely used [17]. Despite the important contribution of these works to a
solid underlying foundation for MAS, no methodological guidelines are provided
concerning the specification process and how an implementation can be derived.
Another type of approach consists in using traditional software engineering for-



malisms [14]. Our approach is of the latter type. Among these approaches a
few [14, 1] provide the specifier with constructs for MAS decomposition. The
approach of Luck and d’Inverno has two drawbacks: the use of Z make MAS
reactive aspects difficult to specify [6] and these specifications aren’t executable
so simulation and prototyping are not possible. The formalism used in DESIRE
also lack the support regarding simulation or prototyping.
Despite the encouraging results already achieved, we are aware that our approach
still has some limitations. Indeed, it doesn’t tackle all problems raised by MAS
development. But we believe that this first step constitutes a specification kernel
leading towards a practical approach to formal specification of MAS. Among is-
sues remaining for future work the organizational model used by us needs more
work to do ahead. The play-by relationship of our example is of the simplest
type. In order to deal with more complex case we have to explore the semantic
of this relationship. Moreover, the Object-Z part of the specification is not yet
executable. However a preliminary work [8] has shown that it is possible to give
an operational semantic to Object-Z but it must be strengthened.
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