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Preface

Research on argumentation and non-monotonic reasoning began in full force in
the early eighties. The first attempts showed how argumentation results in a very
natural way of conceptualizing commonsense reasoning, appropriately reflecting
its defeasible nature. Further work in the knowledge representation and rea-
soning community has shown that argumentation provides a useful perspective
for relating different non-monotonic formalisms. More recently, argumentation
has been revealed as a powerful conceptual tool for exploring the theoretical
foundations of reasoning and interaction in autonomous agents and multiagent
systems.

This volume contains the papers that will be presented at the First Interna-
tional Workshop on Argumentation and Non-Monotonic Reasoning (ArgNMR
2007) on May 14, 2007 in Tempe, Arizona, US. Each submission was reviewed
by at least 3 programme committee members.

ArgNMR will consist of 9 presentations and 2 discussion sessions. Our inten-
tion is to propose this event as an opportunity for exchanging ideas on the funda-
mental theoretical basis and the design and implementation of argument-based
systems including semantics, proof theory, applications and the comparison of
those systems with other types of non-monotonic reasoning.

We wish to thank the authors of this volume, the ArgNMR Programme
Committee, the delegates who will attend, Chitta Baral for providing logistic
support, Gerd Brewka and John Schlipf for inviting us to propose such an event in
co-location with LPNMR, and Andrei Voronkov for his contribution to ArgNMR
through EasyChair.

April 2007 Guillermo Ricardo Simari
Paolo Torroni
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Three Senses of ‘“Argument”

Adam Wyner', Trevor Bench—Caponl, and Katie Atkinson’

! Department of Computer Science, Ashton Building
University of Liverpool
Liverpool, United Kingdom, L693BX
{azwyner, tbc, katie} @csc.liv.ac.uk

Abstract. In Al approaches to argumentation, different senses of argument are
often conflated. We propose a three-level distinction between arguments, cases,
and debates. This allows for modularising issues within levels and identifying
systematic relations between levels. Arguments, comprised of rules, facts, and
a claim, are the basic units; they instantiate argument schemes; they have no
sub-arguments. Cases are sets of arguments supporting a claim. Debates are a
set of arguments in an attack relation; they include cases for and against a
particular claim. Critical questions, which depend on the argument schemes,
are used to determine the attack relation between arguments. In a debate,
rankings on arguments or argument relations are given as components based on
features of argument schemes. Our analysis clarifies the role and contribution
of distinct approaches in the construction of rational debate. It identifies the
source of properties used for evaluating the status of arguments in
Argumentation Frameworks.

Keywords. Argumentation, argument, case, debate.

1 Introduction

In AI we find a number of approaches to argumentation and argument. Some
approaches represent arguments as trees or graphs (e.g. Reed and Rowe 2005), some
are highly concerned with the structure of arguments (e.g. Caminada and Amgoud
2005) and the way arguments support one another (e.g. Cayrol and Lagasquie-Schiex
2005). From informal logic we have the notion of argument schemes (e.g. Walton
1996), while much of the more formal work has taken place in the context of abstract
argumentation frameworks (e.g. Dung 1995). With this variety of approaches it is
important to determine the relations between them, and in particular to avoid
conflation of distinct ideas. To this end we will, in this paper, explore three different
senses of the word “argument”, all of which are represented in the previous work
mentioned above, in order to give a clear characterisation of what may be intended by
argument, and to identify the appropriate role of various senses in argumentation as a
whole.
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The Oxford English Dictionary lists seven senses of the word “argument”, of
which three will concern us in this paper. We begin by giving the definitions below:
although these are senses 3a, 4 and 5 in the OED, we will introduce our own
numbering for clarity. In Sense 1 an argument is a self-contained entity, a reason for
a conclusion.

Sense 1: “3. a. A statement or fact advanced for the purpose of influencing
the mind; a reason urged in support of a proposition.”

Thus we can see an argument in Sense 1 as a pair <reason, conclusion>, which makes
no reference to any other arguments. This is quite a common use in Al and elsewhere:
Toulmin’s scheme (Toulmin 1958), as originally presented, was “stand alone” in the
sense that it made no reference to the grounds on which the reasons were believed,
nor the uses to which the claim might be put. The arguments based on the many
schemes found in (Walton 1996) share this feature. Most common of all in Al are
arguments of the form “Q because P” representing the application of a single
(defeasible) rule. In law this is akin to a single point made within a case.
In the second sense, reference is made to where the reasons come from:

Sense 2: “4. A connected series of statements or reasons intended to
establish a position (and, hence, to refute the opposite); a process of
reasoning; argumentation.”

In Sense 2 we move beyond a single step of reasoning, giving grounds for the reasons
advanced for the conclusion. An argument in Sense 2 may be seen as a chain of
reasons, reasons for reasons. In Al this can appear as a proof tree, as with the typical
“how” explanation of a rule based expert system, and is a commonly used notion of
argument in work such as (Pollock 2001) when an “argument” has sub-arguments:
e.g. “P— Q” and “Q — R” are sub-arguments of the argument “P, P — Q, Q — R, so
R” where “—” is some kind of, possibly defeasible, implication. In law this may be
seen as the whole case to be presented for a particular party.

The third sense relates arguments in the previous senses:

Sense 3: “5. a. Statement of the reasons for and against a proposition;
discussion of a question; debate.”

In Sense 3 we have the possibility of conflict: we have reasons against as well as for,
the proposition, and we may have multiple arguments in the preceding two senses on
both sides. In Al this corresponds more to an argumentation framework in the sense
introduced by Dung (1995). In law it corresponds to the whole of a case with all the
arguments for both parties and perhaps also the adjudication of a judge.!

In this paper we shall distinguish between these three senses of argument. In the
following we will refer to Sense 1, as an argument: we shall always here mean an
argument which cannot be divided into sub-arguments. For Sense 2, a collection of
arguments advocating a particular point of view, we shall use the term case. This

! In Al sometimes “argumentation” is used rather than “argument™ in fact no distinction
between these terms is reflected in the definitions given in the OED. There are senses of
“argumentation” corresponding to each of the senses of “argument” discussed above.
Differences seem to be in connotation: “argumentation” is typically used pejoratively, and
sometimes carries a sense of process, the putting forward of arguments.
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picks up on phrases such as “the case for the prosecution”, but should not be confused
with the whole of a case as mentioned above. Rather, for a collection of arguments
for and against a point of view, we shall use the term debate.

In distinguishing the three senses, we also relate them. Arguments are parts of
cases, and a case is part of a debate. Furthermore, changes in one of the parts may
induce a change in another, as we shall see.

Before proceeding further, we should mention, for purposes of comparison,
Prakken’s well known four layer model of argumentation (Prakken 1997). He
distinguishes a logic layer, which is concerned with arguments and is where questions
such as whether the argument is sound can be posed. Prakken, however, does not
distinguish between Senses 1 and 2, and so both arguments and cases may emerge
from the logic layer. Next there is a dialectical layer, which examines conflicts
between the arguments/cases identified in the logic layer. This layer corresponds to
what we are terming debate, and it is intended to resolve conflicts between the
arguments/cases identified. Next there is a procedural layer, which controls the
conduct of the dispute, how arguments can be introduced and challenged. Finally,
there is a strategic layer: while the procedural layer controls what it is possible or
legal to do, the strategic layer determines what it is advisable to do. In what follows
we will be concerned only with the logical and dialectical layers.

In Section 2, we present arguments as the basic unit. However, arguments have
parts, which are specified by the argument schemes which they instantiate; for
instance, arguments have claims, which is the proposition that holds if the argument
succeeds. A key notion is that arguments do not have other arguments as parts. In
Section 3, critical questions are presented as a means to establish attack relations
between arguments; given an argument and a critical question associated with it, an
affirmative answer to the question implies that another argument attacks the argument
and in what way. Given arguments and attack relations, we move to the level of
debates in Section 4, where sets of arguments are provided for and against a particular
claim. Different sets of arguments are derived from different attack relations; in turn,
the attack relations depend on the critical questions and the argument schemes that
have been instantiated. In Section 5, we discuss abduction in Argumentation
Frameworks. We present cases in Section 6 in terms of admissible sets in an
Argumentation Framework, for a case is a set of arguments that support a particular
claim. We discuss the role of evaluation metrics such as preference or value rankings
in Section 7; the rankings use properties that come from particular argument schemes,
and have consequences for properties of sets of arguments at the level of the
Argumentation Framework.

2 Arguments

In order to generate some arguments, we will need some facts and some means of
inferring conclusions from those facts. We will use as a starting point a very simple
knowledge base, KB1, comprising four defeasible rules and three facts, from which
we can generate a standard form of argument: P and if P then Q, so Q . The facts and
rules of KB1 are:



4 A. Wyner, T.J.M. Bench-Capon, and K. Atkinson

RIP—Q
R2Q R
R3S —-Q
R4T —-R
F1P
F2S
F3T

We begin by forming arguments by applying the available rules to the available
facts. Each of the facts is the antecedent of a rule, and so we get three arguments:

A1F1,R1s0Q
A2 F2,R3s0-Q
A3 F3,R4 s0 R

Note that A1 and A2 have conflicting claims. This is not unusual: it simply means
that we have a reason to believe Q, and a reason to disbelieve Q: we are not saying
that the claims of all the arguments are true, only that we have a reason to think they
may be. We expect such conflicts to appear in the logic level of argumentation: it is
the role of the dialectical layer to resolve them. In our terms, such conflicts open up
the possibility of debate. Of course, it needs to be ensured at that level that arguments
with conflicting claims are not co-tenable.

But now we have obtained Q using Al and Q is itself the antecedent of a rule, so
we can perhaps add:

A4Q,R2,s0R

Alternatively we might want to reflect that Q was derived as the conclusion of A1
and so include A1 as a sub-argument.

Cl Al,R2,soR.
Note that C1 is, in our terms a case and not an argument: it contains A1l as a sub-
argument. It is a chain of arguments for R, and so what we call a case. A difference

between these approaches emerges if we add another rule and fact to KB1 to get KB2:

R5U —Q
F4U

Now we have a second argument for Q:
A5 F4,RS5,50Q

Now A4 still applies, so we get no extra argument for Q, but using the approach
with sub-arguments we would get a second case for R:
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C2 A5,R2,soR

Although the production of such cases is very natural in Al, in which the chaining
of rules is standard practice, and although these cases (i.e. arguments with sub-
arguments) have been termed arguments in a number of common approaches
(Caminda and Amgoud 2005, and Pollock 2001), we will restrict ourselves for the
time being to strict arguments in Sense 1.

We see arguments in Sense 1 as the instantiation of an argument scheme. In
relation to KB1 we will use two argument schemes:

AS1 Defeasible Modus Ponens
Data: Type: Fact| Conjunction of Facts
Warrant: Type: Rule with Data as antecedent
Claim: Type Fact: the consequent of Warrant.

AS2 Argument by Assertion
Data: Type: Fact
Claim: Type: Fact, namely Data

Now Al-5 are all instantiations of AS1: instantiating AS2 gives us four more
arguments:

A6: P, soP
A7:S,s0S
A8:T,soT
A9: U, soU

While in this sense, arguments do not have sub-arguments, arguments nonetheless
have parts, as indicated by the argument schemes. Among the parts of an argument
we have Data, Warrant, and Claim, and other argument schemes may have other
parts.

We have now identified all the arguments that can be generated from KB2. All
these arguments are sound in that they are instantiations of our permitted argument
schemes. Our argument schemes do not allow the production of cases such as C1 and
C2: that would require a scheme which allowed an argument to act as Data like a
Fact. We do not want to allow this, since our conception of argument (Sense 1) does
not permit arguments to be related to one other. As we consider later, there are
relations between arguments, where the term is used in its other senses.

3 Critical Questions

Having identified the arguments, we will now wish to identify relations between
them. In particular we need to identify which arguments attack one another. As noted
above, Al and A2 are in mutual conflict because the claim of one negates the claim of
the other. In order to make our identification of attacks systematic, we will draw on
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the notion of critical questions, taken from informal logic. In Walton (1996) each
argument scheme is associated with a characteristic set of critical questions.
Argument schemes are instantiated. Let us suppose an argument A which instantiates
a scheme and with respect to which we ask a critical question. An affirmative answer
to the question implies an argument which is the instantiation of some scheme and
which is in some conflict with our initial argument A. As we remark below, there are
several ways the conflict can arise.

So what are the critical questions in our example?

For AS2, the only possibility is that we deny the premise and conclusion, which are
of course, the same for this scheme. Thus:

AS2CQ1 Have we reason to believe the premise/claim is false?

If there is an argument A which instantiates AS2 and the answer to this question is
yes, then there will be another argument B which instantiates AS2 and which is in
conflict with A. Thus, we have two arguments A and B which we say attack one
another, for they make claims which are in conflict.

For AS1 we would expect to have three critical questions corresponding to the
standard kinds of attack found in the literature, namely premise defeat, undercut and
rebuttal. AS1, however, cannot be undercut, since the claim of AS1 is always a fact,
not a rule, and so we cannot infer that a rule is inapplicable. Accordingly we modify
AS1 to AS3:

AS3 Defeasible Modus Ponens with undercut
Data: Type: Fact | Conjunction of Facts
Warrant: Type: Rule with Data as antecedent
Claim: Type Fact | Rule: the consequent of Warrant

This gives the following three critical questions.

AS3CQI1: Have we reason to believe the data is false?
AS3CQ2: Have we reason to believe the warrant does not apply?
AS3CQ3: Have we reason to believe the claim is false?

Thus an argument whose claim is the negation of the data, or the warrant, or the
claim of an instantiation of AS3 will, in their corresponding ways, attack that
instantiation. Note that AS3CQ3 gives rise to a symmetric attack, the others to
asymmetric attacks.

The use of these critical questions thus allows us to determine which of our
arguments are in conflict.

We might also consider whether we have additional critical questions. For
example, if we have used as data the claim of a defeasible argument, we will need to
be wary of conclusions we draw on the basis of it, since we cannot rely on such rules
to be transitive. So we might add a critical question to AS3:
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AS3CQ4: Are we sure the data is true?
Such a critical question instantiates the following argument scheme:

AS4 Argument from Defeasibility:
Data: Type: Fact: where Fact is the claim of an instantiation of AS3
Claim: Type: Fact: negation of Data.

This raises doubt, but does not substantiate the doubt.
The associated critical question is:
AS5CQ1: Do we have an independent reason to believe Data?

Having discussed arguments and their relationships, we can move the discussion to
the level of debates, for which we will use argumentation frameworks. There we
consider the arguments only in terms of the relationships we have determined hold
between them, namely atfack. After having discussed debates, we return to discuss
the cases, which we define as part of a debate.

4 Argumentation Frameworks and Debates

For our dialectical layer we will use Dung’s Argumentation Framework (AF),
introduced in Dung (1995). In an AF, we have arguments in attack relations. We
recall some key notions of that framework.

Definition 1 An argument system is a pair AF = <X,A> in which X is a set of
arguments and A is the attack relationship for AF. Unless otherwise

stated, X is assumed to be finite, and A comprises a set of ordered pairs of distinct
arguments. A pair <x, y> is referred to as ‘x attacks (or is an attacker of ) y’ or

‘y is attacked by x.

For R, S subsets of arguments in the system AF we say that:

a) s € Sis attacked by R if there is some re R such that <r, s> € A.

b) x € X s acceptable with respect to S if for every y € X that attacks x there is
some z € S that attacks y.

¢) S is conflict-free if no argument in S is attacked by any other argument in S.
d) A conflict-free set S is admissible if every argument in S is acceptable with
respect to S.

e) S is a preferred extension if it is a maximal (with respect to set inclusion)
admissible set.

f) S is a stable extension if S is conflict free and every argument y, =~ (y € S), is
attacked by S.

g) S is a complete extension if S is a subset of A, S is admissible, and each
argument which is defended by S is in S.



8 A. Wyner, T.J.M. Bench-Capon, and K. Atkinson

h) Sis a grounded extension if it is the least (wrt set inclusion) complete extension.
i) An argument x is credulously accepted if there is some preferred extension
containing it; x is skeptically accepted if it is a member of every preferred
extension.

Dung specifically states that arguments are abstract, and that attack is the only
relation between them. This in part motivates our desire to exclude cases, arguments
related to other arguments which form their parts, from the dialectical layer. As
discussed above, we can use our argument schemes and critical questions to identify
the sets X and A. So, what is the argumentation framework, AF2, corresponding to
KB2?

X is the set of all arguments generated in the previous section: {Al, A2, A3, A4,
AS, A6, A7, A8, A9}.

Using AS3CQ3, we can see Al and A2 are in conflict, since the claim of one is the
negation of the claim of the other. Next AS3CQ1 shows that A2 must attack A4,
since the claim of A2 negates a premise of A4. Applying these two principles gives
us the attack relation: {<A1,A2>, <A2,Al> <A2,A4d>, <A3,A4>, <A4,A3>,
<A2,A5>, <AS5,A2>}. A graphical representation of AF2 is given in Figure 1: here, to
help understanding of the diagram, we label arguments with their claim as well as
their name, even though strictly these claims are abstracted away with the rest of the
structure when we form an AF.

O

The grounded extension is the rather disappointing {A6,A7,A8,A9}. We have a

Figure 1: AF2
number of preferred extensions:

{ Al, A3 A5,A6,A7,A8,A9}
{ Al, A4 A5,A6,A7,A8,A9}
{ A2,A3,A6,A7,A8,A9}

These extensions allow us, therefore, to accept any of the arguments credulously,
but only the arguments from assertion sceptically. This is, of course, not very useful,
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and so we often find some notion of priority between arguments. This is often based
on a notion of priority between the rules on which they are based. For example we
might say RS > R3 > R1. The effect of this is to break the symmetry of the attack
relation between arguments with the same conclusion: thus from KB1, A2 would now
defeat A1, but the additional rule, RS, in KB2 means that in AF2 the attacks <Al,
A2> and <A2, A5> are both removed, so that A2 is defeated. We would still then
need to decide the priority between A3 and A4. Note again that we have to resort back
to the logical level to identify the rules and their priorities.
To illustrate undercutting, suppose we extend KB2 to KB3 by adding :

R6: U — -R2 (i.e. U— = (Q — R))

Now we can extend AF2 to AF3 by adding an extra argument which instantiates
AS3:

A10 F4, R6, so 7R2

A10 attacks A4 (by undercut), but not vice versa, so <A10,A4> is added to the attack
relation of AF3.

S Another Argument Scheme

The above discussion used two argument schemes. There is, however, no reason to
limit ourselves to the sorts of arguments we can generate. For example, let us consider
KB4, which is KB2 but with F1 and F4 replaced by F5, namely R. Using the
argument schemes AS1-3, we can show arguments A2, A3, A7, A8 and A9 and, using
argument by assertion,

All:R,so R.
Suppose, we now introduce an additional argument scheme:

ASS5 Argument from Abduction
Data: Type: Fact
Warrant: Type: Rule with Data as consequent
Claim: Type Fact: the antecedent of Warrant

This enables us to produce the following arguments?:
Al12 F5,R2,50Q

Al13 Q,RI1,soP
Al4 Q,R5,s0U

2 Here we do not consider arguments based on the contraposition of defeasible rules.
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Like any argument scheme, AS5 will need its characteristic critical questions. For
this scheme we need to consider not only the usual notions of premise defeat,
undercut and explanation, but also the possibility of their being a competing, perhaps
better, explanation of the claim. It is part of the notion of arguing by abduction that
the justification for abducing the antecedent is that it represents the best explanation
of the consequent. Here P and U are competing explanations for Q. We assume that
two abductive arguments conflict when they have the same data, since we cannot
reuse the explanation. This is an important point: determining whether arguments
attack one another depends crucially on the argument scheme which they instantiate.

We therefore have four critical questions:

AS4CQ1: Have we reason to believe the data is false?

AS4CQ2: Have we reason to believe the warrant does not apply?
AS4CQ3: Have we reason to believe the claim is false?
AS4CQ4: Is there another explanation of the data?

Thus, instantiations of AS4 are attacked by arguments with the same data as well
as the attacks applicable to AS3.

Now we can organize this into an argument framework AF4.

The set of arguments is now {A2, A3, A7, A8, All, A12, Al13, Al14}.

What of the attacks? A3 and All are in mutual conflict, as are A2 and A12. But
now using AS4CQ4 we can see that A13 and A14 are in conflict. Additionally if A3
is accepted, by AS4CQ1 A12 must fail, since the abductive premise fails. Similarly
A2 attacks A13 and A 14, using AS4CQIl.

Thus attacks = {<A2, A12>, <A12, A2>, <A3, All>, <All, A3>, <Al3, Al4>,
<Al4, A13>, <A3, A12>, <A2, A13>, <A2, Al4>}

We can show the resulting AF4 in Figure 2.

Az aAlz
-G Q
al4
B T —
o

Figure 2: AF4
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Preferred extensions of AF4 are:

(A7, A8, Al1, A12, A13)
[A7, A8, All, A12, Al4)
[A7, A8, All, A2}

[A7, A8, A3, A2}

We will leave for later consideration how we might choose between these preferred
extensions.

A further possibility is that we might think that there may be another explanation
of the claim of an instantiation of AS4, even if we don’t know what it is:

AS4CQ5: Might there be another explanation?
A positive answer to this critical question instantiates AS6:

AS6: Argument from Unknown Explanation
Data: Type: Fact: where Fact is the claim of an instantiation of AS4
Claim: Type: Fact: Claim.

Note that AS6 is not legitimate if we believe that our knowledge of possible
explanations is complete. This gives two critical questions:

AS6CQ1 Do we have an independent reason to believe Claim?
AS6CQ2 Is our knowledge of the explanations for Claim complete?

Applying AS5 to KB2 gives A15 and applying AS6 to KB4 gives A16-18.

A15 -R since Q defeasibly inferred.

A16 —Q since there may be an unknown explanation for R
A17 =P since there may be an unknown explanation for Q

A18 —U since there may be an unknown explanation for Q

We can usefully label the arcs in the framework with the critical questions. If we
add A16-A18 to AF4 we get AF4a as shown in Figure 3.
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ASICQ3 AS3ICQ3 ASICQS als
e -
-Q

ASICQ1 ] ASICQL

AS3ICO3 AFCO1

ASICQH  aSHCQ+ 4
U
T ASHCQS ‘ ASICQS

Figure 3: AF4a

6 Cases

We now need to return to the notion of a case. Recall that we decided to admit only
arguments without sub-arguments into our framework, thus precluding the possibility
of representing support for an argument as sub-argument. Also we want to stay within
Dung’s original intentions, and so do not wish to include an additional relation to
show support, as is done, for example, in Cayrol and Lagasquie-Schiex (2005). We
can, nevertheless, obtain a clear notion of support, and hence of arguments in Sense 2,
by considering admissible sets.

An admissible set is conflict free and able to defend itself against attackers. This
means that a given argument in the admissible set which is attacked will have
defenders in the admissible set. Moreover if these defenders have attackers, they too
will have defenders in the admissible set. Thus the minimal admissible set containing
a given argument will contain all the arguments needed to make that given argument
part of an admissible set. It is in this way that we can express the notion of support
while staying within Dung’s framework, as originally specified.

Consider, as an example, A13 in AF4 above. This argument appears in only one
preferred extension: {A7, A8, Al1, A12, A13}. A12 is needed to defend A 13 against
A2, and A1l is needed to defend A12 against A3. A7 and A8 are included only to
make the extension maximal. Thus the minimal admissible set containing A13 is
{A11, A12, A13}. Thus we can say that A13 is supported by A1l and A12, and that
these three arguments form the case for the claim of A13, P. This would make the
case something like “P is the best explanation of Q, which is the best explanation of
R, which is known to hold.” Had we adopted the sub-argument approach we would
have had
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C3: All1,A12,R1,s0P,

showing the connection between chains of arguments and admissible sets.

Note, however, that on this notion of case, A2 is not supported by A7, which
would, as being the datum required to infer =Q using A2, often be thought to be a
sub-argument of A2. We argue that we should not see A7 as supporting A2, because
this aspect of A2 is not in question, the only attack on A2 coming from A 12, which is
a rebuttal, not a premise defeat. In other words, A7 is accepted without question, and
so its claim can be presumed in any argument that requires it, meaning that the
argument stands in no need of support in this respect. Of course, if the logic level had
in fact generated an argument with claim —S, we would have an argument attacking
the datum of A2, but that argument would itself be attacked by A7. In that case A7
would be required to admit A2 into an admissible set, and so would be regarded as
supporting it. We feel that this notion of support, which only calls in potential
supporters if they are required, is clearer than notions which attempt to identify all
potential supporters at the logical level and without regard to their supporting role in a
debate.

7 Evaluation

When discussing AF2 and AF4, we used the standard notion of evaluating the
argumentation framework in which all arguments have equal weight, and all attackers
succeed, and where we calculate the grounded, preferred or stable extensions,
according to our semantic preferences. Yet, as noted earlier, we may have multiple
preferred extensions which we want to differentiate; we want to have some principled
reason to choose between them.

The usual method of distinguishing between multiple preferred extensions, and so
provide a reason to choose between them, is to ascribe some property to the
arguments representing their strength, and to require an attacker to be at least as
strong as the attacked argument if the attack is to succeed. In virtue of these more
fine-grained attacks, we can distinguish among previously undistinguished preferred
extensions. For example Amgoud and Cayrol (2002) use preferences in this way, and
Bench-Capon (2003) uses the notion of value (the social interest promoted by the
acceptance of an argument) to determine the relative strength of pairs of arguments.
But where do these properties come from?

The answer must be that they come from the argument schemes instantiated to
produce the arguments in the framework. At the very least therefore the arguments
can be ascribed the property of being instantiations of a particular argument scheme.
This in turn means that we could apply a preference order to schemes: for example we
might rate Argument from Assertion most highly, since this requires a known fact in
the database, then Defeasible Modus Ponens, then Abduction. Or we could choose a
different order if we desired. The general idea is that the arguments can be ascribed
properties, these properties can be ranked, and this ranking is used in determining the
status of arguments in the framework. Note that although the schemes determine
which properties can be ascribed to the arguments, the ranking is produced
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independently, and that different rankings may be applied to the framework for
different purposes or by different audiences.

If we use different argument schemes, we may be able to ascribe a wider range of
properties. Three examples are:

e One well known argument scheme is Argument from Authority (e.g. Walton
1996). In order to instantiate this scheme an authority must be identified. All
arguments instantiating this scheme therefore will have the property of being
endorsed by some particular authority. If we have several competing authorities,
we can use a ranking of confidence in these authorities to determine the strength of
arguments.

¢ In Atkinson (2005) an argument scheme for practical reasoning is proposed. In this
scheme the social value promoted by acceptance of the argument has to be
identified in order to instantiate the scheme. This allows arguments from this
scheme to be labeled with these values, which in turn means that the resulting
framework can be regarded as a Value Based Framework (Bench-Capon 2003)),
and evaluated according to a particular audience’s ranking of the values.

e Work on case-based reasoning in law such as Ashley (1990), effectively identifies
a set of argument schemes and critical questions tailored to reasoning with legal
precedents. Each of these argument schemes is related to the citation of a legal
decision, and so comes with information such as the date of the case, the
jurisdiction in which it was decided, and the level of court which made the
decision. All of these things represent useful properties of argument which can
feed into the evaluation of the status of arguments when they are formed into a
framework.

Properties of arguments will not, however, suffice for AF4a. The use of Argument
Scheme AS6 means that any abductive argument will have an attacker. If attacks
always succeeded, this means that we simply could not use abductive arguments. The
implication is that we need to provide some way for attacks to fail. One obvious
strategy is to use the labels on the attacks. For example it might be that one
considered that AS4CQS5 should not defeat the argument it attacks, unless that
argument is attacked by some other argument. Thus in AF4a, none of the abductive
arguments will succeed, because they have independent attackers. But suppose we did
not have the fact that S, so that A2 no longer can be made. Now if we accept All to
defeat the other attacker of A12, we will accept A12. A13 and A 14 are, however, still
defeated since they mutually attack, as well as being attacked using AS4CQS5. This
seems reasonable, since we do not have another explanation of R, but P and U are
competing explanations for Q, and we have no reasons given for preferring one to
another.

There are two important points to note here. First, the properties of arguments can
play an important role in deciding the status of arguments in an argumentation
framework, since they can form the basis for rational choice between competing
preferred extensions. Second, the properties ascribed to arguments in the AF need to
have their origin in the argument schemes which ground the arguments in the
framework. The schemes used will thus determine the properties which are available
at the framework level.



Three Senses of “Argument” 15

8 Summary

In this paper we have attempted to make clear distinctions between three senses in
which “argument” may be used, and which can sometimes appear to be conflated in
work on argumentation.

First we have the level of the atomic argument. For us this is an instantiation of an
argument scheme, and cannot be divided into any constituent parts which are
themselves arguments. There is a wide variety of argument schemes found in the
literature: the choice of which schemes to use will depend on the nature of the
application — different schemes are appropriate for legal, practical, scientific,
mathematical and evidential reasoning. These schemes have associated with them
critical questions, and various arguments will form the basis of these questions posed
against other arguments. This provides a principled basis for deciding which
arguments are in conflict, and whether the conflict is symmetric or not. Also the
different critical questions permit attacks to be labeled according to the question being
posed. Finally particular schemes will permit the ascription of properties to these
arguments.

The above allows us to form the arguments into an argumentation framework,
which represents the notion of argument as debate, sets of reasons for and against
particular propositions. At this level it is possible to evaluate arguments to form a
view as to which should be accepted and which should be rejected. Where suitable
argument schemes have been used, properties of arguments and attacks can be used to
inform the evaluation, according to rankings of these properties.

Finally we can define the notion of a case, a set of supporting arguments for a
particular point of view, in terms of a minimal admissible set taken from the
framework.

We believe that it is important to maintain a distinction between these three senses.
Moreover we can see that our separation shows clearly the links between them. An
argumentation framework is independent of the argument schemes used to form it.
The properties of arguments do depend on the schemes used, and so some evaluations
will be possible only if the arguments instantiate particular argument schemes. The
notion of support is derived from the status of arguments in the framework level,
rather than being identified at the logic level and thus is dependent on the method of
evaluation for the framework.
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Legal Accessibility (Estrella, IST-2004-027655)) during the time when this paper was
written.
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Abstract. Abstract argumentation frameworks have played a major role as a way
of understanding argument-based inference, resulting in differgatreent-based
proof procedures. We will provide an abstract characterization ofiéineant con-
struction in the context of Skeptical Argumentation Frameworks. Oftereifitth
erature an argument is regarded as an explanation as well as a faupmirt

for a claim, and this argument is evaluated to decide if the claim is accepted.
The concept of explanation has received attention from differeasareArtifi-

cial Intelligence, particulary in the Knowledge-Based Systems comm@ritly.

a few of them consider explanations in relation with argument systemsisin th
paper, we propose a type of explanation that attempts to fill this gap prgvadin
perspective from the point of view of argumentation systems.

1 Introduction and Motivations

Lately, interest in argumentation has expanded at inarggmce, driven in part by the-
oretical advances but also by successful demonstraticsutfstantial number of prac-
tical applications, such as multiagent systems [17, 1hllegasoning [18], knowledge
engineering [4], and e-government [2], among many otherghis context, abstract
argumentation frameworks [9] have played a major role as a efaunderstanding
argument-based inference, resulting in different argurbased semantics. The final
goal of such semantics is to characterize which are thenatiojustified (orwar-
ranted) beliefs associated with a given set of arguments.

Dialectical analysis in argumentation involves the exgtimn of anargument search
spacein order to provide a proof-theoretic characterization mfaagument-based se-
mantics. Dialectical proof procedures provide the medrarfor performing compu-
tations of warranted arguments, traversing this argumeartck space by generating
tree-like structures (called argument trees [3] or diaettrees [11, 7] in the litera-
ture). We will provide an abstract characterization of trernant construction in the
context ofSkeptical Argumentation Frameworks

From another point of view, often in the literature an argutrie regarded as an
explanation for a claim that is represented by a literal.t Thathe claim which is be-
ing explained is put under discussion, and only after evalgats support it will be
accepted or not. The role of explanations has receivedtattefiom several areas of
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Artificial Intelligence —especially in the expert systenosmenunity [15, 20, 12]. A few
of them consider explanations in relation with argumentesys [16]. In belief revision,
the role of explanations has also been studied [10]: new ledye is accompanied by
an explanation, which is used (when needed) to resolve gistamcy with the agent’s
current beliefs. The piece of knowledge having the “bespilaxation is the one that
prevails, and is accepted as a new belief.

We will focus our discussion on those explanations that gieenecessary infor-
mation to understand the warrant status of a literal. Sinee@nsider only skeptical
argumentation systems based on a dialectical proof proegcae studydialectical ex-
planations(from now on,d-Explanations). Although we consider arguments as an ex-
planation for a literal, we are interested in obtaining tbmplete set of dialectical trees
that justify the warrant status of that literal. We show hip&xplanations can be a use-
ful tool to comprehend and analyze the interactions amoggraents, and for aiding
in the encoding and debugging of the underlying knowledgeb&everal examples,
generated with an implemented system that returns, forengjuery, both the answer
and the associatedExplanation, are given throughout the paper.

An interesting review about explanations in heuristic ekpgstems is given in [15],
which offers the following definition: “.explainingconsists inexposing somethinig
such a way that it isinderstandabldor the receiver of the explanation —so that he/she
improves his/her knowledge about the object of the explanatandsatisfactoryin
that it meets the receiver's expectations.” In our approaghexplainthroughexpos-
ing the whole set of dialectical trees related to the querienldit This information is
understandablérom the receiver’s point-of-view, because all the argutadnilt, their
statusesi(e., defeated/undefeated), and their interrelations areattplshown. This
type of information would besatisfactoryfor the receiver, because it contains all the
elements at stake in the dialectical analysis that supfoetanswer.

An empirical analysis about the impact of different typesesplanations in the
context of expert systems is given in [20] which offers a tggy that includes: 1)
trace: a record of the inferential steps that led to the conclusB)rjustification: an
explicit description of the rationale behind each infelardtep; and 3¥trategy:a high-
level goal structure determining the problem-solvingtsyg used. In this typology, the
authors claim that their empirical analysis have shown thatmost useful type of
explanation is “justification”. Ouf-Explanations match both the “justification” and the
“strategy” types. That is)-Explanations give not only the strategy used by the system
to achieve the conclusion, but also the rationale behint aegument supporting that
conclusion as it is clearly stated in the correspondingediidal tree.

We agree with [16], in thdtargumentation and explanation facilities in knowledge-
based systems should be investigated in conjunctibh&refore, we propose a type of
explanation that attempts to fill the gap in the area of exgtlans in argument systems.
Our approach is to provide a higher-level explanation in & that the whole context
of a query can be revealed. The examples given will stressthint.

The rest of this paper is structured as follows. Next, we prifisent the basic ideas
of an abstract argumentation framework with dialecticaistmints, which includes
several concepts common to most argument-based formaligmes, we will present
an abstract characterization of explanation along withraciegte reification based on
Defeasible Logic Programming @.P).
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2 An Abstract Framework with Dialectical Constraints

Abstract argumentation frameworks [9, 13] are formalisorsriodelling defeasible ar-
gumentation [19, 5] in which some components remain unfipdciln this paper we
are concerned with the study of warrant computation in aspuation systems, with
focus on skeptical semantics for argumentation. As a basisur analysis we will use
an abstract argumentation framework (following Dung’s seinapproach to abstract
argumentation [9]) enriched with the notiondilectical constraintwhich will allow
us to model distinguished sequences of arguments. Thaingsuxtended framework
will be called anargumentation theory

Definition 1 (Argumentation framework). [9] An argumentation framework is
a pair (/Args, R), where2lrgs is a finite set of arguments alis a binary relation be-
tween arguments such tHatC Args x Args. The notation(.A, B) € R (or equivalently
AR B) means that4 attackss.

Given an argumentation framewogk = (2rgs, R), we will write Linesg to de-
note the set of all the singleton sequenfdswith A € 2rgs and all possible finite
sequences of argumerjtd, . . ., Ax], with & > 1, such that for any pair of arguments
A;, A1 itholds that4,; ;1 R A;, fori = 0 to k. Argumentation lines define a domain
onto which different constraints can be defined. As suchtcainss are related to se-
quences which resemble an argumentation dialogue betwaeepdrties, we call them
dialectical constraintsFormally:

Definition 2 (Dialectical Constraint). Let® = (rgs, R) be an argumentation frame-
work. Adialectical constrainC in the context of® is any functionC : Linesg —
{True, False}. A given argument sequengec Linesg satisfiesC in & whenC(\) =
True.

An argumentation theory is defined by combining an arguntiemdramework with a
particular set of dialectical constraints. Formally:

Definition 3 (Argumentation Theory). Anargumentation theory' (or justtheony) is
apair (¢, DC), whered is an argumentation framework, ai®iC = {C,, C,, ..., Cy}
is a finite (possibly empty) set dfalectical constraints

Given a theonyl’ = ($,DC), the intended role oDC is to avoidfallaciousrea-
soning by imposing appropriate constraints on argumemtédities to be considered ra-
tionally acceptable Such constraints are usually defined on disallowing aerteves
which might lead to fallacious situations. Typical consttato be found inDC are
non-circularity (repeating the same argument twice in an argumentationdifeebid-
den),commitmen{parties cannot contradict themselves when advancingragts),
etc. It must be noted that a full formalization for dialeaticonstraints is outside the
scope of this work. We do not claim to be able to identify evamg of such constraints
either, as they may vary from one particular argumentatiaméwork to another; that
is the reason wh¥DC is included as a parameterin’

! In this respect a similar approach is adopted in [14], where diffefeatacterizations of con-
straints give rise to different logic programming semantics.
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2.1 Argumentation Lines

As already discussed before, argument games provide al dsgfuto characterize
proof procedures for argumentation logics.Such games hdedieasible reasoning as a
dispute between two partieBroponentandOpponenbf a claim), who exchange argu-
ments and counterarguments, generatiredogues A proposition@ is provably justi-
fied on the basis of a set of arguments if its proponent haimaing strategyfor an ar-
gument supporting), i.e. every counterargument (defeater) advanced by theQ@pp
can be ultimately defeated by the Proponent. Dialoguescéh amgument games have
been given different names (dialogue lines, argumentditi@s, dispute lines, etc.). A
discussion on such aspects of different logical modelsgidiment can be found in [5,
19]. The abstract framework presented in this section isdas the results presented
in [6] and [8].

Definition 4 (Argumentation Line). LetT be an argumentation theory. Aargumen-
tation lineX in T is any finite sequence of argumefis), A, ...,.A,] such that every
A; attacksA;_1, for 0 < i < n. If Ay is the first element in\, we will also say that
is rooted in4,. We will also write] A | = n to denote that hasn arguments; we will
also say that théengthof X is n.

Definition 5 (Initial Argumentation Segment). Let 7" be an argumentation theory
andleth = [Ag, A4, ...,A,] beanargumentation line in T. Theh = [Ap, A1, ..., Ax]
will be called aninitial argumentation segmeint A of lengthk, k < n, denoted A |,
Whenk < n we will say that\’ is a properinitial argumentation segment in. We
will use the terminitial segmentto refer to initial argumentation segments when no
confusion arises.

Example 1.Consider a theoryl’ = (&, DC), with DC = (, where the sefltgs is
{Aog, A1, Aa, A3, A4 }, and assume that the following relationships hold: attacks
Aq, Ay attacksAg, As attacksAg, A4 attacksA;. Three different argumentation lines
rooted in4, can be obtained, namely; = [Ag, A1, A4 ], A2 = [Aog, A2 ], A3z = [Ao,
Ajs ]. In particular, | A; |, = [Ao, A1] is an initial argumentation segmentin.

Example 2.Consider a theor{” = (&, DC) where the sefltgs is {Ag, A; }, and
assume that the following relationships hold; attacks.A;, and.A; attacksAy. An
infinite number of argumentation lines rooted.Ay can be obtained (e.9y = [Ap ],
Ao = [.Ao, A ], A3 = [.Ao, Ai, Ao ], Ay = [.Ao, Ai, Ag, Ar ], etc.).

Remark 1.Note that from Def. 4, given an argumentation lip&,, A, Az, ..., A,]
every subsequendel;, A; 1, ... A;+x] with 0 < ¢ < n — k is also an argumentation
line. In particular, every initial argumentation segmendlso an argumentation line.

Intuitively, an argumentation ling is acceptable iff it satisfies every dialectical
constraint of the theory it belongs to. Formally:

Definition 6. Given an argumentation theoffj = (¢, DC), an argumentation line\
is acceptablevrt T iff \ satisfies every € DC.
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In what follows, we will assume that the notion of accepifpimposed by dialec-
tical constraints is such that X is acceptable wrt a theorfy = ($,DC), then any
subsequence df is also acceptable.

Assumption 1 If X is an acceptable argumentation line wrt a thedry= ($,DC),
then any subsequence ofs also acceptable wit'.

Example 3.Consider the theor§” in Example 2, and assume tHBIC={ Repetition
of arguments is not allowedl. Then)\; and )\, are acceptable argumentation lines in
T', whereas\; and )\, are not.

Definition 7 ()’ extends)). Let T be an argumentation theory, and I&tand \’ be
two argumentation lines ifi’. We will say that\’ extends\ in " iff A= | X[, , for some
k < |\ |, thatis,\" extends\ iff A is a proper initial argumentation segment bt

Definition 8. LetT" be an argumentation theory, and letbe an acceptable argumen-
tation line in7". We will say that\ is exhaustivef there is no acceptable argumentation
line ' in T" such that| A | < | X" |, and for somet, A = |\'],, that is, there is no\’
such that\’ extends\. Non-exhaustive argumentation lines will be referred tpagial
argumentation lines.

Example 4.Consider the theor{" presented in Example 1. Then, A, and A3 are
exhaustive argumentation lines whereas |, is a partial argumentation line. In the
case of the theor§” in Example 2, the argumentation ling extends\;. Argumenta-
tion line )\, is exhaustive, as it cannot be further extended on the b&4is with the
dialectical constraint introduced in Example 3.

Definition 9. Given a theoryT, a setS = {1, Ag, ..., A\, } of argumentation lines
rooted in a given argument, denotedS 4, is called abundle setvrt 7' iff there is no
pair A;, A; € S 4 such that\; extends);.

Example 5.Consider the theory’ = (¢, DC) from Example 1, and the argumentation
lines\i, Ao, and)s. ThenSA0 = {\1, A2, A3} isabundle setwiT".

2.2 Dialectical Trees

A bundle setS 4 is a set of argumentation lines rooted in a given argumer8uch set
can be thought of as a tree structure, where every line qoness to a branch in the
tree. Formally:

Definition 10 (Dialectical tree).Let T be a theory, and le#d be an argument i7",
and IetSA = {1, A2, ..., A\, } be an acceptable set of argumentation lines rooted in
A. Thedialectical treeooted in.A based on5 4 (denotedZ 4) is a tree-like structure
defined as follows:

1. The root node of 4 is A.
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2. LetF={tail()), for everyA € S 4}, and H={head()), for every\ € F}.2
If H = ( then7 4 has no subtrees.
Otherwise, ifHf = {By, ..., By}, then for every3; € H, we define

getBundl€;) = {\ € F | head(\) = B;}

We put7p, as an immediate subtree g, where7, is a dialectical tree based on
getBundIgB;).
We will write Ttee , to denote the family of all possible dialectical trees basad4.
We will represent aSree.. the family of all possible dialectical trees in the thedry

Example 6.Consider the theory’ = (¢, DC) from Example 1, and the acceptable set
S4, from Example 5. Fig. 1(a) shows the associated exhaustitedical tree7 ..

The above definition shows how to build a dialectical treefebundle set of argu-
mentation lines rooted in a given argument. It is importamtdte that the “shape” of the
resulting tree will depend on the order in which the subtaesattached. Each possi-
ble order will produce a tree with a different geometric cgafation. All the differently
conformed trees are nevertheless “equivalent” in the steragé¢hey will contain exactly
the same argumentation lines as branches from its rootl@aies. This observation is
formalized by introducing the following relation which che trivially shown to be an
equivalence relation.

Definition 11. Let T be a theory, and Ie‘EteeA be the set of all possible dialectical
trees rooted in an argumemd in theoryT". We will say that7 4 is equivalent thv’4,

denoted’ 4 =, 7}1 iff they are obtained from the the same bundle$gtof argumen-
tation lines rooted inA4.

Given an argumentl, there is a one-to-one correspondence between a bundle set
S 4 of argumentation lines rooted id and the corresponding equivalence class of
dialectical trees that share the same bundle set as thgiin ¢ais specified in Def. 10). In
fact, a dialectical tre@ 4 based orb 4 is justan alternative wayf expressing the same
information already present if 4. Each member of an equivalence class represents
a different way in which a tree could be built. Each particdamputational method
used to generate the tree from the bundle set will producepariecular member on
the equivalence class. In that manner, the equivalenceorlaill represent a tool for
exploring the computational process of warrant and as wesed later, trees provide a
powerful way of conceptualize the computation of warrargegiments. Next, we will
define mappings which allow to re-formulate a bundle $gtas a dialectical tre@ 4
and viceversa.

Definition 12 (Mapping T). LetT be an argumentative theory, and I&f be a bundle
set of argumentation lines rooted in an argumehof 7. We define the mapping

T: p(Linesy) \ {0} — Treeq

asT(S4) =aw Za, Where Lines 4 is the setif all argumentation lines rooted .it,
Tree 4 is the quotient set dfree 4 by =, and7 4 denotes the equivalence class7of.

2 The functionshead(A) andtail(A) have the usual meaning in list processing, returning the
first element in a list and the list formed by all elements except the figterively.
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Proposition 1. For any argument4 in an argumentative theory, the mappindl is a
bijection?

As the mappindl is a bijection, so that we can define also the inverse mapping
S =gef T—! which allow us to determine the acceptable set of argumentéihes
corresponding to an arbitrary dialectical tree rooted im@umentA. In what follows,
we will use indistinctly aset notation(an acceptable bundle set of argumentation lines
rooted in an argumerd) or atree notation(a dialectical tree rooted id), as the former
mappingsS andT allow us to go from any of these notation to the other.

Proposition 2. LetT" be an argumentation theory, and I8 be an acceptable bundle
set of argumentation lines rooted in a given argumdntS 4 = {A1, A2, ..., A, }. Let
5:4 = {\},.. ., AL, m < n, be a set of initial argumentation segments, where every
Ai = [Aily,, forsomek; <[ A; |7 < m. Let

S" =8 \{re Sy | there exists\" € 57y and )\ extends\}. Q)
ThenS” is also an acceptable set of argumentation lines rooted.in

The following proposition shows that dialectical trees barthought of as compo-
sitional structures, in the sense that any subﬁjeof a dialectical tree7 4 is also a
dialectical tree.

Proposition 3. LetT be atheory, and 4 a dialectical tree inl". Then it holds that any
subtreeT”, in 74 rooted inAis also a dialectical tree wri’".

2.3 Acceptable dialectical trees

The notion of acceptable argumentation line will be usedharacterize acceptable
dialectical trees, which will be fundamental as a basis domfalizing the computation
of warranted argumenti our setting.

Definition 13 (Acceptable dialectical tree).Let T be a theory, a dialectical tre@ 4
in T is acceptable iff every argumentation line in the assoddiendle seS(7,4) is
acceptable. We will distinguish the sub®&Eree 4 (resp.A%veer) of all acceptable
dialectical trees inTree 4 (resp.Treer).

As acceptable dialectical trees are a subclass of diaddtmes, all the properties
previously shown apply also to them. In the sequel, we wilt jurite “dialectical trees”
to refer to acceptable dialectical trees, unless statezhotbe.

Definition 14 (Exhaustive Dialectical tree).A dialectical tree7 4 will be calledex-
haustiveiff it is constructed from the sef 4 of all possible exhaustive argumentation
lines rooted inA, otherwiseZ 4 will be calledpartial

Besides, the exhaustive dialectical tree for any arguméitn be proven to be
unique (up to an equivalence).

3 Due to space constrains proofs will be omitted.
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Fig. 1. (a) Exhaustive dialectical treEs,, for Example 6; (b) resulting tree after applying and-or
marking; (c)—(d) two other exhaustive dialectical trees belonging todb&alence clasg.,

Proposition 4. LetT be a theory, for any argument in 7' there is a unique exhaustive
dialectical tree7 4 in T' (up to an equivalence wet . as defined in Def. 11).

Acceptable dialectical trees allow to determine whethertiot node of the tree is
to be accepted (ultimatelyndefeateylor rejected (ultimatelylefeated as a rationally
justified belief. Amarking functionprovides a definition of such acceptance criterion.
Formally:

Definition 15 (Marking criterion). LetT be a theory. A marking criterion fdf' is a
functionMark : Tree,, — {D,U}. We will writeMark(7;) = U (resp.Mark(7;) = D)
to denote that the root node @f is marked ad/-node (resp.D-node).

Definition 16 (Warrant). LetT be an argumentative theory amdiark a marking cri-
terion for T'. An argument4 is a warranted argumerfbr just warranj wrt a marking
criterion Mark in 7' iff the exhaustive dialectical tre€ is such thaMark(74) = U.
We will denote a marked dialectical tree ASy.

3 Answers andd-Explanations

An argument is a piece of reasoning that supports a dainom certain evidence. The
tenability of this claim must be confirmed by analyzing otagjuments for and against
such claim. Next, we will definqueries answersandexplanationsn the abstract con-
text introduced in the previous Section.

The dialectical process for warranting a claim involvesifigdthe arguments that
either support or interfere with that claim. These argumané connected through the
defeat relation and are organized in dialectical treese@®esthat given a claim there
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could exist inT" different arguments that support it, and each argumentysillerate a
different dialectical tree.

Definition 17 (T-Queries).LetT be an argumentation theory. Frquery @ posed to
the theoryl” will represent the process of finding out the existence, badvarranting
status, of the posible arguments f@rand Q.

We will show below that the returned answer &@mwill be only the result of analyz-
ing a set of dialectical trees that have been built and censitlas to support this answer.
Thus, to understand why a query has that particular anstisregsential to consider
which arguments have been considered and what conneckimgmong them.

It is important to notice thaé-Explanations are at the crux of an argumentation
system whose proof procedure is based on the constructidialeictical trees. They
present the reasoning carried out by the system, and thmy tdlvisualize the support
for the answer given. It is clear that without this infornoatit will be very difficult to
understand the returned answer.

Definition 18 (0-Explanation). Let T' be an argumentation theory and |€l be a
claim. LetA,,...,A, be all the arguments fo€ from T, and By,. . .,53,, be all the
arguments forQ from 7. Then, theexplanatiorfor Q in T is the set of marked dialec-
tical trees€,. (Q) = {74, - T, Y U{T Byr- T B, }-

Now it is possible to defing-answers in terms of the associate&xplanations.

Definition 19 (T-answer).Given an argumentation theoff) and a queryQ, the an-
swer forQ is:

- YES, if at least one tree if,. (Q) warrants@.

NO, if at least one tree i€,.(Q) warrantsQ.

UNDECIDED, if £,.(Q) is non empty, but no tree ifi, (Q) warrantsQ nor Q.
UNKNOWN, if there is no argument fof) in 7.

Notice that if there is a dialectical that shows that an argiwarrants) then there
is no argument that warrantg.

4 Answers andd-Explanations in DELP: A Reification

Next, we will definequeries answersandexplanationausing the framework provided
by DELP (see [11] for full details on BLP). Extending the abstract presentation above,
we will introduce two types of queries: ground (calle&ldP-queries) and schematic.
For both types of queries we will define explanations and a twagbtain the corre-
sponding answer, that iSES, NO, UNDECIDED OF UNKNOWN.

Definition 20 (DeELP-queries).A DELP-queryis a ground literal thatDeLP will try
to warrant. A query with at least one variable will be callsdhematic quergand will
account for the set dDEL P-queries that unify with the schematic one.

4 The notationQ is used to represent the complementivith respect to strong negatioire.,
a=~a and~a=a.
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In DELP, 0-Explanationsfor answers will be the set of dialectical trees that have
been explored to obtain a warrant for that query. The defimiior ad-Explanation for a
DELP-query follows, whereas explanations for schematicigaewill be introduced by
the end of this Section. It is clear that without the inforipatregarding the dialectical
trees it will be very difficult to understand the returnedwes Next, we will introduce
explanations for ground queries and we will generalize thamschematic queries.

Definition 21 (0-Explanations for a DELP-query).

Let P be aDELP-program and@ a DELP-query. Let{Ag, Q),. . .,(A,, Q) be all the
arguments forQ from P, and (B, Q),. . .,(B., Q) be all the arguments fo€) from
P. Then, theexplanationfor @ in P is the set of marked dialectical tre€% (Q) =

{T?Ao, Q>’ . "T?An, Q>} U {T?Bma),. . "T?Bm,@>}'
Using these concepts we can definellP-answers.

Definition 22 (DeLP-answer).Given aDELP-program”P and aDELP-query@, the
answer forQ is:

- YEs, if at least one tree i€p (Q) warrantsq.

NO, if at least one tree il€p (Q) warrantsq.
UNDECIDED, if no tree in€p (Q) warrants( nor Q.
UNKNOWN, if @ is not in the signature oP.

Example 7.Consider the BLP-program(I;, A7) where:

bird(X) < chicken(X)
chicken(little) flies(X) — bird(X)

IT; = ¢ chicken(tina) Ar=q flies(X) — chicken(X), scared(X)
scared(tina) ~flies(X) — chicken(X)
bird(rob)

From the DELP-program(I7,, A7) the following arguments can be obtained (due to
space restrictiongina’ will be abbreviated tot' and ‘flies(tina)’ to ‘f'): (A, f) =
({flies(t) — bird(t)}, flies(t)), (Az, ~f) = ({~flies(t) —< chicken(t)}, ~flies(t)),
and(As, f)=({flies(t) — chicken(t), scared(t)}, flies(t)). The argumentAs, ~f)
defeats(A4;, f), (As, f) defeats(As, ~f), and[ (A, f), (A2, ~f), (As, )] is an ac-
ceptable argumentation line.

Figure 2 shows thé-Explanation for the BLP-query ‘flies(tina)’, where two di-
alectical trees forflies(tina)’ are marked U”. Therefore, flies(tina)’ is warranted
and the answer i8Es. Note that thej-Explanation of Figure 2 is also an explanation
for query ‘~flies(tina)’ whose answer iNO. Finally, observe that the answer for
‘walks(tim)’ is UNKNOWN, because it is not in the program signature.

Remark 2.The explanation for complementary literals will always be same, since
it is composed by both the trees for the literal and the treegs complement.

As we will show in the examples below, the semantics of thgEnms issensitive
to the addition or deletion of rules and facts. That is, a neet &dded to a program
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flies(tina) ~flies(tina) flies(tina)
AX
fli68|timl,)4;ﬂiss tina) flies(tina)
‘h U “!D “g U

Fig. 2. 6-Explanation forflies(tina)

can have a big impact on the number of arguments that can kefrom the modi-

fied program. Taking into account this characteristic anmbimering the many possible
interactions among arguments via the defeat relation (#zat to the construction of
different dialectical trees)-Explanations become essential for understanding the rea-
sons that support an answer.

Example 8.Consider the BLP-program {75, Ag): ITs = {q,t}, As = {(r —< q),
(~r — ¢,8),(r — s),(~r — )}, where the following arguments can be built:
(Ra,~r) = ({~r — t},~r), and(Rq,r) = ({r — ¢}, r). From this program the an-
swer for the queryr”’ is UNDECIDED, and Figure 3 shows it&Explanation. Note that,
although the literal ‘s’ is in the program signature (in thedi of a rule), there is no
supporting argument for it. Therefore, the answer for que'ris UNDECIDED, and the
d-Explanation is the empty setd. &7, A, (s)=0).

Af?\ﬁ @\Af

Fig. 3. 5-Explanation? ;7 A (r)

Remark 3.DELP-queries withuNKNOWN answers always have an emptxplanation.
However, DELP-queries that haveNDECIDED answers may have empty or non-empty
explanations. Finally, BLP-queries withvyEs or NO answers will always have a non-
empty explanation.

Example 9.(Extends Ex. 8) In this example we see how the introductioa single
fact in (ITg, Ag) makes a significant difference ElH&AS)(T). Consider the BLP-
program(IlgU{s}, Ag) where the facts’ is added to the program of Example 8. If we
query for ' again, we get the answero with the §-Explanation shown in Figure 4.
Note that this)-Explanation consists now of two more trees than the onedrptbvi-
ous example. This is so because there are two newly genasjathents{R 3, r) =
({r— s},r),and(Ry, ~r) = ({~r— ¢q,s},~r)

Itis our contention that, in BLP, the answer for a query should be easily explained
by presenting the user the associated dialectical treem Hris set of trees the answer
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PANNANEP AN
h Ak Rike K

Fig. 4.4-Explanatione 7, AS)(T)

becomes thoroughly justified, and the context of the quergvusaled. The following
examples have more elaborate&lIP-programs and thé-Explanations show that a
defeaterD for A may attack an inner point oA.

Example 10.Consider the BLP-program {71¢, A1o), whereil,, = {c,e, f} and
A {(a-< b), (b—< ¢), (~b—< d), (d— e), (~d— f,e), (~b— e),}
10 (a—~ 2), (@—<¢c), (~x—<¢e), (a—< h), (h— f), (~h — i)

the following arguments can be built4,,a) = ({(a — h),(h— f)},a)
(B1,b) = {{b— c},b)  (Bz,~b) = ({~b— e},~b)

(Dy,d) ={{d— e},d) (Da,~d) =({(~d— f,e)},~d)

(X,2) ={{z — chx) (X, ~ax)={~z—< e}, ~x)

From (I1,9, A1) the answer ford’ is YES, and the answer for~¥a’ is NO. As
stated in Remark 2, although both queries have differenvarss they both have the
samed-Explanation, which is depicted in Figure 5.

a
A
b \p

a
A
€T
B! )

~, T
o/ S

Fig. 5. 6-Explanationt 7, A, ()

. A

From the DELP programmer point-of-viewj-Explanations give a global idea of
the interactions among arguments within the context of ayquenis is an essential
debugging tool when programming: if unexpected behavigear the programmer can
check the given explanations to detect errors.

In the previous examples we have not shown an explanatiaciassd with a query
with anuUNKNOWN answer, because this type of answers have an ednlaigplanation.
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In a similar manner, observe that queries that do not cooresto the intended domain
of the program will return the answeNnkKNOWN. This will capture errors like querying
for “fly” instead of‘flies” , or a query liké'penguin(X)” in Example 7.

Now we will extend the notion of explanation to encompssisematic queriesA
schematic query is a query that has at least one variablé@fégtion 20), and hence
it represents the set of#l P-queries that unify with it. We will extend the definitiofi o
0-Explanation to include schematic queries. In thelLIP-program of Example 7, the
schematic querylies(X) will refer to flies(tina) and flies(little).

Observe that there are actually infinite terms that uniffhwériableX. However,
all queries with terms that are not in the program signatullgpvoduce anUNKNOWN
answer and therefore an empty explanation. Thus, the sesta#rices of a schematic
query that will be considered for generating an explanatidhrefer only to those
instances of BLP-queries that contain constants from the program sigeatu

Definition 23 (Generalizeds-Explanation).

Let P be aDELP-program and@ a schematic query. LetQ1,...,Q.} be all the
instances of) so that theirDELP-answer is different fronruNKNOWN. Let Ep(Q;)
be thed-Explanation for theDELP-query @; (1 <i < z) from programP. Then, the
generalized-Explanationfor Q in P is Ep(Q) = { Ep(Q1), - .-, Ep(Q2)}

Observe that a-Explanation (Definition 21) is a particular case of a Geliezd
d-Explanation, where the séfp(Q) is a singleton.

Example 11.Consider again the ELP-program(11-, A7), and suppose that we want
to know if from this program it can be warranted that a cerfaitividual does not
fly. If we query for~flies(X), the answer isrEs, because there is a warranted in-
stance:~flies(little). The supporting argument idlifle’ was abbreviated td’ ):
(By,~flies(l)) = ({~flies(l) — chicken(l)}, ~flies(l)). The trees of the general-
ized explanation are shown in Figure 6. This explanatioo atsows that the other
instance € flies(tina)) is not warranted. Note that the answer for the schematigyque
flies(X) is also YES, but with a different set of warranted instancg@ies(tina)
and flies(rob). The supporting argument for instanc¥ = tina’ was already dis-
cussed, and the undefeated argument for instafice-rob’ is: (C1, flies(rob)) =
({flies(rob) — bird(rob)}, flies(rob)). The generalized-Explanation forflies(X)

is the same as the one feiflies(X), depicted in Figure 6 (see Remark 2).

Definition 24 (DeLP-answer for a schematic query)Given aDEL P-program? and
a schematic querg, the answer foQ is

— YEs, if there exists an instanc@; of @ such that at least one tree ifip(Q;)
warrants@;.

— No, if there exists an instana@; of @ such that at least one tree #p (Q;) war-
rants Q;.

— UNDECIDED, if for every instance); of @ that is in the signature dP, there is no
tree in&p(Q;) that warrants@); nor Q;.

— UNKNOWN, if there is no instance€); of Q) such thatQ); is in the signature oP.
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fhes(fma) ~ flies, fma) ﬂlé’9(fl7l(l) flzes( it le) ~flies IYfﬂP) flies(rob)
~ﬂ7f’€ tina) ﬂW?(fMH)) ~fues hfﬂﬁ)
/BN

flies(tina)
U

<

Fig. 6. Generalized-Explanation for ~flies(X)’

Observe that Definition 22 is a particular case of the previefinition, where there is
a single instance af.

Example 12.Consider the following BLP-program:

ZZZZE?;%Z) has_a_car(X) — adult(X)
I = Ayy = (¢ ~has_a_car(X) — unemployed(X)
unemployed(peter)
: ~has_a_car(X) — student(X)
student(annie)

where the following arguments can be buili¢s_a_car’ was replaced bycdar’, * annie’
by ‘a’, and ‘peter’ by ‘p’): (A1, car(a)) = ({car(a) — adult(a)}, car(a)),

(Ag, ~car(a)) = ({~car(a) — student(a)}, ~car(a)),

(Py,car(p)) = ({car(p) — adult(p)}, car(p)), and

(Pa, ~car(p)) = ({~car(p) — unemployed(p)}, ~car(p)).

When querying forhas_a_car(X)’, variable ‘X" unifies with both annie’ and ‘peter’.
Then, DELP builds arguments for both instancet; and.As for ‘ X = annie’, and P
andP, for ‘ X = peter’. From Figure 7, it is clear that no argument is undefeaited,
there is no tree that warrantsds_a_car(X)’, for either of the two instances. Therefore,
the answer i NDECIDED, and the variable remains unbound.

AND

~car(annie) car ((mme’) ~ (’%eter) car(peter)
U U
2 A

Fig. 7. Generalized-Explanation for has_a_car(X)’

car(annie) ~car(anme) (’m(pm‘er) ~c%peter}

Schematic queries give us the possibility of asking moreegdmuestions than
ground queries. Now we are not asking whether a certain mie&aowledge can be
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believed, but we are asking if there exists an instance tfikae of knowledge (related
to an individual) that can be warranted in the system. Thidcctead to deeper reason-
ing as we may pose a query, gather the warranted instancesatidue reasoning with
those individuals.

Thed-Explanations system receives &llP-progranP, a queryQ, and an argument
comparison criteriot€, and returns a-ExplanationEX and the corresponding answer
ANS. The system is described by the following algorithm in a &gelike notation:

d_Expl anati ons(P, C, Q EX, ANS): -
warrants(P, Q C, WsQ , conplenent(Q NQ, warrants(P, NQ C, WBNQ) ,
get _trees(WBQ WBNQ EX), get_answer (Q WSQ WENQ ANS) .

get _answer (_, WsQ WBNQ, yes):-WsQ \= [].

get _answer (_, WsQ WBNQ no) : -WBNQ \= [].

get _answer (Q _, _, unknown):-not _in_signature(Q.
get _answer(_, , ,undeci ded).

The above described system is fully implemented and offeppart for queries,
answers and explanations. Explanations are written int§Mh file, which is parsed
by a visualization applet. The visualization of trees bglag to dialectical explanations
is enhanced by allowing the user to zoom-in/out, implodae argumentstc The
internal structure of an argument is hidden when implodamgl a unique tag is shown
instead.

Lemma 1l (#-Explanation Soundness)Let P be aDELP-program,C an argument
comparison criterion, and) a schematic query posedf Let E be thej-Explanation
returned in support of the answek. ThenF justifies (Definition 244.

Lemma 2 (@-Explanation Completeness)Let P be aDELP-program,C an argu-
ment comparison criterion, an@ a schematic query posed ®. Let I/ be thed-
Explanation returned in support of the answér Then E' contains all the possible
justifications (Definition 24) for any instance df

5 Conclusions

In this paper, we have addressed the problem of providintaeation capabilities to an
argumentation system. This is an important, and yet undpeel field in the area. Our
focus is put on argumentation systems based on a dialeptinaf procedure, studying
dialectical explanationsWe have defined an abstract system and a concrete reification
with explanation facilities. We consider the structurest orovide information on the
warrant status of a literal. As the system has been implezdente are developing
applications that use thieExplanation system as subsystem.
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Abstract. In the context of Dung’s theory of argumentation frame-
works, comparisons between argumentation semantics are often focused
on the different behavior they show in some (more or less peculiar) cases.
It is also interesting however to characterize situations where (under
some reasonably general assumptions) different semantics behave ex-
actly in the same way. Focusing on the general family of SCC-recursive
argumentation semantics, the paper provides some novel results in this
line. In particular, we study the characterization of defeat graphs where
any SCC-recursive semantics admits exactly one extension coinciding
with the grounded extension. Then, we consider the problem of agree-
ment with stable semantics and identify the family of SCC-symmetric
argumentation frameworks, where agreement is ensured for a class of
multiple-status argumentation semantics including stable, preferred and
CF2 semantics.

Key words: Argumentation semantics, Argumentation frameworks, Se-
mantics comparison

1 Introduction

Interest in comparing argumentation semantics arises from the increasing vari-
ety of approaches proposed in the context of Dung’s theory of argumentation
frameworks [1]. Different behaviors exhibited by alternative semantics in specific
cases (or families of cases) have often been the subject of detailed analyses and
discussions about the “most intuitive” or “desired” outcome. While this is, by
far, the most common kind of comparison found in the literature, a more sys-
tematic approach considering general principles that may or may not be satisfied
by a semantics has also been addressed |2, 3].

A complementary kind of analysis concerns identifying situations where ar-
gumentation semantics agree, i.e. exhibit the same behavior in spite of their
differences. This can be useful from several viewpoints. On one hand, situations
where “most” (or even all) existing semantics agree can be regarded as pro-
viding a sort of reference behavior against which further proposals should be
confronted. On the other hand, it may be the case that in a specific application
domain there are some restrictions on the structure of the argumentation frame-
works that need to be considered. It is then surely interesting to know whether
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these restrictions lead to semantics agreement, since in this case it is clear that
evaluations about arguments in that domain may not be affected by different
choices of argumentation semantics and are, in a sense, universally supported.

In fact, the question of semantics agreement for particular classes of argu-
mentation frameworks is explicitly considered in Dung’s original paper [1] where
sufficient conditions for agreement between grounded, preferred and stable se-
mantics and between preferred and stable semantics are provided (these results
will be recalled along the paper). More recently, the special class of symmetric
argumentation frameworks [4] (where every attack is mutual) has been shown to
ensure agreement between preferred, stable and naive semantics. The present pa-
per provides some new results in this area by considering the recently introduced
class of SCC-recursive semantics [5], namely a parametric family of semantics
which has been shown to represent a quite general well-founded scheme where
specific proposals, including all traditional semantics mentioned above, can be
placed. In this context we obtain a characterization of some cases of agreement,
by exploiting the decomposition of the defeat graph into strongly connected
components.

The paper is organized as follows. After reviewing the necessary basic con-
cepts in Section 2, the notions of strongly connected component (SCC) and
SCC-recursiveness are introduced in Section 3. In section 4 the definition of
CF2 semantics is recalled and a property of its extensions, as significant for
the sequel of the paper, is proved. The issues of agreement with grounded and
stable semantics are dealt with in Sections 5 and 6 respectively. Finally Section
7 concludes the paper.

2 Basic concepts

The present work lies in the frame of the general theory of abstract argumenta-
tion frameworks proposed by Dung [1].

Definition 1. An argumentation framework is a pair AF = (A, —), where A is
a set, and —C (A x A) is a binary relation on A, called attack relation.

In the following we will always assume that A is finite. An argumentation frame-
work AF = (A, —) can be represented as a directed graph, called defeat graph,
where nodes are the arguments and edges correspond to the elements of the
attack relation. In the following, the nodes that attack a given argument « are
called defeaters or parents of a and form a set which is denoted as par,p ().

Definition 2. Given an argumentation framework AF = (A, —) and a node
a € A, we define parpp(a) = {8 € A | 8 — a}. If parpp(a) = 0, then « is
called an initial node.

Since we will frequently consider properties of sets of arguments, it is useful to
extend to them the notations defined for the nodes.
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Definition 3. Given an argumentation framework AF = (A, —), a node a € A
and two sets S, P C A, we define:

S—a =3d0€eS: 08— a
a— S =3d0eS:a—p
S—P = JacS,feP:a—p

Two particular kinds of elementary argumentation frameworks need to be
introduced as they will play some role in the following. The empty argumentation
framework, denoted as AFy, is simply defined as AFy = (0, #). Furthermore, an
argumentation framework AF = (A, —) is monadic if |A| = 1 and —= 0.

The notion of self-defeating argument will be used too.

Definition 4. Given an argumentation framework AF = (A, —) an argument
a € A is self-defeating if « — «a. An argumentation framework AF is free of
self-defeating arguments if Bo € A such that a — a.

We will also consider the restriction of an argumentation framework to a
given subset of its nodes:

Definition 5. Let AF = (A, —) be an argumentation framework, and let S C A
be a set of arguments. The restriction of AF to S is the argumentation framework

AF|gs = (S, N(S x S)).

In Dung’s theory, an argumentation semantics is defined by specifying the
criteria for deriving, given a generic argumentation framework, the set of all
possible extensions, each one representing a set of arguments considered to be
acceptable together. Accordingly, a basic requirement for any extension E is
that it is conflict-free, namely fo, 3 € E : o — (3. All argumentation semantics
proposed in the literature satisfy this fundamental conflict-free property.

Given a generic argumentation semantics S, the set of extensions prescribed
by S for a given argumentation framework AF = (A, —) is denoted as Es(AF). If
it holds that VAF |Es(AF)| = 1, then the semantics S is said to follow the unique-
status approach, otherwise it is said to follow the multiple-status approach [6].
We will say that two semantics S; and Sp are in agreement on an argumentation

framework AF if &g, (AF) = Es, (AF).

3 Strongly connected components and SCC-recursiveness

SCC-recursiveness is a property of (the extensions prescribed by) a semantics
based on the graph theoretical notion of strongly connected components (SCCs).

Definition 6. Given an argumentation framework AF = (A, —), the binary
relation of path-equivalence between nodes, denoted as PEar C (A x A), is
defined as follows:

— Va € A, (a,a) € PEar
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— given two distinct nodes o, 8 € A, (o, 3) € PEar if and only if there is a
path from « to B and a path from B to c.

The strongly connected components of AF are the equivalence classes of nodes
under the relation of path-equivalence. The set of the SCCs of AF is denoted
as SCCSap. In the case of the empty argumentation framework, we assume
SCCSar, = {0}. Moreover, a strongly connected component S € SCCSr will
be said to be monadic if AF|g is monadic.

We extend to SCCs the notion of parents, namely the set of the other SCCs
that attack a SCC S, which is denoted as sccpar,p(S), and we introduce the
definition of proper ancestors, denoted as sccancag(S):

Definition 7. Given an argumentation framework AF = (A,—) and a SCC
S € SCCSar, we define

sceparap(S) = {P € SCCSpr | P# S and P — S}

and
sccancar(S) = sceparyp(S) U U sccancar (P)
Pescepar p gy (S)

A SCC S such that sccparp(S) = 0 is called initial. The set of initial SCCs
of AF, as it is easy to see, is non-empty and is denoted as ZS(AF). The set of
nodes of initial strongly connected components of AF is denoted as IN(AF) =
USeIS(AF) S.

It is well-known [7] that the graph obtained by considering SCCs as single
nodes is acyclic, in other words SCCs can be partially ordered according to the re-
lation of attack. This fact lies at the heart of the definition of SCC-recursiveness,
which is based on the intuition that extensions can be built incrementally start-
ing from initial SCCs and following the above mentioned partial order. In other
words, the choices concerning extension construction carried out in an initial
SCC do not depend on the choices concerning any other SCC, while they di-
rectly affect the choices about the subsequent SCCs and so on. While the basic
underlying intuition is rather simple, the formalization of SCC-recursiveness is
admittedly rather complex and involves some additional notions. Due to space
limitations, we can only give here a quick account, while referring the reader
to [5] for more details and examples. First of all, the choices (represented in
the following definition by the set F, corresponding to a specific extension) in
the antecedent SCCs determine a partition of the nodes of a set S (typically
representing one or more subsequent SCCs) into three subsets:

Definition 8. Given an argumentation framework AF = (A, —), a set E C A
and a set S C A, we define:

— DAr(S,E)={ae S| (E\S) — a}

— Par(S,E)={ae S| (E\S)Aa AN IBES:f—aNnE 5[}

- UAF(S,E) ZS\(DAF(S,E)UPAF(S7E)) =
—f{acS|(E\S)AaAVB¢S:f—aF — 3}
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Definition 8 is a slightly generalized version of the corresponding Definition
18 of [5]. In words, the set Dar(S, E) consists of the nodes of S attacked by F
from outside S, the set Upr(S, E) includes any node « of S that is not attacked
by FE from outside S and is defended by E (i.e. the defeaters of a from outside
S are all attacked by E), and Pap(S, F) includes any node « of S that is not
attacked by E from outside S and is not defended by F (i.e. at least one of the
defeaters of a from outside S is not attacked by E). It is easy to verify that,
when S is a SCC, as in the original Definition 18 of [5], Dar(S, E), Par(S, E)
and Uar(S, F) are determined only by the elements of E that belong to the
SCCs in sccancap(9).

Regarding E as a part of an extension which is being constructed, the
idea is then that arguments in Dap(S, E), being attacked by nodes in E, can-
not be chosen in the construction of the extension E (i.e. do not belong to
E N S). Selection of arguments to be included in E is therefore restricted to
(S\ DaAr(S,E)) = (Uar(S, E) U Par(S, E)), which, for ease of notation, will be
denoted in the following as UPapr(S, F). On this basis and taking also into
account the reinstatement principle [6,2], we require the selection of nodes
within a SCC S to be carried out on the restricted argumentation framework
AF |y pyp(s,p) without taking into account the attacks coming from Dap(S, E).

Combining these ideas and skipping some details not strictly necessary in
the context of the present paper, we can finally recall the definition of SCC-
TeCUTsiveness:

Definition 9. A given argumentation semantics S is SCC-recursive if and only
if for any argumentation framework AF = (A, —), Es(AF) = GF(AF, A), where
for any AF = (A, —) and for any set C C A, the function GF(AF,C) C 24 is
defined as follows:

forany E C A, E € GF(AF,C) if and only if

— in case |SCCSar| =1, E € BFs(AF,C)
— otherwise, VS € SCCSAr
(E N S) S Q]—'(AFLUPAF(S’E), UAF(S, E) n C)

where BFs(AF,C) is a function, called base function, that, given an argu-
mentation framework AF = (A, —) such that |SCCSar| =1 and a set C C A,
gives a subset of 2.

The base function BF s of a SCC-recursive semantics S is said to be conflict-
free if VAF = (A, —) and VC' C A each element of BFs(AF,C) is conflict
free. It is known from Theorem 48 of [5] that if BFs is conflict-free, then any
E € Es(AF) is conflict free for any AF.

Since Definition 9 is somewhat arduous to examine in its full detail, we just
give some “quick and dirty” indications which are useful for the sequel of the
paper (in particular, we do not consider the meaning of the parameter C' in the
description, as not necessary for the comprehension of this paper). The set of
extensions Es(AF) of an argumentation framework AF is given by GF(AF, A),
namely by the invocation of the function GF which receives as parameters an
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argumentation framework (in this case the whole AF) and a set of arguments (in
this case the whole A). The function GF(AF, C) is defined recursively. The base
of the recursion is reached when AF consists of a unique SCC: in this case the
set of extensions is directly given by the invocation of a semantics-specific base
function BF s(AF, C). In the other case, for each SCC S of AF the function GF
is invoked recursively on the restriction AF |y p, . (s,r). Note that the restriction
concerns U Par(S, E'), namely the part of S which “survives” the attacks of the
preceding SCCs in the partial order.

The definition has also a constructive interpretation, which suggests an effec-
tive (recursive) procedure for computing all the extensions of an argumentation
framework AF = (A, —) once a specific base function characterizing the seman-
tics is assigned. A particular role in this context is played by the initial SCCs.
In fact, for any initial SCC I, since by definition there are no outer attacks,
the set of defended nodes coincides with I, i.e. UPAp(I, E) = Uar(I,E) = 1
for any E. This gives rise to the invocation GF(AF|;, I) for any initial SCC I.
Since AF|; obviously consists of a unique SCC, according to Definition 9 the
base function BFs(AF|;,T) is invoked, which returns the extensions of AF|;
according to the semantics S. Therefore, the base function can be first computed
on the initial SCCs, where it directly returns the extensions prescribed by the
semantics. Then, the results of this computation are used to identify, within
the subsequent SCCs, the restricted argumentation frameworks on which the
procedure is recursively invoked.

All SCC-recursive semantics “share” this general scheme and only differ by
the specific base function adopted. It has been shown [5] that all traditional se-
mantics encompassed by Dung’s framework (namely grounded, stable, complete,
and preferred semantics) are SCC-recursive and the relevant base functions have
been identified. In the following we will assume a basic knowledge of grounded
semantics, denoted as GR, stable semantics, denoted as S7, and preferred se-
mantics, denoted as PR. We need to recall here only the formulation of the base
function of grounded semantics (Proposition 44 of [5]):

Proposition 1. For any argumentation framework AF = (A, —) such that
[SCCSar| =1, and for any C C A, we have that

_ [{{a}}, if C = A= {a} and —=1;
BFgr(AF,C) = {{@}7 otherwise.
It is well-known that grounded semantics belongs to the unique-status ap-
proach. In the following we will denote the grounded extension of an argumen-
tation framework AF as GE(AF).

4 A property of CF2 semantics

Besides encompassing many significant previous proposals, the SCC-recursive
scheme allows the definition of novel semantics in a relatively easy way. Examples
of non-traditional SCC-recursive semantics and their properties are discussed in
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[5], the most significant among them being C'F2 semantics. In fact, C'F2 seman-
tics exhibits rather interesting properties (in particular a “symmetric” treatment
of odd- and even-length cycles [8]) while its base function is particularly simple:
BFcra(AF,C) = MCFar, where MCF ar denotes the set made up of all the
maximal conflict-free sets of AF (note that the parameter C' of Definition 9 plays
no role at all in this case).

As a first contribution of this paper, here we provide the proof of an im-
portant property of CF2 semantics which, in particular, will be useful for the
characterization of the cases of agreement between CF2 and grounded seman-
tics. In words, we will show that any extension prescribed by C'F2 semantics for
an argumentation framework AF is a maximal conflict free set of AF.

A preliminary Lemma is needed.

Lemma 1. Given an argumentation framework AF = (A, —) and a conflict free
set EC A, E € MCFar < Va € A such that o /> «, the following disjunction
of mutually exclusive conditions holds: o« € EVE — aVa— E.

Proof. =. Assume that da € A, a 4 «, such that none of the three condition
stated above holds. Then o ¢ EAE 4 aAa 4 E, which implies that EU{«} is
conflict-free and a strict superset of E. But this contradicts the hypothesis that
E € MCF ar.

<. Conversely assume that E ¢ MCFar, then Ja € A such that o ¢ E and
E U {a} is conflict-free, namely o /4 o, a« ¢ EAE 4 a A a /4 E, contradicting
the hypothesis that one of the three conditions above holds.

Proposition 2. For any argumentation framework AF = (A, —), Ecra(AF) C
MCF ar.

Proof. Since the base function of C'F'2 semantics is conflict-free, we know that
any E € Eopa(AF) is conflict free. We have now to prove that it is maximal.
First, recall that instantiating Definition 9 in the case of CF2 semantics we
obtain: E € Ecp2(AF) if and only if

— in case |SCCSAF| = 1, FE € MCFar
— otherwise, VS € SCCSAr(E N S) € Ecra(AF L ypy(s.))

If [SCCSar| = 1, Eora(AF) = MCF A by definition and the thesis trivially
follows.

Consider now the case |SCCSar| > 1 and assume recursively that VS €
SCCSar VE € Ecpa(AF) (ENS) € MC}-AFLUPAF@,E): we need to prove that
E € MCF ar. Suppose by contradiction that £ ¢ MCFar. By Lemma 1 the
following condition (i) holds: Ja € A:a A a,a ¢ EANE /4 aANa 4 E. Now
consider the strongly connected component S € SCCSar such that a € S. Since
E /4 a it is the case that o € UPap(S, E). By the inductive hypothesis (ENS) €
MCFAFlUPAF(S,E)’ which, by Lemma 1 applied to AF |y p, . (s,E), entails that the
following disjunction holds: « € (ENS)V(ENS) - aVa — (ENS). This
clearly implies the following condition in AF: « € EVE — aVa — E. However,
this is absurd since it contradicts condition (i) above.
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5 Agreement with grounded semantics

Grounded semantics [9, 1] plays an important role in argumentation theory as
it features desirable properties, such as conceptual clarity and computational
tractability. Moreover, it is often regarded as a paradigmatic unique-status scep-
tical approach that can be used as a reference to evaluate other semantics. For
these reasons the issue of agreement with grounded semantics is particularly
significant and has been first considered in [1], where it is shown that a suffi-
cient condition for agreement between grounded, preferred and stable semantics
is that the argumentation framework is well-founded.

Definition 10. (Definition 29 of [1]) An argumentation framework is well-
founded iff there exists no infinite sequence ag, v, ..., 0y, ... of (not necessarily
distinct) arguments such that for each i, cy1 attacks o.

In the case of a finite argumentation framework, well-foundedness coincides
with acyclicity of the defeat graph. We now consider the problem of agreement
with grounded semantics in the generalized context of SCC-recursive semantics.

5.1 Determined argumentation frameworks

We will show that a complete agreement among SCC-recursive semantics holds
if and only if the considered argumentation framework is determined.

Definition 11. An argumentation framework AF = (A, —) is determined if
and only if fa € A: a ¢ GE(AF) A GE(AF) 4 a.

In words, an argumentation framework AF is determined if and only if there
are no “provisionally defeated” arguments in AF according to grounded seman-
tics, i.e. the grounded extension is also a stable extension. Note that the empty
argumentation framework is determined.

The set of determined argumentation frameworks, denoted as DET, is of
special interest because for any SCC-recursive semantics S respecting an obvious
condition on the treatment of monadic argumentation frameworks it holds that
Es(AF) = {GE(AF)} for any argumentation framework AF € DET. In other
words, a very comprehensive family of “reasonable” semantics show a uniform
single-status behavior on these argumentation frameworks.

Proposition 3. Let S be a SCC-recursive semantics identified by a conflict-free
base function BFs such that

BFs(({a},0),{a}) = {{a}}

(such a SCC-recursive semantics will be called grounded-compatible ).
For any argumentation framework AF = (A, —) € DET it holds that Es(AF) =
{GE(AF)}.
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Proof. The proof immediately follows from the fact that for any such SCC-
recursive semantics it holds that VE € Es(AF), GE(AF) C E (Proposition 51
of [5]) and E is conflict-free. Since AF € DET Va ¢ GE(AF) it necessarily
holds that GE(AF) — «, and therefore o ¢ E. As a consequence, only the case
E = GE(AF) is possible.

It is also immediate to note that no argumentation framework outside DET
features this property, namely, for any AF ¢ DET there is a grounded-compatible
SCC-recursive semantics S such that Es(AF) # {GE(AF)}, namely stable se-
mantics.

Well-founded argumentation frameworks [1] are a special case of determined
argumentation frameworks. In fact, if no cycles are present, all SCCs in AF
consist of a single node and it is then easy to see that AF € DET. On the other
hand, the absence of cycles is a sufficient but not necessary topological condition
for AF € DET. Actually the absence of cycles is necessary only in the initial
SCCs (which need to be monadic), and then recursively in the initial SCCs of
the restricted argumentation framework obtained by taking into account that the
nodes corresponding to the initial SCCs are necessarily included in any extension.
This observation gives rise to a characterization of determined argumentation
frameworks.

Definition 12. An argumentation framework AF = (A, —) is initial-acyclic if
AF = AFy or the following condition holds: ¥S € IZS(AF) S is monadic and

AF U par ((A\IN(AF)),IN(AF)) 18 initial-acyclic.

The base of this recursive definition is represented by the empty argumenta-
tion framework. The recursion is well-founded as the set IN(AF) is non-empty
for a non-empty argumentation framework, which means that at each recursive
step an argumentation framework with a strictly lesser number of nodes is con-
sidered. The set of initial-acyclic argumentation frameworks is denoted by Z.AA.
The following proposition shows that ZAA = DET .

Proposition 4. For any argumentation framework AF = (A, —), AF € TAA
if and only if AF € DET.

Proof. Let us first show that if AF € ZAA then the grounded extension is
also stable. It is known [1] that, for any finite AF, GE(AF) = ;s Fyr(0),
where, given a set S C A, Far(S) = {a € A : V3 € parpp(a),S — 3},
Fip(S) = Far(S), and Fip(S) = Fap(Fiy (S)). Now, since AF € TAA, it
holds that Fip(0) = IN(AF). After suppressing the arguments attacked by
arguments in IN(AF) we obtain AF' = AF |y pur ((A\IN(AF)),IN(AF))- Now, if
AF’ is empty the statement is proved, since any argument of AF is either included
in or attacked by GE(AF). Otherwise we have, by hypothesis, that all initial
strongly connected components of AF’ are monadic. This entails that all their
nodes belong to F% () and therefore to GE(AF). Iterating the same reasoning
as above we obtain a restricted argumentation framework AF”, and so on until
we reach the case of an empty restricted argumentation framework. Since any
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node considered at any step is either included in or attacked by GE(AF), it turns
out that AF € DET.

Turning to the other part of the proof, let us show that if AF ¢ ZAA then
AF ¢ DET. Let us first consider the case where some initial strongly connected
component of AF is not monadic, then its elements are not included in nor at-
tacked by GE(AF) and therefore AF ¢ DET . Otherwise with a similar reasoning
as in the first part of the proof, we are lead to consider a sequence of restricted
argumentation frameworks. Since at least one of them does not belong to ZAA,
it turns out as before that some of its nodes are not included in nor attacked by
GE(AF) and the conclusion follows.

5.2 Almost determined argumentation frameworks

While only determined argumentation frameworks ensure complete agreement
among all grounded-compatible SCC-recursive semantics, it can be observed that
there is a larger class of argumentation frameworks where an almost complete
agreement is reached. Consider for instance the case of an argumentation frame-
work consisting just of a self-defeating argument, namely AF = ({a}, {(o, a)}).
In this case we have that Egr (AF) = {0} and, in virtue of the conflict-free prop-
erty, for any semantics S which admits extensions on AF it must also hold that
Es(AF) = {0}. However, since stable semantics is unable to prescribe estensions
in this case, Es7(AF) = 0 # {0}. In this case, disagreement arises from the
non-existence of stable extensions rather than from the existence of extensions
different from GE(AF). Therefore, excluding AF from the set of argumentation
frameworks where semantics agree might be considered a little bit questionable
and/or misleading, since, actually, all semantics able to prescribe extensions for
AF are in agreement.

On the basis of this observation, it is useful to consider the question of agree-
ment focusing on those semantics that are universally defined.

Definition 13. An argumentation semantics S is universally defined if for any
argumentation framework AF Es(AF) # 0.

As to our knowledge, stable semantics is the only example in the literature
of a semantics which is not universally defined.

As shown by the simple example above, the set of argumentation frameworks
where universally defined semantics agree is larger than DET : we will now char-
acterize this class of argumentation frameworks, called almost determined.

Definition 14. An argumentation framework AF = (A, —) is almost deter-
mined if and only if for any o € A, (« ¢ GE(AF)AGE(AF) 4 a) = (a,a) €—.

In words, an argumentation framework is almost determined if all the nodes
which are not attacked nor included in the grounded extension are self-defeating.
The set of almost determined argumentation frameworks will be denoted as AD.
Clearly DET C AD.
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Proposition 5. Let S be a universally defined and grounded compatible SCC-
recursive semantics identified by a conflict-free base function BFs. For any ar-
gumentation framework AF = (A, —) € AD it holds that Es(AF) = {GE(AF)}.

Proof. We know that, since BFs is conflict-free, for any argumentation frame-
work AF, VE € Es(AF) E is conflict free. Then, the statement follows from
the fact that VE € £s(AF), GE(AF) C E, which entails that the arguments
attacked by the grounded extension are also attacked by any other extension.
Therefore only arguments not included in and not attacked by GE(AF) can be-
long to E \ GE(AF). However, by hypothesis such arguments are self-defeating
and, since any extension F is conflict-free, can not belong to E.

The proposition above shows that agreement is ensured on almost determined
argumentation frameworks for any SCC-recursive semantics which satisfies the
three very reasonable properties of being universally defined, grounded compat-
ible and conflict-free. We now also show that such an agreement can not be
achieved outside the class of almost determined argumentation frameworks.

Proposition 6. For any argumentation framework AF = (A, —) ¢ AD there is
a universally defined and grounded compatible SCC-recursive semantics S iden-
tified by a conflict-free base function BFs such that Es(AF) # {GE(AF)}.

Proof. We prove that if AF ¢ AD then Ecp2(AF) # {GE(AF)}. It is immediate
to see that C'F2 semantics is universally defined and grounded compatible and
that its base function is conflict-free. By Proposition 2, Ecpa(AF) C MCFar,
namely the extensions prescribed by C'F'2 semantics for an argumentation frame-
work AF are maximal conflict free sets of AF. Now if AF ¢ AD, Ja € A such
that « is not self-defeating, & ¢ GE(AF) and GE(AF) # «a. This also implies
a # GE(AF) due to the well-known property of admissibility of GE(AF) [1],
namely @ — GE(AF) = GE(AF) — a. Then, by Lemma 1, GE(AF) ¢ MCFar
and necessarily Ecp2(AF) # {GE(AF)}.

6 Agreement with stable semantics

Stable semantics represents a traditional and intuitively simple proposal among
multiple-status approaches: a stable extension is simply a conflict-free set which
attacks all arguments not included in it. For this reason, agreement with stable
semantics represents a sort of uncontroversial situation where no argument is left
in a sort of “undecided” status. In [1] an argumentation framework AF such that
preferred and stable semantics are in agreement is said to be coherent. Here we
will characterize a family of argumentation frameworks, called SCC-symmetric,
where agreement is ensured for a class of multiple-status semantics including
stable, preferred and C'F'2 semantics.

First we need to introduce the notion of symmetric argumentation framework
(slightly different from the one proposed in [4]), noting also that symmetry is
preserved by the restriction operator.
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Definition 15. An argumentation framework AF = (A, —) is symmetric if for
any a,BEA a— & 0 — a.

Lemma 2. Given a symmetric argumentation framework AF = (A, —) and a
set S C A, AF|g is symmetric.

Proof. Let us consider two arguments «,( in AF|g such that « — §. It is
immediate to see that this relation also holds in AF and, since the latter is
symmetric, § — « in AF. Since a, 3 € S, § — « also holds in AF|g.

As it will be more evident from Proposition 7, it is quite natural that exten-
sions of a symmetric argumentation framework free of self-defeating arguments
coincide with its maximal conflict free sets, if the multiple-status approach is
adopted. Argumentation semantics satisfying this requirement will be called *-
symmetric.

Definition 16. An argumentation semantics S is *-symmetric if for any argu-
mentation framework AF which is symmetric and free of self-defeating arguments

Es(AF) = MCF ap.

As one may imagine, a SCC-recursive semantics is *-symmetric if and only

if its base function has a *-symmetric behavior on single-SCC argumentation
frameworks.

Lemma 3. A SCC-recursive semantics S is *-symmetric if and only if, for any
argumentation framework AF = (A, —) which is symmetric, free of self-defeating
arguments and such that |SCCSar| = 1, BFs(AF, A) = MCFaF.

Proof. =. Assume that the base function satisfies the hypothesis and consider
a generic argumentation framework AF which is symmetric and free of self-
defeating arguments. Notice first that V.S € SCCSar sceparap(S) = 0, i.e. all of
the strongly connected components are initial. In fact, given S7,Sy € SCCSap
such that S; — Sy, since AF is symmetric also So — S7 holds, entailing that
all of the nodes of S; U Sy are mutually reachable, i.e. S; = S;. Then, VS €
SCCSar Uar(S,E) = UPaAr(S,E) = S, and it is easy to see that, according to
Definition 9, E € Es(AF) if and only if VS € SCCSar (ENS) = BFs(AF|g,5).
Now, VS € SCCSar AF|g is free of self-defeating arguments and by Lemma 2
is also symmetric, thus by the hypothesis BFs(AF|g,S) = MCFars. In sum,
we have that E € Es(AF) if and only if VS € SCCSap (ENS) € MCFpr,,, and
since all of the strongly connected components are initial the latter condition is
equivalent to £ € MCF aF.

<. Assuming by contradiction that the conclusion is not verified we are led to
consider an argumentation framework AF, which is symmetric and free of self-
defeating arguments, where Es(AF) = BFs(AF, A) # MCFar, entailing that
S is not *-symmetric.

Several significant multiple-status semantics, though their definition is based
on quite different principles, share the property of being *-symmetric (a similar
result is proved in [4]).
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Proposition 7. Stable semantics, preferred semantics and CF2 semantics are
*_symmetric.

Proof. According to Lemma 3, for any such semantics & we have to prove that,
given an argumentation framework AF = (4, —) which is symmetric, free of self-
defeating arguments and such that [SCCSar| = 1, BFs(AF, A) = MCF ar. For
CF2 semantics this holds by definition. As for stable and preferred semantics,
notice that, as |[SCCSar| = 1, BFs(AF, A) = Es(AF). Taking into account from
[1] that Es7(AF) C Epr(AF), it is sufficient to prove that MCFar C Es7(AF)
and that Epr (AF) C MCF ap. First, let us consider a set E € MCFar and let
us prove that it is a stable extension, i.e. that Va ¢ F E — «. Assuming by
contradiction that E 4 «, since AF is symmetric also o /4 E holds. Since «
cannot be self-defeating by the hypothesis on AF, the set EU{a} is conflict-free,
contradicting the fact that £ € MCF ar. Let us turn now to the other inclusion
condition, considering a set E € Epr(AF) and assuming by contradiction that
E ¢ MCF ar: since E is conflict-free, this entails that I C MCF ar such that
E C E'. However, by the first inclusion condition E’ € Epr (AF), contradicting
the fact that E is a preferred extension.

In symmetric argumentation frameworks non-mutual attacks cannot exist:
this seriously limits their applicability for modeling practical situations. Their
properties however provide the basis for analyzing a more interesting family of
argumentation frameworks called SCC-symmetric.

Definition 17. An argumentation framework AF is SCC-symmetric if VS €
SCCSar AF|g is symmetric.

Definition 17 is equivalent to forbidding non-mutual attacks only within cy-
cles.

Proposition 8. An argumentation framework AF = (A, —) is SCC-symmetric
if and only if for every cycle g — a1 — ... — o, — «q it holds that Vi €
{ln} oy — Olj—1.

Proof. As for the if part of the proof, notice that any two nodes «, 3 € S, such
that o # 3 and S € SCCSap, are mutually reachable, therefore in particular
they belong to a cycle. As a consequence, if & — [ then by the hypothesis also
(8 — « holds. As for the other part of the proof, if a; and «;_1 belong to a cycle
then they are in the same strongly connected component, thus if ;1 — «a; then
by the SCC-symmetry of AF also a; — ;1 holds.

To prove, in Theorem 1, the main result about agreement in SCC-symmetric
argumentation frameworks, we need a preliminary lemma concerning the SCC-
recursive schema.

Lemma 4. Given an SCC-recursive semantics S, E € Es(AF) if and only if
VS € SCCSar (ENS) € GFs(AFlup,ap(s,B), Uar(S, E)), where GFs(AF,C) is
a function specific for the semantics S. Moreover, VAF = (A, —) it holds that
GFs(AF, A) = Es(AF).
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Proof. By Definition 9, if [SCCSar| = 1 then BFs(AF, A) = GF(AF, A), which
is also equal to GF(AF |y p,.(s,E), Uar(S, E)) since in this case UPar(S, E) =
Uar(S,E) = A. From Definition 9 we have that E € £g(AF) if and only if
E € GF(AF,A) and in case |SCCSar| = 1 we can substitute BFs(AF,.A)
with the expression above. This yields E € GF(AF,A) if and only if VS €
SCCSar(E N S) € GF(AF|yp,ap(s,E), Uar(S, E)). Then the conclusion easily
follows by taking into account that GF actually depends (through BFs) on the
specific semantics S.

Theorem 1. In any argumentation framework which is SCC-symmetric and
free of self-defeating arguments all of the *-symmetric semantics are in agree-
ment, i.e. they prescribe the same set of extensions.

Proof. Tt is sufficient to show that, given an argumentation framework AF satis-
fying the hypothesis and two *-simmetric semantics Sy and S, VE € s, (AF) E €
Es,(AF) (the reverse condition can then be obtained by the same reasoning).
According to Lemma 4, given E € Es,(AF), we have to prove that VS €
SCCSar(E N S) € GFs,(AFlupyu(s, ey, Uar(S, E)). We reason by induction
along the strongly connected components of the argumentation framework. In
particular, at any step we consider a specific S € SCCSap and we prove the
following conditions:

1. UPAF(S, E) = UAF(S, E) (i.e., PAF(S, E) = @)
2. (ENS) €GFs,(AFlusp(s.2), Uar(S, E)) = Es,(AF Ly, (5.1))
3. Es,(AF|y,p(s.E)) = EsT(AF | ysp(s.E))

assuming that these conditions hold for any S’ € sccancap(S) (notice that the
case sccancar(S) = 0, i.e. S is an initial strongly connected component, is cov-
ered in the following proof). Then the conclusion is immediate from the first and
second conditions.

As for the first condition (which is obvious when S is initial), we have to
prove that Yoo € UPap(S,E) if 8 — a and 8 ¢ S then E — (. Notice that
B € S with §" € sccancap(S), and § ¢ E since a ¢ Darp(S, E). Since by
the first condition applied to S’ Pap(S’,E) = 0, either 3 € Dap(S’, E) or
B € Uar(S',E). In the first case, E — [ by definition. In the second case,
since (ENS') € Es7(AF|y,.(s7,p)) by the second and third conditions and
B¢ (EnNS’), it holds that (ENS’) — 3, thus again E — .

Let us turn to the second condition. Since E € &g, (AF), according to Lemma
4(ENS)eGFs, (AF|lyp,p(s,p), Uar(S, E)), which by the above proof is equal
to GFs, (AF |y, .(s,E), Uar(S, E)), the latter being equal to &s, (AF |y, (s,5))
by Lemma 4. Now, since AF is SCC-symmetric AF|g is symmetric by defini-
tion, entailing by Lemma 2 that AF |y, (s z) is symmetric in turn. Notice that
this argumentation framework, as AF, is free of self-defeating arguments. Then,
since both 81 and S, are *-symmetric Es, (AF |y, .(s,p)) = s, (AFy,(s,p) =
MCF avyy, (s 0 sum, (ENS) € Es,(AF |y, (s,m)), which by Lemma 4 is
equal to GFs, (AF |y, .(s,p), Uar(S, E)).
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Finally, the third condition follows from Proposition 7, which states in partic-
ular that stable semantics is *-symmetric, entailing that Es7(AF|y,.(s,r) =

MC]:AFlUAF(s,E) =Es, (AFlUAF(S,E))-

The following result immediately follows from the previous theorem and
Proposition 7.

Corollary 1. For any argumentation framework AF which is SCC-symmetric
and free of self-defeating arguments, Epgr (AF) = Ecpa(AF) = Es7(AF), thus in
particular AF is coherent.

Theorem 1 and Corollary 1 generalize the results about agreement provided in
[4], where only symmetric argumentation frameworks are considered (which, as
already remarked, feature a limited expressivity since they prevent, for instance,
that an initial argument attacks any other argument). Moreover, agreement is
proved for a family of multiple-status SCC-recursive semantics, including the
most significant literature proposals we are aware of.

In [1] it was shown that a sufficient condition for agreement between preferred
and stable semantics is that the considered argumentation framework is limited
controversial. A finite argumentation framework is limited controversial if it does
not include any odd-length cycle. The classes of SCC-symmetric and limited
controversial argumentation frameworks are non-disjoint but distinct. In fact,
a SCC-symmetric argumentation framework may contain cycles of any length,
while a limited controversial argumentation framework may consist, for instance,
of an even-length cycle which is not symmetric.

It is interesting to note that the property of SCC-symmetry may be recovered
from assumptions on the attack relation which have been previously considered
in the literature and are not directly related to decomposition into SCCs. For in-
stance in [10] the case is considered where conflicts among arguments arise only
from contradicting conclusions, namely only the rebutting kind of defeat is al-
lowed while undercutting defeat is not (we follow here the terminology of [9], note
that the notion of rebutting defeat we adopt includes attack against subargu-
ments, that some authors call instead undercut). It is shown in Proposition 26 of
[10] that if only rebutting defeat is allowed, the defeat graph is SCC-symmetric
(such a graph is called r-type in [10]). From another perspective, in [11] it is
shown that when the attack relation results from a symmetric conflict relation
and a transitive preference relation between arguments the defeat graph satisfies
a property called strict acyclicity, which is actually equivalent to SCC-symmetry
through the characterization given in Proposition 8.

7 Conclusions

In this paper we have analyzed the issue of characterizing argumentation frame-
works where semantics agree, exploiting to this purpose the recently introduced
notion of SCC-recursiveness and the relevant existing results. Focusing on the
two traditional questions of agreement with grounded and stable semantics, some
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novel results have been obtained. As to the first question, the family of deter-
mined argumentation frameworks where any “reasonable” SCC-recursive seman-
tics agrees with grounded semantics has been identified. Adding the requirement
that the semantics is universally defined, a larger family of argumentation frame-
works where such an agreement is ensured has been characterized. As to the
second question, it has been shown that agreement is ensured, for a class of se-
mantics including stable, preferred and C' F'2 semantics, on the significant family
of SCC-symmetric argumentation frameworks. Among future work directions,
we mention in particular the definition and study of forms of agreement at the
level of justification states of arguments rather than of extensions.

Acknowledgments. The authors are indebted to the anonymous referees for
their helpful comments.
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Abstract. We present a dialectical proof procedure for computing skep-
tical preferred semantics in argumentation frameworks. The proof proce-
dure is based on the dispute derivation introduced for assumption-based
framework. We prove the soundness of the procedure for any argumen-
tation frameworks and the completeness for a general class of finitary
argumentation frameworks containing the class of finite argumentation
frameworks as a subclass.

1 Introduction

Argumentation is a form of reasoning, that could be viewed as a debate, in
which the participants present their arguments to establish, defend, or attack
certain propositions. An argument could be said to represent a consensus if it is
accepted by all participants. For example, in legal domain, different members of
a jury could have different views of the presented evidence (different preferred
extensions) but a guilty verdict is the result of a consensus among members. This
form of reasoning to find a consensus is characterized by the skeptical semantics
in argumentation. Skeptical semantics is also useful in AT systems for negotiation
and decision making [14-17, 21].

Several procedures for computation of skeptical preferred semantics have
been proposed, e.g the TPI procedure [19] for coherent argumentation frame-
work [4,10], and a dialectic procedure for finding ideal skeptical semantics, an
approximation of the skeptical preferred semantics [9]. In [4], an algorithm for
computing sceptical preferred semantics is proposed. Given an argument a, the
algorithm proceeds in two separate steps: It first checks that a is not attacked
by any admissible set. In the second step, it looks for an admissible set that can
not be extended into a bigger one containing a. Failure to find such a set implies
that a is included in each preferred extension. In other words, the algorithm
represents an indirect way of proving that a is skeptically preferred based on the
idea that failure to show that a is not skeptical preferred implies the contrary.
Though the idea is intuitively clear, no formal proof for the soundness of the
algorithm is given.
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In contrast, in this paper we present a direct dialectical proof procedure for
general skeptical preferred semantics. We prove the soundness of the procedure
for any argumentation frameworks and its completeness for a general class of
finitary argumentation frameworks containing the class of finite argumentation
frameworks as a subclass.

The structure of the paper is as follows. In section 2 we recall and intro-
duce notions of proof tree, proof derivation and proof procedure for credulous
preferred semantics. We introduce finitary argumentation frameworks and prove
soundness and completeness of credulous proof procedure for them. In section 3
we present proof theories and algorithm for general skeptical preferred semantics.

2 Credulous Acceptance

Following [7], we define an argumentation framework as a pair AF = (A, att),
where A is a set of arguments, and aft is a binary relation on A (att C A x A).
Given two arguments A and B, (A,B)€ att means A attacks B. A set S of argu-
ments attacks an argument A if there is an argument B in S such that B attacks
A. The definitions of conflict-free set, admissible set and preferred extension are
recalled from [7] as follows:

Let S be a set of arguments

1. Sis conflict-free iff there exist no arguments A, B in S such that A attacks
B

2. Argument A is acceptable with respect to S iff for each argument B if B
attacks A then S attacks B

3. Sis admissible iff S'is conflict-free and each argument in S'is acceptable with
respect to S

4. Sis a preferred extension of AF iff S is a maximal admissible set of AF

5. Argument A is credulously accepted iff A is contained in at least one pre-
ferred extension of AF

6. Argument A is skeptically accepted iff A is contained in every preferred
extensions of AF

To prove the credulous acceptance of an argument, a proof tree is constructed.
A proof tree can be viewed as a specification of a debate between a proponent
and an opponent, where an initial argument is put forward by the proponent,
and then the opponent and proponent alternatively present their arguments to
attack the arguments of the other. The proponent wins the dispute if he can
attack every attacking argument of the opponent. We recall the definition of
proof tree from [8, 9]:

Definition 1. A proof tree for an argument A with respect to an argument
framework AF is defined as following:

1. Nodes are labeled by arguments and the root is labeled by A. The argument
labeling a child node attacks the argument labeling its parent.
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o

There are two types of nodes: proponent nodes and opponent nodes

FEach opponent node has exactly one child that is a proponent node

4. For each proponent node N labeled by an argument B, N has as many children
nodes as the number of arguments attacking B, and for every argument C
attacking B, there is a child node of N, which is an opponent node labeled by
C.

co

Definition 2. A proof tree is said to be admissible if there is no argument that
labels both a proponent node and an opponent node.

Z

Fig. 1.

Ezample 1. The argumentation framework AF=(A,att) is depicted on Fig. 1,
where: A={A,G,E,F} and att = {(G, A),(E, G),(F, G),(E,F),(F, E)}.
A proof tree for argument A is depicted in Fig. 2 where:

— argument A labels the root

— arguments A, E label proponent nodes

— arguments G, F label opponent nodes

— this tree is admissible, since there is no argument labeling both opponent
and proponent nodes.

The following lemma is similar to a theorem from [8] and proved in the
extended version of [9)].

Lemma 1.
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1. Let T be an admissible proof tree for A and S the set of all arguments labeling
proponent nodes of T. Then S is admissible.

2. Let S be an admissible set of arguments and A in S. Then there exists an
admissible proof tree T for A such that the set of arguments labeling the
proponent nodes in T is a subset of S

A proof tree is often infinite as example 1 shows. A proof derivation is a
finite top-down construction of an (possibly infinite) admissible proof tree by a
sequence of tuples < P, O, SP, SO >, where P is a set of arguments, put forward
by the proponent but which have not been attacked yet, and O is a set of
arguments put forward by the opponent to attack the proponent’s arguments,
against which the proponent doesn’t have counter-attack until now. SP is the
set of arguments presented by proponent, and SO is the set of arguments put
forward by the opponent, and already counter-attacked by the proponent. Our
proof derivation is defined in a spirit like the dispute derivation in [8] and the
dialectical games in [4]. In each step of a proof derivation building process only
one argument is selected. Let B be a selected argument and let Op be the set
of all arguments attacking B. In the first case if B labeling a proponent node,
then Op consists of all arguments labeling opponent child nodes of the node
labeled by B. In the second case if B labeling an opponent node, then Op is a
set of arguments, from which one argument is chose to label a proponent child
node of the node labeled by B. Hence there exists no proof derivation if there
is one argument in Op labeling a proponent node in the first case, or there is
one argument in Op labeling an opponent node or Og = () in the second case,
because our proof tree is not admisible.

Definition 3. A proof derivation D for an argument A is a sequence < Py, Oy,
SPy, SOy > ... < P,,0,,SP,, SO, > where:

1. P;,0;,5P;, and SO; are argument sets
2. Py=SPy={A}, SOy =00=0, B, =0, =0
3. Let B be the argument selected at step i, and let Op be the set consisting of
all arguments attacking B.
(a) If B € P; and Op N SP; =0 then
Py = P\ {B}
0,41 =0,U(0Op\ SO;)
SP 1= SP
S0;11 = SO;
(b) If B € O; then select an argument C € Op such that C ¢ (SO; U O;)
Py = Piu{C} if C & SP;, otherwise P11 = P;
O;41 = 0;\ B where 8 ={B’ | C attacks B'}
SH+1 =SSP, U {C}
SOi+1 =S50, U (ﬁ N Ol) (Note that Be ﬁ N Ol)

Ezample 2. Let argumentation framework AF=(A,att), where A = {A} and
att=0 then a sequence < {A}, 0, {A},0 >< 0,0,{A}, 0 > is the proof derivation
for A.
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Ezample 3. (Continue example 1) A proof derivation for A is presented in fol-
lowing table, where the notation X means that X is selected in step 3 of definition
3.

i|P;|O;| SP; | SO; comment

OJA[O] A | 0 04={G} according to step3.a

1H0|G| A | 0 | Oc={E,F}, E is selected form Og, 3={G,F} according to step3.b
2|E| 0 |A, E| G Op={F} according to step3.a

3|0 |F|A, E| G |Or={E}, E is selected and E€ SP;, 3={G,F} according to step3.b
41010 |A E|G, F

Table 1. The construction of a proof derivation for A

Theorem 1.

1. Suppose < Py, 04, SPy, SO > ... < P,,0,,SP,,50, > is a proof deriva-
tion for A. Then SP, is admissible and A € SP,.

2. Let AF be a finite argumentation framework, and let A be an argument of
AF. If A belongs to an admissible set then there is a proof derivation for A.

Consider the infinite argumentation framework in Fig. 3. It is not diffi-
cult to see that there is an unique preferred extension consisting of arguments
Ag, As, ..., Aoy, ... Tt is obvious that for each argument As, there is a proof
derivation for As,. The reason for the existence of a proof derivation for As,
is that the argumentation framework consisting of the arguments from which
there is a directed path to As, is finite. In the following, we introduce the class
of finitary argumentation frameworks generalizing this property.

lll-{—.lﬂ'ln {—lll{—Alﬂ:—AD

Fig. 3.

Let AF=(A, att) and A € A.' The environment of A denoted by ENVy is
the set of all arguments B in A such that there is a directed path from B to A in
the graph of AF (i.e.there is a sequence By, Bs..., B,, such that B; attacks B; 1
and B=B; and A=B,,). Let AF 4 = (ENVy4,atty), where att, is the restriction
of att to ENVy.

! For purpose of reference, we often identify AF with the graph representing it.
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Definition 4. An argumentation framework is said to be finitary if for each
argument A, AF 4 is finite.

Lemma 2.

1. Let S be an admissible set of arqguments in AF. Then SN ENVy is also
admissible in both AF and AF4.

2. Let S C ENVy be an admissible set in AF4. Then S is also admissible in
AF.

From the lemma 2, it is obvious that

Corollary 1. A is credulously accepted in AF iff A is credulously accepted in
AFy,.

The soundness and completeness of proof derivation for finitary argumen-
tation frameworks follows immediately from the above corollary and theorem
1.

Theorem 2. Let AF be a finitary argumentation framework, and A be an ar-
gument of AF. A belongs to an admissible set iff there is a proof derivation for

A.

3 Skeptical Acceptance

An argumentation framework AF is said to be coherent if each preferred exten-
sion of AF is stable. In other words, coherence implies the coincidence between
stable and preferred semantics. TPI procedures are based on the following propo-
sition [4,11,19] to check whether a given argument A is skeptically accepted in
coherent argumentation frameworks: An argument A is skeptically accepted in a
coherent argumentation frameworks if A is credulously accepted and there exists
no admissible set attacking A.

The following example shows that TPI procedures can not be used for an-
swering whether a given argument belongs to all preferred extensions in general
cases.

Ezample 4. The argumentation framework AF=(A,att) is depicted in Fig. 4,
where A = {A,B,G,E,F} and att = {(G,A),(A,B),(B,G),(E,G),(F,.E),(E,F)}

It is clear that {A,E} and {F} are the only preferred extensions, and argument
A is not skeptically accepted, although A is credulously accepted and there exist
no admissible set attacking A.

In this chapter we introduce a proof procedure for skeptical preferred seman-
tics in general cases, which is based on the following simple lemma.

Lemma 3. Let S be an admissible set of arguments and F be a preferred set of
arguments, and S is not a subset of E. Then E attacks S (and S also attacks E).
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Fig. 4.

Definition 5. Let A be an argument, and let B be a set of admissible sets such
that each element of B contains A.

1. If for each preferred extension E such that A€ E, there exists an admissible
set S € B such that S C E then B is called a base of A.

2. A base B of A is said to be complete if for each preferred extension E, there
is a set S€ B such that S C E

Lemma 4. (Skeptical Lemma) An argument A is sceptically accepted iff there
exist a complete base B of A.

The skeptical lemma suggests that a proof procedure for showing that A is
skeptically accepted, could proceed in two steps:

1. Generate a base B of A
2. Verify that B is a complete base of A

3.1 Generating a Base of A

We define a BG2-derivation for an argument A by constructing all possible proof
derivations for A.

Definition 6. BG-derivation for A is a sequence Ty, Ty, ..., Ty, where:

T; is a set of tuples of the form < P,O,SP, SO >

To={< {A},0,{A},0 >}

Each tuple t of T, has the form < (0,0, SP,SO >

At each step T; one tuple t; =< P;,0;,SP;,SO; > is selected from T; and

one argument B is selected from P; or O;.

(a) If B is selected from P;, then: Ty = (T; \ {t;})U{t’}, where t’ is com-
puted from t; as in definition 3 step 3.a.

AN

2 BG stands for ”Base Generation”
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(b) If B is selected from O; and let Op be the set consisting of all argu-
ments attacking B, then: Tip1 = (T; \{t;}) U{t' | t’ is computed from
t; as in definition 3 step 3.b for some argument C € Op such that C
Z (SO; U 0;)}

It is not difficult to see the following:

Theorem 3.

1. Let Ty, Th, ..., Ty, be a BG-derivation for A. Let B ={SP |< 0,0,SP, SO >¢
T,}. Then B is a base of A.
2. Let AF be finitary. Then there exists a BG-derivation for A.

3.2 Verifying the Completion of a Base

Before giving the procedure for verifying the completeness of a base, we need a
few technical results.

Lemma 5. Let B be a base of argument A. B is a complete base of A iff there
exist no preferred extension E attacking every element of B.

A proof derivation for a given argument A is constructed to find an admis-
sible set of arguments defending A. However in some cases we want to answer
the question ”can the proponent admissibly attack arguments proposed by the
opponent”. A notion of a proof derivation D against S is introduced for this
purpose.

Definition 7. A proof derivation D against a set S of arguments is defined as
a sequence < Py, 0o, SPy, SO > ... < P,,0,,SP,, SO, > where:

1. P;,0;,SP;,and SO; are arqgument sets

2. Po=SPy=0,00=5,500=0,P, =0, =0

3. < Piy1,0i41,SP;iy1,50;11 > is constructed from < P;, O;, SP;, SO; > as in
definition 3 step 3.

Lemma 6. For finitary argumentation frameworks, there exists a proof deriva-
tion D against a set S iff there exist an admissible set S’ attacking every element
in S.

Let A be an argument and B = {S1,...,S,} where S; is an admissible set
containing A, and let CB={S | Je € S1 x Sz x ... x S, and S is the set of ar-
guments appearing in e}, and let XB = {S | S € CB and S is minimal in CB wrt
set inclusion}

Lemma 7. For finitary argumentation frameworks, let B be a base of A. B is a
complete base of A iff for each S€ XB there exist no proof derivation D against
S.
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Based on lemma 7 we define now a CB3-verification for a base B of an argu-
ment A to verify the completeness condition of B.

Definition 8. Let B be a finite set. A CB-verification for B is a sequence Jg, J1...Jn
where

1. J; is a set of tuples of the form < P,O,SP, S0 >

2. Jo={<0,0,0,0 >| O € XB}

3. J,=0

4. Jgy1 1s obtained from Jy like Tj 41 is obtained from Ty in definition 6.

Theorem 4. Let AF be a finitary framework and B be a finite base of argument
A. There exists a CB-verification for B iff B is a complete base of A.

3.3 Proof Procedure for Skeptical Acceptance

We define a S.A*-derivation for A as a combination of a BG-derivation for A and
a CB-verification for the base created by the BG-derivation.

Definition 9. Let A be an argument. An SA-derivation for A is a sequence
To, T4, ..., Ty, Jo, J1...dm where:

1. The sequence Ty, Ty, ..., Ty is a BG-derivation for A
2. The sequence Jo, J1...Jm is a CB-verfication for B, where B={SP |< 0,0,SP,SO >€ T,}

The following theorem follows directly from theorems 3, 4

Theorem 5. Let AF be a finitary argumentation framework and A be an argu-
ment in AF. A is sceptically accepted iff there exists a SA-derivation for A.

Ezample 5. (Continue example 1) Our proof procedure shows that A is skep-
tically accepted (see table 2). The notion fails means ’fails to build a proof
derivation’.

Ezample 6. (Continue example 4) Our proof procedure shows that A is not
skeptically acceptedm(see table 3), something that can not be done using TPI-
procedures.

From table 3 we see that there exist no S.A-derivation for A. Hence A is not
sceptically accepted.

3 CB stands for Complete Base
4 S A stands for Skeptical Acceptance
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BG-derivation for A CB-verification for B
P|O| SP |SO comment P| O [SP|SO comment
To|lAlO| A |0 stepd.a, Oa={G} Jo|O| A 0|0 stepd.b, Oa={G}
T|0|G| A | 0] stepd.b, Oc={E,F} PDIE,F| 0|0
T,E|0]|A, E] G stepd.a, Op={F} J1G] 0 |G| A stepd.a, Oc={E,F}
F|0[F, Al G OIEF| 0|0
T5|0|F|A, E| G | stepd.b, OpnN SP={E} Jo|0|E,F| G | A [stepd.b OgNO={F}, fails
F|0[F, A| G OIEF| 0|0
T.|0|0]A, E| G J3|0|E,F| 0 | 0 [stepd.b OgNO={E}, fails
F|0|A F| G stepd.a Op={E} Ju Empty
5|00 |EA| G
O|E|F,A| G| stepd.b OgnNSP={F}
16|00 |EA| G |[B={{E,A}, {F,A}} and
0|0 F,A| G XB ={{A} {E,F}}
Table 2. Construction of a BG for A and CB-verification for B
P|O| SP | SO comment P| O |SP|SO comment
TolA[O] A 0 step3.a, O4a={G} J|0] E [0 ] 0 step3.b, Og={F}
0G| A 0 step3.b, O¢={E,B} 0 A J0O|0
T|E|0|A, E| G step3.a, Og={F} J|E| © |F|E| step3.a, Opr=SO={E}
B|0 A, B| G 0 A 0|0
T3|0|E[A, E[ G |step3.b, Or={E}, {E}in SP J2|0] 0 |F|E
B|0|A, B| G 0 AJ0O]0O step3.b O4={G}
T4|0[0|A, E|G, F J5|0] 0 |F|E
B[O |A, B| G |[step3.a Opn SP={A} fails Gl 0 |G|A step3.a O¢={E, B}
T5|0|0|A, E|G, F B={{A, E}} and Ja|0] 0 |F|E
XB={{A}, {E}} 0B, E| G| A [step3.b OpNSO={A} fails
J5|0] 0 |F|E not empty
Table 3. Construction of the SA-derivation for A
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4 Conclusion and Discussions

It is a well-known result from [11] that skeptical acceptance is Hép )_complete.
Therefore in worst cases, computing a SA derivation is not polynomial.

Consider the argumentation framework in Fig. 5. Using the BG-derivation,
we would be able to generate a base B = {{A,E,C},{A,E,D},{A,F,C},{AFD}}.
Looking at the subgraph consisting of only E,F, we could realize that if there is
any attack against E or F, it should come from within this subgraph. Similarly
for C,D. Hence, it would be enough if in the CB-verification, we consider only
derivations againsts {A},{E,F},{C,D}. Structuring argumentation frameworks
into strongly connected component like in [1] would facilitate optimizing the
S A-derivations in this direction.
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A Appendix

A.1 Proof of lemma 2

1. Let R=SNENV, . It is obvious that R is conflict-free. Let B be an argument
attacking R. It is obvious that B € ENV4. Hence there is C € S such that
C attacks B. Hence C € ENVy4. Hence C € R. Hence R is admissible both
wrt AF and AF 4.

2. It is clear that S is conflict-free in AF. Let B be an argument attacks S in
AF. Hence B € ENV,4. Hence S attacks B in AF4. Hence S attacks B in
AF.



60 P.M. Dung and P.M. Thang

A.2 Proof of lemma 3

It is clear that if E attacks S then S also attacks E and vice versa. Assume
that S, E do not attack each other. Hence C=S U E is conflict-free. For each
argument A in C if there is an argument B attacking A then B is attacked by
S or by E since A is in S or E. So B is attacked by C. Hence each argument in
C is acceptable wrt C. Then C is admissible and contains E and there exists an
argument G in C which is not in E because S is not subset of E. Contradiction
since E is preferred. Hence S attacks E and E also attacks S.

A.3 Proof of lemma 4

1. Only if part
Let B be the set of all preferred extensions, then B is a complete base of A.
2. If part
Let B be a complete base of A, then for each preferred extension E there
exists a set S € B such that S C F. Since A € S for each S € B then A is
contained in each preferred extension F. Hence A is sceptically accepted.

A.4 Proof of lemma 5

1. Only if part
Let B be a complete base of A, and E be an arbitrary preferred extension.
Then there is an admissible set S of B such that SC E . Hence F does not
attack S. Hence F does not attack every element of B.

2. If part
Assume B is not a complete base of A. Then there exists a preferred extension
E such that E2 S for every element S of B. Hence E attacks every element
S of B (lemma 3). Contradiction.

A.5 Proof of lemma 6

Let AF=(A,att) be the argumentation framework we are working in. Let AF’=(A’,att’)
be another argumentation framework such that A'= AU {T}, where T is a new
argument not in A, att’=attU {(C, T) | C € S}. Then each proof derivation D
against S can be transferred into a proof derivation D’ for T by adding the tuple
<{T},0,{T},0 > to the beginning of D and add T to the SP component in
each tuple in D

1. Only if part
Since there is a proof derivation D against a set S in AF, then there is a
proof derivation D’ for T in AF’. Hence there exists an admissible set R
in AF’ containing T. Since T is attacked by every element of S, then each
element of S is attacked by R. Let S’=R \ {T}. Hence each element of S
is attacked by S’. S’ is conflict-free, because R is an admissible set. Since
S’ C A, every argument attacking S’ belongs to A. For each argument B
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attacking S’ there is an argument B’ € S’ such that (B’,B)€ att, because
att’=att U {(C, T) | C € S). Hence S’ is an admissible set wrt AF. So there
exists an admissible set attacking every element in S.
2. If part

Let R=S"U {T}. T is not in A, then T is not in S’. Furthermore S’ is
admissible, and set S’ defends T, then R is admissible. Hence there is a
proof derivation D’ for T. Hence there is a proof derivation D against a set
S by dropping the first tuple from D’.

A.6 Proof of lemma 7

1. Only if part
Let E be a preferred extension. Since B is a complete base for A, then there
is a set S; € B such that S; C E. That means for each S € X'B there is an
argument C € (5 NS;) such that E doesn’t attack C. Hence for each S € XB
there exist no preferred extension attacking every element in S. Then for
each § € X'B there exists no admissible set attacking every element in S.
Hence there exists no proof derivation D against S (lemma 6).

2. If part
Assume the contradiction, that means B is not complete base of A. Hence
there exists a preferred extension E attacking every element S; of B (lemma
5). Hence for each S; there is an argument C; in S; such that F attacks C;.
Hence E attacks every element in S={C1, Cs...C,,} € XB. Hence there exists
proof derivation D against S (lemma 6). Contradiction.

A.7 Proof of theorem 4

Let XB = {O1,...,0,}. Let AF=(A,att). Let AF'=(A',att’) and A= AU R
where R={A’,Q,G1,...,Gn} and AN R=0, att’=att U{(C1,G1) | C1 € O1}U ...
U{(Chn,Gpn) | Cp € O} U{(G1,Q), ..., (Gr,Q),(Q, A")} (figure 6). A CB-verification
D for B can be transferred to a proof derivation D’ for A’ by

adding a sequence Ty, 11,715 to the beginning of D, and

TO =< {Al}v ®7 {A,}v @ >

Tl =< (2)7 {Q}a {A/}7® >

Ty = {< {G:},0,{G;, A'},{Q} >| i € [L,n]}

T5 = {< 0,0;, {GiaA/}a {Q} >| i€ [1,71]}.

It is not difficult to see that T3 corresponds to Jy of D in the sense that the
first two components of the tuples in T3 coincide with the first two components
of the tuples in D. D could be easily modified to have T3 as its first element since

Gi, A’,@Q do not have any effects on the status of the elements in A. Abusing
the notation, we still identify T5 and Jy.
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Only if part

There is a CB-verification for B wrt AF. Hence there exists no proof deriva-
tion for A’ in AF’. Hence there exists no admissible set containing one of
G1,...,Gy. That means Vi there is no admissible set containing G;. Therefore
Vi there is no admissible set attacks each argument in O;. Hence there is no
admissible set attacking each element in B. Hence B is complete.

If part

B is complete then there is no admissible set attacking every S; € B wrt
AF. So there is no admissible set attacking every element of O; for each
O; € XB. We prove that there is no proof derivation for A’ wrt AF’. Assume
contradiction, that means there is an admissible set S containing A’. Let
S’=85\ {A’}. Since S is admissible and A’ doesn’t defend any argument,
then S’is admissible. G; defends A’, then at least one G; € S’. Set O; attacks
G, then every element of O; is attacked by S’ in AF’. Let §"=5"\ {G;}.
Since S’ is admissible and G; does not attack any argument in S’, then §”
is admissible, and every element of O; is attacked by S” in AF”. Since R N
S”=0 and S” is not attacked by R and S” is admissible, then every element
of O; is attacked by S” in AF. Contradiction. Hence there exists no proof
derivation for A’. Hence there is a CB-verification for 5.
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Abstract. The paradigm of argumentation has been used in the literature to as-
sigh meaning to knowledge bases in general, and logic programs in pearticu
With this paradigm, rules of logic program are viewed as encoding angisno¢
an agent, and the meaning of the program is determined by those arguthsen
somehow (depending on the specific semantics) can defend themisetmee
attacks of others arguments, named acceptable arguments. In grexaduwe
presented an argumentation based declarative semantics allowingrmsasaent
reasoning and also dealing with sets of logic programs that argue apdrete®
among each other. In this paper we focus on the properties of this Sesian
what regards paraconsistency and propose a procedure fongmmv argument
according to that semantics.

1 Introduction

In logic programming, several ways to formalise arguméniabased semantics have
been studied for logic programs. Intuitively, argumemtatbased semantics treat the
evaluation of a logic program as an argumentation processaigoalG is true if at
least one argument fa& cannot be successfully attacked. The ability to view logic
programming as a hon-monotonic knowledge representaioguiage, in equal stand-
ing with other non-monotonic logics, brought to light thepiontance of defining clear
declarative semantics for logic programs, for which proafgedures (and attending
implementations) are then defined (e.qg. [8, 9, 15, 2, 20,8,2,,114, 10]).

In [5] we proposed an argumentation based semantics forofdtgic programs
that are able to cooperate and argue with each other. Inlit @agram relies on a set
of other programs with which it has to agree in order to aceepargument, and a set
of programs with which it can cooperate to build argumentssi@es this distributed
nature, the semantics in [5] also allows for paraconsidtamnts of argumentation. In
fact, it was also a goal of that work to be able to deal with ralljuinconsistent, and
even inconsistent, knowledge bases. Moreover, when irepoesof contradiction we

* The work was partially supported by the Brazilian CAPES, and by the Earm@ommission
within the 6th Framework Programme project REWERSE, number 506779
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wanted to obtain ways of agent reasoning, ranging from stersi (in which inconsis-
tencies lead to no result) to paraconsistent. For achighisgwe considered strong and
weak arguments.

The paraconsistency in the argumentation also yield a reéné of the possible
status of arguments: besides the justified, overruled afiehsliéle arguments as in
[16], justified arguments may now be contradictory, baseccamtradiction or non-
contradictory. Moreover, in some applications it might b&resting to change easily
from a paraconsistent to a consistent way of reasoning ¢erverse).

In this paper we focus on the properties of that semanticshatwegards para-
consistency which are interesting by themselves, and graignt from its distributed
nature. With this purpose, we restrict our attention to frextal case of the semantics in
[5], where only a single logic programs is in the set of progsaMoreover, we provide
a notion of proof for an argument for that semantics in thassl

In the next section we present a version of the proposed rd¢igla semantics sim-
plified for the case of a single program, study some of its rewgtificant properties
regarding paraconsistency, and illustrate it in one exanme then define the proof
method for it, and end with some conclusions. Due to lack afcepall proofs have
been removed from this version of the paper, and they canurelfm a longer version
available as a technical report from the first author.

2 Paraconsistent Argumentation Semantics

As motivated in the introduction, in our framework [5] thedwledge base of an agent
is modelled by a logic program. More precisely, we &s¢ended Logic Program with
denials (ELPd), itself an extension of Extended Logic Programs [fbt]modelling
the knowledge bases. Besides default and explicit nega®unosual in extended logic
programs, we allow a program to have denials of the form

L« Ly,...,L,not Liyq,...,not L, (0<1<mn)

where each of thd.;s is an objective literal (i.e. an atomh in the language of the
program, or an explicitly negated atord). In other words, denial are simply rules
where the head is the special, reserved, symbol

An argument for some objective literalis acomplete well-defined sequeram-
cluding L over aset of rulesof the knowledge bas&'b. By completehere we mean
that all rules required for concluding are in the sequence. Byell-defined sequence
we mean a (minimal) sequence of rules concludings follows: the head of the last
rule in the sequence is an objective litefalfurthermore, if some atoni’ (ignoring
default literals) appears in the body of a rule then theretrhes rule before this one
with L’ in the head; moreover, the sequence must not be circularrdpdise rules that
are strictly necessary.

Definition 1 (Complete Well-defined Sequence).et P be an ELPd, and. an objec-
tive literal in the language oP. A well-defined sequender L over a set of rules' is
a finite sequencp; . . .;r,,] of rulesr; from .S of the formL; « Body; such that

— L is the head of the rule,,,, and
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— an objective literall’ is the head of a rule; (1 < ¢ < m) only if L’ is not in the
body of anyr;, (1 < k < i) and L’ is in the body of some rule; (i < j < m).

We say that a well-defined sequence Kois completeif for each objective literal
L' in the body of the rules; (1 < i < m) there is a rulery, (k < ¢) such thatl’ is the
head ofry,.

By theconclusion®f a sequence we mean the set of all objective literals iné¢ag h
of some rule of the sequence, and by élssumptionsve mean the set of all default
literal in bodies.

For dealing with consistent and paraconsistent reasowiadgefine strong and weak
arguments, based on strong and weak sets of rules, the foeimgr simply the rules in
the Kb . A weak set of rulesesults from adding to all rule bodies the default negation
of the head’s complement, and of thus making the rules weaker (more susceptible
to being contradicted/attacked). Intuitively, if thereaigpotential inconsistency, be it
by proving the explicit complement of a rules head or by pngvi. then the weak
argument is attacked, whereas the strong is not.

Definition 2 (Strong and Weak Arguments).Let P be an ELPd, and. a literal in its
language. Let theveak set of rules oP be defined as

% ={ L < Body,not =L,not L | L« Body € P}

A strong(resp.weak argumentof P for L, A; (resp.AY), is a complete well-
defined sequence fdrover P (resp.R%).

Let A} and A5 be two arguments aP. AY is the wealargument correspondirig
A3, and vice-verse, if both use exactly the same rules of ttggnadi program P (the
former by having ruleg?3 and the latter fromP alone).

We say thatd, is anargumenbf P for L if it is either a strong argument or a weak
one of P for L. We also say thatl¥ is ak-argument ofP for L (wherek is eithers, for
strong arguments, ow, for weak ones).

After defining how arguments are built, we now move on to deirthe attacking
relation between these arguments. By using two kinds ofraemtis, strong and weak
arguments as just exposed, we may rely on a single kind aflattadeed the different
kinds of attacks usually considered in argumentation stinsafor extended logic pro-
grams,undercutsandrebutsas in [15], can be captured by a single notion of attack. If
an argument for an objective literal (denoted byA;) has a default negatiomot L’
in it, any argument foi.” attacks (by undercut}l;. The rebut attacking relation states
that an argument also attacks another one when both argsimave complementary
conclusions (i.e. one concludésand the other-L). It is easy to see that with strong
and weak argumentsgbut can be reduced to undercuébutting reduces to undercut
attacks to weak arguments.

In our definition of attacks care must be taken in what regargsments forL.
By simply using undercut attacks any argument foattacks every weak argument.
However, it does not make sense to attack arguments fortogditerals if they do not
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lead tofalsity. Informally, an objectivel literal leads tdfalsityif there is an argument
Ay, such thatd | is built based on such an argument, e.g.

A%+ A7 4+ [L « L,not L/]

We only consider objective literals that are in the body &f thle for L because these
literals immediately lead téalsity. We assume that the involvement of other objective
literals are not as strong as those in the body of the derfiaken objective literals are
directly conflicting withA , if the following holds:

Definition 3 (Directly Conflictwith A, ).Let A, be anargumentfot, ‘|l «— Body’
be theruleind, and{L,..., L,} be the set of all objective literals iBody. The set
of objective literaldirectly conflicting withA | is

DC(AL) = {LYU{Ly,...,Ly}.

Definition 4 (Attack). Let P be an ELPd. An argumem; of P for L attacksan
argumentA, of P for L' iff

— L is the symboll, not L belong to the body of some rule i, and L' €
DC(AL); or

— L is an objective literal different from_, andnot L belongs to the body of some
rulein Ay, .

Since attacking arguments can in turn be attacked by otlgeinants, comparing
arguments is not enough to determine their acceptability. whe set of overall argu-
ments. What is also required is a definition that determinesatiteptable arguments
on the basis of all the ways in which they interact, by propgsarguments and so
opposing them. A subsét of proposed arguments d@f is acceptable only if the set
of all arguments of” does not have some valid opposing argument attacking the pro
posed arguments if. As in [8, 15], we demand acceptable sets to contain all such
arguments. Two questions remain open: how to obtain opg@stuments and, among
these, which are valid?

An opposing argument for a proposed argument which makessngption, say
not L, is simply an argument for a conclusidn For an opposing argumedrt® to be
valid for attacking a proposed argumetit in S, S should not have another argument
that, in turn, attacksA® (i.e. another argument that reinstdte’). In this case, we
say thatS cannot defend itself against®. This motivation points to a definition of
acceptable sets of argumerftsin P such as a sef is acceptabléf it can attack all
opposing arguments. So, we can say that a proposed arguthéntcceptable w.r.t. a
setS of acceptable arguments if and only if each opposing argumeérmttackingA?
is (counter-)attacked by an argumentin

3 We further assume they can be detected in a process of “belief revigign3]. However, a
discussion of this issue is beyond the scope of this proposal.

4 The key observation is that an argumehthat is attacked by another argumé®tcan only
be acceptable if it iseinstatedby a third argumenc, i.e by an acceptable argumefitthat
attacksB.
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However, it is still necessary to determine how strong amguis and weak argu-
ments should interact w.r.t. such a $ebf arguments. Based on the idea of reinstate-
ment, both attacked and counter-attacking argumentsa@hbeldf the same kind. For in-
stance, if a proposing argument is strong (resp. weak) thery eounter-attack against
its opposing argument should be strong (resp. weak). A aimiason can be applied
for opposing arguments. Therefore, proposed (resp. opgparguments should be of
the same kind.

In the remainder of this paper we will use the notatiando to distinguish the pro-
posed argument from the opponent one,p.@esp.o) is a (strong or weak) proposed
(resp. opponent) argument. Since there are four posmbilif interaction between a
proposed argumen#{?, and an opposing argument?, the definition of arguments’ ac-
ceptability (and the corresponding characteristic fuorgtis generalised by parametris-
ing the possible kinds of arguments, viz. strong argumemdsiageak arguments.

Definition 5 (Acceptable Argument). Let P be an ELPd,p (resp. o) be the kind
(strong or weak) of the proposed (resp. opposing) argumaénys? (P) (Args°(P))

be the set of all arguments iR of kind p (resp.o) , andS C ArgsP(P). An argu-
mentA; € Args?(P) is anacceptablg, argumentw.r.t. S iff each argumentd;, €

Args®(P) attacking Ay, is attacked by an argument;» € S.

Note that this proposal is in accordance with the ‘Compaosél Principle’ of [20]:
“If an argumentS A is a sub-argument of argumeAt andS A is not acceptable w.r.t.
a set of arguments, then A is also not acceptable w.r$”. We now formalise the
concept of acceptable arguments with a fixpoint charatiefisctionp o of P:

Definition 6 (Characteristic Function). Let P be an ELPd, ang (resp.o) be the kind
(strong or weak) of the proposed (resp. opposing) argumeft and S C Args?(P).
Thecharacteristic functiop o of P and overS is:

F}'lgf) . 2A7"gs(P) N 2Args(P)
F2O(S) = {Arg € Args(P) | Arg is acceptable, , W.r.t. S}.

It can be proven that this function is monotonic, and so itéésast fixpoint that
can be obtained iteratively as usual:

Proposition 1. Define for anyP the following transfinite sequence of sets of argu-
ments:

— 50 =
— Qi+l — F]Z;:O<Si)
- 8% = (J S« for limit ordinal &
a<d
Given thatF%° is monotonic, there must exist a small@stuch thatS* is a fixpoint of
FP°, andS* = [ fp(FE°).

Note thatlfp(F}°) is well-behaved, i.e. arguments in it ateceptable, , W.I.t.
the set of all argument aP. By definition [ fp(F%?) is minimal, which guarantees
that it does not contain any argument of which acceptancetisaguired. Moreover,
when F'2? is finitary the iterative process above is guaranteed toirer@ after an
enumerable number of steps.
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Proposition 2. F2° is finitary if each argument irf is attacked by at most a finite
number of arguments if.

By knowing the set of all acceptablg arguments of”, we can split all arguments
from Args(P) into three classes: justified arguments, overruled argtsreerd defen-
sible arguments. Our definition of overruled is differerdnfr [15]'s proposal. In its
proposal, the restriction applies that overruled argusieannot be also justified and so
[15]'s argumentation semantics is always consistent.eSive aim to obtain a paracon-
sistent way of reasoning, the status of an argument is defiaéallows:

Definition 7 (Justified, Overruled or Defensible Argument). Let P be an ELPdp
(resp.o) be the kind (strong or weak) of an argumentigfand F'5° be the character-
istic functionp o of P. An argument? is

— justified;? iffitisin I fp(Fp°)
— overruled;’ iff the A9 corresponding tod?, is attacked by a justifide’ argument
— defensibl&? iff it is neither a justified;” nor an overruled;” argument

We denote théfp(Fp°) by Just Argsh°.

We may also iteratively obtain overruled arguments basethemgreatest fixpoint
of the characteristic function which, by monotonicity o&tbharacteristic function is
guaranteed to exist and can also be obtained iterativelgwed.un fact:

Lemma 1. gfp(Fp*) = {Ag, : =(3A], € Ifp(Fp°) | A}, attacksAg )}

Lemma 2. [fp(Fp°) = {A] @ —~(3A%, € gfp(Fp") | A2, attacksA] )}
Then, the following holds:

Theorem 1. A} is overruled;” iff the A9 corresponding tod’ is noting fp(Fp").

Due to space limitations we do not detail here general ptgsewhen some other
weaker restriction are imposed. Instead, we discuss soopegies ofJust Argsh’
and comparisons. Singe(resp.o) denote the kind of a proposed (resp. an opposing)
argument, i.e. strong argument or weak argument, assurhe {nasp.o) in {s,w}.
Both JustArgsp™ and JustArgsy® are both conflict-freeand non-contradictofy
Thus, every argument in botfustArgsy™ and JustArgsy'® is non-contradictory,
i.e. it is not related to a contradiction at all. Furthermaf¢"* has more defensible
arguments thai',"*. Therefore, we obtain a consistent way of reasoning grif we
apply 5" over Args(P).

In contrast,JustArgs3® andJust Args3" may be contradictory. However, to eval-
uate the acceptability of available arguments without gg the presence dal-
sity or both arguments fof. and—L, the proposed arguments should be strong ones,
and every opposing argument is a weak argument. Siticé respects the ‘Coherence
Principle’ of [13, 1], i.e. given that every opposing argurhis a weak one, it can be

5 A setS of arguments is conflict-free if there is no argumensSiattacking an argument if.
® A setS of arguments is non-contradictory if neither an argumentisity nor both arguments
for L and—L areinS.
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attacked by any proposed argument for its explicit negafidrerefore, we obtain a
paraconsistent way of reasoning if we appl§" over Args(P).

Moreover, a justifiefl” argument of an agent can be related to a contradiction with
respect toJustArgs3" as follows. We first define that an argument that reinstate an-
other argument is itsounter-attack

Definition 8 (Counter-Attack). Let P be an ELPd,S a set of arguments frorf?, A,
be an argument it$, and Ay, be an argument oP attackingAy . A counter-attackor
Ay, againstA;, is an argument irf that attacksA;,. CA4, (AL, S) is the set of all
counter-attacks ford ;, againstA;. in S

Definition 9 (Relation to a Contradiction). Let P be an ELPd. A justified” argu-
mentAs; is

— contradictory” if JustArgsy" is contradictory w.r.t.L, or there exists a contra-
dictoryp" argument4d$ andL € DC(A%); or

— based-on-contradictigsf’ if for all AY, attacking A3 there exists a contradic-
torys" or based-on-contradictidy” argument inC A4, (AY,, JustArgsyp"), or
there exists arl’ in the head of some rule i3, different fromZ and L, such that
JustArgsy" is contradictory w.r.t.L’; or

— non-contradictory" iff it is neither contradictory;" nor it is based-on-contra-
diction};".

Proposition 3. A justified;” argumentA? is non-contradictor§" if for no headLZ’ of
arulein A3, JustArgsp" is contradictory w.rt.L’, and every counter-attack fot$
is a non-contradictory” argument.

A truth valueof an agent’s conclusion in a (consistent or paraconsisteay of
reasoning is as follows:

Definition 10 (Truth Value of a Conclusion).Let P be an ELPd, and. € H(P), and
k € {s,w}. Aliteral L overP is

- falsé};“’ iff everyk-argument forL is overrulecj;’w
— trué;" iff there exists a justifidg” argument forL.. Moreover,L is
° contradictor)ﬁ;“’ if L is the symbolL or there exists ajustifiéjg” argument for
=L
e based-on-contradictidr’ if it is both trud;" and falsé;"
« non-contradictorf;”, otherwise
— undefined" iff L is neither tru&" nor falsd;" (i.e. there is no justifigd" argu-
ment forL and at least oné&-argument forL is not overrule@’“’).

Example 1 (Privacy of Personal Life — PPIJsually, any person deserves privacy with
respect to her personal life. However, when such a persoaviesthin a way that is not
acceptable (e.g. selling drugs) she will suffer the consaeges. The first consequence
is the focus of media attention on her personal life and aquneset loss of privacy. The
personal life of such a person might be exposed by the “€'wfliimedia attention (e.g.
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photos, reports, and so on), unless there is a law that psdtec against it. The above
description can be expressed by the following extendea lpgigramming rules.

focusO f MediaAttention(X) « person(X), —acceptable Behavior(X).
—acceptable Behavior(X) « involved(X,Y), againstSociety(Y).
—hasPrivacy(X) «— focusO f MediaAttention(X).

personalLife Exposed(X) «— —hasPrivacy(X),not protected ByLaw(X).
hasPrivacy(X) < person(X), not ~hasPrivacy(X).

In contrast, it is considered an absurdity that someone wsg/ her privacy when
she is involved in some event for which there is no evidendeeofg public (e.g. some-
one starting a long-term treatment for drugs dependendy. dbsurdity in the rule
below is represented as a denial:

L «— —hasPrivacy(X), event(X,Y), not publicEvent(Y).

Moreover, modern society normally tries to protect chitgr@nd so their privacy is
guaranteed until evidence appears of some unusual belnggiguby having unaccept-
able behaviour).

hasPrivacy(X) « child(X), not unusualChild(X).
unusualChild(X) « child(X), ~acceptable Behavior(X).
person(X) < child(X).

However, famous persons are inherently the focus of methatain:

focusO f MediaAttention(X) «— famousPerson(X).
person(X) «— famousPerson(X).

Assume an agendg with the knowledge above, plus some facts about Potira and
Ivoti 7. Potira is a famous child, and Ivoti is a famous soccer playdreatment for
drugs dependency:

child(potira). famousPerson(potira).
famousPerson(ivoti). event(ivoti, treatment For DrugsDependency).

Figure 1 illustrates, with obvious abbreviations, the guesattacks of arguments
for “privacy of Potira’s life” over.Args(PPL). The notation for that figure is as fol-
lows: Arguments are represented as nodes. A solid line fargunaentA to argument
B means ‘A attacksB”, a dotted line fromA to B means A is built based orB”, and
a line with dashes meansi“reinstatesB”. A round node means “it is an acceptable
argument” and a square node means “it is not an acceptahlmarg”, which are w.r.t.
the set of arguments @*. Then we can presume both the status of the arguments and
the truth value of the conclusions &P L.

" The following names are from Native South American, more specificatiynfthe Tupi-
Guarani family, Potira and Ivoti both mean “flower”.
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Fig. 1. Acceptable arguments iArgs(PPL) for Potira

The argument for “Potira has no PrivacyAf(hp(p)) and also the arguments for
“.Potira has privacy”(élflp(p) Ay A gre cj‘ontradictory}‘; i the arg.ur.nent “Por-
tira has her personal life exposediy; ., ) is either based-on-contradictipi, and

overruled;, . The other arguments are non-contradicjgty . Therefore, the truth val-
ues for conclusions about Potira are as follows:

— [P(p), ch(p), fOM A(p) andpe(p) are non-contradictofyy ;
— hp(p) and—hp(p) are both (trug’s, and) contradictory}; and fals§, ; and
— pLE(p) is both based-on-contradictiphi, and fals&; .

Moreover, the truth values for conclusions regarding laod as follows:

— [P(i), pe(p) and fOM A(i) are non-contradictofyy ;

— hp(i) and—hp(i) are both contradictofyy, and falsg, ; and

— “There isfalsity in PPL” (i.e. L) is both (trug;;>, and) contradictory}, and
fals€:y, . Then

— ev(i, TFDD) andpLE(i) are both based-on-contradictigh, and fals&}, .
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3 A proof for an argument

Though the declarative semantics just exposed may rely dtewative procedure, its
usage for computing arguments may not always be appropfiate is specially the
case when we are only interested in the proof for a (queryraemt, rather than all
acceptable arguments, as is obtained by the iterative ggo&uch a query oriented
proof procedure can be viewed as conducting a “dispute leetwaeproponent player
and an opponent player” in which both proponent and oppoaettiange arguments.
In its simplest form, the dispute can be viewed as a sequdraleemating arguments:

PRo,OPy, PRy,...,PR;,OP;;1,PR; o, ...

The proponent puts forward an initial arguménR,. For every argumen® R; put for-
ward by the proponent, the opponent attempts to respondanitiittacking argument
OP; 1 againstPR;. For every attacking argumefXP; ;; put forward by the opponent,
the proponent attempts to counter-attack with a propospdeentP R, » againsO P;.

To win the dispute, the proponent needs to have a proposatharg against every op-
posing argument of the opponent. Therefore, a winning déspan be represented as a
dialogue tree, which represents the top-down, step-hjyesiastruction of a proof tree.
We follow [15]’s proposal, which defines a proof for an argumné, as a dialogue tree
for A;. However, our definition of dialogue tree is in accordancénthie acceptability
of the arguments of an ELPHE (see Def. 5):

A proposed argumenti;, € ArgsP(P) is acceptable if all of its opposing
arguments indrgs°(P) are attacked by acceptable arguments frbrgs? (P).

To define a dialogue tree for an argumeint we need first a definition afialogue
for an argumentA dialogue forA;, is a sequence a? R andO P moves of proposed
arguments and opposing arguments, such that theHiRstmove is the argumend ;..
EachOP (resp.PR) move of a dialogue consists of an argument frgings®(P)
(resp.Args?P(P)) attacking the previous proposed (resp. opposing) argtimesuch
a dialogue. Intuitively, we can see that evéty® move wants the conclusion df;, to
be acceptable, and eachP” move only wants to prevent the conclusion4f from
being acceptable. In the case BR moves, we can further say that if we impose a
restriction that proposing arguments cannot be used maredhce in a sequence of
moves of a dialogue, then the dialogue will have a finite seqeeof PR and OP
moves. Therefore, none of the proposed arguments can benmedhan once in the
same dialogue, but any of the opposing arguments can beteelpgmoften as required
to attack a proposed argument.

Definition 11 (dialogue’;?). LetP be an ELPdp (resp.o) be the kind (strong or weak)
of a proposed (resp. an opposing) argumenPoand.Args? (P) and.Args°(P) be the
set ofp-arguments and-arguments ofP, respectively. Alialoguep o (in P) for an
argumentA; € Args?(P), called dz‘alogueﬁ(i, is a finite non-empty sequencernf
movesnove; = Ar, (1 <1i < m) such that

1. move; = Ap,
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2. foreveryl < i <m, Ay, attacksAy, , and
— if i is odd thenA, € Args?(P) and there is no odgd < i such thatd,, =
AL“ or
— ifiiseventhem,, € Args°(P).

We say thainove; is odd if7 is odd; otherwisemove; is even.

A dialogue forA, succeed§ its last move is a” R move. In this proposal, we want
to guarantee that a dialogue tree for an arguragnts finitary (cf. Prop. 2). Neverthe-
less, we only consider grounded finite ELPd in order to rdla¢edeclarative semantics
(presented in the previous section) to this proposal ofatfmral semantics. By con-
sidering this, every dialogue in such a dialogue tree firidiexrause there will always
be a last movePR (resp.OP) in such a dialogue, so no opposing (resp. proposed)
argument against it exists. For non-grounded (infinitegpams, there may be (failed)
dialogues with an infinite sequence of moves. In such a chesetdialogues should
be considered failures, and the argument for such a dialobgeeshould be deduced
as defensible. The main problem of such an approach is degeant infinite sequence
of moves in a dialogue. However, the following definition lvdbnsider cases of both
‘grounded finite ELPd’ and ‘non-grounded (infinite) ELPd’.

Definition 12 (The Status of a dialogue)Let P an ELPd. A dialogue o (in P) for
an argumentd;, € ArgsP(P) is completedff its last move isn, and

— if m is odd then there is no argument.vgs®(P) attackingAr,,, or
— if m is even then there is no argumentitrgs? (P) — S, attackingAy,
is the set of alld,; in the sequence such thats odd

wheresS,,

m

(or itis infinite). A completed dialogue fgilediff its last move is)dd (or it is infinite);
otherwise, itsucceeds

Note that a dialogug’ in P and thel fp(F°) “grow up” in different ways. In the
former, an argumend in the last movemovey, is not attacked by any argument in
Args(P). SinceA attacks the previous moveyoves_1, we can say that the argument
B in movey_y was reinstated byl. Thus, eachnove; (1 < ¢ < f — 1) is reinstated
by move; 2. The latter evaluates argumeatas acceptable in the first iteration of the
characteristic functiod’s,“. In the second iteration] reinstates3, so thatB is accept-
able and might reinstate other arguments in all followiegdtions. We can further say
that dialogu&? decreases (in a top-down way) aifgh( F'2°) increases (in a bottom-up
way) the set of evaluated arguments.

Proposition 4. Let move,, = Ay, be the last move of a succeeded dialdfg‘hm P.
L
Then, Ay, € F2°(0).

A dialogue treeDT for Ay, is held between a proposed argumétit and its op-
posing argumen® P againstP R, where the root o7 is A;. The dialogue tre®T
considers all possible ways in whiety, can be attacked because each branch’Bfis
a dialogue fordy, i.e. every single dialogue fot, is built because we should consider
the overall arguments inlrgs(P) to deduce the status of;. The dialogue tre®T
for an argumentd ;, succeeds if every dialogue &fT" succeeds.
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Definition 13 (DT%?). Let P be an ELPdp (resp.o) be the kind (strong or weak) of
the proposed (resp. opposing) argumentiefys(P), and. Args? (P) (resp.Args°(P))
be the set op-arguments ¢-arguments) ofP. A dialogue treep o (in P) for Ay €
Args?(P), called DT}?, is a finite tree of movesiove; = Ar, (i > 0) such that

1. each branch oDT%* is adialogue’;”, and

2. for all ¢, if move; is
— even then its only child is p-argument attackingly,, € Args®(P), or
— odd then its children are ab-arguments attackingl, € Args?(P)

A DT’ succeedsf all branches (i.e. alialogue’y?) of the tree succeeds.

Based on the second condition of Definition 13, we might abtaore than one
dialogue tree for an argument. This occurs because only @mp®pent’s move is built
for each opponent’s move of a dialogue tree. For instance,

Example 2.Let P = {p < not a; a « not b,not ¢; a < not d; b; ¢ — not g; g}.
There are two possiblé)T;’j’pS in P: the first dialogue tree does not succeed because
there is a last move which is arargument, viZa < not b|; the second one also does
not succeed because every last move is-argument, vidg] and[a — not d|.

At this point we can relate, for grounded finite programs,rérults from aDT”
to the status of the argumenAt, (see Def. 7), as follows:

Proposition 5. An argument4d’ in a grounded finiteP is

— justifieds” iff there exists a successfIT”;’

— overruled” iff for all DT7:”: there exists anoves = Ag, such thatDT;”, suc-
ceeded

— defensibl&” iff it is neither justified;” nor overruled;®.

The following example illustrate the concepts presentderoposition 5.

Example 3.Let P2 = {a < not b; —a; b; —b; ¢; L < not c¢}. On the top of Figure 2,
itis illustrated the possibIBT;ﬂw in P2. Note that each dialogue tree does not succeed
because its last move is arargument. Nevertheless, all arguments are deferjsjble
because none of these last moves are jusliffedOn the bottom of the Figure 2 it is
also illustrated the possiblT’y " in P2. In such a case, all arguments are justifigd

w

Proposition 6. A justified;" argumentA4s; in a finite groundP is

— contradictory ,, iff L is the symbolL, or different from_L and there exists at least
a successfuDT ;" ; or
— based-on-contradictign, iff A3 is not contradictory ,, and
e there exists a contradictofy’ A%, (with a rule L’ < Body) such thatL €
Body, or
e there exists ail” in the head of arule iM$ such thatd? ,, is contradictory-*,
or
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P : [a < not b,not —a,not L]

/ \

O : [b < not =b,not L]
P : [-b <« not b,not 1]

O : [b « not =b,not L]

P : [c — not —¢,not L]
O:AY +[L «—¢,not L,not - 1]
P:A?Y 4+ [L —c,not L,not -1]

O:AY +[L « ¢,not L,not - 1]

O : [-a < not a,not L]

P : [b« not —b,not L]

O : [-b — not b,not L]

P : [-b < not b,not 1]

O : [b < not =b,not L]

P : [-a < not a,not L]

!

O : |a < not —a,not L]

P :[a < not b
!

O : [b« not =b,not 1]

P [-b]

P:lc; L

Fig.2. SomeDT " and DT in {a « not b; ~a; b; =b; ¢; L «— not c}




Argumentation-based Proof for an Argument in a Paraconsistentettin 77

e for all dialogue’’ in DTy": the last move has not a non-contradictory
argument; or
— non-contradictory,,, otherwise.

To conclude about the truth value of an objective litetave evaluate more than
one dialogue tree of each argument for silich

Proposition 7. An objective literalH is

— truels” iff there exists a successtliTy’”. Thus,H is
e contradictoryy” iff for all successfulDT%?: A%, is contradictory;®, or
e based-on-contradictidh’ iff for all successfuDT7 ?: A%, is based-on-contra-
diction;°, or
» non-contradictor}® iff there exists a successfll7T? such thatA’; is non-
contradictory};’;
— falsep® (in P)iff vDT}”: A is overruleds”;
— unde finedp’ (in P)iff VDT °: A, is neither justifie” nor overruled;®.

Example 4.Following Example 3, all literals o2 are justified;,, . However, all liter-
als of P2 are undefinef,”.

4 Conclusions and Further Work

Our argumentation semantics is based on the argumentagtephor, in the line of
the work developed in [9, 15, 2, 18] for defining semanticsinfle extended logic pro-
grams. In these argumentation-based semantics, ruleogfcadrogram are viewed as
encoding arguments of an agent. More precisely, an argufoeah objective literal

is a sequence of rules that “proves; if all default literals (of the formot L') in the
body of those rules are assumed true. In other words, argsreanoded by a program
can attack — by undercut — each other. Moreover, an arguraeftdttacks — by rebut
— another argument if this other argument assumes its @&xpégation (of the form
—L). The meaning of the program is so determined by those angismigat somehow
(depending on the specific semantics) can defend themdebraghe attacks of other
arguments.

We generalise [15]’s definition of argument by proposing &irmd of arguments,
viz. strong arguments and weak arguments. By having twoskafdarguments, viz.
strong arguments and weak arguments, the attack by underoot needed. Simply
note that rebut are undercut attacking weak argumentsefdrer rebut is not consid-
ered in our proposal since, as already shown in [17, 6, 183ritbe reduced to under-
cut by considering weaker versions of arguments. [2] aldmeéle a methodology for
transforming non-exact, defensible rules into exact ruligl explicit non-provability
conditions and shows that this transformation eliminatesrteed for rebuttal attacks
and for dealing with priorities in the semantics.

Similar to [9, 15] we formalise the concept of acceptableiargnts with a fixpoint
operator. However, the acceptability of an argument miglheldifferent results and it
depends on which kind of interaction between (strong andkj@@uments is chosen.
Therefore, our argumentation semantics assigns difféegnts of acceptability to an
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argument for an objective literdl and so it can be justified, overruled, or defensible.
Moreover, a justified argument fdr can be contradictory, based on contradiction, or
non contradictory. Consequently, a truth valud.afan be true (and contradictory, based
on contradiction, or non contradictory), false or undefined

Since our argumentation semantics is parametrised by tite dfi interaction be-
tween arguments, we obtain results from a consistent wagasfoning to a paraconsis-
tent way of reasoning. A consistent way of reasoning neitbacludes thal. nor —L
are true, even if one of these is a fact. A paraconsistent Wegasoning can conclude
L is true even if it also concludes thatl is true. Given that we consider denials in
the agent’s knowledge base — in a conflicting situation — aistent way of reasoning
cannot conclude that a givenis true if L is related with the presence of tfasity; a
paraconsistent way of reasoning might conclddeven it is related witHalsity. Fur-
thermore, our argumentation semantics (and the corregppipdoof procedure) suc-
ceeds in detecting conflicts in a paraconsistent extendgd poogram with denials, i.e.
it handles with contradictory arguments and with the presaifalsity.

For this proposal we have made two implementations, bothSB ®ystem (by re-
sorting to tabling) [19] which computes the argumentationidyy implementation over
an agent’'s knowledge base. One bottom-up implementatidheo§emantics, follow-
ing closely its declarative definition; another of queryen proof procedures for the
semantics. The proof procedure has also been implementadiiy the toolkit Inter-
prolog [4], a middle-ware for Java and Prolog which provide=thod/predicate calling
between both.

As we mentioned, the original semantics, defined in [5], ieaagalisation of the
one presented here to a distributed argumentation-baggdistgon semantics. As fu-
ture work we intend to generalise this (centralised) praoicpdure to a distributed
proof procedure seeing the negotiation process as a fdrd&tlogue trees, rather than
a single tree as here.

References

1. J. J. Alferes, C. V. Daasio, and L. M. Pereira. A logic programming system for non-
monotonic reasoninglournal of Automated Reasoninty(1):93-147, 1995.

2. A.Bondarenko, P. M. Dung, R. Kowalski, and F. Toni. An abstragumentation-theoretic
approach to default reasoningpurnal of Artificial Intelligence93(1-2):63-101, 1997.

3. L. M. Pereira e M. Schroeder C. V. Dasio. Revise: Logic programming and diagnosis.
In U. Furbach J. Dix and A. Nerode, editorh International Conference (LPNMR’97)
volume LNAI 1265 ofLogic Programming and NonMonotonic Reasonipgges 353-362.
Springer, July 1997.

4. M. Calejo. Interprolog: Towards a declarative embedding of logigramming in java.

In J. J. Alferes and J. Leite, editoi@th European Conference (JELIA 2004NAI, pages
714-71. Springer, 2004. Toolkit available at http://www.declarativa/taerProlog/.

5. lara Carnevale de Almeida and 8odilio Alferes. An argumentation-based negotiation
framework. In K. Inoue, K. Satoh, and F Toni, editovdl International Workshop on Com-
putational Logic in Multi-agent Systems (CLIMAplume 4371 ofLNAI, pages 191-210.
Springer, 2006. Revised Selected and Invited Papers.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Argumentation-based Proof for an Argument in a Paraconsistent@ettin 79

. lara de Almeida NMra and Jaos Jilio Alferes. Argumentative and cooperative multi-agent

system for extended logic programs. In F. M. Oliveira, edi¥di/th Brazilian Symposium
on Artificial Intelligence volume 1515 ot NAI, pages 161-170. Springer, 1998.

. P. Dung, P. Mancarella, and F. To@iomputational Logic: Logic Programming and Beyond

— Essays in Honour of Robert A. Kowalskdlume 2408, chapter Argumentation-based proof
procedures for credulous and sceptical non-monotonic reasqaggs 289—-310. Springer,
2002.

. P. M. Dung. An argumentation semantics for logic programming withi@kpegation. In

10th International Conference on LP (ICLR)ages 616—630. MIT Press, 1993.

. P. M. Dung. On the acceptability of arguments and its fundamental rot®mmono-

tonic reasoning, logic programming and n-person gardearnal of Artificial Intelligence
77(2):321-357, 1995.

P. M. Dung, R. Kowalski, and F. Toni. Argumentation-theoretic pppocedures for default
reasoning. Technical Report. Available at http://www.doc.ic.ac.ukARERS/arg03.pdf,
May 2003.

M. Gelfond and V. Lifschitz. Logic programs with classical negatloiWarren and Szeredi,
editors,7th International Conference on LP (ICLR)ages 579-597. MIT Press, 1990.

R. P. Loui. Process and policy: Resource-bounded non-dgrative reasoningJournal of
Computational Intelligencel4:1-38, May 1998.

L. M. Pereira and J. J. Alferes. Well founded semantics for logignams with explicit
negation. InEuropean Conference on Atrtificial Intelligence (ECAgages 102-106. John
Wiley & Sons, 1992.

J. L. Pollock. Defeasible reasoning with variable degrees of justificalournal of Artificial
Intelligence 133:233-282, 2002.

H. Prakken and G. Sartor. Argument-based extended logicgmging with defeasible
priorities. Journal of Applied Non-Classical Logic8:25-75, 1997.

H. Prakken and G. A. W. Vreeswijlklandbook of Philosophical Logizolume 4, chapter
Logics for Defeasible Argumentation, pages 218-319. Kluwer Acéieredition, 2002.
Michael Schroeder, lara de Almeidadh4, and Jaos Jilio Alferes. Vivid agents arguing
about distributed extended logic programs. In Ernesto Costa and An@lmatoso, edi-
tors, Progress in Artificial Intelligence, 8th Portuguese Conference on Artifinielligence
(EPIA), volume 1323 ot NAI, pages 217-228. Springer, 1997.

R. Schweimeier and M. Schroeder. Notions of attack and justifiedrengts for extended
logic programs. In F. van Harmelen, editdéhth European Conference on Artificial Intelli-
gencelOS Press, 2002.

T. Swift and et all. Xsb - a logic programming and deductive dawmbastem
for unix and windows. Technical report, XSB project, 2003. Toolkitikable at
http://xsb.sourceforge.net/.

G. A. W. Vreeswijk. Abstract argumentation systendmurnal of Artificial Intelligence
90(1-2):225-279, 1997.



CaSAPI: a system for credulous and sceptical
argumentation

Dorian Gaertner and Francesca Toni

Department of Computing
Imperial College London

Email: {dg00,ft}@doc.ic.ac.uk

Abstract. We present the CaSAPI system, implementing (a generalisa-
tion of) three existing computational mechanisms [8-10] for determining
argumentatively whether potential beliefs can be deemed to be accept-
able and, if so, for computing supports for them. These mechanisms are
defined in terms of dialectical disputes amongst two fictional agents: a
proponent agent, eager to determine the acceptability of the beliefs, and
an opponent agent, trying to undermine the existence of an acceptable
support for the beliefs, by finding attacks against it that the propo-
nent needs to counter-attack in turn. The three mechanisms differ in
the level of scepticism of the proponent agent and are defined for (flat)
assumption-based argumentation frameworks [3]. Thus, they can serve
as decision-making mechanisms for all instances of these frameworks. In
this paper we show how they can be used for logic programming, legal
reasoning, practical reasoning, and agent reasoning.

1 Introduction

Assumption-based argumentation [3] has been proven to be a powerful mecha-~
nism to understand commonalities and differences amongst many existing frame-
works for non-monotonic reasoning, including logic programming [3]. It has also
been studied in the context of legal reasoning [14]. Furthermore, the computa-
tional complexity of several instances of assumption-based argumentation frame-
works for non-monotonic reasoning has been studied in [7].

Assumption-based argumentation frameworks can be coupled with a number
of different semantics, all defined in dialectical terms, some credulous and some
sceptical, of various degrees. Different computational mechanisms can be defined
to match these semantics. In this paper, we consider three existing such mech-
anisms: GB-dispute derivations for computing the sceptical grounded semantics
[9], AB-dispute derivations for computing the credulous admissible semantics [8,
9] and IB-dispute derivations for computing the sceptical ideal semantics [9, 10].

All mechanisms are defined as “dialogues” between two fictional agents: the
proponent and the opponent, trying to establish the acceptability of given beliefs
with respect to the chosen semantics. The three mechanisms (and corresponding
semantics) differ in the level of scepticism of the proponent agent: in GB-dispute
derivations the agent is not prepared to take any chances and is completely
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sceptical in the presence of seemingly equivalent alternatives; in AB-dispute
derivations the agent would adopt any alternative that is capable of counter-
attacking all attacks without attacking itself; in IB-dispute derivations, the agent
is wary of alternatives, but is prepared to accept common ground between them.

In this paper we describe the CaSAPI ! system implementating these mech-
anisms and we illustrate the system and its potential for application in the con-
text of some application scenarios. The system relies upon a generalisation of the
original assumption-based argumentation framework and of the computational
mechanisms, whereby multiple contraries are allowed. This generalisation is use-
ful to widen the applicability of assumption-based argumentation (e.g. for rea-
soning about decisions). We provide this generalisation explicitly for AB-dispute
derivations. The application scenarios we consider are non-monotonic reasoning
(using logic programming), legal reasoning (where different regulations need to
be applied, taking into account dynamic preferences amongst them), practical
reasoning (where decisions need to be made as to which is the appropriate course
of action for a given agent), and reasoning to support autonomous agents (about
their individual beliefs, desires and intentions, as well as relationships amongst
them). Most of these application scenarios require a mapping from appropriate
frameworks into assumption-based argumentation.

The paper is structured as follows: in the next section, we will briefly in-
troduce the concept of assumption-based argumentation and describe the three
dispute derivations upon which our system is based. Section 3 presents the gener-
alised assumption-based framework and the generalised AB-dispute derivations
that our system implements. Section 4 provides a brief description of the CaSAPI
system. Applications of this system to the areas of non-monotonic reasoning and
legal, practical and agent reasoning are given in Section 5. Finally, we conclude
and discuss future work.

2 Background

The definitions and notions in this section are adapted from [3, 8, 10, 9].

Definition 1. An assumption-based argumentation framework is a tuple
(L, R, A, ) where

— (L,R) is a deductive system, with a language £ and a set R of inference
rules,

— A C L isa (non-empty) set, whose elements are referred to as assumptions,

— 7 is a (total) mapping from A into L, where @ is the contrary of «.

We will assume that the inference rules in R have the syntax
Co < Cly...,Cp

with n > 0 or
Co

1 CaSAPI stands for Credulous and Sceptical Argumentation: Prolog Implementation.
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where each ¢; € L. ¢g is referred to as the head and cq,...,c, as the body of a
rule ¢g < ¢1,...,¢c,. The body of a rule ¢q is considered to be empty.

As in [8], we will restrict attention to flat assumption-based frameworks, such
that if ¢ € A, then there exists no inference rule of the form ¢ < ¢1,...,¢, € R.

Ezample 1. L = {p,a,—a,b,=b}, R = {p « a;-a « b;-b « a}, A= {a,b} and
a=-a, b=-b.

An argument in favour of a sentence or belief x in £ supported by a set of
assumptions X C A is a backward (or tight) deduction [8] from x to X, via the
backward application of rules in R. For the simple assumption-based framework
in example 1, an argument in favour of p supported by {a} may be obtained by
applying p < a backwards.

In order to determine whether a belief is to be held, a set of assumptions
needs to be identified that would provide an “acceptable” support for the belief,
namely a “consistent” set of assumptions including a “core” support as well
as assumptions that defend it. This informal definition of “acceptable” support
can be formalised in many ways, using a notion of “attack” amongst sets of
assumptions:

Definition 2. X attacks Y iff there is an argument in favour of some y sup-
ported by (a subset of ) X, where y is in'Y .

In Example 1 above, {b} attacks {a}. In this paper we are concerned with the
following formalisations of the notion of “acceptability”:

— a set of assumptions is admissible, iff it does not attack itself and it counter-
attacks every set of assumptions attacking it;

— complete, iff it is admissible and it contains all assumptions it can defend,
by counter-attacking all attacks against them;

— grounded, iff it is minimally complete;

— ideal, iff it is admissible and contained in all maximally admissible sets.

In the remainder of this section we will illustrate, by means of examples, the
three forms of dispute derivations presented in [8, 10, 9], for computing grounded,
admissible and ideal sets of assumptions (respectively) in support of given beliefs.
For any formal details and results see [8, 10, 9].

2.1 GB-dispute derivations

GB-dispute derivations compute grounded sets of assumptions supporting a
given input belief. They are finite sequences of tuples

(Pi, 0;, A, Cy)

where P; and O; represent (the set of sentences held by) the proponent and op-
ponent in a dispute, A; holds the set of assumptions generated by the proponent
in support of its belief and to defend itself against the opponent, and C; holds



CaSAPI: a system for credulous and sceptical argumentation 83

the set of assumptions in attacks generated by the opponent that the proponent
has chosen as “culprits” to be counter-attacked. Each derivation starts with a
tuple

(Po ={z}, 00 = {}, Ao = AN{z},Co = {})

where z is the belief whose acceptability the derivation aims at establishing.
Then, for every 0 < i < n, only one ¢ in P; or one S in O; is selected, and 2:

1. If o € P; is selected then

(i) if o is an assumption, then
Piy1 =P —{o}
Oiy1=0; U{{7}}
(ii) if o is not an assumption, then there exists some inference rule o < R €
R such that C; N R = {} and
Piv1=P; — {CT}UR
Aiy1 = A U(ANR).
2. If S is selected in O; and o is selected in S then
(i) if o is an assumption, then
(a) either o is ignored, i.e.
Oii1 = 0~ {S}U{5 — {o}}
(b) or o ¢ A; and
Oit1 = 0; — {5}
Pit1 =P; U {5}
A1 = A4, U{T}NnA)
C¢+1 = Cl U {O’}
(ii) if o is not an assumption, then
Oi+1 Zoi—{S}U{S—{U}UR‘U%RER}.

In Example 1, no GB-dispute derivation for p exists (and, indeed, p is not
an acceptable belief according to the grounded semantics) as the search for any
such derivation loops and hence no finite sequence of tuples can be found:

(Po ={p},00 ={},40 = {},Co = {}),

(Py ={a}, 01 ={}, A1 = {a},C1 ={}), by using rule p < q,
(P2 ={},02 = {{—a}}, A2 = {a},Cs = {}), since a = —a,

(Ps ={},03 = {{b}}, A3 = {a},C3 = {}), by using rule —a < b,
(Py = {-0},04 = {}, Ay = {a},Cy = {b}), since b = —b,

< ={a}, 05 = {}, As = {a}, Cs = {b}), by using rule —b « q,

Note that P; = P5 and O; = Os, so both proponent and opponent are repeating
their arguments.

2 For brevity, we indicate here and in all the dispute derivations in the paper only the
items of the i + 1-th tuple that are different from the corresponding items in the i-th
tuple: all other items are as in the i-th tuple. For full details, see [9].
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2.2 AB-dispute derivations

AB-dispute derivations® are modifications of GB-dispute derivation to determine
whether beliefs can be held according to the admissible semantics, as follows:

— at step 1.(il): Piy1 =P; — {o} U(R— 4;)
— step 2.(i)(b) becomes: 0 € A; and o € C; and O; 41 = O; — {S}
— a new step 2.(i)(c) is added: o € A; and o € C; and
(c.1) if 7 is not an assumption, then
Oir1=0; — {S}
Pit1 =P; U {5}
Ci+1 = Ci U {0’}
(c.2) if 7 is an assumption, then
Oip1=0; —{S}
Ai+1 = Al @] {E}
Ci+1 = Cl U {CT}
— at step 2. (ii): 041 = O;—{S}U{S—{0c}UR |0 «— R € R,andRNC; = {}}.

For Example 1, an AB-dispute derivation exists, following up from the earlier
GB-derivation with a terminating step

(Ps = {},05 = {}, 45 = {a}, C5 = {b})

computing an admissible support {a} for p ({a} is indeed admissible since it
does not attack itself and it counter-attacks {b}, the only attack against it).

2.3 IB-dispute derivations

IB-dispute derivations are extensions of AB-dispute derivations, in that they are
finite sequences of tuples

<7Di7 OivAia 07,5]:1>

where the new component F; holds the set of all (potential) attacks against P;.
IB-dispute derivations deploy Fail-dispute derivations to check that no admissible
extensions of any element in any J; exists. For lack of space we simply exemplify
IB-dispute derivations here (see [10,9] for details).

Ezample 2. L ={a,—a,b,—b,c,—c,d,~d}, R ={-a— a;-a— b;=b— q;
—c—d;~d—c}, A={ab,c,d} and T = -z, for all z € A.

Given the framework in Example 2, an IB-derivation for —a is:

<PO = {—\a},(’)o = {}’AO = {}’CO = {}7]:0 = {}>
(Pr=A{b}, 01 ={}, Ar = {0}, C1 = {}, 71 = {}),

3 AB-dispute derivations are a slight modification of the dispute derivations of [8],
presented in [9].
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(Py={},02 = {{-b}}, A2 = {b},C2 = {}, o = {}),
<P3 = {}aOB = {{a}}’Ai’) = {b},03 = {}'7'7:3 = {}>>
(Py={na},Os = {}, Ay = {b},Cs = {a}, Fs = {{a}}),
<P5 = {}a 05 = {}7A5 = {b}705 = {a}7f5 = {{a’}}>7
(Ps ={},06 = {}, A6 = {b}, Cs = {a}, F6 = {})-

The transition between the penultimate and the last tuple in the sequence above
requires the existence of a Fail-dispute derivation confirming that no admissible
extension of {a} € Fs5 exists.

The derivation succeeds in computing support {b} for —a. The set {b} is
ideal as it is admissible and contained in every maximally admissible set of
assumptions (there are two such sets: {b,c} and {b,d}).

Note that there is no GB-dispute derivation for —a (which indeed is not
supported by any grounded set of assumptions). Also, note that there exists
an AB-dispute derivation for —a, as well as for —¢ and —d, but no GB- or IB-
dispute derivation exists for the latter two beliefs. Thus, the proponent agent
in GB-derivations is the most sceptical, followed by the proponent agent in
IB-derivations. The proponent agent in AB-derivations on the other hand is
completely credulous.

3 Generalisation of assumption-based argumentation
frameworks

In order to widen their applicability (e.g. for practical reasoning), assumption-
based argumentation frameworks need to be generalised as follows:

Definition 3. A generalised assumption-based framework is a tuple
(L, R, A, Con) where L, R, A are as in conventional assumption-based
frameworks, and Con is a (total) mapping from assumptions in A into sets of
sentences in L.

Intuitively, in this generalised framework, assumptions admit multiple con-
traries. Given a generalised assumption-based argumentation framework, the
notion of attack between sets of assumptions becomes:

Definition 4. X attacks Y iff there is an argument in favour of some x sup-
ported by (a subset of ) X where x € Con(y) and y is inY.

All dispute derivations defined in previous works [8,10, 9] can thus be modi-
fied for generalised assumption-based frameworks. In what follows, we show how
this can be done for AB-dispute derivations (the modifications are typeset in
bold font), as this is the “core” form of dispute derivation (GB-dispute deriva-
tions are a simplification and IB-dispute derivation an extension of AB-dispute
derivations):
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Definition 5. Let (L, R, A, Con) be a generalised assumption-based argumen-
tation framework. Given a selection function, a generalised AB-dispute deriva-
tion of a defence set A for a sentence « is a finite sequence of quadruples

<P07OO7AO7CO>7 ey <Pi70i7AiaCi>7 ey <Pna OnuAnacn>

where Py = {a} Ao = An{a} Op = Co = {}

and for every 0 < i < n, only one o in P; or one S in O; is selected, and:

1. If o € P; is selected then

(i) if o is an assumption, then
Piy1 =P —{o}
Oit1 =0, U{{z} | z € Con(o)}
(In the original AB-dispute derivation, O,1; = O; U {{7}}.)

(ii) if o is not an assumption, then there exists some inference rule o — R €
R such that C; N R = {} and
Piv1=P;—{c}U(R—4;)
Aiy1 = A, U(ANR).

2. If S is selected in O; and o is selected in S then

(i) if o is an assumption, then
(a) either o is ignored, i.e.
Oiv1=0; = {S}U{S —{o}}
(b) oro & A; and o € C; and
Oip1=0; —{S}
(c) or o & A; and o ¢ C; and chosen some z € Con(o) (in the
original AB-dispute derivations, x =7)
(c.1) if x is not an assumption, then
Oir1=0; —{S}
Pi+1 =P;U {LIZ}
Ci+1 = CZ U {O’}
(c.2) if x is an assumption and it does not belong to C;, then
Oir1=0; —{S}
Ai+1 = Ai U {l‘}
Cz’+1 = Oz ] {O’}

(i) if o is not an assumption, then
Oip1=0; —{S}U{S—{0c}UR|oc— ReR, andRNC; = {}}.
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Note that in step 2(i)(c) the choice of counter-attack is based upon the choice
of contrary of the selected culprit. This choice is made randomly, but can be
customised if necessary.

The definitions of GB- and IB-dispute derivations can be modified in a similar
fashion, by considering all contraries (of a given assumption) when extending O
(to find attacks against the assumption) and by choosing one contrary (of a given
“culprit” assumption) when extending P (to counter-attack the assumption).

4 System Description

In this section, we will describe the CaSAPI system, a Prolog implemen-
tation for credulous and sceptical argumentation based upon the computa-
tion of dispute derivations for grounded beliefs (GB-dispute derivations), ad-
missible beliefs (AB-dispute derivations) and ideal beliefs (IB-dispute deriva-
tions) for the generalised assumption-based frameworks described in the
previous section. The latest version of CaSAPI can be downloaded from
www.doc.ic.ac.uk/~dg00/casapi.html. The system is developed in Sicstus
Prolog but runs on most variants of Prolog®.

4.1 How to use CaSAPI

After invoking a Prolog process and loading the CaSAPI program, users need
to load the input assumption-based framework® and the beliefs to be proved.
These are best specified in a separate file, prior to invoking Prolog.

Rules in R are represented as facts of a binary relation myRule/2 consist-
ing of a left- and right-hand side. The first argument holds the head of the
rule and the second argument a list containing the body of the rule. Assump-
tions in A and beliefs to be proved are represented as unary predicates myAsm/1
and toBeProved/1 (respectively) using a list notation for their respective ar-
gument. The latter predicate allows queries about more than one belief to be
expressed. The notion of contrary can also be customised using an binary rela-
tion contrary/2. In order to illustrate the representation of assumption-based
frameworks, Example 1 from Section 2 is represented as follows:

myRule(p, [a]).
myRule (not(a), [b]).
myRule (not (b), [al) .
myAsm([a,b]).

toBeProved([p]) .

4 CaSAPI has been successfully tested using SWI Prolog, for example.
5 The language £ does not need to be specified explicitly.
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contrary(a,not(a)).
contrary(b,not(b)).

The users can then control the kind of dispute derivation they want to employ
(GB, AB or IB), the amount of output to the screen (silent, compact or noisy)
and the number of supports computed (one or all). They specify their choices
as arguments to the command run/3 and CaSAPI will begin the argumentation
process in a manner dictated by the users’ choices. For example, in order to
run AB-dispute derivations in silent mode and asking for only one answer, one
needs to specify: run(ab, s, 1). Furthermore, for running GB-dispute derivations
in noisy mode asking for all answers, one needs to execute: run(gb,n,a). Note
that all answers here refers to all answers that can be computed using the dispute
derivation in question.

4.2 Design Choices

We have picked Sicstus Prolog as the implementation language of choice since
we intend to employ some of its constraint solving features in future versions of
CaSAPI. In the current version 2.0 we do not make use of any Sicstus specific
code and hence it should run on most standard Prolog engines

One of the interesting properties of Prolog is its handling of variables. Instan-
tiation takes place when a binding can be made, but backtracking allows new
instantiations to override old ones where possible. We made use of this feature in
that we allow variables in the definition of rules, assumptions and contraries in
CaSAPI. This can be seen as a shortcut to writing out all the ground instances
of the predicate in question.

A further design choice, that paves the way to interesting experimental re-
search, is the fact that the selection strategies of the agent are not hard-wired
into CaSAPI. Different selection strategies do not affect the result of the ar-
gumentation process, but have a significant impact on efficiency. Indeed, these
strategies control how the dispute trees are generated and hence can lead to
early pruning for certain trees. One simple example for a selection strategy is:

selFunc ([HeadProponent|_],_,HeadProponent, []) .
selFunc([], [[OppHead |OppTaill | _],0ppHead, [OppHead |OppTaill) .
selFunc([],00,_,_). % Finished.

The first two arguments are the beliefs held by the proponent and oppo-
nent, respectively. The third argument is used to return the chosen element and
the fourth one returns the set of beliefs of the opponent that this element was
chosen from — if applicable. If both the proponent and the opponent have no
further beliefs to investigate, the argumentation process terminates. In this sim-
ple example, all beliefs of the proponent are handled before the opponent gets
to reply. More sophisticated selection strategies can easily be imagined and have
been used as defaults in the CaSAPI system.
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As we have hinted to before, CaSAPT allows queries to involve sets of beliefs to
be proved, rather than individual beliefs as in the original formulation of dispute
derivations. But the biggest innovation is the extension of the argumentation
framework to allow multiple contraries. The theoretical aspects of this extension
have been discussed in the previous section. An example where this extension is
employed will be given in Section 5.3 on practical reasoning.

4.3 Worked Example

We illustrate an exemplary execution trace of the CaSAPI system in the case of
Example 2 from Section 2. Here and in the remainder of the paper, we represent
negative literals —p as not (p). In this example, basically a, b and ¢, d are (pair-
wise) mutually exclusive. Intending to prove the belief not (a), after feeding the
following input program:

myRule (not(a), [al).
myRule (not (a), [bl).
myRule (not (b), [a]) .
myRule (not(c), [d]).
myRule (not(d), [c]).

myAsm([a,b,c,d]).
toBeProved([not(a)]).
contrary(X,not(X)) :- myAsm(L), member(X,L).

into CaSAPI, one needs to choose the execution options. Deciding to use ad-
missible belief semantics, demanding verbose output and requesting only one
solution, the following will happen: not(a) can only be proved by either the
first or second of the rules given above.

Step O:

- Content of this quadruple:
- PropNods: [not(a)]

- OppoNods: []

- DfnceAss: []

- Culprits: []

CASE 1ii

Step 1:

- Content of this quadruple:
- PropNods: [a]

- OppoNods: []

- DfnceAss: [a]

- Culprits: []
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CASE 1i

Step 2:

- Content of this quadruple:
- PropNods: []

- OppoNods: [[not(a)]]

- DfnceAss: [a]

- Culprits: []

After some backtracking, the output ends with the final answer:

Step 5:

- Content of this quadruple:
- PropNods: []

- OppoNods: []

- DfnceAss: [b,b]

- Culprits: [a]

FINISHED, the defence set is: [b,b]
Without duplicates it is: [b]

yes

The defence set [b] indicates which assumption(s) need to be made and are
sufficient to defend the belief not (a) against all possible attacks.

5 Applications

In this section we give examples of how assumption-based argumentation in
general and CaSAPI in particular can be applied. First we consider logic pro-
gramming as an instance of non-monotonic reasoning, and then look at legal,
practical and agent reasoning. Note that non-monotonic reasoning using default
logic could also be modelled, following [3].

5.1 Non-monotonic reasoning: Logic programming.

A logic program P can be seen as an assumption-based framework (£, R, A, 7))
where R=P, L is the Herbrand base of P together with the set of all negations of
atoms in such Herbrand base, A is the set of all negative literals in £, and not p =
p for all negative literals notp in A. Logic programming queries correspond to
sets (conjunctions) of beliefs for which we want to compute dispute derivations.

In this instance of assumption-based frameworks, the admissible, grounded,
and ideal semantics correspond (see [3] and [9]) to partial stable models [17],
well-founded model [13], and ideal semantics [1], respectively. Although the the-
oretical framework is propositional, our Prolog implementation allows us to deal
with variables, both in the rules of the deductive system and in the beliefs to be
proved, as shown below.



CaSAPI: a system for credulous and sceptical argumentation

Ezample 3. P = {p(X) «— not p(X);
p(X) — not ¢(X);
(X) « notp(X);

(X)

)

Q

r — not t(X);
t(X) « notr(X)}

91

Given the logic program from Example 3 and queries Q1 = p(a), Q2 = ¢(a),
Qs =r(a), Q4 = t(a), the system computes the following answers, respectively:

GB-dispute derivations: loops, no, loops, loops

AB-dispute derivations: {not ¢(a)}, no, {nott(a)}, {notr(a)}

IB-dispute derivations: {not ¢(a)}, no, no, no

Ezample 4. P = {p < notgq;
q < notr;
T < not s;
s« notq}

Given the logic program from Example 4 — with an odd-loop via negation —
and query (1 = p, the system computes no for all three kinds of derivations.

5.2 Legal reasoning.

This kind of reasoning often requires dealing with defeasible rules and facts
(possibly under dispute), strict rules and facts (beyond dispute) and preferences
amongst defeasible rules and facts (possibly under dispute). We show here how
a concrete example of legal reasoning from [15] can be dealt with by means of
our CaSAPI system, following the formalisation of the problem given in [14].

Ezxample 5. Consider the following set of defeasible rules, including rules defining

preferences between rules®:

r1(X): X’s exterior may not be modified if X is a protected building.

ro(X): X'’s exterior may be modified if X needs restructuring.
r3(X,Y): Ri(X) > Ro(Y) if R1(X) concerns artistic buildings and

Ro(Y) concerns town planning.

t(X,Y): R1(X) > Ra(Y) if Ri(X) is later than Ry(Y').

and the following six facts/strict rules:

r1(X) concerns artistic buildings.
ro(X) concerns town planning.
ro(X) is later than ri(X).
r3(X,Y) is later than t(X,Y).
villa is a protected building.

5 For all kinds of rules, we adopt a representation in pseudo-natural language, with
variables implicitly universally quantified with scope the rules.
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villa needs restructuring.

Intuitively, the conclusion that the exterior of the villa may not be modified
should be drawn. Both rules r; and ry apply and the meta-rules r3 and ¢ deciding
the priorities between r1 and 75 also apply both, but according to meta-rule ¢, the
importance of rs is higher than its own importance. Hence, r3 should be applied
which gives ry priority over ro. Following [14], this problem can be represented
as a logic program (and thus as an assumption-based framework, as explained
above):

villa’s exterior may not be modified — not de feated(ry (villa))
villa’s exterior may be modified — not de feated(rs(villa))
de feated(r1(villa)) < not defeated(t(villa,villa)), not defeated(rs(villa))
defeated(rs(villa)) < not de feated(rs(villa, villa)), not de feated(ry(villa))
de feated(t(villa,villa)) «— not de feated(t((villa,villa), (villa,villa))),

not de feated(rs(villa, villa))

GB-, AB- and IB-dispute derivations for the belief villa’s exterior not mod-
ified all give the following defence set as an answer: {not defeated(r,(villa)),
not de feated(rs(villa,villa)), not de feated(t((villa, villa), (villa,villa)))}.

This can be understood as follows: the villa’s exterior should not be modified
since rule r; is not defeated (stating that artistic buildings should not be modi-
fied) and rule r3 is not defeated (stating that rules concerning artistic buildings
override rules concerning town planning) and the temporal ordering rule ¢ is not
defeated either.

5.3 Practical reasoning.

This form of reasoning requires making decisions in order to achieve certain
properties/objectives, having only partial information. We show how to deal
with the concrete example in [2], requiring multiple contraries.

Example 6. A judge needs to decide how best to punish a criminal found guilty,
while deterring the general public, rehabilitating the offender, and protecting
society from further crime. The judge can choose amongst three forms of pun-
ishment: (i) imprisonment, (ii) a fine, or (iii) community service. The judge
believes that: (i) promotes deterrence and protection to society, but it demotes
rehabilitation; (ii) promotes deterrence but has no effect on rehabilitation and
protection of society; (iii) promotes rehabilitation but demotes deterrence.

We can represent the problem as a generalised assumption-based framework:

— A = {prison, fine, service,a, 3,7,8},

— Con(prison) = { fine, service}, Con(fine) = {prison, service},
Con(service) = {prison, fine}, Con(ca) = {—deter}, Con(B) = {deter},
Con(y) = {-rehabilitate}, Con(d) = {rehabilitate},
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— R consists of nine rules:

punish «— prison deter «— prison, o rehabilitate «— service,y
punish «— fine deter — fine,« —rehabilitate — prison,
punish «— service —deter «— service, 3 protect «— prison

Then, given the goal (belief) punish, AB dispute derivations compute the defence
set {prison}, for example. Given also goal rehab the defence set {service} is
computed. One cannot have all goals punish, deter, rehabilitate and protect
provable (AB dispute derivations return no) and it would be interesting to give
preferences amongst these, as suggested in [2]. We leave this for future research.

5.4 Agent reasoning

Finally, we will give an example involving a traditional BDI agent [16] that
reasons about its beliefs, desires and intentions. We chose the ballroom scenario
from [11] and the following setup: picture a traditional ballroom with several
male and female dancers; the rules of etiquette state among other things that
two dancers agreeing to dance together should be of opposite sex and that female
dancers should wait to be approached by a male dancer (with the exception of
ladies’ choice night).

Imagine a female dancer called anna, who considers both bob and charlie
to be pretty and who generally intends whatever she desires. This information
can be expressed with the following rules in an assumption-based argumentation
framework”:

intend(X) « desire(X)

desire(danceWith(X)) « belief (pretty(X)), B(X)
—desire(danceWith(X)) « belie f(sameSex(self, X)), a(X)
intend(danceWith(X)) « belief (approached By(X))

belie f (pretty(bob))
belief (pretty(charlie))

Note that the first rule is domain-independent, whereas the other rules are
domain-dependent.

Let A be the set of (all ground instances of) —belief(X) together
with a(X) and [(X). The latter two assumptions are needed to relate
desire(danceWith(X)) and —desire(danceWith(X)) as opposite notions. One
cannot directly make them contraries of one another, since neither of them is an
assumption.

The Con relation defines the contrary of any —belief(X) as belief(X) and
the contrary of «(X) as desire(danceWith(X)) and finally, the contrary of 3(X)
as —desire(danceWith(X)).

Then, asking CaSAPI whether anna should intend to dance with charlie, the
system returns that yes, she should intend to dance with that person, provided

" We ignore here nested beliefs, desires and intentions for simplicity’s sake.
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that anna believes that charlie is not of the same gender. Thus CaSAPI replies
with the following defence set: beta(charlie). This is the assumption needed to
defend the belief in question and it ensures that —desire(danceWith(charlie))
does not hold.

The reasoning goes roughly as follows: using the fourth rule, anna should
intend to dance with charlie if she beliefs to have been approached by charlie.
However, this is not the case. Using the first rule, anna should intend to dance
with charlie if she desires it. She does desire it, since she believes charlie is
pretty. Now, the fictional opponent who plays devil’s advocate in anna’s mind
may argue that she should not desire (and hence not intend) to dance with
charlie because charlie may be female, too. Therefore, the fictional proponent
who defends the query needs to make the additional assumption that anna and
charlie are of opposite gender in order to render the third rule inapplicable.

Note that this is just one simple example of agent reasoning, and more com-
plex and sophisticated forms of reasoning may be afforded by CaSAPI. For ex-
ample, in case conflicts may arise, e.g. due to intending and not intending the
same action, the use of preferences, as modelled in legal reasoning, can provide
an effective means of conflict resolution. We leave this for future work.

6 Conclusions

In this paper, we have presented a generalisation of computational mechanisms
for assumption-based argumentation that allows multiple contraries of assump-
tions to be expressed. This generalisation enables this kind of argumentation
to handle a broader class of applications. Furthermore, we have described the
CaSAPI system which implements credulous and (two forms of) sceptical argu-
mentation for this generalisation of assumption-based argumentation and shown
how to use the system in some application areas.

Two of these application areas (legal and practical reasoning) assumed a
translation (by-hand) from a given formalism into assumption-based argumen-
tation [18]. Future work includes providing appropriate front-ends to our system
in order to automate this translation.

We have implemented a number of extensions to theoretical assumption-
based argumentation (e.g. variables in rules) that would also be worthwhile to
formalise in the future.

A number of other argumentation systems exist, for example GORGIAS
[6], for credulous argumentation in argumentation frameworks with preferences
amongst defeasible rules, the ASPIC system (http://aspic.acl.icnet.uk/) [5]
dealing with quantitative uncertainty, DeLP [12] for defeasible logic program-
ming, and the system by Krause et al. [4]. These systems are defined for different
frameworks for argumentation than ours. It would be interesting to provide a
mapping from these various frameworks onto assumption-based argumentation
(possibly extended) in order to carry out a full comparison.
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Abstract. This paper introduces a new method for defining the argumentative se-
mantics of Normal Logic Programs. In doing so, our single and unifiguaach
allows one to obtain the Stable Models [11] as a special case, or the nma@abe
Revision Complete Scenarios here defined.

Normal Logic Programs are approached as assumption-basedentation sys-
tems. We generalize this setting by allowing both negative and positive pssum
tions. Negative assumptions are made maximal, consistent with existéace o
semantics, and positive assumptions are adopted only insofar as theyntpe
such existence. Our argumentation semantics thus extends the classiaafl o
[7], and guarantees existence of semantics for any Normal Loggrérg whilst
providing all the scenarios corresponding to Stable Models semantics.
Additionally, we provide equivalent and correct algorithms for incretally com-
puting our scenarios, with three variants. One starts by assuming all @®ms
positive assumptions; another assumes them all negative; a third mestsoon-
bination of the first two, and may start with any choice of assumptionslaftes
may be employed to address the problem of finding those complete msenar
most compatible with an initial collection of complete scenarios. Consequently
argumentation can be put to collaborative use, not just an antagonisti©anre-
sults are achieved by generalizing the definitions of the classical apprehich
allows only for negative hypotheses, and our definitions fall back onl#ssical
ones when specialized to disallow positive hypotheses.

Finally, integrity constraints are introduced to prune undesired scenanist
permitting these to be produced nevertheless.

Keywords: Argumentation, Reductio ad AbsurdumLogic Programs, Argu-
ment Revision

1 Introduction

After introducing in [15] and [14] the new Revised Stable Mtsisemantics for Normal
Logic Programs further work using theeductio ad AbsurdurfRAA) principle has

been developed, namely the Revised Well-Founded Semdtti¢sConsidering an
argument-based view of Logic Programs, we define a new sésavttich inherits the
RAA principle studied in [15, 14] and apply it to argumendati
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Logic Programs can be viewed as a collection of argumemtatatements (rules)
based on arguments (default negated literals) [5, 2, 6,18,9, 8, 7]. In the quest for
finding a Consistent and Complete argumentative scenagaan guess it and check
its compliance with these properties; or, innovativelgriswith an arbitrary scenario,
calculate its consequences, and make revisions to thal iasumptions if necessary in
order to achieve 2-valued Completeness and Consisteniyyisltie road we propose
now, revision of assumptions justified by meanfefductio ad Absurdumeasoning.

This paper introduces a new method for defining the argurtieatasemantics of
Normal Logic Programs. In doing so, our single and unifiedrapgh allows one to
get the Stable Models [11] as a special case, or the more geRevision Complete
Scenarios here defined.

Normal Logic Programs are approached as assumption-bagechentation sys-
tems. We generalize this setting by allowing both negative positive assumptions.
Negative assumptions are made maximal, consistent withemnde of a semantics, and
positive assumptions are adopted only insofar as they gtesauch existence. The jus-
tification of positive assumptions rests on the useedfictio ad absurdunto the effect
that replacing any one positive hypothesis (or assumpbgrils negative counterpart,
in a complete scenario, would result in its inconsisten@nét, that complete 2-valued
scenario must retain its positive assumptions. Our argtatien semantics thus extends
the classical one of [7], and guarantees existence of séadnt any Normal Logic
Program, whilst providing all the scenarios correspondingtable Models semantics.

Additionally, we provide equivalent and correct algorithfor incrementally com-
puting our scenarios, with three variants. One starts byrasgy all atoms as positive
assumptions; another assumes them all negative; a thisloesa combination of the
first two, and may start with any choice of assumptions. Tkterdanay be employed
to address the problem of finding those complete scenariet coonpatible with an
initial collection of complete scenarios. Consequentiguanentation can be put to col-
laborative use, not just an antagonistic one. Our resuétsaehieved by generalizing
the definitions of the classical approach, which allow oolyrfegative hypotheses, and
our definitions fall back on the classical ones when spemwdlito disallow positive
hypotheses.

Finally, integrity constraints are introduced to pruneesiced scenarios, whilst per-
mitting these to be produced nevertheless.

In essence, our approach caters for the treatment of looggsanvodd number of
default negated literals, in that it assigns and justifieagete 2-valued models to any
Normal Logic Program.

We start by presenting the general Motivation of this papel, after introducing
some needed Background Notation and Definitions, the maadeld Problem Descrip-
tion. We proceed by setting forth our proposal — the Revigiamplete Scenarios—
and show how it extends previous known results.

Before the Conclusions and Future Work, we show how our amir@an enable
Collaborative Argumentation, complementing the cladsitanpetitive view of Argu-
mentation.
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1.1 Motivation

Ever since the beginning of Logic Programming the scientiimmunity has formally
define, in several ways, the meaning, the semantics of a IRygigram. Several seman-
tics were defined, some 2-valued, some 3-valued, and evdivaliled semantics. The
current standard 2-valued semantics for Normal Logic Rnogr— the Stable Models
Semantics [11] — has been around for almost 20 years now} &generally accepted
as thede factostandard 2-valued semantics for NLPs. This thoroughlyistuseman-
tics, however, lacks some important properties among wthielyuarantee of Existence
of a Model for every NLP.

In [14] we defined a 2-valued semantics— the Revised Stablgelde— which ex-
tends the Stable Models Semantics, guarantees Existeacilofiel for every Normal
Logic Program, enjoys Relevancy (allowing for top-downyuériven proof-procedures
to be built) and Cumulativity (allowing the programmer t&eaadvantage of tabling
techniques for speeding up computations).

Aiming to find a general perspective to seamlessly unify ttadi® Models Seman-
tics and the Revised Stable Models Semantics we drew ountiatteo Argumentation
as a means to achieve it. This is the main motivation of th&kww@ present in this pa-
per: by taking the Argumentation perspective we intend tmsimethods of identifying
and finding a 2-valued complete Model for any NLP. The apgraaainifying in the
sense that it allows us to find the Stable Models and also stinee blodels needed to
ensure guarantee of Existence of a Model. In the process tgackhe argumentation
stance itself with the ability to incorporate positive hyipeses as needed.

Example 1.An invasion problem Some political leader thinks that “If Iran will have
Weapons of Mass Destruction then we intend to invade Irdsd, ‘df we do not intend
to invade then surely they will have Weapons of Mass Destmtt

intend_we_to_invade <+ iran_will_have W M D
iran_will_have_W M D «+ not intend_we_to_invade

If we assume that “we do not intend to invade Iran” then, adicwy to this program
we will conclude that “Iran will have Weapons of Mass Destimt’ and “we intend
to invade Iran”. These conclusions, in particular “we imtéo invade Iran”, contradict
the initial hypothesis “we do not intend to invade Iran”. 88asoning byReductio ad
Absurdumin a 2-valued setting, we should “intend to invade Iran” ia fhist place.

This example gives a hint on how we resolve inconsistentagéesin the rest of
the paper.

Example 2.A vacation problem Another example puts together three friends that are
discussing where they will spend their next joint vacatial®n says “If | cannot go
the mountains I'd rather go traveling”. Mary says “Well, | mtdo go to the beach, but
if that’s not possible then I'd rather go to the mountainshaHy, Michael says “l want
to go traveling, and if that’s not possible then | want to gdhe beach”.

We put together the three friends’ statements formalizezlarNormal Logic Pro-
gram:
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travel < not mountain mountain < not beach beach < not travel

Now, because the three friends need to save money, they nmistize the number
of places they will go to on vacation. So they start by assgrttiey are going howhere
— the cheapest solution. That is, they assym& mountain, not beach, not travel}
as true. According to the program above, with these iniygdtheses the friends will
conclude they will go traveling, to the beach and to the maimst and this contradicts
the initial hypotheses. They need to revise some of thefialrissumptions. If they
revisenot mountain to mountain they will now conclude{mountain, beach} and if
we put it together with the new set of hypothe$est beach, not travel, mountain}
we get the resulting sdtmountain, beach, not beach, not travel}. We still have a
contradiction orbeach andnot beach, which we can easily remove by transforming
the hypotheses set infenountain, beach, not travel}.

There are two more alternative solutions{beach, travel, not mountain} and
{travel, mountain, not beach} — which are symmetric to this one.

Example 3.A time-out problem John likes Mary a lot so he asked her out: he said
“We could go to the movies”. Mary is more of a sports girl, se séplies “Either that,

or we could go to the swimming pool”. “Now, that's an inteiegtidea”, John thought.
The problem is that John cannot swim because he hasn'tdtedening to. He now
thinks “Well, if I'm going to the swimming pool with Mary, andhaven't learned how

to swim, I’'m might risk drowning! And if I'm risking drowninghen I really should
want to start learning to swim”.

Here is the Normal Logic Program corresponding to theseegent:

start_learning_to_swim <« risk_drowning

risk_drowning «— go_to_pool, not start_learning_to_swim
go_to_pool «— not go_to_movies
go_to_movies «— not go_to_pool

If John is not willing to go to the swimming pool — assumingt go_to_pool —
he just concludego_to_movies and maybe he can convince Mary to join him.

On the other hand, if the possibility of having a nice swimhailary is more
tempting, John assumes he is not going to the mowigsgo_to_movies and there-
fore he concludego_to_pool. In this case, since John does not know how to swim
he could also assumeot start_learning_to_swim. But since John is going to the
swimming pool, he concludesisk_drowning. And because ofisk_drowning he
also concludestart_learning-to_swim. That is, he must give up the hypothesis of
not start_learning_to_swim in favor of start_learning_to_swim because he wants
to go to the swimming pool with Mary. As a nice side-effect ledonger risks drown-

ing.

Example 4.Middle Region Politics In a Middle Region two factions are at odds. One
believes that if terrorism does not stop then oppressiohdailit and hence become
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unnecessary.
oppression < not end_of terrorism  end_of _terrorism «— oppression

The other faction believes that if oppression does not $tep terrorism will do it and
hence become unnecessary.

terrorism < not end_of _oppression  end_of _oppression < terrorism

According to these rules, if we assume the end_of terrorism we conclude that
there isoppression which in turn will cause thend_of _terrorism. So, theend_of _terrorism
should be true in the first place, insteadmet end_of _terrorism. The same happens

with end_of _oppression. In spite of the peaceful resulting scenario we propose,
{end_of oppression,end_of terrorism}, there is no Stable Model for this program.

1.2 Background Notation and Definitions

Definition 1. Logic Rule A Logic Ruler has the general form
L «— by,bs,..., by, not cy,not ca,...,not ¢,, WhereL is a literal, i.e., an atonh or
its default negatiomot h, andn,m > 0.

We call L the head of the rule — also denoted kyud(r). Andbody(r) denotes
the set{by, ba, ..., by, not c1,n0t ca,...,not ¢y, } of all the literals in the body of.
Throughout this paper we will useét ’ to denote the default negation.

When the body of the rule is empty, we say the head of rule istafal we write
the rule as just or not h. a

Definition 2. Logic ProgramA Logic Program (LP for shortP is a (possibly infinite)
set of ground Logic Rules of the form presented in definitiolfi the heads of all the
rules in P are positive literals, i.e., they are simple atoms, and nefiadlt negated
literal, we say we have a Normal Logic Program (NLP). If atdeane of the heads of
arule of P is a default negated literal, and there is no explicit negatin the program
— we say we have a Generalized Logic Program (GLP). If theexdicit negation,
besides default negation, in the program we say we have an#etl Logic Program
(ELP). 0

Definition 3. Atoms of a Logic ProgramP — Atoms(P) Atoms(P) denotes the set
of all atoms ofP. Formally,

Atoms(P) = {a : 3,cp(head(r) = aV head(r) = not aVa € body(r)Vnot a €
body(r))} O

Throughout the rest of this paper we will focus solely on Naktnogic Programs
hence, when we write just a Program or a Logic Program we medoraal Logic
Program.

Definition 4. Default negation of a sefS of literals — not S Throughout this paper
we will sometimes use thet S default negation of a sef notation, whereS is a set
of literals, in order to denote the set resulting from defandgating every literal of.
Formally,not S = {nota:a € S} U{b:notb e S} O
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Definition 5. Scenario A scenario of a NLPP is the Horn theoryP U H, where
H=H"UH~,H" C Atoms(P), H~ C not Atoms(P), andnot H" and H~ are
disjoint. H is called a set of hypotheses, positive and negative. a

Definition 6. + operator Let P be a NLP andH a set of hypothese#’ is the Horn
theory obtained fronP by replacing every default literal of the formot L in P by
the atomnot_L. H' is likewise obtained fron#/ using the same replacement rule. By
definition, P’ U H' is a Horn theory, and so it has a least modél We defing- in the
following way, whered is any atom ofP:

PUHFA iff Ae M PUHFnot A iff nott Ae M O

Definition 7. Consistent scenarioA scenarioP U H is consistent iff for all literals,
if PUH + LthenPUF H ¥ not L, wherenot not L = L. O

Definition 8. Consistent program A Logic ProgramP is consistent iff? U () is a
consistent scenario. NLPs are of course consistent. O

2 Revision Complete Scenarios

In [4] the author proves that every Stable Model (SM) of a NERx1i2-valued com-
plete (total), consistent, admissible scenario. The autbosiders a scenario as a set
of default negated literals — the hypotheses. However, netyeNLP has a consis-
tent, 2-valued complete scenario when one considers ashieges just default negated
literals.

Also in [4], the author shows that preferred maximal (withkimaum default negated
literals) scenarios are always guaranteed to exist for NHB&ever, preferred maximal
scenarios are, in general, 3-valued.

The problem we address now is to find a way to render 2-valuadl dgpreferred
maximal scenario. In this paper we take a step further frotwias previously achieved
in [4], extending its results. We allow a set of hypothesesdwtain also positive lit-
erals, but only those absolutely necessary to guarantestdfixe of a Model. These
positive hypotheses are those who are justifiad by a specifilReductio ad Absurdum
reasoning we accept.

Before presenting the formal Definition of a Revision Congl8cenario we give a
general intuitive idea to help the reader grasp the conéeptthe formal definition of
Revision Complete Scenario we will also need some prelirginaxiliary definitions.

2.1 Intuition

In [3] the authors prove that every SM of a NLP correspondsstable set of hypotheses
which correspond in turn to a 2-valued complete, consistahissible scenario.

In order to guarantee the Existence of a 2-valued total Méafeévery NLP we
allow positive hypotheses to be considered besides thé nsgative hypotheses. Under
this setting, the easiest way to solve the problem would kectept every atom of a
program as a positive hypotheses. However, we want to ouarsirs to be the most
skeptical possible while ensuring stratification compbttyoamong hypotheses.
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To further keep the semantics skeptical we want to have thénmapossible neg-
ative hypotheses and the minimum non-redundant positipethgses. Intuitively, a
positive hypothesid. is considered redundant if, by the rules of the program aad th
rest of the hypotheses,is already determinetiue. The formal definition of this notion
of non-redundancy of positive hypotheses is presented>gridired below.

The formal notion of compatibility will also be depicted aexiplained below, but
for now the intuitive idea is that one positive hypothesisnust not contradict other
hypotheses.

2.2 Definition

Definition 9. Evidence for aliteralL A negative set of hypothesBsC not Atoms(P)

is evidence for a literalL in program P iff P U E + L. If P is understood we write
E ~ L. We also say attacksnot L. Notice that we do not require an evidence to be
consistent. O

Definition 10. Weakly Admissible set of hypothesés™

The notion of weakly admissible set presented here is inViitle that of weak
stability, first defined in [12].

Let P be a NLP,H~ C not Atoms(P) a set of negative hypothesesyt L a
default negated literal inP and £ an evidence fol.. We sayH ~ is weakly admissible
iff vnot LEH—VEWLHnot A€EP UHT UEFA O

The classical notion of admissible set checks onlf?if) H~ + A. By doing this test
with P U H~ U E we allow FE to be inconsistent. It suffices to see thaPif) H— ¥ A
andP U H~ U F F A it means that is essential to derivel in the P U H~ context.
Since we knowrot A € EandP U H~ U E + A we conclude thaFE is inconsistent.

There are some sets of hypotheggs which were not admissible according to the
classical definition (with jusP U H~) and are weakly admissible — according to the
definition usingP U H~ U E. These sets of hypotheses which are accepted as weakly
admissible are just the ones where the adding of the evideneas essential to derive
A, that is, wherd? is inconsistent.

Since thd- operator is monotonic, every admissible set of hypothesesrding to
the classical definition (using U H ™) is also weakly admissible — according to the
definition withP U H~ U E.

Example 5.Weakly Admissible vs Non Weakly Admissible sets of negativay-
pothesesConsider the following NLP:

k+—mnott t<—a,b a<—notb b« nota

In this program we can easily see that the bottom Even Loop Regation (ELON,
for short) overs andb allows only one of them to be true — when we demand minimal-
ity of positive information. Under this setting we will neveavet true for it needs both
a andb to be true simultaneously to support its truthfulness. &fwee, & will always
be true, since is always false.
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Let us analyze the different possible sets of hypotheses &w admissibility point
of view. Consider the following two sets of negative hypse; = {not b, not t}
and Hy = {not b,not k}. The other two sets of negative hypothegésand H, are
just symmetric taH; and Hs, respectively, omot a andnot b; therefore we are going
to focus solely on; and Hs.

H, is weakly admissible wheredg, is not. Let us see why. Analyzingot b we
verify that there is only one possible eviderfte= {not a} for band thatPUH, UFE +
a, i.e., H; U E attacks (in the sense presented in definitiom&) a. In this particular
case even just/; attacksnot a.

Analyzingnot t we can see that there is only one evidefite: {not a, not b} for
t. PU H, U E derives bothw andb, i.e., PUH; UE FaandP U Hy U E - b; hence
H; is weakly admissible.

Let us see what happens with,. We have already seervt b, we just need to test
not k. The only evidence fat is E = {not t}. We can see however thRt HyUFE ¥ t,
which leads us to conclude th&t is not weakly admissible.

Example 6.Allowing Inconsistent Evidence Consider the following NLP:

k<« nott t<« nott

The hypothese#; = {not t} is admissible and weakly admissible. However, since
P U H; is not a consistent scenario, no model exists with¢.

The only possible hypotheses left are the empty seffane: {not k}. Considering
the classical notion of admissible set (withu H~) H, is non-admissible; however,
H, is weakly admissible. Notice that the evidence fds E = {not t} and thatP U
Hy U E F t. PU Hsy is a consistent scenario, but it is not complete. Since weadir
know thatnot ¢ cannot be in any consistent model, in a 2-valued setting wednlike
to “complete” the scenari@® U H, with ¢ in order to obtain a 2-valued complete and
consistent model. In such case we $ayis our set of positive hypotheses.

Definition 11. Non-redundant setl ™ of positive hypothesed et P be a NLP, and
H = H* UH™ aset of positive and negative hypotheses, i}, € Atoms(P)) and
(H~ C not Atoms(P)). We sayH ™ is non-redundant iffV,c y+ PUH\{L} ¥ L O

As just explained, we wish to allow some positive hypothegsken they are ab-
solutely needed in order to obtain 2-valued complete andistant scenarios. How-
ever, we require the positive set of hypotheses to be namadaht, that is, all positive
hypotheses must not be already derived by other hypothébésis the purpose of
definition 11 above.

Example 7.Redundant positive hypothesesConsider the following prograrf:

b—a a<nota

In the previous example 6 we saw how a rule like- not ¢ forbids the negative
hypothesisot t. By the same token, in this example’s program, the hypathesi a
is also forbidden. Alsdnot b} is not a weakly admissible set of negative hypotheses.



104 L.M. Pereira and A.M. Pinto

Since we are looking for 2-valued complete (total) and cstesit scenarios, we would
like one including both andb.

The question now is: should bothandb be considered positive hypotheses? Since
we are looking for the minimum possible set of positive hjyeses (compatible with
the negative ones), we answerin this case, because assuming the positive hypothesis
a is enough to automatically determine the truttbof hat is why we say the sét:, b}
of positive hypotheses is redundant, whergasis not.

Definition 12. Unavoidable sefd+ of positive hypothesedet P be a NLP, andd =
H* U H~ a set of positive and negative hypotheses. Welgayis unavoidable iff
Vien+P U (H\ {L}) U{not L} is an inconsistent scenario o

In a nutshell, this definition imposes that every positivedthesis must be accepted as
true for the sake of consistency and completeness in thexiooftall other hypotheses.
We ensure this by demanding that any if positive hypothésigas to be considered
false —i.e.,not L considered true — the whole scenariafofvith all the hypotheses,
exceptL, and includingrot L instead (for the sake of 2-valued completeness) would be
inconsistent. So, there is no consistent 2-valued way t@dwaving L true in the con-
text of the remaining hypotheses. Additionally, one maydnée condition as stating
that, if the scenario withot L is consistent, thef is avoidable.

Example 8.Unavoidable vs Avoidable sets of positive hypotheselset P be the fol-
lowing NLP:

d«<—notc c«notb b+ nota a+< nota

In this example we considell; = H;” U H; , where H;" = {a} and H; =
{not b,not d}; andH, = Hy U H, , whereH, = {a,b} andH, = {not c}.

By the same reason as in exampl@at a cannot be in anyd — and, in order to
obtain a 2-valued total model with &, « must be accepted as true — in that sense we
saya is unavoidable.

Definition 13. Revision Complete Scenaridst P be aNLP andd = H* U H™ a
set of positive I ) and negative l{ ~) hypotheses. We sdy is a Revision Complete
Scenario iff

1. PU H is a consistent scenario aridast(P U H) is a 2-valued complete model of
P

2. H~ is weakly admissible

3. Ht is not redundant

4. H* is unavoidable

2.3 The Exhaustive Model Generation Algorithm

Another method for finding the Revision Complete Scenasamiiterative and incre-
mental way.
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Definition 14. Inconsistency avoidance algorithm for generating the Reiein Com-
plete Scenarios (RCSs)

1. Startwithi = 0, H;” = Atoms(P) andH; = .

2. If H; is not weakly admissible thei;” U H; is not a Revision Complete Scenario
and the algorithm terminates unsuccessfully.

3. If H; is weakly admissible then:

4. If H = 0 thenH;" U H; is a RCS and the algorithm terminates successfully in
this case.

5. If H;" # () then non-deterministically take one arbitrafye H;" and check ifH;"
is redundant orL. If it is then:

6. H;,, = H;" \ {L} and go back to step 3 (a).

7. If H; is non-redundant then:

8. Check ifH;" is unavoidable and, if so, theli;* U H; is a RCS and the algorithm
terminates successfully.

9. If H,j is not unavoidable and. € H,j is one of the positive hypotheses rendering
H;" non-unavoidable theff;" , = H;" \ {L} and H,_, = H; U {not L} and go
on to step 2 again.

o

This algorithm starts with all the possible positive hymstés (all the atoms of the
program) and no negative hypotheses. By construction, mascewith suchH+ and
H~ is necessarily consistent and 2-valued complete. Alongxeeution of the algo-
rithm, at each time, we either just remove one positive Hyggis because redundant,
or non-deterministically remove one positive hypothesid add its correspondent de-
fault negation to the set of negative hypotheses. By cocisbrny the algorithm guaran-
tees thatd = H+ U H~ is consistent. When we just remove one positive hypothesis
L ¢ HT the 2-valued completeness of the resulting scenario isagteed becausk
was removed front/ + only becausd, was rendering? ™ redundant. When we remove
L from H* and addhot L to H~ 2-valued completeness is naturally assured.

The requirement for weak admissibility &f ~ in step 3 ensures the resultiffy =
H™UH~ corresponds to a consistent scenario. The different nterd@istic choices
engender all the RCSs.

Example 9.Generating RCSs by Inconsistency avoidance
a -+« nota,notb b+ nota,notb

We start the algorithm with all the possible positive hypstis and no negative
ones:

- Hy ={a,b},Hy =0.

— H is weakly admissible.

— Hy # 0 sowe check if it is redundant. It is not, so we checKjf is unavoidable.

— H{ is not unavoidable. We non-deterministically choose omenatrom H;™ =
{a, b} which makes it non-unavoidable (in this case, betand b are rendering
H{ non-unavoidable, so we can choose any one). Let us say waehodhen
H{ = Hf \ {b} andH; = H; U {not b}. And we go on to step 2 again.
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— Hy is weakly admissible.

- H #0.

— H, is notredundant on ang € H;".

— H{ is unavoidable and s, = H; 1 U H; = {a,not b} is a Revision Complete
Scenario and the algorithm terminates successfully.

If we were to choos&ot a instead ofnot b in step 9, the resulting Revision Com-
plete Scenario would bgnot a, b}. There are no other Revision Complete Scenario for
this program besides these two.

Theorem 1. The setsH = H+ U H~ resulting from the execution of algorithm of
definition 14 are the Revision Complete Scenarios

Proof. Trivial, by construction of the algorithm. O

Theorem 2. Existence of Model For any given NLPP there is always at least one
Revision Complete Scenario.

Proof. In the algorithm described above, when we need to non-detestically choose
one atomL to remove fromH;", and eventually adeot L to H;, if there are no
repetitions in the choice, then the algorithm is necessgtiaranteed to terminate.
Moreover, if the first positive hypothesis to remove cormspto atoms upon which
no other atoms depend, then removing that positive hypethieas causes no inconsis-
tency, nor does it compromise 2-valued completeness. Ihéxé positive hypotheses
in the sequence to be removed always guarantee that theqeemses of its removal
(and eventual adding of its default negated counterpahideseét of negative hypothe-
ses) does not change the truth value of positive hypothéssesds removed, then it is
necessarily guaranteed that the algorithm will find a Revi€§omplete Scenario.
Finally, it is always possible to find such a sequence of weshypotheses to re-
move: the sequence just needs to be in reverse order of tidication of the program.
l.e., the first positive hypotheses in the sequence musobethie top strata of the pro-
gram, the second hypotheses from the second strata codirtimghe top, and so on.
The notion of stratification we are unsing here can be ineliiexplained as: (1) atoms
in aloop are all in the same strata; (2) atoms which are notan@, and are in the head
of a rule are in a strata which is always one directly aboveatbes in the body of the
rule. O

Theorem 3. M is a Stable Model of a NLPP iff there is some Revision Complete
ScenarioH such thatM = least(P U H) with HT = ()

Proof. Let H = H* U H~ a set of positive and negative hypotheses. Let us consider
the particular case wheté™ = (), thereforeH = H~.
In [4], the author already proved that wh&h= H~, PU H is a consistent scenario
andM = least(P U H) is a 2-valued complete scenario iff is a Stable Model of.
Stable Models are just a particular case of Revision Coma@etnarios. a

A variation of this algorithm reversing the direction of thieanges ind+ and 5~
can also be depicted. In such an algorithm we start \iiith = not Atoms(P) and
H™ = (). 2-valued completeness is also assured at the starting ptilmough consis-
tency of P U H is not. The algorithm is:
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Definition 15. Inconsistency removal algorithm for generating the Revasi Com-
plete Scenarios (RCSs)

1. Startwithi = 0, H; = not Atoms(P) and H;" = 0.

2. If P U H; is a consistent scenario thdi; is a RCS and the algorithm terminates
successfully.

3. Check ifH;" is redundant:

4. Ifit is redundant then non-deterministically take onbitrary atomZ € H;" such
that P U H \ {L} - L and construct;}, | = H;" \ {L}.

5. If H;" is non-redundant construdf;’, | = H;".

6. Check ifH;" , is unavoidable:

7. If H, is non-unavoidable thetf;, , U H;,, is not a RCS and the algorithm
terminates unsuccessfully.

8. If Hj;l is unavoidable then check# U H; . is a consistent scenario:

9. If PU H,41 is a consistent scenario then:

10. Check ifP U H;1 is also a 2-valued complete scenario and if it is thHén ; is a
RCS and the algorithm terminates successfully.

11. If PUH, is not a 2-valued complete scenario then constﬁﬂg2 = HﬁrlU{L},
whereP U H; 1 ¥ Land P U H; 1 ¥ not L, andH;r+2 is non-redundant. Go on
to step 4 again.

12. If P U H;, is not a consistent scenario, take onet L € H, , such thatP U
Hiy1 F LandPUH; ;- not L (i.e., there is a contradiction ik with PU H;_ )
and constructd,,, = H;,, \ {not L} andH;,, = H}, U{L}, i.e., we revise
the assumptionot L to L making it a positive hypothesis. Go on to step 3 again.

O

This algorithm starts with all the possible negative hypsts (the default negation
of all the atoms of the program) and no positive hypothesgsdBstruction, a scenario
with suchH+ andH ~ is necessarily consistent and 2-valued complete. Alongxke
cution of the algorithm, at each time, we either just remave positive hypothesis —
because it is redundant — , or remove one negative hypothesis and add its corre-
spondent positive, to the set of positive hypotheses — i.e., we revise the asomp
not L to L, when the set of negative hypotheses witlht L is not consistent.

Also by construction the algorithm guarantees tHat- H+UH ~ is consistent and,
therefore, thati — is weakly admissible. When we just remove one positive hyggith
L € HT the 2-valued completeness of the resulting scenario isagteed becausk
was redundant it *. When we removewot L from H~ and addL to H* 2-valued
completeness is naturally assured. The different nomaétéstic choices engender all
the RCSs.

Example 10.Generating RCSs by Inconsistency removalet us revisit the example
9 and see the Inconsistency removal version of it.

a <« nota,notb b+ nota,notb

We start the algorithm with all the possible negative hypetts and no positive
ones:
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— Hy = {not a,not b}, Hf = .

— P U Hy is not a consistent scenario.

— H{ = 0is non-redundant.

- Hi" = H{ is unavoidable.

— P U H, is not a consistent scenario.

— We non-deterministically choose one negative hypothesid. from H; = {not a, not b}
suchthatPUH, - L andPUH; F not L. In this case, bothot a andnot b, S0 we
can choose any one of them. Let us say we cheege.. ThenH," = H; U {1}
andH, = Hy \ {not a}. And we go on to step 3 again.

— H, is non-redundant.

— Hi = HJ is unavoidable.

— P U Hs is a consistent scenario.

— P U Hj is a 2-valued complete scenario, B = H;” U H; = {a} U {not b} =
{a,not b} is a Revision Complete Scenario and the algorithm terminstecess-
fully.

If we were to chooseot b instead ofnot a in step 12, the resulting Revision Com-
plete Scenario would bgnot a,b}. These Revision Complete Scenario coincide with
those produced by the algorithm in definition 14.

Theorem 4. The setsH = HT U H~ resulting from the execution of algorithm of
definition 15 are the Revision Complete Scenarios

Proof. Trivial, by construction of the algorithm. O

2.4 The Name of the Game

Why the name “Revision” Complete Scenarios? The “Revisi@it pf the name comes
from the assumption revision we do when an assumptiohA € H~ leads to a
contradictioninP, i.e.,(PUH ™ t {A,not A}) A(PU(H~\{not A}) ¥ {A,not A}).

In such a case we accept to revis@ L to its positive counterpark. This is the
specific form of reasoning bireductio ad Absurdumie take here: if addingot A to P
in the context of — leads to self inconsistency, then, by absurdity, we shostdime
Ainstead ofnot A. A becomes, thus, one of the positive hypotheses.

3 Syntactic Perspective of Revision Complete Scenarios ave
Normal Logic Programs

In [3] the authors proved that every Stable Model of a NLP esponds to a 2-valued
complete, consistent and admissible scenario. In [10]uktieoa shows that when a NLP
has no SMs it is because the Normal Logic Program has Odd LOeps Negation
(OLONSs) and/or Infinite Chains Over Negation (ICONs), althb the author does not
employ these designations. These designations are takerI4].

For the sake of readability and self-containment we briefgspnt some examples
of OLONs and ICONSs. Intuitively an OLON is a set of rules of alNlhich induce
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a cycle over some literals in the dependency graph. The @fcésn OLON has the
characteristic of having an Odd number of default Negated around the cycle.

An example of an OLON is given in example 1. There we can seethigaatom
intend_we_to_invade is in a cycle across the dependency graph, and that along that
cycle there is only 1 (an Odd number) default negation.

Another example of an OLON is present in example 2. There tibw avountain
is in a cycle with 3 default negations along the circular adelgmcy graph. The same is
true fortravel andbeach.

The classical example of an ICON was first presented in [1@oés as follows:

p(X) —p(s(X))  p(X) — not p(s(X))

where X is a variable. The ground version of this program when the@nly one
constanb is the infinite program

p(0) — p(s(0)) p(0) — not p(s(0))
p(s(0)) — p(s(s(0))) p(s(0)) — not p(s(s(0)))
p(s(s(0))) — p(s(s(s s(s(s

(s(s(0))))  p(s(s(0))) < not p(s(s(s(0))))

This example in particular is the one to which every othersjisds variation of an
ICON reduces to (proven in [10]). As it can be easily seemetlie an infinitely long
chain of support for any(X) with an infinite number of default negations.

As we just said, in [10] the author proves that only OLONs antiZONSs can pre-
vent the existence of SMs in a NLP. Therefore, since our Revi€omplete Scenario
guarantee the Existence of a Model for any given NLP it follatvat the Revision
Complete Scenario deal with OLONs and ICONSs in a way that tael& Models se-
mantics did not. This is achieved by means of the reasonirgduuctio ad Absurdum
we explained in subsection 2.4.

4 Collaborative Argumentation

The classical perspective on Argumentation is typicalla@ompetitive nature: there
are arguments and counter-arguments, all of them attaddnl other and struggling
for admissibility. The ones which counter-attack all itsaekers are admissible.

Typically, one takes one argument — a set of hypothd$es- and check if it is
admissible, and iP U H is a consistent scenario. If 2-valuedness is a requiside, &im
extra test for 2-valued completeness is required.

We now generalize this approach in a constructive way, biglimgi up a compro-
mise Revision Complete Scenario starting from several iobinf}) 2-valued complete
and consistent Models dP — each corresponding to an argument. This is what the
algorithm below does.

First, we take all the conflicting models;, Ns, ..., N,, and calculate the set of
all the possible positive hypothesa$™ = J;_, N;; and the set of all the possible
negative hypothese¥/~ = |J!"_, N;". M and M~ will now be used to guide the
algorithm below in order to ensure consensus, i.e., thdtimeguRevision Complete
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ScenarioH will have no positive hypotheses outsidé™, nor will it have negative
hypotheses outsidk/ —. The algorithm goes as follows:

Definition 16. Revision Complete Scenarii construction from conflicting models
Ny, Ns,...N,

1. StartwithA/ = M+ U M~. My = M is inconsistent.

2. Mi" =M\ {L € M{ :not L € My },andM; = M, . M; is now consistent.

3. If M, is not weakly admissible then non-deterministically setee L such that
not L € M, , there is ank such thatl ~» L, and there is somgot a € I such
that P U M;” U E ¥ a. ConstructM; , = M; \ {not L}. Repeat this step.

4. If M} is avoidable thed;' , = M\ {L}, wherePU (M, ;1\ {L})U{not L}
is an inconsistent scenaridd;, , = M;,, U {not L} only if L € M, otherwise
M, , = M, ;. Goonto step 3 again.

5. If P U M;,- is not a consistent scenario then non-deterministicallgaeone L
such thatP U M; 1 = {L,not L}, and constructM; 5 = M, \ {not L}. Go on
to step 3 again.

6. If PU M, is not a 2-valued complete scenario thef), , = M, U{L}, where
PUM; ¥ LandPU M;, ¥ not LandL € M, and go on to step 4 again.

7. PU M;,5 is a 2-valued complete and consistent scenario, WIMf§2 is non-
redundant and unavoidable, arld,, , is weakly admissible. By definitiof; , 5 is
a Revision Complete Scenario, thereféfe= M, » and the algorithm terminates
successfully.

O

In essence, this algorithm is a mixture of the Inconsisteh@idance and Inconsis-
tency Removal algorithms presented in subsection 2.3. Wewith two sets\/+ and
M~ containing, respectively, all the possible positive hjxeses that can be adopted
in the final Revision Complete Scenari®, and all the possible negative hypotheses
that can be adopted. Next, we remove from the set of positppotheses all those
conflicting with the negative ones in order to ensure coesist Now we need to en-
sure a weak admissibility of the current negative hypothéde . For that we check
if the M, is weakly admissible, and if it is not, then we non-deterstinally select
and remove froml/;” one of the negative hypotheses causiviy failing to com-
ply to this requirement. This step is repeated until weak iasiiility is verified by
M. Now we turn to the set of positive hypothesk&. If it is avoidable, then we
non-deterministically select and remove fran;,™ one positive hypothesig which
contributes taV/;" avoidability. We also add the correspondent default negaif that
positive hypothesesot L to M, , but only if not L was already im/ ~ — the initial
set of all the adoptable negative hypotheses. This extnagireagent ensures the final
compromise Revision Complete Scenakido be found is maximally compatible with
all the initial modelsNy, Ns, ..., N,,. When we addwot L to M, we need to recheck
its weak admissibility, so we go on to that step againJ}f was unavoidable, then we
need to check it the wholBU M, is consistent. If this scenario fails consistency, then we
remove fromM;” one of the negative hypothesis whose positive counterpastalso
being produced by’ U M;. Notice that when the resulting scenario is not consistent w
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remove one inconsistency in favour of the positive hypathesince the presence of the
correspondent negative produced the inconsistency. $hiasically the mechanism of
reasoning byReductio ad Absurdume use. Again we need to recheck the weak ad-
missibility, so we go on to that step again. If the scen&tio M; was consistent, then
we need to check if it is 2-valued complete. If it is not, thea mon-deterministically
select one adoptable positive hypothesis and addM;b Now we need to recheck
Mj’s unavoidability; so we go on to that step again. FinallyPitJ M; was 2-valued
complete therd = M; is a Revision Complete Scenario and the algorithm terménate
successfully.

Example 11.Example 2 revisited — A vacation problem Recall the example 2 pre-
sented earlier. The program is:

travel < not mountain mountain < not beach beach < not travel

Now assume that one of the friends going on vacation with therdwo could not
be present when they were getting together to decide theatioms’ destinies. So, only
John (the one who preferred going to the mountains, othertnaseling it is), and Mary
(she prefers going to the beach, otherwise going to the rmmsis ok).

John'’s opinion is] = {mountain, not travel, not beach}, while Mary’s choice is
Z = {beach, not mountain, not travel }. We can already see that at least on one thing
they agreenot travel. We now find the largest set of positive hypotheses we can con-
siderM* = JtUZ™" = {mountain, beach} and the largest set of negative hypotheses
we can consideM — = J~ U Z~ = {not travel, not beach, not mountain}. And
now the algorithm starts:

M = M* UM~ = {mountain, beach, not mountain, not beach, not travel}

Going through the steps of the algorithm we have:

— My = M.

- M;" = M\ {mountain,beach} = 0, M = M .

— M7y is not weakly admissible, so we non-deterministically setse L such that
not L € My is one of the causes fdi/;” not complying to the weak admissibil-
ity condition: for exampleL = mountain. My = M; \ {not mountain} =
{not beach,not travel}. We repeat this set and now we must remave beach
from M5 . M5 = My \ {not beach} = {not travel}.

- M3 = My = M;" = 0 is unavoidable.

— P U Mj is a consistent scenario.

— PUM3 is nota 2-valued complete scenario. 8§ = M, U{mountain} because
mountain is the only literal which verified® U M3 ¥ mountain and P U M3 ¥
not mountain. Now we go on to step 4 of the algorithm again.

— M, is unavoidable.

— P U M, is consistent.

— PU M, is 2-valued complete, sH = M,;" UM, = {mountain,not travel} and
the algorithm terminates successfully.

In the end, the resulting modellisast(PUH) = {mountain, beach, not travel}.
Notice thatbeach is just a consequence abt travel in P, it does not have to be a
hypothesis. If other atoms were to be chosen at step 3 otieenative solutions would
be found.
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5 Integrity Constraints

Example 12.Middle Region Politics Revisited Recall the example 4 presented earlier.
We are now going to add extra complexity to it.
We already know the two factions which are at odds and thiikihg.

oppression < not end_of terrorism  end_of _terrorism « oppression
terrorism «— not end_of _oppression  end_of _oppression « terrorism

We now combine these two sets of rules with the two followimiggrity Constraints
(ICs) which guarantee thappression andend_of _oppression are never simultane-
ously true; and the same happens with terror:

falsum «— oppression, end_of _oppression, not falsum
falsum « terrorism,end_of _terrorism,not falsum

So far so good, there is still a single joint set of hypothessalting in a consistent
scenario{end_of oppression, end_of terrorism}. Still, there is no SM for this pro-
gram. But introducing either one or both of the next two rufeakes it impossible to
satisfy the ICs:

oppression «— not terrorism  terrorism <— not oppression

In this case all the consistent and 2-valued complete siosneontain the atom
falsum. There are still no Stable Models for the resulting prograre semantics we
propose allows two models for this program, which corresitorthe 2-valued complete
consistent scenarios, both containifig sum. We can discard them on this account or
examine their failure to satisfy the ICs.

6 Conclusions and Future Work

We have managed to assign a complete 2-valued semanticety Mermal Logic
Program, by employing an argumentation framework thatileagtends the argumen-
tation framework of Stable Models semantics. We also ptesetiiree algorithms for
finding the Revision Complete Scenario of any Normal LogiogPam. Every Stable
Model of a Normal Logic Program corresponds to a Revision flete Scenario and,
in that sense, our algorithms allow for a different persipeain Stable Models seman-
tics: any Stable Model can be seen as the result of an iteratacess of Inconsistency
Removal or Inconsistency Avoidance. In any case, Stabledidaate the final result of
such inconsistency removal/avoidance where any initialtpe hypotheses remain in
the end. In the process, we have extended argumentatiorReidhctio ad Absurdum
reasoning for that purpose, and shown how Collaborativeidwentation can be defined
in that context.

Future work concerns the extension to Generalized Logigiarms and Extended
Logic Programs, and the seamless merging with more geneliaf bevision in Logic
Programs.
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Some of the applications enabled by this improved semaotis®rmal Logic Pro-
grams, concern the ability to guarantee that the meaningyefgk programs, e.g. aris-
ing from Semantic Web usage, always has a semantics. Sinila can also ensure
this property whenever updating programs, including theecahere an autonomous
program evolves through self-updating [1]. Such applaregiwill be enabled by the
ongoing implementation.
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Abstract. We identify that there is a direct relationship between the
minimal models of a propositional formula and the preferred extensions
of an argumentation framework. Then we show how to infer the preferred
extensions of an argumentation framework by using UNSAT algorithms
and disjunctive answer set solvers.

1 Introduction

Although several approaches have proposed for argument theory, Dung’s ap-
proach, presented in [11], is a unifying framework which has played an influential
role on argumentation research and Artificial Intelligence (AI). In fact, Dung’s
approach has influenced subsequent proposals for argumentation systems, e.g.,
[18, 3]. Besides, Dung’s approach is mainly relevant in fields where conflict man-
agement plays a central role. For instance, Dung showed that his theory naturally
captures the solutions of the theory of n-person game and the well-known stable
marriage problem.

Dung defined four argumentation semantics: stable semantics, preferred se-
mantics, grounded semantics, and complete semantics. The central notion of
these semantics is the acceptability of the arguments. An argument is called ac-
ceptable if and only if it belongs to a set of arguments which is called extension.
The main argumentation semantics for collective acceptability are the grounded
semantics and the preferred semantics [16, 1]. The first one represents a skepti-
cal approach, since for a given argumentation framework the grounded semantics
always identifies a single extension, called grounded extension. The preferred se-
mantics instead represents a credulous approach, since for a given argumentation
framework it identifies a set of extensions which are called preferred extensions.

It is well-known that the implementation of the decision problem of the
grounded semantics is quite straightforward. However, the decision problem of
the preferred semantics is hard since it is co-NP-Complete [12]. In the literature,
we can find different algorithms for computing the preferred semantics [4,6,9,
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10, 2]. We have to point out that these algorithms are so specific; they are not
really flexible for developing small prototypes.

From the point of view that a proper representation of a given problem is a
major step in finding robust solutions to it, we explore a couple of representations
of an argumentation framework in order to compute their preferred extensions.
In general terms, we identify that there is a direct relationship between the
minimal models of a propositional formula and the preferred extensions of an
argumentation framework. We show how to infer the preferred extensions of an
argumentation framework by using UNSAT algorithms and disjunctive answer
set solvers e.g., DLV [8]. UNSAT is the complement of Satisfiability (SAT), a
problem for which very efficient systems have been developed in Al during the
last decade. Nowadays, there are fast answer set solvers e.g., DLV [8], SMODELS
[17], which have contributed to extend the applications of Answer Set Program-
ming (ASP).

The rest of the paper is divided as follows: In §2, we present some basic
concepts of logic programs and argumentation theory. In §3, we present a char-
acterization of the preferred semantics by minimal models. In §4, we present how
to compute the preferred semantics by using the minimal models of a positive
disjunctive logic program. Finally in the last section, we present our conclusions.

2 Background

In this section, we present the syntax of a valid logic program in ASP, the
definition of an answer set, and the definition of the preferred semantics. We will
use basic well-known definitions in complexity theory such as co-NP-complete
problem. We suggest the reader to consult [7] if s/he needs to read more on such
definitions.

2.1 Logic Programs: Syntax
The language of a propositional logic has an alphabet consisting of

(i) proposition symbols: pg,p1, ..
(ii) connectives : V, A, «—, =, 1, T
(iii) auxiliary symbols : ( , ).

where V, A, « are 2-place connectives, = is 1-place connective and L, T are 0-
place connectives. The proposition symbols and L stand for the indecomposable
propositions, which we call atoms, or atomic propositions. A literal is an atom,
a, or the negation of an atom —a. Given a set of atoms {ay,...,a,}, we write
—{ay,...,an} to denote the set of literals {—ay, ..., 7a,}.

A general clause, C, is denoted by a; V...V am, < l1,...,1,,> where m > 0,
n > 0, each a; is an atom, and each [; is a literal. When n = 0 and m > 0 the
clause is an abbreviation of ay V...V a,, < T, where T is -L. When m = 0

3 l1,...,l, represents the formula I3 A - Al,.
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the clause is an abbreviation of L « [y,...,l,. Clauses of this form are called
constraints (the rest, non-constraint clauses). A general program, P, is a finite
set of general clauses. By Lp, we denote the set of atoms that occurs in P. Given
aset S and E C S, F denotes the complement of E w.r.t. S.

We point out that whenever we consider logic programs our negation — cor-
responds to the default negation not used in Logic Programming. Also, it is
convenient to remark that in this paper we are not using at all the so called
strong negation used in ASP.

2.2 Answer set semantics

First, to define the answer set semantics, let us define some relevant concepts.
Let P be a general program. An interpretation I is a mapping from Lp to
{0,1}, where the generalization of I to connectives is as follows: I(a A D) =
min{I(a),I(b)}, I(aVb) = mazx{Il(a),I(b)}, I(a < b) =0 if and only if I(b) =1
and I(a) =0, I(-a) =1—I(a), I(L) = 0. An interpretation I is called a model
of P if and only if for each clause ¢ € P, I(¢) = 1. Finally, I is a minimal model
of P if it does not exist a model I’ of P such that I’ C I.

By using answer set programming, it is possible to describe a computational
problem as a logic program whose answer sets correspond to the solutions of
the given problem. The answer set semantics was first defined in terms of the so
called Gelfond-Lifschitz reduction [13] and it is usually studied in the context of
syntax dependent transformations on programs. The following definition of an
answer set for general programs generalizes the definition presented in [13] and
it was presented in [14].

Let P be any general program. For any set S C Lp, let PS be the general
program obtained from P by deleting

(i) each rule that has a formula —! in its body with [ € S, and then
(ii) all formulee of the form —I in the bodies of the remaining rules.

Clearly P® does not contain —, then S is an answer set of P if and only if S is
a minimal model of P%.

2.3 Argumentation theory

Now, we define some basic concepts of Dung’s argumentation approach. The first
one is an argumentation framework. An argumentation framework captures the
relationships between the arguments (All the definitions of this subsection were
taken from the seminal paper [11]).

Definition 1. An argumentation framework is a pair AF = (AR, attacks),
where AR is a finite set of arguments, and attacks is a binary relation on AR,
i.e. attacks C AR x AR.
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a >b >C

Fig. 1. A single argumentation framework

Any argumentation framework could be regarded as a directed graph. For
instance, if AF := ({a,b,c},{(a,b), (b,c)}), then AF is represented as shown in
Fig. 1. We say that a attacks b (or b is attacked by a) if attacks(a,b) holds.
Similarly, we say that a set S of arguments attacks b (or b is attacked by S) if b
is attacked by an argument in S. For instance in Fig. 1, {a}attacks b.

Definition 2. A set S of arguments is said to be conflict-free if there are no
arguments A, B in S such that A attacks B.

By considering conflict-free sets of arguments, it is defined the concept of
admissible set.

Definition 3. (1) An argument A € AR is acceptable with respect to a set S of
arguments if and only if for each argument B € AR: If B attacks A then B is
attacked by S. (2) A conflict-free set of arguments S is admissible if and only if
each argument in S is acceptable w.r.t. S.

For instance, the argumentation framework of Fig. 1 has two admissible sets:
{a} and {a,c}. The (credulous) semantics of an argumentation framework is
defined by the notion of preferred extension.

Definition 4. A preferred extension of an argumentation framework AF is a
maximal (w.r.t. inclusion) admissible set of AF.

The only preferred extension of the argumentation framework of Fig. 1 is

{a,b}.

3 Preferred extensions and UNSAT algorithms

In this section, we provide a method for computing preferred extensions. This
method is based on model checking and Unsatisfiability (UNSAT'). UNSAT is the
complement of Satisfiability (SAT), a problem for which very efficient systems
have been developed in Al during the last decade.

First of all, we introduce some notations which are used in the rest of the pa-
per. Our representations of an argumentation framework use the predicate d(X),
where the intended meaning of d(X) is: “the argument X is defeated”. Given
an argumentation framework AF := (AR, Attacks) and E C AR, we define the
set s(E) as {d(a)|la € AR\ E}. Essentially, s(E) expresses the complement of E
w.r.t. AR. Given A € AR, we define D(A) as {B|(B, A) € Attacks}. Intuitively
D(A) denotes the set of arguments which attacks A.

Now we definite a mapping from an argumentation framework to a proposi-
tional formula.
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Definition 5. Let AF := (AR, attacks) be an argumentation framework, then
a(AF) is defined as follows:

aAF):= A (C N\ dA)——dB)na( N\ dA)— A d©)

A€AR BeD(A) BeD(A) CceD(B)

In the propositional formula a(AF), we can identify two parts for each ar-
gument A € AR:

1. The first part (Agcp(a)d(A) < —d(B)) suggests that the argument A is
defeated when one of its attackers is not defeated.

2. The last part (Apepa) d(A) — Acep(p) d(C)) suggests that the argument
A is defeated when all the arguments that defend* A are defeated.

Notice that a(AF) is essentially a propositional formula (just considering the
atoms like d(a) as d_a). In order to illustrate the propositional formula a(AF),
let us consider the following example.

Ezample 1. Let AF := (AR, attacks) be the argumentation framework of Fig. 1.
We can see that D(a) = {}, D(b) = {a} and D(c) = {b}. Hence if we consider the
propositional formula w.r.t. argument a, we obtain (in order to be syntactically
clear we use uppercase letters as variables and lowercase letters as constants):

(Aseg d(@) — ~d(B) A (Apegy d(@) — Aocp d(C) = TAT=T

It is important to remember that the conjunction of an empty set is the true
value (T). Now if one considers the propositional formula w.r.t. argument b, we
get

(/\Be{a} d(b) < ~d(B)) A (/\Be{a} d(b) — /\C’GD(B) d(C)) =
(d(b) — —d(a)) A (d(b) = Acep(ay 4(C)) = (d(b) < =d(a)) A (d(b) — T)

And the propositional formula w.r.t. argument c is
(/\Be{b} d(c) «— —d(B)) A (/\Be{b} d(c) — /\CeD(B) d(0)) =
(d(c) <= ~d(b)) A (d(c) — d(a))

Then, a(AF) is:

(d(b) « —d(a)) A (d(b) «— T) A (d(c) < =d(D)) A (d(c) « d(a))

Essentially a(AF') is a propositional representation of the argumentation
framework AF. However a(AF) has the property that its minimal models char-
acterize AF"’s preferred extensions. In order to formalize this property, let us
consider the following proposition which was proved by Besnard and Doutre in
[4].

4 We say that C defends A if B attacks A and C' attacks B.
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Proposition 1. [{] Let AF := (AR, attacks) be an argumentation framework.
A set S C AR is a preferred extension if and only if S is a mazximal model of
the formula

A Aa— A -Byra— A '\ o)

AEAR BeD(A) BeD(A) CeD(B)

Notice that a(AF) is related to defeated arguments and the formula of Propo-
sition 1 is related to acceptable arguments. It is not difficult to see that a(AF)
is the dual formula of the formula of Proposition 1. For instance, let us consider
the argumentation framework AF of Example 1. The formula related to AF,
according to Proposition 1, is:

(ma—=b)AN(L—=b)A(=b—c)A(a+—c)

If we replace each atom z by the expression —d(z), we get:

(m=d(a) — =d(b)) A (L — =d(b)) A (—=d(b) — —d(c)) A (—d(a) — —d(c))
Now, if we apply transposition to each implication

(d(b) — —d(a)) A (d(b) —

)
The latter formula corresponds to a(AF'). The following theorem is a straight-
forward consequence of Proposition 1.

A (d(e) — =d(b)) A (d(c) — d(a))

Theorem 1. Let AF := (AR, attacks) be an argumentation framework and S C

AR. S is a preferred extension of AF if and only if s(S) is a minimal model of
a(AF).

In order to illustrate Theorem 1, let us consider again «(AF') of Example 1.
This formula has three models: {d(b)}, {d(b),d(c)} and {d(a), d(b),d(c)}. Then,
the only minimal model is {d(b)}, this implies that {a,c} is the only preferred
extension of AF. In fact, each model of a(AF') implies an admissible set of AF,
this means that {a,c}, {a} and {} are the admissible sets of AF.

There are several approaches for inferring minimal models from a proposi-
tional formula. For instance, it is possible to use UNSAT’s algorithms for infer-
ring minimal models. Hence, it is clear that we can use UNSAT’s algorithms for
computing the preferred extensions of an argumentation framework. This idea
is formalized with the following lemma. Let S be a set of well formed formulse
then we define n(S) := A cgc

Lemma 1. Let AF := (AR, attacks) be an argumentation framework and S C
AR. S is a preferred extension of AF if and only if s(S) is a model of a(AF)

and a(AF) An(=s(S)) A —n(s(S)) is unsatisfiable.

Proof. 1t is direct by Theorem 1.
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In order to illustrate Lemma 1, let us consider again the argumentation
framework AF of Example 1. Let S = {a}, then s(S) = {d(b),d(c)}. We have
already seen that {d(b),d(c)} is a model of a(AF), hence the formula to verify
its unsatisfiability is:

(d(b) — —d(a)) A (d(b) = T) A(d(c) = ~d(b)) A (d(c) «— d(a))A
=d(a) A (=d(b) V —d(c))

However, this formula is satisfiable by the model {d(b)}, then {a} is not a pre-
ferred extension. Now, let .S = {a, c}, then s(S) = {d(b)}. As seen before, {d(b)}
is also a model of a(AF), hence the formula to verify its unsatisfiability is:

(d(b) — —d(a)) A (d(b) — T) A (d(c) — =d(b)) A (d(¢) — d(a))A
—d(a) A —d(c) A —d(b)

It is easy to see that this formula is unsatisfiable, therefore {a,c} is a preferred
extension.

The relevance of Lemma 1 is that UNSAT is the prototypical and best-
researched co-NP-complete problem. Hence, Lemma 1 opens the possibilities for
using a wide variety of algorithms for inferring the preferred semantics.

4 Preferred extensions and general programs

In Section 3, we presented a representation of an argumentation framework in
terms of a propositional formula for inferring preferred extensions. Another op-
tion for computing the preferred semantics is by considering a straightforward
mapping from an argumentation framework to a general program. This approach
is an elegant and short form for inferring the preferred extensions of an argu-
mentation framework. The only system that we need for inferring the preferred
extensions of an argumentation framework is any disjunctive answer set solver
e.g., DLV [8].

We start this section by defining a simple mapping from an argumentation
framework to a positive disjunctive logic program.

Definition 6. Let AF := (AR, attacks) be an argumentation framework and
A € AR. We define the transformation function I'(A) as follows:

rE):= N\ @yvaem)nac N\ @~ A d0)

BeD(A) BeD(A) ceD(B)
The generalization of the function I is defined as follows:

Definition 7. Let AF := (AR, attacks) be an argumentation framework. We
define its associated general program as follows:

Tap:= J\ I'(4)
A€AR
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Remark 1. Notice that a(AF) (see Definition 5) is similar to I'4p. The main
syntactic difference of I'xp w.r.t. a(AF) is the first parte of I'4p which is
(Apep(a)(d(A) vV d(B))); however this part is logical equivalent to the first part
of a(AF) which is (A e pa) d(A) <= —d(B)). In fact, the main difference is their
behavior w.r.t. answer set semantics. In order to illustrate this difference, let us
consider the argumentation framework AF := (AR, attacks), where AR := {a}
and attacks := {(a,a)}. Then we can see that

Tap = (d(a) V d(a)) A (d(a) — d(a))

and
a(AF) := (d(a) < —d(a)) A (d(a) < d(a))

It is clear that both formulee have a minimal model which is {d(a)}, however
a(AF) has no answer sets. In fact both formule are logically equivalent in classic
logic but not in answer set semantics.

In the following theorem we formalize a characterization of the preferred se-
mantics in terms of positive disjunctive logic programs and answer set semantics.

Theorem 2. Let AF := (AR, attacks) be an argumentation framework and S C
AR. S is a preferred extension of AF if and only if s(S) is an answer set of
Tar.

Proof. S is a preferred extension of AF if and only if s(S) is a minimal model
of a(AF) (by Theorem 1) if and only if $(S) is a minimal model of I'4r (since
I'ar is logically equivalent to a(AF) in classical logic) if and only if s(S) is an
answer set of I'ap (since I'ap is a positive disjunctive program and for every
positive disjunctive program P, M is an answer set of P if and only if M is a
minimal model of P).

Let us consider the following example.
Ezample 2. Let AF := (AR, attacks) be an argumentation framework, where

AR = {a,b,c,d,e} and attacks := {(a,b), (b, a),(b,c),(c,d),(d,e),(e,c)} (see
Fig. 2). Then, I'sp is

d(a) v d(b). d(a) < d(a).
d(b) v d(a). d(b) < d(b).
d(c) v d(b). d(c) Vv d(e).

d(c) « d(a). d(c) « d(d).
d(d) v d(c). d(d) « d(b),d(e)
d(e) v d(d). d(e) « d(c).

I'sr has two answer sets which are {d(a),d(c),d(e)} and {d(b),d(c),d(e),d(d))},
therefore {b,d} and {a} are the preferred extensions of AF.
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Fig. 2. An argumentation framework.

An alternative form for computing the preferred extensions of an argumen-
tation framework, without considering the predicate d(X), is taking advantage
of default negation. It is possible by considering a new dual symbol for each
argument of the argumentation framework. This means that we can infer the
acceptable arguments directly from the answers sets of the logic program.

This idea is formalized with the following lemma. First, let us present some
definitions.

Definition 8. Let AF := (AR, attacks) be an argumentation framework. We
define the function n asn: AR — AR'. Where AR’ has the same cardinality to
AR such that ARN AR’ = ().

7 is a bijective function which assigns a new symbol to each argument of AR.
Notice that the new symbol does not occurs in AR. We are going to denote the
image of A € AR under n as A’.

Definition 9. Let AF := (AR, attacks) be an argumentation framework and
A € AR. We define the transformation function I'(A) as follows:

AA):=( \ AWVvBYAC N\ @ = A )
BeD(A) BeD(A) ceD(B)
Definition 10. Let AF := (AR, attacks) be an argumentation framework. We
define its associated general program as follows:
Aari= N\ (A(A) A (A = —A)
A€AR

Notice that I'(A) and A(A) are equivalent (module notation) and the main
difference between I'ar and Aap is the rule A « —A’ for each argument.

Lemma 2. Let AF := (AR, attacks) be an argumentation framework and S C
AR. S is a preferred extension of AF if and only if there is an answer set M of
Aar such that S = M N AR.

Proof. The proof is straightforward from Theorem 2 and the semantics of default
negation.

In order to illustrate this lemma let us consider the following example.
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Ezample 3. Let AF := (AR, attacks) be the argumentation framework of Ex-
ample 2. So Aap is

a V. a —a.
b Vva b — .
Vv, dve.

d —a. d —d.
dvc. d b, e.
e'vd. e —c.

a «— —a'. b« —b.
¢« —c. d«— —d'.
e+ —e.

I'sr has two answer sets which are {a’,c,e’,b,d} and {V/,c,e’,d’,a}, hence
{b,d} and {a} are the preferred extensions of AF.

5 Conclusions

The preferred semantics is regarded as the most satisfactory argumentation se-
mantics of Dung’s argumentation approach. For instance, John Pollock made
preferred semantics one of the key ingredients of his revised formalism [15].
Also, it has been shown that some non-monotonic logic programming semantics
can be viewed as a special form of this abstract argumentation semantics [5, 11].

It is well-known that the decision problem of the preferred semantics is co-
NP-Complete. Then, to have different approaches for inferring this semantics
could help to develop argumentation systems based on the preferred semantics.
The inference of minimal models from a propositional formula and a logic pro-
gram is a widely explored problem. Therefore, by defining a relationship between
the preferred semantics and minimal models, we identify a wide family of algo-
rithms for inferring the preferred semantics. In particular in this paper, we show
how to infer the preferred extensions of an argumentation framework by using
UNSAT algorithms and disjunctive answer set solvers.
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Abstract. Argumentation theories have recently emerged and gained
popularity in the agents community, since argumentation represents a
natural and intuitive way to model non-monotonic reasoning. In a multi-
agent context, argumentation has recently been proposed as a component
of dialogue frameworks. However, despite the large interest in argumen-
tation theories in multiagent domains, most proposed frameworks stay at
a general though abstract level, and operational counterparts to abstract
frameworks are not many. The aim of this work is to present the main
formal properties of the SCIFF-AF: an operational argumentation-based
multiagent dialogue framework.

1 Introduction

Argumentation theories have recently emerged and gained popularity in the
agents community, since argumentation represents a natural and intuitive way
to model non-monotonic reasoning. In a multiagent context, argumentation has
recently been proposed as a component of dialogue frameworks. A typical setting
is that of collaborative problem solving, for example to tackle resource allocation
and achievement [17]. In such a context, multiple agents have to coordinate in
order to take joint decisions about possible allocations of resources.

In general, argumentative reasoning can be utilized by agents intending to
decide about possible future courses of action. Typically, in collaborative problem
solving domains, individual agents have own goals to achieve and own constraints
to satisfy, but they are situated in a common environment in which there are
resources they need to share. Thus when agents take actions they need to ensure
that their activity does not clash with other agents’ actions and constraints.

We then have to consider two aspects of collaborative problem solving: from
an individual’s perspective, an agent should be able to reason about what is the
most appropriate course of action to take in a given situation. We believe that
the theories and logics of argumentation are a very promising approach to this
problem. From a “social” perspective, instead, agents can use argumentation in
order to engage in dialogues, and use their arguments to make their decisions
accepted by other agents.

The first aspect is related to decision making and practical reasoning, central
issues in agent architectures and reasoning since the early days of BDI agent
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models and implementations [16, 8] and further pursued in recent work such as
[14, 10, 5]. The aspect of argumentation in agent dialogue has also been addressed
by conspicuous work [4, 17, 13], and considered by many as the natural evolution
of agent dialogue in domains such as negotiation [15]. Among others, Atkinson et
al. explore the issue of multiagent argument over proposals for action [5].

Despite the large interest in argumentation theories in multiagent domains,
most proposed frameworks stay at a general though abstract level, and seldom
there exist operational counterparts to much of the existing proposals. One im-
portant contribution in this direction is work by Kakas and Toni [11] on map-
ping Dung’s abstract argumentation framework [6] onto the Abductive Logic
Programming (ALP) framework [9].

Drawing inspiration from Atkinsons et al.’s work about the PARMA action
persuasion protocol [5], we have proposed an Argumentation Framework [19]
based on the ALP SCIFF framework (SCIFF-AF) for multiagent argumentation,
aimed at addressing explicitly this aspect. SCIFF-AF encompasses multiagent
dialogues over proposals for action, and it is equipped with a declarative and
operational model with an ALP semantics.

The formal foundations of this framework rely on previous results from ALP,
and from Dung’s studies on argumentation. Basically, SCIFF-AF is a casting of
Dung’s abstract argumentation framework in SCIFF, augmented with a notion
of 2-party agent dialogue and agreement over proposals for actions. In fact,
agent dialogues in SCIFF-AF can be used by the interacting parties to reach
a consensus on a possible future course of action and consequent state, and
ultimately such actions may be adopted by agents as future internal goals.

The aim of this work is to present the main formal properties of SCIFF-AF,
which insure a consistent and meaningful system evolution. We will start by
showing semantic properties of the argumentation framework in relation with
Dung’s argumentation semantics. Later, we will refine the definition of multi-
agent dialogue proposed in [19] and we will show what properties multiagent
agreements exhibit.

2 Background

SCIFF-AF is built on three main ingredients: Dung’s abstract argumentation
framework [6], the SCIFF language and Abductive Logic Programming (ALP)
proof-procedure [2], and the PARMA action persuasion protocol and its locutions
[5].

ALP is a computational paradigm aimed to introduce hypothetical reasoning
in the context of Logic Programming (see [12] for an introduction to LP and
[9] for a survey on ALP). A logic program P is a collection of clauses, with an
associated notion of entailment, usually indicated by E. In ALP, some predicates
(“abducibles”), belonging to a special set A, can be assumed to be true, if need be.
In order to prevent unconstrained hypothesis-making, P is typically augmented
with expressions which must be true at all times, called integrity constraints (ZC).
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An abductive logic program is the triplet (P,.A,ZC), with an associated notion
of abductive entailment.

SCIFF is an ALP proof-procedure defined by Alberti et al. [2] as an exten-
sion of Fung and Kowalski’s IFF [7], and it is the reference ALP framework
for this work. One distinguishing feature of SCIFF is its notion of expectations
about events. Expectations are abducibles denoted as E(X) (positive expecta-
tions) and EN(X) (negative expectations), where E(X)/EN(X) stand for “X
is expected/expected not to happen”. Variables in events, expectations and in
other atoms can be subject to CLP constraints and quantifier restrictions.

Two fundamental concepts in SCIFF are those of consistency and entailment.
We report their definition below.

Definition 1 (Consistent sets of hypotheses). A set of hypotheses A is
consistent if and only if V (ground) p,

{p,notp} € A and {E(p),EN(p)} £ A

Definition 2 (Entailment). A (SCIFF) ALP S = (P, A, ZIC) entails a goal G
(written S Ea G), if and only if:

Comp(PUA)UCETUT, E Go
Comp(PUA)UCETUT, FIC

where Comp is the symbol of completion, CET is Clark’s equality theory, E is
Kunen’s logical consequence relation for three-valued logic, o is a substitution
of ground terms for the variables in G, T, the theory of constraints, and A a
consistent subset of A.

SCIFF operates by considering G together with ZC as the initial goal, and
by calculating a frontier as a disjunction of conjunctions of formulae, using at
each step one among the inference rules defined in [2]. Given the frontier, at
any step a selection function can be used to pick one among all the equally true
disjuncts in the frontier. When no more inference rule applies (quiescence), if
there exists at least one disjunct which is not false, then SCIFF has succeeded,
and A contains an answer to G. The SCIFF proof-procedure is sound, and under
reasonable restrictions it is also complete [2]. SCIFF has been implemented and
instantiated into a large number of scenarios involving agent communication,
and it can be downloaded from its web site.!

Following Kakas and Toni [11], in SCIFF-AF arguments are mapped onto
abducibles. For example, an assumption E(p), “p is expected”, could be con-
sidered as a argument which possibly supports some goal g. Arguments can
be circumstances (in the sense of [5]), actions, and related constraints. Thus an
agent may justify a goal g by saying, e.g., “in order to achieve a goal g, under the
circumstances ¢ and the constraints x, actions a; and as should be carried out.”
In order to take this kind of position, an agent will utter the various elements
of it (the circumstances, the goal, the actions, the constraints) via a suitable

' http://1lia.deis.unibo.it/research/sciff/.
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argumentation language and using the appropriate locutions. Argumentation
dialogues will provide implicit links among such uttered elements.

Our proposed argumentation framework is an instantiation of Dung’s work
[6] and of the abstract computational framework developed by Kakas and Toni
[11]. In particular, Dung’s notion of attack is rephrased in the following way:

Definition 3. A set of arguments A attacks another set A if and only if at least
one of the following expressions is true:

(1) S Ea notp, for somep € A;
(2) S Ea E(p), for some EN(p) € A;
(3) S E4 EN(p), for some E(p) € A;

Definition 4. An Argumentation Framework (AF) is the pair (S, attacks).

In a multiagent context, agents can locally reason about circumstances, con-
straints, and actions (not) to be taken, based on the SCIFF-AF, and produce —
at the social level — dialogues in the style of PARMA dialogues.

PARMA considers a general argument schema for a rational position propos-
ing an action, and handles possible attacks on one or more elements of a general
argument schema. Attacks arise from disagreements originating from different
sources. PARMA uses four categories of locutions, for dialogue control (C), ac-
tion proposal (P), inquiry (A), and denial (D) of existence/validity of elements
of a position. Such elements could be goals, circumstances, and actions (not) to
be taken. While Atkinson et al. focus on addressing divergences on all elements
of a position, SCIFF-AF focusses instead on a more restricted number of issues,
and adopts only a small set of locutions. In particular, it only considers some
control locutions (C') and some proposal/denial locutions about circumstances
and actions (P/D).2

Definition 5 (Agent system). An agent system is a finite set X, where each
x € X is a ground term, representing the name of an agent, equipped with a
SCIFF program S = {P, A, IC}.

Definition 6 (Performative or dialogue move). A performative or dialogue
move p is an instance of a schema tell(a,b, L[, Arg]), where a is the utterer, b
is the receiver, L is the locution and (optionally) Arg is the argument of the
performative. For a given p, utterer(p) = a, receiver(p) = b, locution(p) = L and
argument(p) = Arg (if present). The set of all possible performatives is called
argumentation language.

2 A characteristic of PARMA is that it mixes elements of different levels, like turn-
taking. We consider this as a feature rather than a limitation, since it makes it
possible for agents to reason at different levels, and to implement high-level strategic
decisions about which course a dialogue should follow. However, we will not cover
this aspect in this work.
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Note that Arg is optional, since a dialogue move not necessarily contains
arguments all the time. In general, dialogue control (C') locutions will not need it.
For instance, at start, an agent may simply want to declare that he is listening. In
the definition below, we gear SCIFF-AF with a concrete argumentation language
inspired to PARMA.

Definition 7 (The argumentation language L,,4). The argumentation lan-
guage Larq is the set of all performatives p, such that:

— locution(p) € {‘enter dialogue’, ‘leave dialogue’, ‘term finished’, ‘accept denial’,
‘state circumstances’, ‘deny
circumstances’, ‘state actions’, ‘deny actions’, }, and

— argument(p) is a conjunction of abducible atoms (possibly including E /EN
expectations) and CLP constraints.

SCIFF-AF thus defines a concrete language for argumentation, L4y4, which
includes four dialogue control locutions (type C'), two proposal locutions (P) and
two denial locutions (D). Agents conversing in L4,4 will not exchange formulae
stating e.g. consequences of actions, such as implications, but only conjunctions
of atoms.

Definition 8 (MAS argumentation framework). A MAS argumentation
framework M is a pair (X, Actions) where X' is a multiagent system of agents
with the same A which communicate using Larg, and Actions is a finite set,
where each element is a ground term, representing the name of an action.

Beside assuming a common language, SCIFF-AF also assumes a common
ontology (thus in Definition 8 A is the same for all agents in X'). Otherwise
some ontological middleware may be used so that, for example, in a position in-
volving a sales, “buy” and “purchase” converge down to the same meaning. This
is most necessary in open systems, to prevent misunderstandings arising from
the use of terminology. Note that the presence of an argumentation framework
based on ALP does not prevent agents from having and reasoning upon their
private knowledge, and especially it does not prevent them from having private
abducibles. However, for the sake of simplicity, in this article we will focus only
on those abducibles which are functional to agent dialogue, and we assume that
such abducibles are common to all agents for the reasons above.

In [19] argumentation dialogues are defined between two agents, and their
evolution is modelled as a sequence of states. Each state contains a set of argu-
ments modelling stated/agreed circumstances and actions, and possibly agree-
ments reached by the agents.

3 Properties of SCIFF-AF

In this section we refine the original SCIFF-AF framework. The idea is to define
a notion of agent agreement about actions, and focus on the fundamental prop-
erties of multiagent agreements in SCIFF-AF. Before doing so, we also discuss
some important semantic properties of the SCIFF-AF framework.
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3.1 Admissible sets and grounded semantics of SCIFF-AF

Let us consider the attacks relation taken from [19] and reported in Section 2.
From now on, if not explicitly mentioned otherwise, we will always refer to an
arbitrary but fixed instance S = (P, .A,ZC) of a SCIFF abductive framework.
We will also use the terms “argument” and “hypothesis” interchangeably.

Lemma 1 The following propositions are true:

— No set of arguments attacks the empty set of arqguments 0;

— attacks is monotonic, i.e. for all (consistent) A, A", A, A" C A, if A attacks
A then
(i) if AC A’ then A’ attacks A, and
(i1) if A C A’ then A attacks A';

— attacks is compact, i.e. for all A, A C A, if A attacks A then there ezists a
finite A’ C A such that A" attacks A;

Proof. The first proposition follows from the definition of attacks. The second
proposition follows from the fact that if S E4 notp, for some p € A, then
VA’ D A,p € A, therefore A" attacks A (i), and VA’ O A, notp € A, therefore
A’ attacks A (ii). The same holds if the attack is on some E(p)/EN(p). The
third proposition follows from the compactness of F 4, by which finite expressions
are always derivable from a finite set of antecedents.

These properties are considered by Kakas and Toni fundamental of an at-
tacking relation [11, pag.518].

Remark 1. For an argument A such that S E4 p, it follows from the declarative
semantics of SCIFF that A is consistent, and that if an argument A is attacked
by A, AU A is not consistent (in the sense of SCIFF).

The definitions that follow are taken from Dung’s abstract argumentation
framework [6]. Corollaries 1 and 2 show the results of its instantiation in the
SCIFF framework.

Definition 9. A set A of arguments is said to be conflict-free if there are no
arguments A and B in A such that A attacks B.

Corollary 1. All consistent sets of arguments (in the sense of SCIFF) are
conflict-free.

Proof. Let A be one among {not p, E(p), EN(p)}, and let A be the corresponding
“attacked” hypothesis (p, EN(p), or E(p), respectively). Let A be a consistent
set of arguments, and A, B two arguments in A. A attacks B means S Er A for
some A’, and B = A; but this would imply that {A, /1} C A. Contradiction!

As a consequence of of Remark 1 and Corollary 1, we have:

Corollary 2. All arguments A such that S E4 p are conflict-free.
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Finally, admissible sets of arguments are defined following Dung [6, Definition
6] and Kakas & Toni [11, Definition 2.3].

Definition 10. A (conflict-free) set of arguments A is admissible iff for all sets
of arguments A, if A attacks A, then A attacks A\ A.

Dung’s Fundamental Lemma [6, pag. 327], together with the fact that the
empty set is always admissible, implies the following corollary:

Corollary 3. All arguments A such that S F4 p are admissible sets of argu-
ments for S.

Dung defines preferred extensions as maximal sets of admissible sets of argu-
ments [6, Definition 7], but we will focus on admissible sets of arguments rather
than on preferred extensions. In fact, as stressed by Kakas and Toni [11], since
every admissible set of arguments is contained in some preferred extension, in
order to determine whether a given query holds with respect to the preferred ex-
tension and partial stable model semantics, it is sufficient to determine whether
the query holds with respect to the semantics of admissible sets.

Finally, the IFF proof-procedure upon which SCIFF is built has a grounded
argumentation semantics. Therefore we can conclude this section with a last
important semantic property of the SCIFF-AF framework.

Corollary 4. All arguments A such that S E4 p are grounded sets of arguments
for S.

3.2 Properties of SCIFF-AF dialogues and agreements

In this section, we specialize the SCIFF-AF dialogue framework, to define pre-
cisely what multiagent agreements are, and to show what properties they exhibit.
The following definitions are based on the notions of agent system, performative,
argumentation language and MAS argumentation framework given in Section 2.

Definition 11 (Dialogue). Given an agent system X, a dialogue D in a lan-
guage L, between two agents x,y € X, is an ordered set of performatives {po, p1,
...} € L, such that Vp; = tell(a;,b;, L, A;) € D, (a;,b;) € {(z,y), (y,2)}

An example of dialogue will be provided later on (Example 1). The one above
is a general definition, and it can be instantiated by choosing a concrete language,
e.g. L= Larg.

Definition 12 (State of a dialogue in L,.4). Given a dialogue D in Lgrg,
for each j, 1 < j < |D| the state of the dialogue, state(D, j) is a tuple

sc de sa da aa
(wse, wie g gie goay

defined based on the dialogue history D; = {po,p1,...,pj—1} as follows:
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— W3¢ is the set of stated circumstances, defined as:
w2¢ = { circ such that Ipy € D; A k <j
A locution(py) = ‘state circumstances’
A circ € argument(py)
A ﬂplGDj A k <l < j such that (
locution(p;) = ‘state circumstances’
A argument(py) # argument(p;) ) }
— Wic s the set of denied circumstances, defined as:
wde = { circ such that Ip, € D; A k<j
A locution(py) = ‘deny circumstances’
A circ € argument(py)
A ﬂpleDj A k <l < j such that
locution(p;) = ‘state circumstances’ }
— WU 4s the set of stated actions, defined as:
U7* = { E(act) such that Ip, € D; A k<j
A locution(py) = ‘state actions’
A E(act) € argument(py)
A P € Dj A k<1< jsuch that (
locution(p;) = ‘state actions’
A argument(py) # argument(p;) ) }
— Wi s the set of denied actions, defined as:
wda = { E(act) such that Ip, € D; A k< j
A locution(py) = ‘deny actions’
A E(act) € argument(py)
A ﬂpleDj A k <l < j such that
locution(p;) = ‘state actions’ }
— Wi is the set of agreed actions, defined as:
U = { E(act) such that Ipy,p; € D,
Nk<iANIl<j
A locution(py) = locution(p;) = ‘state actions’
A argument(py) = arqgument(p;)
A E(act) € argument(py) }

By Definition 12, the state of the dialogue at a step j with respect to cir-
cumstances/actions is determined by the last relevant move made.

Note that state(D, j) is defined independently of control locutions, and that
locutions ‘state circumstances’ and ‘state actions’ operate some sort of reset of
the current state: if an agent utters ‘state circumstances’ at step j, the set of
stated circumstances will only contain the new circumstances ¥, until some
agent again states ‘state circumstances’, and ‘deny circumstances’ becomes the
empty set, since the previously denied circumstances become obsolete. A similar
semantics is that of ‘state actions’ and ‘deny actions’. Note that memory of past
moves is not necessarily lost, since agents may reason based on the previous
states.

This definition of state is a specialization of the one given in [19]. We can
immediately see what structural properties it exhibits:
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Corollary 5. Given a dialogue D in Loyq, the state of D at step j, state(D, j) =
(W;C, WJ‘»ic, e, Wjd“, WJ‘?“}, enjoys the following structural properties:

1. W]dc C W3¢ (“coherence” between the set of denied circumstances and the set
of stated circumstances)

2. !F;la c g (“coherence” between the set of denied actions and the set of
stated actions)

3. WP =Wre NV Pt = () (“coherence” between the set of agreed actions and the
set of stated actions)

Proof. The proof follows from Definition 12.

We can now proceed with defining the central concept of argumentation
dialogue, which is as well a specialization of the one proposed in [19].

Definition 13 (Argumentation Dialogue). Given a multiagent argumen-
tation framework M = (X, Actions), an argumentation dialogue D between
x,y € X, respectively equipped with S*/SY, about a goal G, is a dialogue in
Larg such that:

1. po = tell(z,y, ‘enter dialogue’, G,);
2. ij = tell(aj, bj, Lj, AJ) e D:
(1) if L;j = ‘state circumstances’ then

8% Fa Gy UUE VT

for some k < j, and argument(p;) = A\ actions(A);
(#4) if Lj = ‘state actions’ then

8% Fa Gy U U

and argument(p;) = actions(A);
(13¢) if L; = ‘deny circumstances’ then

Elwsc g szc’ wsa g Wja7 h c WJSC \lpsc

such that S U UP** E 4 K UG, and I attacks h, and argument(p;) =
h;
() if Lj = ‘deny actions’ then

I C W WS C WS € W\ W

such that S UW*UP** = h'UG, and W' attacks h, and argument(p;) =
h;
(v) in all other cases, except for L; = ‘enter dialogue’, argument(p;) = 0.
3. ﬂpj,pk € D such that pj =pi, N j#k,

where for a given set A, actions(A) = {E(a) € A such that a € Actions}. We
will call x the initiator of D.
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Thus, in an argumentation dialogue, the agents focus on a specific goal (1).
They do not exchange purely “dialogical” arguments, but genuine products of
their own reasoning based on the knowledge available to them. In particular, we
require that circumstances/actions stated are supported by the uttering agent
(2-i/ii), and for those denied the agent is able to produce an attacking argument
based on the goal subject of the dialogue (2-iii/iv). Finally, we require that an
agent does not utter the same performative twice (3). In this way, at each step
j, the dialogue develops by an agent reasoning on the state at step k, for some
k < j, to propose a new state to the receiver. Dialogue moves need not directly
address the previous move, but are free to refer to moves uttered in the past, in
the course of the same dialogue. This leaves agents free to try several alternative
arguments, so that the dialogue can proceed even if an agent does not have an
answer to the last move.

One can easily see that, given a finite number of ground arguments, dialogues
will always finite length [18]. However, we are interested here not only in dia-
logues that terminate, but especially we want to be able to define what dialogues
are “fruitful.” We will then focus on the notion of agreement:

Definition 14 (Agreement between two agents). Given a multiagent ar-
gumentation framework M, an agreement between two agents x,y € M about
a goal G, is a set C such that there exists an argumentation dialogue D =
{po,p1,...} between x and y about G, whose state(D, j) is such that ¥ = C
for some j.

In other words, we say that two agents reach an agreement when they come
up in the course of the same dialogue with a set C which contains the same
actions. By definition of argumentation dialogue, they are supported by the
same arguments (circumstances) from both sides.

This formulation of argumentation dialogue makes it possible to prove some
important properties of the framework, which to the best of our knowledge are
not to be found in other multiagent argumentation frameworks.

Proposition 1. Given an argumentation dialogue D and a performative p € D,
argument(p) is a conflict-free set of arguments.

Proof. By Definition 13,Vp3 A, S, and G such that S Fa G and argument(p) C
A. Thus Proposition 1 follows from Corollary 2.

Proposition 2. Given an argumentation dialogue D and a performative p € D:

1. if locution(p) € {‘state circumstances’, ‘state actions’}, then argument(p) is
an admissible set of arguments for utterer(p);

2. if locution(p) € {‘deny circumstances’, ‘deny actions’}, then argument(p) is
an admissible set of arguments for receiver(p);

Proof. The proof follows from Corollary 3 and from Definition 13.
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Proposition 3. Every agreement C between two agents x and y about a goal
Gy, is an admissible set of arguments for both x and y.

Proof. If C = (), Proposition 3 follows from Definition 10, which implies that
the empty set is always admissible. If C # ), by Definition 14 there exists an
argumentation dialogue D = {po,p1,...} between x and y about G,, whose
state(D, j) is such that ¥ = C for some j. By Corollary 5 it is a structural prop-
erty of state(D,j) that ¥* = ¥, and by Definition 12 3, k such that ¥ =
argument(p;) = argument(py) and locution(p;) = locution(py) = ‘state actions’
for some [,k < j. It thus follows from Proposition 2 that ¥7* is admissible for
both = and y.

We believe that this is a very important property of SCIFF-AF. If two agents
reach what we call an agreement during a dialogue, it is important that such an
agreement identifies a possible future system development which is admissible by
both — which is the case here. In this way, agents can step through agreements
and thus develop plans for future courses of action which ensure a consistent
system evolution.

4 An example of an argumentation dialogue leading to
an agreement using SCIFF-AF

In order to illustrate the usage of the SCIFF-AF framework and its properties, we
propose as a scenario an adaptation of Rahwan & Amgoud’s conference example
[14]:

Ezample 1. A scientist s (based in the UK) wishes to attend a con ference. Prior
to his departure, however, he needs to reach a preliminary agreement with his
department d. s knows that conf is in Liverpool, and that the fee can be 400
(on-site) or 200 (early), that a limo is a comfortable car, and that Liverpool is a
far but domestic destination. s has some constraints: he knows that if he wishes
to attend a conference, then he must reach the place of the conference, and pay
the fee. If he wishes to reach a place, he must either fly or drive. In addition, if he
wishes to reach a place, either it is not a domestic destination, and he does not
want to fly economy, nor he wants to drive; or it is a far destination, and in that
case he does not want to drive; or else he wants to rent a comfortable car. s’s
department, d, has a number of constraints. If one wants to reach a destination
and pay a conference fee, then he must attend the conference; the fee must be
lower than 300, or else it is not permitted to rent a limo, nor to fly business, or
else it is a domestic destination, and then it is not permitted to fly business.

Given such a scenario, a possible argumentation dialogue that we would like
to obtain in this framework could be the following;:

1. (s): I wish to attend a conference (conf).
2. (d): T am listening.
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A {early,on_site} UEXP
Actions {reach, fly, drive, pay, buy_ticket, rent_car}

Gs  {E(attend(conf))}
ICs E(attend(Conf)) — conference(Conf,Venue, Fee) N E(reach(Venue))
A E(pay(Conf, Fee)).
E(reach(Dest)) — E(fly(Dest)) V E(drive(Dest)).
E(reach(Dest)) — non domestic(Dest) A EN(buy_ticket(Dest, economy))
A EN(drive(Dest))
V far(Dest) A EN(drive(Dest))
V domestic(Dest) A E(rent_car(Dest,Car)) A comfortable(Car).
E(fly(Dest)) — E(buy-ticket(Dest, economy)) V E(buy_ticket(Dest, business)).
E(drive(Dest)) — E(rent_car(Dest, sedan)) V E(rent_car(Dest,limo)).
E(fly(Dest)) A E(drive(Dest)) — L.
E(fly(Dest)) — EN(rent_car(Dest, Car)).
E(drive(Dest)) — EN(buy_ticket(Dest, Class)).
early A on_site — L.
Ps  conference(conf,lvp, Fee) «— (on_site N Fee =400) V (early A Fee = 200).
com fortable(limo).
far(lvp).
domestic(lvp).

ICq4 E(reach(Dest)) N E(pay(Conf, Fee)) — E(attend(Conf)) AN Fee < 300
V' EN(rent_car(Dest,limo)) A EN(buy_ticket(Dest, business))
A domestic(Dest) V EN(buy-ticket(Dest, business)).
E(buy_ticket(Dest, business)) A E(buy_ticket(Dest, economy)) — L.
Pa  domestic(lup).

Fig. 1. SCIFF programs of scientist (s) and department (d)

3. (s): There are some circumstances I wish to bring to your attention. I do
not want to drive there. So I will not rent a car. Also, I think I have to pay
on-site registration.

4. (s): I was thinking I can do the following: buy a business plane ticket, fly

and reach Liverpool, pay 400 as a fee.

(d): You are not allowed to fly business class!

(s): T take your point.

(s): I can fly economy.

(d): Agreed. Go ahead.

o N oo

Figure 1 shows its possible implementation in the SCIFF-AF. Note that, in
addition to its formulation given above, some additional domain-specific con-
straints are specified: in order to fly one must either buy an economy ticket or
a business ticket, one does never want to fly and drive at the same time, etc.
Note also that s does not know which one is the fee he has to pay, so it considers
early and on_site to be an abducible atoms belonging to A. s’s goal, ICs and
goal are denoted by Gs, ZC, and Pg; similarly for d.
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po : tell(s,d, ‘enter dialogue’, {E(attend(conf))}).
p1: tell(s,d, ‘turn finished').
po @ tell(d, s, ‘enter dialogue’, {E(attend(conf))}).
ps @ tell(d, s, ‘turn finished').

pa @ tell(s,d, state circumstances’, Termsy).

ps : tell(s,d, state actions’, Actionsy).

pe : tell(s,d, ‘turn finished').

pr : tell(d, s, deny actions’, E(buy_ticket(lvp, business)))
ps : tell(d, s, ‘turn finished')

po : tell(s,d, accept denial’)

pio : tell(s, d, ‘state circumstances’, Termss).

pi1 : tell(s, d, ‘state actions’, Actionss).

pi2 : tell(s, d, ‘turn finished')

pis : tell(d, s, state actions’, Actions)

pia : tell(d, s, ‘turn finished')
p15 : tell(s, d, leave dialogue”)
pi6 : tell(d, s, leave dialogue’)
Actions; = { E(reach(lvp)), E(pay(conf,400)), E(buy_ticket(lvp, business)), E( fly(lvp)) }
Terms, = { on_site, not early, EN(rent_car(lvp, Car)), EN(drive(lvp)), not E(drive(lvp)) }
Actionsg = { E(reach(lvp)), E(pay(conf,400)), E(buy_ticket(lvp, economy)), E( fly(lvp)) }
Termsa = { on_site, not early, EN (buy_ticket(lvp, business)), EN(rent_car(lvp, Car)),

EN (drive(lup)), not E(drive(lvp)), EN (drive(lvp)), not E(drive(lvp)) }

Fig. 2. Sample argumentation dialogue between s and d about G = E(attend(conf))

The agents can engage in argumentation dialogues to find a possible future
evolution upon which both agree. One such dialogue is shown in Figure 2. At
each step, the dialogue complies with Definition 13, and it therefore produces a
result which (4) is consistent with both constraints, and (i7) is such that in the
end both agree on the present/future circumstances. In fact, the dialogue ends
with an agreement (Actionss).

Thanks to the result enunciated in Proposition 3, we know that Actionss is
indeed an admissible set of arguments for both s and d.

5 Conclusion and Future Work

The main contribution of this paper is the illustration of some fundamental
properties of a declarative framework for multiagent reasoning and dialogue-
based argumentation about actions (SCIFF-AF), initially proposed in [19].

SCIFF-AF is equipped with a sound operational model, an admissible sets
semantics, a notion of (argumentation) dialogue and a notion of agreement about
actions. Thanks to these properties, it is possible to accommodate in SCIFF-
AF a declarative representation of the agent knowledge, upon which agents can
reason, and interact by argumentation dialogues.

Although agent reasoning is not covered by this work, Alberti et al. have
proposed in [1] an agent architecture in which the reasoning activity of agents is
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type of goal|type of expectation
positive E
negative EN

in abeyance| not E A not EN

Fig. 3. Mapping between types of goals and types of expectations

based on SCIFF, so we have ground to believe that SCIFF-AF can be actually
used as a concrete, operational multiagent argumentation framework.

The operational nature of SCIFF-AF is maybe one of its main distinguishing
features, compare to other existing work. Argumentation dialogues are useful be-
cause through them agents may eventually reach mutual agreements, which they
can directly use, for example by adopting them as possible future internal goals.
Importantly, in this article we have demonstrated that SCIFF-AF is grounded
on a solid formal basis, which includes a number of results about its relation
with Dung’s abstract argumentation framework.

This work builds on previous results on abstract argumentation frameworks
[6], on the SCIFF proof-procedure [2], on computing arguments in ALP [11], and
on multi-agent dialogue framework [17, 5], as cited in the text. In the future, we
intend to investigate more thoroughly the formal relations between SCIFF-AF
and other argumentation frameworks. investigate other forms of argumentation
and the enrichment of SCIFF-AF by introducing a notion of value. We also in-
tend to investigate the relation between SCIFF-AF’s notion of positive/negative
expectations and Amgoud & Kaci’s work about generation of bipolar goals [3].
In [3] goals are partitioned into three categories: positive goals, negative goals,
and goals in abeyance. If positive goals reward the agent that satisfies them,
negative goals are on the contrary those considered unacceptable, while goals in
abeyance just mirror what is not rejected, although they do not really reward the
agent that adopts them. We think that the SCIFF-AF metaphor of expectations
applies smoothly to this understanding of goals. One obvious relation among the
two paradigms is shown in Figure 3.

Beside the very similar understanding of goals/expectations, Amgoud &
Kaci’s framework and its recent refinement by Rahwan & Amgoud [14] do have
many motivations in common with this work. We plan to investigate these as-
pects in depth in the future. Some possible interesting extensions of the SCIFF-
AF framework could be a notion of attack that accommodates a priority degree,
and a more comprehensive argumentation setting in which agents argue using
not only atomic entities, but also implications (i.e., integrity constraints, or con-
ditional rules).

Another aspect worth investigating is that of knowledge representation, for
example to distinguish between explanatory arguments, used to provide rea-
sons of adopting goals, beliefs or disbeliefs, and instrumental arguments, used to
present plans to achieve goals [3, 14].
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