
Guillermo Ricardo Simari Paolo Torroni (eds.)

Argumentation and
Non-Monotonic Reasoning

An LPNMR Workshop

Tempe, Arizona, US, May 14, 2007

Proceedings

ArgNMR Home Page:
http://lia.deis.unibo.it/confs/argnmr/

Preface

Research on argumentation and non-monotonic reasoning began in full force in
the early eighties. The first attempts showed how argumentation results in a very
natural way of conceptualizing commonsense reasoning, appropriately reflecting
its defeasible nature. Further work in the knowledge representation and rea-
soning community has shown that argumentation provides a useful perspective
for relating different non-monotonic formalisms. More recently, argumentation
has been revealed as a powerful conceptual tool for exploring the theoretical
foundations of reasoning and interaction in autonomous agents and multiagent
systems.

This volume contains the papers that will be presented at the First Interna-
tional Workshop on Argumentation and Non-Monotonic Reasoning (ArgNMR
2007) on May 14, 2007 in Tempe, Arizona, US. Each submission was reviewed
by at least 3 programme committee members.

ArgNMR will consist of 9 presentations and 2 discussion sessions. Our inten-
tion is to propose this event as an opportunity for exchanging ideas on the funda-
mental theoretical basis and the design and implementation of argument-based
systems including semantics, proof theory, applications and the comparison of
those systems with other types of non-monotonic reasoning.

We wish to thank the authors of this volume, the ArgNMR Programme
Committee, the delegates who will attend, Chitta Baral for providing logistic
support, Gerd Brewka and John Schlipf for inviting us to propose such an event in
co-location with LPNMR, and Andrei Voronkov for his contribution to ArgNMR
through EasyChair.

April 2007 Guillermo Ricardo Simari
Paolo Torroni

Workshop Organization

Programme Chairs

Guillermo Ricardo Simari, U Nacional del Sur, Bah́ıa Blanca, Argentina

Paolo Torroni, U Bologna, Italy

Programme Committee

Leila Amgoud, IRIT-CNRS Toulouse, France

Grigoris Antoniou, FORTH-ICS, Greece

Pietro Baroni, U Brescia, Italy

Trevor J.M. Bench-Capon, U Liverpool, United Kingdom

Carlos Iván Chesñevar, U Nacional del Sur, Bah́ıa Blanca, Argentina

Jürgen Dix, TU Clausthal, Germany

Phan Minh Dung, Asian Institute of Technology, Thailand

Lluis Godo, IIIA-CSIC, Spain

Anthony Hunter, U College London, United Kingdom

Antonis C. Kakas, U Cyprus

Gabriele Kern-Isberner, U Dortmund, Germany

Nicolas Maudet, U Paris-Dauphine, France

Peter J. McBurney, U Liverpool, United Kingdom

Donald Nute, U Georgia, Athens, GE, United States

Henry Prakken, U Utrecht, The Netherlands & U Groningen, The Netherlands

Iyad Rahwan, British U Dubai, UAE & U Edinburgh, United Kingdom

Tran Cao Son, New Mexico State U, NM, United States

Francesca Toni, Imperial College London, United Kingdom

Local Organization

Chitta Baral, Arizona State University, Arizona, United States

Table of Contents

Three senses of “Argument” . 1
Adam Wyner, Trevor J.M. Bench-Capon, Katie Atkinson

An Abstract Presentation of Dialectical Explanations in Defeasible
Argumentation . 17

Alejandro Garćıa, Carlos Iván Chesñevar, Nicolás Daniel Rotstein,

Guillermo R. Simari

Characterizing Defeat Graphs where Argumentation Semantics Agree 33
Pietro Baroni, Massimiliano Giacomin

A Sound and Complete Dialectical Proof Procedure for Sceptical
Preferred Argumentation . 49

Phan Minh Dung, Phan Minh Thang

Argumentation-based Proof for an Argument in a Paraconsistent Setting . 64
Iara Almeida, José Júlio Alferes

CaSAPI: A System for Credulous and Sceptical Argumentation 80
Dorian Gaertner, Francesca Toni

Reductio ad Absurdum Argumentation in Normal Logic Programs 96
Lúıs Moniz Pereira, Alexandre Miguel Pinto

Inferring Preferred Extensions by Minimal Models . 114
Juan Carlos Nieves, Mauricio Osorio Galindo, Ulises Cortés

Formal Properties of the SCIFF-AF Multiagent Argumentation Framework 125
Paolo Torroni

Author Index . 141

Three Senses of “Argument”

Adam Wyner1, Trevor Bench-Capon
1
, and Katie Atkinson

1

1 Department of Computer Science, Ashton Building

University of Liverpool

Liverpool, United Kingdom, L693BX
{azwyner, tbc, katie}@csc.liv.ac.uk

Abstract. In AI approaches to argumentation, different senses of argument are
often conflated. We propose a three-level distinction between arguments, cases,

and debates. This allows for modularising issues within levels and identifying

systematic relations between levels. Arguments, comprised of rules, facts, and

a claim, are the basic units; they instantiate argument schemes; they have no
sub-arguments. Cases are sets of arguments supporting a claim. Debates are a
set of arguments in an attack relation; they include cases for and against a

particular claim. Critical questions, which depend on the argument schemes,
are used to determine the attack relation between arguments. In a debate,

rankings on arguments or argument relations are given as components based on
features of argument schemes. Our analysis clarifies the role and contribution

of distinct approaches in the construction of rational debate. It identifies the

source of properties used for evaluating the status of arguments in
Argumentation Frameworks.

Keywords. Argumentation, argument, case, debate.

1 Introduction

In AI we find a number of approaches to argumentation and argument. Some

approaches represent arguments as trees or graphs (e.g. Reed and Rowe 2005), some

are highly concerned with the structure of arguments (e.g. Caminada and Amgoud

2005) and the way arguments support one another (e.g. Cayrol and Lagasquie-Schiex

2005). From informal logic we have the notion of argument schemes (e.g. Walton

1996), while much of the more formal work has taken place in the context of abstract

argumentation frameworks (e.g. Dung 1995). With this variety of approaches it is

important to determine the relations between them, and in particular to avoid

conflation of distinct ideas. To this end we will, in this paper, explore three different

senses of the word “argument”, all of which are represented in the previous work

mentioned above, in order to give a clear characterisation of what may be intended by

argument, and to identify the appropriate role of various senses in argumentation as a

whole.

2 A. Wyner, T.J.M. Bench-Capon, and K. Atkinson

The Oxford English Dictionary lists seven senses of the word “argument”, of

which three will concern us in this paper. We begin by giving the definitions below:

although these are senses 3a, 4 and 5 in the OED, we will introduce our own

numbering for clarity. In Sense 1 an argument is a self-contained entity, a reason for

a conclusion.

Sense 1: “3. a. A statement or fact advanced for the purpose of influencing

the mind; a reason urged in support of a proposition.”

Thus we can see an argument in Sense 1 as a pair <reason, conclusion>, which makes

no reference to any other arguments. This is quite a common use in AI and elsewhere:

Toulmin’s scheme (Toulmin 1958), as originally presented, was “stand alone” in the

sense that it made no reference to the grounds on which the reasons were believed,

nor the uses to which the claim might be put. The arguments based on the many

schemes found in (Walton 1996) share this feature. Most common of all in AI are

arguments of the form “Q because P” representing the application of a single

(defeasible) rule. In law this is akin to a single point made within a case.

In the second sense, reference is made to where the reasons come from:

Sense 2: “4. A connected series of statements or reasons intended to

establish a position (and, hence, to refute the opposite); a process of

reasoning; argumentation.”

In Sense 2 we move beyond a single step of reasoning, giving grounds for the reasons

advanced for the conclusion. An argument in Sense 2 may be seen as a chain of

reasons, reasons for reasons. In AI this can appear as a proof tree, as with the typical

“how” explanation of a rule based expert system, and is a commonly used notion of

argument in work such as (Pollock 2001) when an “argument” has sub-arguments:

e.g. “P → Q” and “Q → R” are sub-arguments of the argument “P, P → Q, Q → R, so

R” where “→” is some kind of, possibly defeasible, implication. In law this may be

seen as the whole case to be presented for a particular party.

The third sense relates arguments in the previous senses:

Sense 3: “5. a. Statement of the reasons for and against a proposition;

discussion of a question; debate.”

In Sense 3 we have the possibility of conflict: we have reasons against as well as for,

the proposition, and we may have multiple arguments in the preceding two senses on

both sides. In AI this corresponds more to an argumentation framework in the sense

introduced by Dung (1995). In law it corresponds to the whole of a case with all the

arguments for both parties and perhaps also the adjudication of a judge.1

In this paper we shall distinguish between these three senses of argument. In the

following we will refer to Sense 1, as an argument: we shall always here mean an

argument which cannot be divided into sub-arguments. For Sense 2, a collection of
arguments advocating a particular point of view, we shall use the term case. This

1 In AI sometimes “argumentation” is used rather than “argument”: in fact no distinction

between these terms is reflected in the definitions given in the OED. There are senses of
“argumentation” corresponding to each of the senses of “argument” discussed above.

Differences seem to be in connotation: “argumentation” is typically used pejoratively, and
sometimes carries a sense of process, the putting forward of arguments.

Three Senses of “Argument” 3

picks up on phrases such as “the case for the prosecution”, but should not be confused

with the whole of a case as mentioned above. Rather, for a collection of arguments

for and against a point of view, we shall use the term debate.

In distinguishing the three senses, we also relate them. Arguments are parts of

cases, and a case is part of a debate. Furthermore, changes in one of the parts may

induce a change in another, as we shall see.

Before proceeding further, we should mention, for purposes of comparison,

Prakken’s well known four layer model of argumentation (Prakken 1997). He

distinguishes a logic layer, which is concerned with arguments and is where questions

such as whether the argument is sound can be posed. Prakken, however, does not
distinguish between Senses 1 and 2, and so both arguments and cases may emerge

from the logic layer. Next there is a dialectical layer, which examines conflicts

between the arguments/cases identified in the logic layer. This layer corresponds to

what we are terming debate, and it is intended to resolve conflicts between the

arguments/cases identified. Next there is a procedural layer, which controls the

conduct of the dispute, how arguments can be introduced and challenged. Finally,

there is a strategic layer: while the procedural layer controls what it is possible or

legal to do, the strategic layer determines what it is advisable to do. In what follows

we will be concerned only with the logical and dialectical layers.

In Section 2, we present arguments as the basic unit. However, arguments have

parts, which are specified by the argument schemes which they instantiate; for

instance, arguments have claims, which is the proposition that holds if the argument

succeeds. A key notion is that arguments do not have other arguments as parts. In
Section 3, critical questions are presented as a means to establish attack relations

between arguments; given an argument and a critical question associated with it, an

affirmative answer to the question implies that another argument attacks the argument

and in what way. Given arguments and attack relations, we move to the level of

debates in Section 4, where sets of arguments are provided for and against a particular

claim. Different sets of arguments are derived from different attack relations; in turn,

the attack relations depend on the critical questions and the argument schemes that

have been instantiated. In Section 5, we discuss abduction in Argumentation

Frameworks. We present cases in Section 6 in terms of admissible sets in an

Argumentation Framework, for a case is a set of arguments that support a particular

claim. We discuss the role of evaluation metrics such as preference or value rankings
in Section 7; the rankings use properties that come from particular argument schemes,

and have consequences for properties of sets of arguments at the level of the

Argumentation Framework.

2 Arguments

In order to generate some arguments, we will need some facts and some means of

inferring conclusions from those facts. We will use as a starting point a very simple

knowledge base, KB1, comprising four defeasible rules and three facts, from which

we can generate a standard form of argument: P and if P then Q, so Q . The facts and

rules of KB1 are:

4 A. Wyner, T.J.M. Bench-Capon, and K. Atkinson

R1 P → Q

R2 Q → R

R3 S → ¬Q

R4 T → ¬R

F1 P

F2 S

F3 T

We begin by forming arguments by applying the available rules to the available

facts. Each of the facts is the antecedent of a rule, and so we get three arguments:

A1 F1, R1 so Q

A2 F2, R3 so ¬Q

A3 F3, R4 so ¬R

Note that A1 and A2 have conflicting claims. This is not unusual: it simply means

that we have a reason to believe Q, and a reason to disbelieve Q: we are not saying

that the claims of all the arguments are true, only that we have a reason to think they

may be. We expect such conflicts to appear in the logic level of argumentation: it is

the role of the dialectical layer to resolve them. In our terms, such conflicts open up

the possibility of debate. Of course, it needs to be ensured at that level that arguments
with conflicting claims are not co-tenable.

But now we have obtained Q using A1 and Q is itself the antecedent of a rule, so

we can perhaps add:

A4 Q, R2, so R

Alternatively we might want to reflect that Q was derived as the conclusion of A1

and so include A1 as a sub-argument.

C1 A1, R2, so R.

Note that C1 is, in our terms a case and not an argument: it contains A1 as a sub-
argument. It is a chain of arguments for R, and so what we call a case. A difference

between these approaches emerges if we add another rule and fact to KB1 to get KB2:

R5 U → Q

F4 U

Now we have a second argument for Q:

A5 F4, R5, so Q

Now A4 still applies, so we get no extra argument for Q, but using the approach

with sub-arguments we would get a second case for R:

Three Senses of “Argument” 5

C2 A5, R2, so R

Although the production of such cases is very natural in AI, in which the chaining

of rules is standard practice, and although these cases (i.e. arguments with sub-

arguments) have been termed arguments in a number of common approaches

(Caminda and Amgoud 2005, and Pollock 2001), we will restrict ourselves for the

time being to strict arguments in Sense 1.

We see arguments in Sense 1 as the instantiation of an argument scheme. In

relation to KB1 we will use two argument schemes:

AS1 Defeasible Modus Ponens

Data: Type: Fact | Conjunction of Facts

Warrant: Type: Rule with Data as antecedent

Claim: Type Fact: the consequent of Warrant.

AS2 Argument by Assertion

Data: Type: Fact

Claim: Type: Fact, namely Data

Now A1-5 are all instantiations of AS1: instantiating AS2 gives us four more
arguments:

A6: P, so P

A7: S, so S

A8: T, so T

A9: U, so U

While in this sense, arguments do not have sub-arguments, arguments nonetheless

have parts, as indicated by the argument schemes. Among the parts of an argument

we have Data, Warrant, and Claim, and other argument schemes may have other

parts.

We have now identified all the arguments that can be generated from KB2. All
these arguments are sound in that they are instantiations of our permitted argument

schemes. Our argument schemes do not allow the production of cases such as C1 and

C2: that would require a scheme which allowed an argument to act as Data like a

Fact. We do not want to allow this, since our conception of argument (Sense 1) does

not permit arguments to be related to one other. As we consider later, there are

relations between arguments, where the term is used in its other senses.

3 Critical Questions

Having identified the arguments, we will now wish to identify relations between

them. In particular we need to identify which arguments attack one another. As noted

above, A1 and A2 are in mutual conflict because the claim of one negates the claim of

the other. In order to make our identification of attacks systematic, we will draw on

6 A. Wyner, T.J.M. Bench-Capon, and K. Atkinson

the notion of critical questions, taken from informal logic. In Walton (1996) each

argument scheme is associated with a characteristic set of critical questions.

Argument schemes are instantiated. Let us suppose an argument A which instantiates

a scheme and with respect to which we ask a critical question. An affirmative answer

to the question implies an argument which is the instantiation of some scheme and

which is in some conflict with our initial argument A. As we remark below, there are

several ways the conflict can arise.

So what are the critical questions in our example?

For AS2, the only possibility is that we deny the premise and conclusion, which are

of course, the same for this scheme. Thus:

AS2CQ1 Have we reason to believe the premise/claim is false?

If there is an argument A which instantiates AS2 and the answer to this question is

yes, then there will be another argument B which instantiates AS2 and which is in

conflict with A. Thus, we have two arguments A and B which we say attack one

another, for they make claims which are in conflict.

For AS1 we would expect to have three critical questions corresponding to the

standard kinds of attack found in the literature, namely premise defeat, undercut and
rebuttal. AS1, however, cannot be undercut, since the claim of AS1 is always a fact,

not a rule, and so we cannot infer that a rule is inapplicable. Accordingly we modify

AS1 to AS3:

AS3 Defeasible Modus Ponens with undercut

Data: Type: Fact | Conjunction of Facts

Warrant: Type: Rule with Data as antecedent

Claim: Type Fact | Rule: the consequent of Warrant

This gives the following three critical questions.

AS3CQ1: Have we reason to believe the data is false?

AS3CQ2: Have we reason to believe the warrant does not apply?

AS3CQ3: Have we reason to believe the claim is false?

Thus an argument whose claim is the negation of the data, or the warrant, or the

claim of an instantiation of AS3 will, in their corresponding ways, attack that

instantiation. Note that AS3CQ3 gives rise to a symmetric attack, the others to

asymmetric attacks.

The use of these critical questions thus allows us to determine which of our

arguments are in conflict.

We might also consider whether we have additional critical questions. For

example, if we have used as data the claim of a defeasible argument, we will need to
be wary of conclusions we draw on the basis of it, since we cannot rely on such rules

to be transitive. So we might add a critical question to AS3:

Three Senses of “Argument” 7

AS3CQ4: Are we sure the data is true?

Such a critical question instantiates the following argument scheme:

AS4 Argument from Defeasibility:

Data: Type: Fact: where Fact is the claim of an instantiation of AS3

Claim: Type: Fact: negation of Data.

This raises doubt, but does not substantiate the doubt.

The associated critical question is:

AS5CQ1: Do we have an independent reason to believe Data?

Having discussed arguments and their relationships, we can move the discussion to

the level of debates, for which we will use argumentation frameworks. There we

consider the arguments only in terms of the relationships we have determined hold

between them, namely attack. After having discussed debates, we return to discuss

the cases, which we define as part of a debate.

4 Argumentation Frameworks and Debates

For our dialectical layer we will use Dung’s Argumentation Framework (AF),

introduced in Dung (1995). In an AF, we have arguments in attack relations. We

recall some key notions of that framework.

Definition 1 An argument system is a pair AF = <X,A> in which X _ is a set of
arguments and A _ _ _ is the attack relationship for AF. Unless otherwise
stated, X _ is assumed to be finite, and A comprises a set of ordered pairs of distinct

arguments. A pair <_x, y> is referred to as ‘x attacks (or is an attacker of) y’ or

‘y is attacked by x’.

For R, S subsets of arguments in the system AF we say that:

a) s ∈ S is attacked by R if there is some r ∈ R such that <r, s> ∈ A.

b) x ∈ X s acceptable with respect to S if for every y ∈ X that attacks x there is

some z ∈ S that attacks y.
 c) S is conflict-free if no argument in S is attacked by any other argument in S.

d) A conflict-free set S is admissible if every argument in S is acceptable with

respect to S.

e) S is a preferred extension if it is a maximal (with respect to set inclusion)

admissible set.

f) S is a stable extension if S is conflict free and every argument y, ¬ (y ∈ S), is
attacked by S.

g) S is a complete extension if S is a subset of A, S is admissible, and each

argument which is defended by S is in S.

8 A. Wyner, T.J.M. Bench-Capon, and K. Atkinson

h) S is a grounded extension if it is the least (wrt set inclusion) complete extension.

i) An argument x is credulously accepted if there is some preferred extension

containing it; x is skeptically accepted if it is a member of every preferred

extension.

Dung specifically states that arguments are abstract, and that attack is the only

relation between them. This in part motivates our desire to exclude cases, arguments

related to other arguments which form their parts, from the dialectical layer. As

discussed above, we can use our argument schemes and critical questions to identify

the sets X and A. So, what is the argumentation framework, AF2, corresponding to
KB2?

X is the set of all arguments generated in the previous section: {A1, A2, A3, A4,

A5, A6, A7, A8, A9}.

Using AS3CQ3, we can see A1 and A2 are in conflict, since the claim of one is the

negation of the claim of the other. Next AS3CQ1 shows that A2 must attack A4,

since the claim of A2 negates a premise of A4. Applying these two principles gives

us the attack relation: {<A1,A2>, <A2,A1>, <A2,A4>, <A3,A4>, <A4,A3>,

<A2,A5>, <A5,A2>}. A graphical representation of AF2 is given in Figure 1: here, to

help understanding of the diagram, we label arguments with their claim as well as

their name, even though strictly these claims are abstracted away with the rest of the

structure when we form an AF.

Figure 1: AF2

The grounded extension is the rather disappointing {A6,A7,A8,A9}. We have a

number of preferred extensions:

{ A1, A3 A5,A6,A7,A8,A9}

{ A1, A4 A5,A6,A7,A8,A9}

{ A2,A3,A6,A7,A8,A9}

These extensions allow us, therefore, to accept any of the arguments credulously,

but only the arguments from assertion sceptically. This is, of course, not very useful,

Three Senses of “Argument” 9

and so we often find some notion of priority between arguments. This is often based

on a notion of priority between the rules on which they are based. For example we

might say R5 > R3 > R1. The effect of this is to break the symmetry of the attack

relation between arguments with the same conclusion: thus from KB1, A2 would now

defeat A1, but the additional rule, R5, in KB2 means that in AF2 the attacks <A1,

A2> and <A2, A5> are both removed, so that A2 is defeated. We would still then

need to decide the priority between A3 and A4. Note again that we have to resort back

to the logical level to identify the rules and their priorities.
To illustrate undercutting, suppose we extend KB2 to KB3 by adding :

R6: U → ¬R2 (i.e. U → ¬ (Q → R))

Now we can extend AF2 to AF3 by adding an extra argument which instantiates

AS3:

A10 F4, R6, so ¬R2

A10 attacks A4 (by undercut), but not vice versa, so <A10,A4> is added to the attack

relation of AF3.

5 Another Argument Scheme

The above discussion used two argument schemes. There is, however, no reason to

limit ourselves to the sorts of arguments we can generate. For example, let us consider

KB4, which is KB2 but with F1 and F4 replaced by F5, namely R. Using the

argument schemes AS1-3, we can show arguments A2, A3, A7, A8 and A9 and, using

argument by assertion,

A11: R, so R.

Suppose, we now introduce an additional argument scheme:

AS5 Argument from Abduction

Data: Type: Fact

Warrant: Type: Rule with Data as consequent

Claim: Type Fact: the antecedent of Warrant

This enables us to produce the following arguments2:

A12 F5, R2, so Q

A13 Q, R1, so P

A14 Q, R5, so U

2 Here we do not consider arguments based on the contraposition of defeasible rules.

10 A. Wyner, T.J.M. Bench-Capon, and K. Atkinson

Like any argument scheme, AS5 will need its characteristic critical questions. For

this scheme we need to consider not only the usual notions of premise defeat,

undercut and explanation, but also the possibility of their being a competing, perhaps

better, explanation of the claim. It is part of the notion of arguing by abduction that

the justification for abducing the antecedent is that it represents the best explanation

of the consequent. Here P and U are competing explanations for Q. We assume that

two abductive arguments conflict when they have the same data, since we cannot

reuse the explanation. This is an important point: determining whether arguments

attack one another depends crucially on the argument scheme which they instantiate.
We therefore have four critical questions:

AS4CQ1: Have we reason to believe the data is false?

AS4CQ2: Have we reason to believe the warrant does not apply?

AS4CQ3: Have we reason to believe the claim is false?

AS4CQ4: Is there another explanation of the data?

Thus, instantiations of AS4 are attacked by arguments with the same data as well

as the attacks applicable to AS3.

Now we can organize this into an argument framework AF4.

The set of arguments is now {A2, A3, A7, A8, A11, A12, A13, A14}.
What of the attacks? A3 and A11 are in mutual conflict, as are A2 and A12. But

now using AS4CQ4 we can see that A13 and A14 are in conflict. Additionally if A3

is accepted, by AS4CQ1 A12 must fail, since the abductive premise fails. Similarly

A2 attacks A13 and A14, using AS4CQ1.

Thus attacks = {<A2, A12>, <A12, A2>, <A3, A11>, <A11, A3>, <A13, A14>,

<A14, A13>, <A3, A12>, <A2, A13>, <A2, A14>}

We can show the resulting AF4 in Figure 2.

Figure 2: AF4

Three Senses of “Argument” 11

Preferred extensions of AF4 are:

{A7, A8, A11, A12, A13}

{A7, A8, A11, A12, A14}

{A7, A8, A11, A2}

{A7, A8, A3, A2}

We will leave for later consideration how we might choose between these preferred

extensions.

A further possibility is that we might think that there may be another explanation

of the claim of an instantiation of AS4, even if we don’t know what it is:

AS4CQ5: Might there be another explanation?

A positive answer to this critical question instantiates AS6:

AS6: Argument from Unknown Explanation

Data: Type: Fact: where Fact is the claim of an instantiation of AS4

Claim: Type: Fact: Claim.

Note that AS6 is not legitimate if we believe that our knowledge of possible

explanations is complete. This gives two critical questions:

AS6CQ1 Do we have an independent reason to believe Claim?

AS6CQ2 Is our knowledge of the explanations for Claim complete?

Applying AS5 to KB2 gives A15 and applying AS6 to KB4 gives A16-18.

A15 ¬R since Q defeasibly inferred.

A16 ¬Q since there may be an unknown explanation for R
A17 ¬P since there may be an unknown explanation for Q

A18 ¬U since there may be an unknown explanation for Q

We can usefully label the arcs in the framework with the critical questions. If we

add A16-A18 to AF4 we get AF4a as shown in Figure 3.

12 A. Wyner, T.J.M. Bench-Capon, and K. Atkinson

Figure 3: AF4a

6 Cases

We now need to return to the notion of a case. Recall that we decided to admit only

arguments without sub-arguments into our framework, thus precluding the possibility

of representing support for an argument as sub-argument. Also we want to stay within

Dung’s original intentions, and so do not wish to include an additional relation to

show support, as is done, for example, in Cayrol and Lagasquie-Schiex (2005). We

can, nevertheless, obtain a clear notion of support, and hence of arguments in Sense 2,

by considering admissible sets.

An admissible set is conflict free and able to defend itself against attackers. This

means that a given argument in the admissible set which is attacked will have
defenders in the admissible set. Moreover if these defenders have attackers, they too

will have defenders in the admissible set. Thus the minimal admissible set containing

a given argument will contain all the arguments needed to make that given argument

part of an admissible set. It is in this way that we can express the notion of support

while staying within Dung’s framework, as originally specified.

Consider, as an example, A13 in AF4 above. This argument appears in only one

preferred extension: {A7, A8, A11, A12, A13}. A12 is needed to defend A13 against

A2, and A11 is needed to defend A12 against A3. A7 and A8 are included only to

make the extension maximal. Thus the minimal admissible set containing A13 is

{A11, A12, A13}. Thus we can say that A13 is supported by A11 and A12, and that

these three arguments form the case for the claim of A13, P. This would make the
case something like “P is the best explanation of Q, which is the best explanation of

R, which is known to hold.” Had we adopted the sub-argument approach we would

have had

Three Senses of “Argument” 13

C3: A11, A12, R1, so P,

showing the connection between chains of arguments and admissible sets.

Note, however, that on this notion of case, A2 is not supported by A7, which

would, as being the datum required to infer ¬Q using A2, often be thought to be a

sub-argument of A2. We argue that we should not see A7 as supporting A2, because

this aspect of A2 is not in question, the only attack on A2 coming from A12, which is

a rebuttal, not a premise defeat. In other words, A7 is accepted without question, and

so its claim can be presumed in any argument that requires it, meaning that the
argument stands in no need of support in this respect. Of course, if the logic level had

in fact generated an argument with claim ¬S, we would have an argument attacking

the datum of A2, but that argument would itself be attacked by A7. In that case A7

would be required to admit A2 into an admissible set, and so would be regarded as

supporting it. We feel that this notion of support, which only calls in potential

supporters if they are required, is clearer than notions which attempt to identify all

potential supporters at the logical level and without regard to their supporting role in a

debate.

7 Evaluation

When discussing AF2 and AF4, we used the standard notion of evaluating the

argumentation framework in which all arguments have equal weight, and all attackers

succeed, and where we calculate the grounded, preferred or stable extensions,

according to our semantic preferences. Yet, as noted earlier, we may have multiple

preferred extensions which we want to differentiate; we want to have some principled

reason to choose between them.

The usual method of distinguishing between multiple preferred extensions, and so
provide a reason to choose between them, is to ascribe some property to the

arguments representing their strength, and to require an attacker to be at least as

strong as the attacked argument if the attack is to succeed. In virtue of these more

fine-grained attacks, we can distinguish among previously undistinguished preferred

extensions. For example Amgoud and Cayrol (2002) use preferences in this way, and

Bench-Capon (2003) uses the notion of value (the social interest promoted by the

acceptance of an argument) to determine the relative strength of pairs of arguments.

But where do these properties come from?

The answer must be that they come from the argument schemes instantiated to

produce the arguments in the framework. At the very least therefore the arguments

can be ascribed the property of being instantiations of a particular argument scheme.
This in turn means that we could apply a preference order to schemes: for example we

might rate Argument from Assertion most highly, since this requires a known fact in

the database, then Defeasible Modus Ponens, then Abduction. Or we could choose a

different order if we desired. The general idea is that the arguments can be ascribed

properties, these properties can be ranked, and this ranking is used in determining the

status of arguments in the framework. Note that although the schemes determine

which properties can be ascribed to the arguments, the ranking is produced

14 A. Wyner, T.J.M. Bench-Capon, and K. Atkinson

independently, and that different rankings may be applied to the framework for

different purposes or by different audiences.

If we use different argument schemes, we may be able to ascribe a wider range of

properties. Three examples are:

• One well known argument scheme is Argument from Authority (e.g. Walton

1996). In order to instantiate this scheme an authority must be identified. All

arguments instantiating this scheme therefore will have the property of being

endorsed by some particular authority. If we have several competing authorities,
we can use a ranking of confidence in these authorities to determine the strength of

arguments.

• In Atkinson (2005) an argument scheme for practical reasoning is proposed. In this

scheme the social value promoted by acceptance of the argument has to be

identified in order to instantiate the scheme. This allows arguments from this

scheme to be labeled with these values, which in turn means that the resulting

framework can be regarded as a Value Based Framework (Bench-Capon 2003)),

and evaluated according to a particular audience’s ranking of the values.

• Work on case-based reasoning in law such as Ashley (1990), effectively identifies

a set of argument schemes and critical questions tailored to reasoning with legal

precedents. Each of these argument schemes is related to the citation of a legal

decision, and so comes with information such as the date of the case, the
jurisdiction in which it was decided, and the level of court which made the

decision. All of these things represent useful properties of argument which can

feed into the evaluation of the status of arguments when they are formed into a

framework.

Properties of arguments will not, however, suffice for AF4a. The use of Argument

Scheme AS6 means that any abductive argument will have an attacker. If attacks

always succeeded, this means that we simply could not use abductive arguments. The

implication is that we need to provide some way for attacks to fail. One obvious

strategy is to use the labels on the attacks. For example it might be that one

considered that AS4CQ5 should not defeat the argument it attacks, unless that

argument is attacked by some other argument. Thus in AF4a, none of the abductive
arguments will succeed, because they have independent attackers. But suppose we did

not have the fact that S, so that A2 no longer can be made. Now if we accept A11 to

defeat the other attacker of A12, we will accept A12. A13 and A14 are, however, still

defeated since they mutually attack, as well as being attacked using AS4CQ5. This

seems reasonable, since we do not have another explanation of R, but P and U are

competing explanations for Q, and we have no reasons given for preferring one to

another.

There are two important points to note here. First, the properties of arguments can

play an important role in deciding the status of arguments in an argumentation

framework, since they can form the basis for rational choice between competing

preferred extensions. Second, the properties ascribed to arguments in the AF need to
have their origin in the argument schemes which ground the arguments in the

framework. The schemes used will thus determine the properties which are available

at the framework level.

Three Senses of “Argument” 15

8 Summary

In this paper we have attempted to make clear distinctions between three senses in

which “argument” may be used, and which can sometimes appear to be conflated in

work on argumentation.

First we have the level of the atomic argument. For us this is an instantiation of an

argument scheme, and cannot be divided into any constituent parts which are

themselves arguments. There is a wide variety of argument schemes found in the

literature: the choice of which schemes to use will depend on the nature of the

application – different schemes are appropriate for legal, practical, scientific,
mathematical and evidential reasoning. These schemes have associated with them

critical questions, and various arguments will form the basis of these questions posed

against other arguments. This provides a principled basis for deciding which

arguments are in conflict, and whether the conflict is symmetric or not. Also the

different critical questions permit attacks to be labeled according to the question being

posed. Finally particular schemes will permit the ascription of properties to these

arguments.

The above allows us to form the arguments into an argumentation framework,

which represents the notion of argument as debate, sets of reasons for and against

particular propositions. At this level it is possible to evaluate arguments to form a

view as to which should be accepted and which should be rejected. Where suitable

argument schemes have been used, properties of arguments and attacks can be used to

inform the evaluation, according to rankings of these properties.

Finally we can define the notion of a case, a set of supporting arguments for a

particular point of view, in terms of a minimal admissible set taken from the

framework.

We believe that it is important to maintain a distinction between these three senses.

Moreover we can see that our separation shows clearly the links between them. An

argumentation framework is independent of the argument schemes used to form it.

The properties of arguments do depend on the schemes used, and so some evaluations

will be possible only if the arguments instantiate particular argument schemes. The

notion of support is derived from the status of arguments in the framework level,

rather than being identified at the logic level and thus is dependent on the method of
evaluation for the framework.

Acknowledgments. The authors thank the support of the Estrella Project (The

European project for Standardized Transparent Representations in order to Extend

Legal Accessibility (Estrella, IST-2004-027655)) during the time when this paper was

written.

16 A. Wyner, T.J.M. Bench-Capon, and K. Atkinson

References

1. Amgoud, L. and Cayrol, C.: Inferring from Inconsistency in Preference-Based

Argumentation Frameworks. J. Autom. Reason., Kluwer Academic Publishers, 29 (2002)
125-169

2. Ashley, K.: Modeling Legal Argument: Reasoning with Cases and Hypotheticals. Bradford
Books/MIT Press (1990)

3. Atkinson, K.: What Should We Do?: Computational Representation of Persuasive Argument

in Practical Reasoning. Department of Computer Science, University of Liverpool,
Liverpool, United Kingdom (2005)

4. Bench-Capon, T. J. M.: Persuasion in Practical Argument Using Value-based Argumentation
Frameworks. J. Log. Comput.13 (2003) 429-448

5. Caminada, M. & Amgoud, L.: An Axiomatic Account of Formal Argumentation. AAAI

(2005) 608-613
6. Cayrol, C. and Lagasquie-Schiex, M.: On the Acceptability of Arguments in Bipolar

Argumentation Frameworks. ECSQARU (2005) 378-389
7. Dung, P. M.: On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic

Reasoning, Logic Programming and n-Person Games. Artificial Intelligence 77 (1995) 321-
358

8. Pollock, J.: Defensible Reasoning with Variable Degrees of Justification. Artificial

Intelligence 133 (2001) 233-282
9. Prakken, H.: Logical Tools for Modelling Legal Argument. A Study of Defeasible Reasoning

in Law. Kluwer Academic Publishers (1997)
10. Reed, C. and Rowe, G.: Araucaria: Software for Argument Analysis, Diagramming and

Representation. International Journal on Artificial Intelligence Tools 13 (2004) 961-980.

11. Toulmin, S.: The Uses of Argument. Cambridge University Press (1958)
12. Walton, D.: Argumentation Schemes for Presumptive Reasoning. Erlbaum (1996)

An Abstract Presentation of Dialectical Explanations in
Defeasible Argumentation

Alejandro J. Garćıa, Carlos I. Ches̃nevar, Nicoĺas D. Rotstein, and Guillermo R. Simari

Artificial Intelligence Research Group
Department of Computer Science and Engineering

Universidad Nacional del Sur, Av.Alem 1253, (8000) Bahı́a Blanca, ARGENTINA
Consejo Nacional de Investigaciones Cientı́ficas y T́ecnicas (CONICET)

e-mail:{ajg, cic, ndr, grs}@cs.uns.edu.ar

Abstract. Abstract argumentation frameworks have played a major role as a way
of understanding argument-based inference, resulting in different argument-based
proof procedures. We will provide an abstract characterization of thewarrant con-
struction in the context of Skeptical Argumentation Frameworks. Often in the lit-
erature an argument is regarded as an explanation as well as a form ofsupport
for a claim, and this argument is evaluated to decide if the claim is accepted.
The concept of explanation has received attention from different areas in Artifi-
cial Intelligence, particulary in the Knowledge-Based Systems community.Only
a few of them consider explanations in relation with argument systems. In this
paper, we propose a type of explanation that attempts to fill this gap providing a
perspective from the point of view of argumentation systems.

1 Introduction and Motivations

Lately, interest in argumentation has expanded at increasing pace, driven in part by the-
oretical advances but also by successful demonstrations ofa substantial number of prac-
tical applications, such as multiagent systems [17, 1], legal reasoning [18], knowledge
engineering [4], and e-government [2], among many others. In this context, abstract
argumentation frameworks [9] have played a major role as a way of understanding
argument-based inference, resulting in different argument-based semantics. The final
goal of such semantics is to characterize which are the rationally justified (orwar-
ranted) beliefs associated with a given set of arguments.

Dialectical analysis in argumentation involves the exploration of anargument search
spacein order to provide a proof-theoretic characterization of an argument-based se-
mantics. Dialectical proof procedures provide the mechanism for performing compu-
tations of warranted arguments, traversing this argument search space by generating
tree-like structures (called argument trees [3] or dialectical trees [11, 7] in the litera-
ture). We will provide an abstract characterization of the warrant construction in the
context ofSkeptical Argumentation Frameworks.

From another point of view, often in the literature an argument is regarded as an
explanation for a claim that is represented by a literal. That is, the claim which is be-
ing explained is put under discussion, and only after evaluating its support it will be
accepted or not. The role of explanations has received attention from several areas of

18 A.J. Garćıa, C.I. Ches̃nevar, N.D. Rotstein, and G.R. Simari

Artificial Intelligence –especially in the expert systems community [15, 20, 12]. A few
of them consider explanations in relation with argument systems [16]. In belief revision,
the role of explanations has also been studied [10]: new knowledge is accompanied by
an explanation, which is used (when needed) to resolve inconsistency with the agent’s
current beliefs. The piece of knowledge having the “best” explanation is the one that
prevails, and is accepted as a new belief.

We will focus our discussion on those explanations that givethe necessary infor-
mation to understand the warrant status of a literal. Since we consider only skeptical
argumentation systems based on a dialectical proof procedure, we studydialectical ex-
planations(from now on,δ-Explanations). Although we consider arguments as an ex-
planation for a literal, we are interested in obtaining the complete set of dialectical trees
that justify the warrant status of that literal. We show howδ-Explanations can be a use-
ful tool to comprehend and analyze the interactions among arguments, and for aiding
in the encoding and debugging of the underlying knowledge base. Several examples,
generated with an implemented system that returns, for a given query, both the answer
and the associatedδ-Explanation, are given throughout the paper.

An interesting review about explanations in heuristic expert systems is given in [15],
which offers the following definition: “...explainingconsists inexposing somethingin
such a way that it isunderstandablefor the receiver of the explanation –so that he/she
improves his/her knowledge about the object of the explanation– andsatisfactoryin
that it meets the receiver’s expectations.” In our approach, we explain throughexpos-
ing the whole set of dialectical trees related to the queried literal. This information is
understandablefrom the receiver’s point-of-view, because all the arguments built, their
statuses (i.e., defeated/undefeated), and their interrelations are explicitly shown. This
type of information would besatisfactoryfor the receiver, because it contains all the
elements at stake in the dialectical analysis that supportsthe answer.

An empirical analysis about the impact of different types ofexplanations in the
context of expert systems is given in [20] which offers a typology that includes: 1)
trace: a record of the inferential steps that led to the conclusion;2) justification: an
explicit description of the rationale behind each inferential step; and 3)strategy:a high-
level goal structure determining the problem-solving strategy used. In this typology, the
authors claim that their empirical analysis have shown thatthe most useful type of
explanation is “justification”. Ourδ-Explanations match both the “justification” and the
“strategy” types. That is,δ-Explanations give not only the strategy used by the system
to achieve the conclusion, but also the rationale behind each argument supporting that
conclusion as it is clearly stated in the corresponding dialectical tree.

We agree with [16], in that“argumentation and explanation facilities in knowledge-
based systems should be investigated in conjunction”. Therefore, we propose a type of
explanation that attempts to fill the gap in the area of explanations in argument systems.
Our approach is to provide a higher-level explanation in a way that the whole context
of a query can be revealed. The examples given will stress this point.

The rest of this paper is structured as follows. Next, we willpresent the basic ideas
of an abstract argumentation framework with dialectical constraints, which includes
several concepts common to most argument-based formalisms. Then, we will present
an abstract characterization of explanation along with a concrete reification based on
Defeasible Logic Programming (DELP).

An Abstract Presentation of Dialectical Explanations in Defeasible Argumentation 19

2 An Abstract Framework with Dialectical Constraints

Abstract argumentation frameworks [9, 13] are formalisms for modelling defeasible ar-
gumentation [19, 5] in which some components remain unspecified. In this paper we
are concerned with the study of warrant computation in argumentation systems, with
focus on skeptical semantics for argumentation. As a basis for our analysis we will use
an abstract argumentation framework (following Dung’s seminal approach to abstract
argumentation [9]) enriched with the notion ofdialectical constraint, which will allow
us to model distinguished sequences of arguments. The resulting, extended framework
will be called anargumentation theory.

Definition 1 (Argumentation framework). [9] An argumentation frameworkΦ is
a pair 〈Args, R〉, whereArgs is a finite set of arguments andR is a binary relation be-
tween arguments such thatR ⊆ Args×Args. The notation(A,B) ∈ R (or equivalently
ARB) means thatA attacksB.

Given an argumentation frameworkΦ = 〈Args, R〉, we will write LinesΦ to de-
note the set of all the singleton sequences[A] with A ∈ Args and all possible finite
sequences of arguments[A0, . . . ,Ak], with k ≥ 1, such that for any pair of arguments
Ai,Ai+1 it holds thatAi+1 R Ai, for i = 0 to k. Argumentation lines define a domain
onto which different constraints can be defined. As such constraints are related to se-
quences which resemble an argumentation dialogue between two parties, we call them
dialectical constraints. Formally:

Definition 2 (Dialectical Constraint). LetΦ = 〈Args, R〉 be an argumentation frame-
work. A dialectical constraintC in the context ofΦ is any functionC : LinesΦ →
{True, False}. A given argument sequenceλ ∈ LinesΦ satisfiesC in Φ whenC(λ) =
True.

An argumentation theory is defined by combining an argumentation framework with a
particular set of dialectical constraints. Formally:

Definition 3 (Argumentation Theory). An argumentation theoryT (or just theory) is
a pair (Φ,DC), whereΦ is an argumentation framework, andDC = {C1,C2, . . . ,Ck}
is a finite (possibly empty) set ofdialectical constraints.

Given a theoryT = (Φ,DC), the intended role ofDC is to avoidfallaciousrea-
soning by imposing appropriate constraints on argumentation lines to be considered ra-
tionally acceptable. Such constraints are usually defined on disallowing certain moves
which might lead to fallacious situations. Typical constraints to be found inDC are
non-circularity (repeating the same argument twice in an argumentation lineis forbid-
den),commitment(parties cannot contradict themselves when advancing arguments),
etc. It must be noted that a full formalization for dialectical constraints is outside the
scope of this work. We do not claim to be able to identify everyone of such constraints
either, as they may vary from one particular argumentation framework to another; that
is the reason whyDC is included as a parameter inT .1

1 In this respect a similar approach is adopted in [14], where different characterizations of con-
straints give rise to different logic programming semantics.

20 A.J. Garćıa, C.I. Ches̃nevar, N.D. Rotstein, and G.R. Simari

2.1 Argumentation Lines

As already discussed before, argument games provide a useful form to characterize
proof procedures for argumentation logics.Such games model defeasible reasoning as a
dispute between two parties (ProponentandOpponentof a claim), who exchange argu-
ments and counterarguments, generatingdialogues. A propositionQ is provably justi-
fied on the basis of a set of arguments if its proponent has awinning strategyfor an ar-
gument supportingQ, i.e. every counterargument (defeater) advanced by the Opponent
can be ultimately defeated by the Proponent. Dialogues in such argument games have
been given different names (dialogue lines, argumentationlines, dispute lines, etc.). A
discussion on such aspects of different logical models of argument can be found in [5,
19]. The abstract framework presented in this section is based on the results presented
in [6] and [8].

Definition 4 (Argumentation Line). LetT be an argumentation theory. Anargumen-
tation lineλ in T is any finite sequence of arguments[A0,A1, . . . ,An] such that every
Ai attacksAi−1, for 0 < i ≤ n. If A0 is the first element inλ, we will also say thatλ
is rooted inA0. We will also write| λ | = n to denote thatλ hasn arguments; we will
also say that thelengthof λ is n.

Definition 5 (Initial Argumentation Segment). Let T be an argumentation theory
and letλ = [A0,A1, . . . ,An] be an argumentation line in T. Thenλ′ = [A0,A1, . . . ,Ak]
will be called aninitial argumentation segmentin λ of lengthk, k ≤ n, denoted⌊λ⌋k.
Whenk < n we will say thatλ′ is a properinitial argumentation segment inλ. We
will use the terminitial segmentto refer to initial argumentation segments when no
confusion arises.

Example 1.Consider a theoryT = (Φ,DC), with DC = ∅, where the setArgs is
{A0, A1, A2, A3, A4 }, and assume that the following relationships hold:A1 attacks
A0,A2 attacksA0,A3 attacksA0,A4 attacksA1. Three different argumentation lines
rooted inA0 can be obtained, namely:λ1 = [A0, A1, A4], λ2 = [A0, A2], λ3 = [A0,
A3]. In particular,⌊λ1⌋2 = [A0,A1] is an initial argumentation segment inλ1.

Example 2.Consider a theoryT ′ = (Φ,DC) where the setArgs is {A0, A1 }, and
assume that the following relationships hold:A0 attacksA1, andA1 attacksA0. An
infinite number of argumentation lines rooted inA0 can be obtained (e.g.λ1 = [A0],
λ2 = [A0,A1], λ3 = [A0,A1,A0], λ4 = [A0,A1,A0,A1], etc.).

Remark 1.Note that from Def. 4, given an argumentation line[A0, A1, A2, . . . ,An]
every subsequence[Ai,Ai+1, . . .Ai+k] with 0 ≤ i ≤ n − k is also an argumentation
line. In particular, every initial argumentation segment is also an argumentation line.

Intuitively, an argumentation lineλ is acceptable iff it satisfies every dialectical
constraint of the theory it belongs to. Formally:

Definition 6. Given an argumentation theoryT = (Φ,DC), an argumentation lineλ
is acceptablewrt T iff λ satisfies everyc ∈DC.

An Abstract Presentation of Dialectical Explanations in Defeasible Argumentation 21

In what follows, we will assume that the notion of acceptability imposed by dialec-
tical constraints is such that ifλ is acceptable wrt a theoryT = (Φ,DC), then any
subsequence ofλ is also acceptable.

Assumption 1 If λ is an acceptable argumentation line wrt a theoryT = (Φ,DC),
then any subsequence ofλ is also acceptable wrtT .

Example 3.Consider the theoryT ′ in Example 2, and assume thatDC={ Repetition
of arguments is not allowed}. Thenλ1 andλ2 are acceptable argumentation lines in
T ′, whereasλ3 andλ4 are not.

Definition 7 (λ′ extendsλ). Let T be an argumentation theory, and letλ and λ′ be
two argumentation lines inT . We will say thatλ′ extendsλ in T iff λ = ⌊λ′⌋k, for some
k < | λ′ |, that is,λ′ extendsλ iff λ is a proper initial argumentation segment ofλ′.

Definition 8. Let T be an argumentation theory, and letλ be an acceptable argumen-
tation line inT . We will say thatλ is exhaustiveif there is no acceptable argumentation
line λ′ in T such that| λ | < | λ′ |, and for somek, λ = ⌊λ′⌋k, that is, there is noλ′

such thatλ′ extendsλ. Non-exhaustive argumentation lines will be referred to aspartial
argumentation lines.

Example 4.Consider the theoryT presented in Example 1. Thenλ1, λ2 andλ3 are
exhaustive argumentation lines whereas⌊λ1⌋2 is a partial argumentation line. In the
case of the theoryT ′ in Example 2, the argumentation lineλ2 extendsλ1. Argumenta-
tion line λ2 is exhaustive, as it cannot be further extended on the basis of T ′ with the
dialectical constraint introduced in Example 3.

Definition 9. Given a theoryT , a setS = {λ1, λ2, . . . , λn} of argumentation lines
rooted in a given argumentA, denotedSA, is called abundle setwrt T iff there is no
pair λi, λj ∈ SA such thatλi extendsλj .

Example 5.Consider the theoryT = (Φ,DC) from Example 1, and the argumentation
linesλ1, λ2, andλ3. ThenSA0

= {λ1, λ2, λ3} is a bundle set wrtT .

2.2 Dialectical Trees

A bundle setSA is a set of argumentation lines rooted in a given argumentA. Such set
can be thought of as a tree structure, where every line corresponds to a branch in the
tree. Formally:

Definition 10 (Dialectical tree).Let T be a theory, and letA be an argument inT ,
and letSA = {λ1, λ2, . . . , λn} be an acceptable set of argumentation lines rooted in
A. Thedialectical treerooted inA based onSA (denotedTA) is a tree-like structure
defined as follows:

1. The root node ofTA isA.

22 A.J. Garćıa, C.I. Ches̃nevar, N.D. Rotstein, and G.R. Simari

2. LetF={tail(λ), for everyλ ∈ SA}, andH={head(λ), for everyλ ∈ F}.2

If H = ∅ thenTA has no subtrees.
Otherwise, ifH = {B1, . . . ,Bk}, then for everyBi ∈ H, we define

getBundle(Bi) = {λ ∈ F | head(λ) = Bi}

We putTBi
as an immediate subtree ofA, whereTBi

is a dialectical tree based on
getBundle(Bi).

We will writeTree
A

to denote the family of all possible dialectical trees basedonA.

We will represent asTree
T

the family of all possible dialectical trees in the theoryT .

Example 6.Consider the theoryT = (Φ,DC) from Example 1, and the acceptable set
SA0

from Example 5. Fig. 1(a) shows the associated exhaustive dialectical treeTA0
.

The above definition shows how to build a dialectical tree from a bundle set of argu-
mentation lines rooted in a given argument. It is important to note that the “shape” of the
resulting tree will depend on the order in which the subtreesare attached. Each possi-
ble order will produce a tree with a different geometric configuration. All the differently
conformed trees are nevertheless “equivalent” in the sensethat they will contain exactly
the same argumentation lines as branches from its root to itsleaves. This observation is
formalized by introducing the following relation which canbe trivially shown to be an
equivalence relation.

Definition 11. Let T be a theory, and letTree
A

be the set of all possible dialectical

trees rooted in an argumentA in theoryT . We will say thatTA is equivalent toT ′
A,

denotedTA ≡τ T
′
A iff they are obtained from the the same bundle setSA of argumen-

tation lines rooted inA.

Given an argumentA, there is a one-to-one correspondence between a bundle set
SA of argumentation lines rooted inA and the corresponding equivalence class of
dialectical trees that share the same bundle set as their origin (as specified in Def. 10). In
fact, a dialectical treeTA based onSA is justan alternative wayof expressing the same
information already present inSA. Each member of an equivalence class represents
a different way in which a tree could be built. Each particular computational method
used to generate the tree from the bundle set will produce oneparticular member on
the equivalence class. In that manner, the equivalence relation will represent a tool for
exploring the computational process of warrant and as we will see later, trees provide a
powerful way of conceptualize the computation of warrantedarguments. Next, we will
define mappings which allow to re-formulate a bundle setSA as a dialectical treeTA
and viceversa.

Definition 12 (Mapping T). LetT be an argumentative theory, and letSA be a bundle
set of argumentation lines rooted in an argumentA of T . We define the mapping

T : ℘(LinesA) \ {∅} → TreeA

as T(SA) =def TA, whereLinesA is the set of all argumentation lines rooted inA,
TreeA is the quotient set ofTreeA by≡τ , andTA denotes the equivalence class ofTA.

2 The functionshead(∆) andtail(∆) have the usual meaning in list processing, returning the
first element in a list and the list formed by all elements except the first, respectively.

An Abstract Presentation of Dialectical Explanations in Defeasible Argumentation 23

Proposition 1. For any argumentA in an argumentative theoryT , the mappingT is a
bijection.3

As the mappingT is a bijection, so that we can define also the inverse mapping
S =def T

−1 which allow us to determine the acceptable set of argumentation lines
corresponding to an arbitrary dialectical tree rooted in anargumentA. In what follows,
we will use indistinctly aset notation(an acceptable bundle set of argumentation lines
rooted in an argumentA) or atree notation(a dialectical tree rooted inA), as the former
mappingsS andT allow us to go from any of these notation to the other.

Proposition 2. LetT be an argumentation theory, and letSA be an acceptable bundle
set of argumentation lines rooted in a given argumentA, SA = {λ1, λ2, . . . , λn}. Let
S′A = {λ′1, . . . , λ

′
m}, m ≤ n, be a set of initial argumentation segments, where every

λ′i = ⌊λi⌋ki
, for someki ≤ | λi |, i ≤ m. Let

S′′ = S′A \ {λ ∈ S′A | there existsλ′ ∈ S′A andλ′ extendsλ}. (1)

ThenS′′ is also an acceptable set of argumentation lines rooted inA.

The following proposition shows that dialectical trees canbe thought of as compo-
sitional structures, in the sense that any subtreeT ′

A of a dialectical treeTA is also a
dialectical tree.

Proposition 3. LetT be a theory, andTA a dialectical tree inT . Then it holds that any
subtreeT ′

A in TA rooted inA is also a dialectical tree wrtT .

2.3 Acceptable dialectical trees

The notion of acceptable argumentation line will be used to characterize acceptable
dialectical trees, which will be fundamental as a basis for formalizing the computation
of warranted argumentsin our setting.

Definition 13 (Acceptable dialectical tree).Let T be a theory, a dialectical treeTA
in T is acceptable iff every argumentation line in the associated bundle setS(TA) is
acceptable. We will distinguish the subsetATreeA (resp.ATreeT) of all acceptable
dialectical trees inTreeA (resp.TreeT).

As acceptable dialectical trees are a subclass of dialectical trees, all the properties
previously shown apply also to them. In the sequel, we will just write “dialectical trees”
to refer to acceptable dialectical trees, unless stated otherwise.

Definition 14 (Exhaustive Dialectical tree).A dialectical treeTA will be calledex-
haustiveiff it is constructed from the setSA of all possible exhaustive argumentation
lines rooted inA, otherwiseTA will be calledpartial.

Besides, the exhaustive dialectical tree for any argumentA can be proven to be
unique (up to an equivalence).

3 Due to space constrains proofs will be omitted.

24 A.J. Garćıa, C.I. Ches̃nevar, N.D. Rotstein, and G.R. Simari

(a)

(b)

(c)

(d)

A
3

A
2

A
1

A
0

A
4

A
3A

2
A

1

A
0

A
4

UUD

D

U

A
3

A
1

A
2

A
0

A
4

UDU

D

U

A
1

A
3

A
2

A
0

A
4

UUU

D

U

Fig. 1. (a) Exhaustive dialectical treeTA0
for Example 6; (b) resulting tree after applying and-or

marking; (c)–(d) two other exhaustive dialectical trees belonging to the equivalence classTA0

Proposition 4. LetT be a theory, for any argumentA in T there is a unique exhaustive
dialectical treeTA in T (up to an equivalence wrt≡τ as defined in Def. 11).

Acceptable dialectical trees allow to determine whether the root node of the tree is
to be accepted (ultimatelyundefeated) or rejected (ultimatelydefeated) as a rationally
justified belief. Amarking functionprovides a definition of such acceptance criterion.
Formally:

Definition 15 (Marking criterion). Let T be a theory. A marking criterion forT is a
functionMark : Tree

T
→ {D,U}. We will writeMark(Ti) = U (resp.Mark(Ti) = D)

to denote that the root node ofTi is marked asU -node (resp.D-node).

Definition 16 (Warrant). Let T be an argumentative theory andMark a marking cri-
terion for T . An argumentA is a warranted argument(or just warrant) wrt a marking
criterion Mark in T iff the exhaustive dialectical treeTA is such thatMark(TA) = U .
We will denote a marked dialectical tree asT ∗

A.

3 Answers andδ-Explanations

An argument is a piece of reasoning that supports a claimQ from certain evidence. The
tenability of this claim must be confirmed by analyzing otherarguments for and against
such claim. Next, we will definequeries, answersandexplanationsin the abstract con-
text introduced in the previous Section.

The dialectical process for warranting a claim involves finding the arguments that
either support or interfere with that claim. These arguments are connected through the
defeat relation and are organized in dialectical trees. Observe that given a claim there

An Abstract Presentation of Dialectical Explanations in Defeasible Argumentation 25

could exist inT different arguments that support it, and each argument willgenerate a
different dialectical tree.

Definition 17 (T -Queries).Let T be an argumentation theory. AT-queryQ posed to
the theoryT will represent the process of finding out the existence, and the warranting
status, of the posible arguments forQ andQ.4

We will show below that the returned answer forQ will be only the result of analyz-
ing a set of dialectical trees that have been built and considered as to support this answer.
Thus, to understand why a query has that particular answer, it is essential to consider
which arguments have been considered and what connections exist among them.

It is important to notice thatδ-Explanations are at the crux of an argumentation
system whose proof procedure is based on the construction ofdialectical trees. They
present the reasoning carried out by the system, and they allow to visualize the support
for the answer given. It is clear that without this information it will be very difficult to
understand the returned answer.

Definition 18 (δ-Explanation). Let T be an argumentation theory and letQ be a
claim. LetA0,. . .,An be all the arguments forQ from T , andB0,. . .,Bm be all the
arguments forQ from T . Then, theexplanationfor Q in T is the set of marked dialec-
tical treesE

T
(Q) = {T ∗

A0
,. . .,T ∗

An

} ∪ {T ∗
B0

,. . .,T ∗
Bm

}.

Now it is possible to defineT -answers in terms of the associatedδ-Explanations.

Definition 19 (T -answer).Given an argumentation theoryT and a queryQ, the an-
swer forQ is:

- YES, if at least one tree inE
T
(Q) warrantsQ.

- NO, if at least one tree inE
T
(Q) warrantsQ.

- UNDECIDED, if E
T
(Q) is non empty, but no tree inE

T
(Q) warrantsQ nor Q.

- UNKNOWN, if there is no argument forQ in T .

Notice that if there is a dialectical that shows that an argument warrantsQ then there
is no argument that warrantsQ.

4 Answers andδ-Explanations in DELP: A Reification

Next, we will definequeries, answersandexplanationsusing the framework provided
by DELP (see [11] for full details on DELP). Extending the abstract presentation above,
we will introduce two types of queries: ground (called DELP-queries) and schematic.
For both types of queries we will define explanations and a wayto obtain the corre-
sponding answer, that is:YES, NO, UNDECIDED or UNKNOWN.

Definition 20 (DELP-queries).A DELP-queryis a ground literal thatDELP will try
to warrant. A query with at least one variable will be calledschematic queryand will
account for the set ofDELP-queries that unify with the schematic one.

4 The notationQ is used to represent the complement ofQ with respect to strong negation,i.e.,
a=∼a and∼a=a.

26 A.J. Garćıa, C.I. Ches̃nevar, N.D. Rotstein, and G.R. Simari

In DELP, δ-Explanationsfor answers will be the set of dialectical trees that have
been explored to obtain a warrant for that query. The definition for aδ-Explanation for a
DELP-query follows, whereas explanations for schematic queries will be introduced by
the end of this Section. It is clear that without the information regarding the dialectical
trees it will be very difficult to understand the returned answer. Next, we will introduce
explanations for ground queries and we will generalize themfor schematic queries.

Definition 21 (δ-Explanations for a DELP-query).
LetP be aDELP-program andQ a DELP-query. Let〈A0, Q〉,. . .,〈An, Q〉 be all the
arguments forQ from P, and 〈B0, Q〉,. . .,〈Bm, Q〉 be all the arguments forQ from
P. Then, theexplanationfor Q in P is the set of marked dialectical treesEP (Q) =
{T ∗

〈A0, Q〉,. . .,T
∗
〈An, Q〉} ∪ {T

∗
〈B0, Q〉

,. . .,T ∗
〈Bm, Q〉

}.

Using these concepts we can define DELP-answers.

Definition 22 (DELP-answer).Given aDELP-programP and aDELP-queryQ, the
answer forQ is:

- YES, if at least one tree inEP (Q) warrantsQ.
- NO, if at least one tree inEP (Q) warrantsQ.
- UNDECIDED, if no tree inEP (Q) warrantsQ nor Q.
- UNKNOWN, if Q is not in the signature ofP.

Example 7.Consider the DELP-program(Π7,∆7) where:

Π7 =























bird(X) ← chicken(X)
chicken(little)
chicken(tina)
scared(tina)
bird(rob)























∆7=







flies(X) −−≺ bird(X)
flies(X) −−≺ chicken(X), scared(X)
∼flies(X) −−≺ chicken(X)







From the DELP-program(Π7,∆7) the following arguments can be obtained (due to
space restrictions‘tina’ will be abbreviated to‘t’ and ‘flies(tina)’ to ‘f ’): 〈A1, f〉 =
〈{flies(t) −−≺ bird(t)}, f lies(t)〉, 〈A2,∼f〉 = 〈{∼flies(t) −−≺ chicken(t)},∼flies(t)〉,
and〈A3, f〉 = 〈{flies(t) −−≺ chicken(t), scared(t)}, f lies(t)〉. The argument〈A2,∼f〉
defeats〈A1, f〉, 〈A3, f〉 defeats〈A2,∼f〉, and[〈A1, f〉, 〈A2,∼f〉, 〈A3, f〉] is an ac-
ceptable argumentation line.

Figure 2 shows theδ-Explanation for the DELP-query ‘flies(tina)’, where two di-
alectical trees for ‘flies(tina)’ are marked “U ”. Therefore, ‘flies(tina)’ is warranted
and the answer isYES. Note that theδ-Explanation of Figure 2 is also an explanation
for query ‘∼flies(tina)’ whose answer isNO. Finally, observe that the answer for
‘walks(tim)’ is UNKNOWN, because it is not in the program signature.

Remark 2.The explanation for complementary literals will always be the same, since
it is composed by both the trees for the literal and the trees for its complement.

As we will show in the examples below, the semantics of the programs issensitive
to the addition or deletion of rules and facts. That is, a new fact added to a program

An Abstract Presentation of Dialectical Explanations in Defeasible Argumentation 27

A
2

A
3

~flies(tina)

flies(tina)

U

DA
1

flies(tina)

U

A
3

flies(tina)

U A
2

~flies(tina)

D

A
3

flies(tina)

U

Fig. 2. δ-Explanation forflies(tina)

can have a big impact on the number of arguments that can be built from the modi-
fied program. Taking into account this characteristic and considering the many possible
interactions among arguments via the defeat relation (thatlead to the construction of
different dialectical trees),δ-Explanations become essential for understanding the rea-
sons that support an answer.

Example 8.Consider the DELP-program (Π8,∆8): Π8 = {q, t},∆8 = {(r −−≺ q),
(∼r −−≺ q , s), (r −−≺ s), (∼r −−≺ t)}, where the following arguments can be built:
〈R1,∼r〉 = 〈{∼r −−≺ t},∼r〉, and〈R2, r〉 = 〈{r −−≺ q}, r〉. From this program the an-
swer for the query ‘r’ is UNDECIDED, and Figure 3 shows itsδ-Explanation. Note that,
although the literal ‘s’ is in the program signature (in the body of a rule), there is no
supporting argument for it. Therefore, the answer for query‘s’ is UNDECIDED, and the
δ-Explanation is the empty set (i.e., E(Π8,∆8)

(s)=∅).

R
2

~r

U

R
1

D

r

R
1

r

U

R
2

D

~r

Fig. 3. δ-ExplanationE(Π8,∆8)
(r)

Remark 3.DELP-queries withUNKNOWN answers always have an emptyδ-Explanation.
However, DELP-queries that haveUNDECIDED answers may have empty or non-empty
explanations. Finally, DELP-queries withYES or NO answers will always have a non-
empty explanation.

Example 9.(Extends Ex. 8) In this example we see how the introduction ofa single
fact in (Π8,∆8) makes a significant difference inE(Π8,∆8)

(r). Consider the DELP-
program(Π8∪{s},∆8) where the fact ‘s’ is added to the program of Example 8. If we
query for ‘r’ again, we get the answerNO with the δ-Explanation shown in Figure 4.
Note that thisδ-Explanation consists now of two more trees than the one in the previ-
ous example. This is so because there are two newly generatedarguments:〈R3, r〉 =
〈{r −−≺ s}, r〉, and〈R4,∼r〉 = 〈{∼r −−≺ q , s},∼r〉

It is our contention that, in DELP, the answer for a query should be easily explained
by presenting the user the associated dialectical trees. From this set of trees the answer

28 A.J. Garćıa, C.I. Ches̃nevar, N.D. Rotstein, and G.R. Simari

R
1

R
2

R
4

~r

~r

U

U R
4

~r

U

D R
3
D

rr

R
4
U

~r

R
2

R
1

r

D

U R
4
U

~r~r

R
3

R
1

r

D

U R
4
U

~r~r

Fig. 4. δ-ExplanationE(Π8∪{s},∆8)
(r)

becomes thoroughly justified, and the context of the query isrevealed. The following
examples have more elaborated DELP-programs and theδ-Explanations show that a
defeaterD for A may attack an inner point ofA.

Example 10.Consider the DELP-program (Π10,∆10), whereΠ10 = {c, e, f} and

∆10 =

{

(a −−≺ b), (b −−≺ c), (∼b −−≺ d), (d −−≺ e), (∼d −−≺ f , e), (∼b −−≺ e),
(a −−≺ x), (x −−≺ c), (∼x −−≺ e), (a −−≺ h), (h −−≺ f), (∼h −−≺ i)

}

the following arguments can be built:〈A1, a〉 = 〈{(a −−≺ h), (h −−≺ f)}, a〉
〈B1, b〉 = 〈{b −−≺ c}, b〉 〈B2,∼b〉 = 〈{∼b −−≺ e},∼b〉
〈D1, d〉 = 〈{d −−≺ e}, d〉 〈D2,∼d〉 = 〈{(∼d −−≺ f , e)},∼d〉
〈X1, x〉 = 〈{x −−≺ c}, x〉 〈X2,∼x〉 = 〈{∼x −−≺ e},∼x〉

From (Π10,∆10) the answer for ‘a’ is YES, and the answer for ‘∼a’ is NO. As
stated in Remark 2, although both queries have different answers, they both have the
sameδ-Explanation, which is depicted in Figure 5.

A
1

U

a

B
1

D
1

b

a

D

D
2

~d

U

D

B
2

U

~b~b

�

d

�

X
1

X
2

~x

U

D
x

a�

Fig. 5. δ-ExplanationE(Π10,∆10)
(a)

From the DELP programmer point-of-view,δ-Explanations give a global idea of
the interactions among arguments within the context of a query. This is an essential
debugging tool when programming: if unexpected behavior arises, the programmer can
check the given explanations to detect errors.

In the previous examples we have not shown an explanation associated with a query
with anUNKNOWN answer, because this type of answers have an emptyδ-Explanation.

An Abstract Presentation of Dialectical Explanations in Defeasible Argumentation 29

In a similar manner, observe that queries that do not correspond to the intended domain
of the program will return the answerUNKNOWN. This will capture errors like querying
for “fly” instead of“flies” , or a query like“penguin(X)” in Example 7.

Now we will extend the notion of explanation to encompassschematic queries. A
schematic query is a query that has at least one variable (seeDefinition 20), and hence
it represents the set of DELP-queries that unify with it. We will extend the definition of
δ-Explanation to include schematic queries. In the DELP-program of Example 7, the
schematic queryflies(X) will refer to flies(tina) andflies(little).

Observe that there are actually infinite terms that unify with variableX. However,
all queries with terms that are not in the program signature will produce anUNKNOWN

answer and therefore an empty explanation. Thus, the set of instances of a schematic
query that will be considered for generating an explanationwill refer only to those
instances of DELP-queries that contain constants from the program signature.

Definition 23 (Generalizedδ-Explanation).
Let P be a DELP-program andQ a schematic query. Let{Q1, . . . , Qz} be all the
instances ofQ so that theirDELP-answer is different fromUNKNOWN. Let EP (Qi)
be theδ-Explanation for theDELP-queryQi (1 ≤ i ≤ z) from programP. Then, the
generalizedδ-Explanationfor Q in P is EP (Q) = { EP (Q1), . . ., EP (Qz)}.

Observe that aδ-Explanation (Definition 21) is a particular case of a Generalized
δ-Explanation, where the setEP (Q) is a singleton.

Example 11.Consider again the DELP-program(Π7,∆7), and suppose that we want
to know if from this program it can be warranted that a certainindividual does not
fly. If we query for∼flies(X), the answer isYES, because there is a warranted in-
stance:∼flies(little). The supporting argument is (‘little’ was abbreviated to‘l’):
〈B1,∼flies(l)〉 = 〈{∼flies(l) −−≺ chicken(l)},∼flies(l)〉. The trees of the general-
ized explanation are shown in Figure 6. This explanation also shows that the other
instance (∼flies(tina)) is not warranted. Note that the answer for the schematic query
flies(X) is also YES, but with a different set of warranted instances:flies(tina)
and flies(rob). The supporting argument for instance ‘X = tina’ was already dis-
cussed, and the undefeated argument for instance ‘X = rob’ is: 〈C1, f lies(rob)〉 =
〈{flies(rob) −−≺ bird(rob)}, f lies(rob)〉. The generalizedδ-Explanation forflies(X)
is the same as the one for∼flies(X), depicted in Figure 6 (see Remark 2).

Definition 24 (DELP-answer for a schematic query).Given aDELP-programP and
a schematic queryQ, the answer forQ is

– YES, if there exists an instanceQi of Q such that at least one tree inEP (Qi)
warrantsQi.

– NO, if there exists an instanceQi of Q such that at least one tree inEP (Qi) war-
rantsQi.

– UNDECIDED, if for every instanceQi of Q that is in the signature ofP, there is no
tree inEP (Qi) that warrantsQi nor Qi.

– UNKNOWN, if there is no instanceQi of Q such thatQi is in the signature ofP.

30 A.J. Garćıa, C.I. Ches̃nevar, N.D. Rotstein, and G.R. Simari

B
2

~flies(little)

U C
1

flies(rob)

UA
2

A
3

~flies(tina)

flies(tina)

U

DA
1

A
2

A
3

~flies(tina)

flies(tina)

flies(tina)

U

U

D

A
3

flies(tina)

U

B
2

~flies(little)

U

B
1

flies(little)

D

Fig. 6.Generalizedδ-Explanation for ‘∼flies(X)’

Observe that Definition 22 is a particular case of the previous definition, where there is
a single instance ofQ.

Example 12.Consider the following DELP-program:

Π12 =















adult(peter)
adult(annie)
unemployed(peter)
student(annie)















∆12 =







has a car(X) −−≺ adult(X)
∼has a car(X) −−≺ unemployed(X)
∼has a car(X) −−≺ student(X)







where the following arguments can be built (‘has a car’ was replaced by ‘car’, ‘ annie’
by ‘a’, and ‘peter’ by ‘ p’): 〈A1, car(a)〉 = 〈{car(a) −−≺ adult(a)}, car(a)〉,
〈A2,∼car(a)〉 = 〈{∼car(a) −−≺ student(a)},∼car(a)〉,
〈P1, car(p)〉 = 〈{car(p) −−≺ adult(p)}, car(p)〉, and
〈P2,∼car(p)〉 = 〈{∼car(p) −−≺ unemployed(p)},∼car(p)〉.
When querying for ‘has a car(X)’, variable ‘X ’ unifies with both ‘annie’ and ‘peter’.
Then, DELP builds arguments for both instances:A1 andA2 for ‘X = annie’, andP1

andP2 for ‘X = peter’. From Figure 7, it is clear that no argument is undefeated,i.e.,
there is no tree that warrants ‘has a car(X)’, for either of the two instances. Therefore,
the answer isUNDECIDED, and the variable remains unbound.

P
1

P
2

~car(peter)
U

D

car(peter)

P
2

P
1

car(peter)
U

D

~car(peter)

A
1

A
2

~car(annie)
U

D

car(annie)

A
2

A
1

car(annie)
U

D

~car(annie)

Fig. 7.Generalizedδ-Explanation for ‘has a car(X)’

Schematic queries give us the possibility of asking more general questions than
ground queries. Now we are not asking whether a certain pieceof knowledge can be

An Abstract Presentation of Dialectical Explanations in Defeasible Argumentation 31

believed, but we are asking if there exists an instance of that piece of knowledge (related
to an individual) that can be warranted in the system. This could lead to deeper reason-
ing as we may pose a query, gather the warranted instances andcontinue reasoning with
those individuals.

Theδ-Explanations system receives a DELP-programP, a queryQ, and an argument
comparison criterionC, and returns aδ-ExplanationEX and the corresponding answer
ANS. The system is described by the following algorithm in a Prolog-like notation:

d_Explanations(P,C,Q,EX,ANS):-
warrants(P,Q,C,WSQ), complement(Q,NQ), warrants(P,NQ,C,WSNQ),
get_trees(WSQ,WSNQ,EX), get_answer(Q,WSQ,WSNQ,ANS).

get_answer(_,WSQ,WSNQ,yes):-WSQ \= [].
get_answer(_,WSQ,WSNQ,no):-WSNQ \= [].
get_answer(Q,_,_,unknown):-not_in_signature(Q).
get_answer(_,_,_,undecided).

The above described system is fully implemented and offers support for queries,
answers and explanations. Explanations are written into anXML file, which is parsed
by a visualization applet. The visualization of trees belonging to dialectical explanations
is enhanced by allowing the user to zoom-in/out, implode/explode arguments,etc. The
internal structure of an argument is hidden when imploding,and a unique tag is shown
instead.

Lemma 1 (δ-Explanation Soundness).Let P be a DELP-program,C an argument
comparison criterion, andQ a schematic query posed toP. LetE be theδ-Explanation
returned in support of the answerA. ThenE justifies (Definition 24)A.

Lemma 2 (δ-Explanation Completeness).Let P be a DELP-program,C an argu-
ment comparison criterion, andQ a schematic query posed toP. Let E be theδ-
Explanation returned in support of the answerA. ThenE contains all the possible
justifications (Definition 24) for any instance ofA.

5 Conclusions

In this paper, we have addressed the problem of providing explanation capabilities to an
argumentation system. This is an important, and yet undeveloped field in the area. Our
focus is put on argumentation systems based on a dialecticalproof procedure, studying
dialectical explanations. We have defined an abstract system and a concrete reification
with explanation facilities. We consider the structures that provide information on the
warrant status of a literal. As the system has been implemented, we are developing
applications that use theδ-Explanation system as subsystem.

Acknowledgments

This work was partially supported by CONICET (PIP 5050), ANPCyT (PICT 15043,
PAV076), Project TIN2006-15662-C02-02 (MEC, Spain) and SGCyT-UNS.

32 A.J. Garćıa, C.I. Ches̃nevar, N.D. Rotstein, and G.R. Simari

References

1. L. Amgoud, N. Maudet, and S. Parsons. An argumentation-based semantics for agent com-
munication languages. InProc. of the 15th. ECAI, Lyon, France, pages 38–42, 2002.

2. K. Atkinson, T. J. M. Bench-Capon, and P. McBurney. Multi-agentargumentation for
edemocracy. InProceedings of the Third European Workshop on Multi-Agent Systems,Brus-
sels, Belgium, pages 35–46. Koninklijke Vlaamse Academie, 2005.

3. P. Besnard and A. Hunter. A logic-based theory of deductive arguments. Artificial Intelli-
gence, 1:2(128):203–235, 2001.

4. D. Carbogim, D. Robertson, and J. Lee. Argument-based applications to knowledge engi-
neering.The Knowledge Engineering Review, 15(2):119–149, 2000.

5. C. Ches̃nevar, A. Maguitman, and R. Loui. Logical Models of Argument.ACM Computing
Surveys, 32(4):337–383, December 2000.

6. C. Ches̃nevar and G. Simari. A lattice-based approach to computing warranted belief in
skeptical argumentation frameworks. InProc. of the 20th Intl. Joint Conf. on Artificial Intel-
ligence (IJCAI 2007), Hyberabad, India, page (in press), January 2007.

7. C. Ches̃nevar, G. Simari, T. Alsinet, and L. Godo. A Logic Programming Framework for
Possibilistic Argumentation with Vague Knowledge. InProc. of the Intl. Conf. in Uncer-
tainty in Art. Intelligence. (UAI 2004). Banff, Canada, pages 76–84, July 2004.

8. C. Ches̃nevar, G. Simari, and L. Godo. Computing dialectical trees efficiently in possibilistic
defeasible logic programming.Proc. of the 8th Intl. Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR 2005), pages 158–171, September 2005.

9. P. Dung. On the Acceptability of Arguments and its Fundamental Role in Nomonotonic
Reasoning and Logic Programming and n-Person Games.Artificial Intelligence, 77(2):321–
358, 1995.

10. Marcelo A. Falappa, Gabriele Kern-Isberner, and Guillermo R. Simari. Explanations, belief
revision and defeasible reasoning.Artif. Intell., 141(1):1–28, 2002.

11. A. Garćıa and G. Simari. Defeasible Logic Programming: An Argumentative Approach.
Theory and Practice of Logic Programming, 4(1):95–138, 2004.

12. Giovanni Guida and Marina Zanella. Bridging the gap between users and complex decision
support systems: the role of justification. InICECCS ’97: Proc. 3rd IEEE Int. Conf. on
Engineering of Complex Computer Systems, pages 229–238, Washington, DC, 1997.

13. H. Jakobovits and D. Vermeir. Dialectic semantics for argumentation frameworks. InICAIL,
pages 53–62, 1999.

14. A. Kakas and F. Toni. Computing argumentation in logic programming.Journal of Logic
Programming, 9(4):515:562, 1999.

15. Carmen Lacave and Francisco J. Diez. A review of explanation methods for heuristic expert
systems.Knowl. Eng. Rev., 19(2):133–146, 2004.

16. B. Moulin, H. Irandoust, M. B́elanger, and G. Desbordes. Explanation and argumentation
capabilities: Towards the creation of more persuasive agents.Artif. Intell. Rev., 17(3):169–
222, 2002.

17. S. Parsons, C. Sierrra, and N. Jennings. Agents that Reason and Negotiate by Arguing.
Journal of Logic and Computation, 8:261–292, 1998.

18. H. Prakken and G. Sartor. The role of logic in computational models of legal argument - a
critical survey. In A. Kakas and F. Sadri, editors,Computational Logic: Logic Programming
and Beyond, pages 342–380. Springer, 2002.

19. H. Prakken and G. Vreeswijk. Logical Systems for Defeasible Argumentation. In D. Gabbay
and F.Guenther, editors,Handbook of Philosophical Logic, pages 219–318. Kluwer Aca-
demic Publishers, 2002.

20. L. Richard Ye and Paul E. Johnson. The impact of explanation facilities on user acceptance
of expert systems advice.MIS Q., 19(2):157–172, 1995.

Characterizing defeat graphs where

argumentation semantics agree

Pietro Baroni and Massimiliano Giacomin

Dip. Elettronica per l’Automazione, University of Brescia,
via Branze 38, 25123 Brescia, Italy
baroni,giacomin@ing.unibs.it

Abstract. In the context of Dung’s theory of argumentation frame-
works, comparisons between argumentation semantics are often focused
on the different behavior they show in some (more or less peculiar) cases.
It is also interesting however to characterize situations where (under
some reasonably general assumptions) different semantics behave ex-
actly in the same way. Focusing on the general family of SCC-recursive
argumentation semantics, the paper provides some novel results in this
line. In particular, we study the characterization of defeat graphs where
any SCC-recursive semantics admits exactly one extension coinciding
with the grounded extension. Then, we consider the problem of agree-
ment with stable semantics and identify the family of SCC-symmetric
argumentation frameworks, where agreement is ensured for a class of
multiple-status argumentation semantics including stable, preferred and
CF2 semantics.

Key words: Argumentation semantics, Argumentation frameworks, Se-
mantics comparison

1 Introduction

Interest in comparing argumentation semantics arises from the increasing vari-
ety of approaches proposed in the context of Dung’s theory of argumentation
frameworks [1]. Different behaviors exhibited by alternative semantics in specific
cases (or families of cases) have often been the subject of detailed analyses and
discussions about the “most intuitive” or “desired” outcome. While this is, by
far, the most common kind of comparison found in the literature, a more sys-
tematic approach considering general principles that may or may not be satisfied
by a semantics has also been addressed [2, 3].

A complementary kind of analysis concerns identifying situations where ar-
gumentation semantics agree, i.e. exhibit the same behavior in spite of their
differences. This can be useful from several viewpoints. On one hand, situations
where “most” (or even all) existing semantics agree can be regarded as pro-
viding a sort of reference behavior against which further proposals should be
confronted. On the other hand, it may be the case that in a specific application
domain there are some restrictions on the structure of the argumentation frame-
works that need to be considered. It is then surely interesting to know whether

34 P. Baroni and M. Giacomin

these restrictions lead to semantics agreement, since in this case it is clear that
evaluations about arguments in that domain may not be affected by different
choices of argumentation semantics and are, in a sense, universally supported.

In fact, the question of semantics agreement for particular classes of argu-
mentation frameworks is explicitly considered in Dung’s original paper [1] where
sufficient conditions for agreement between grounded, preferred and stable se-
mantics and between preferred and stable semantics are provided (these results
will be recalled along the paper). More recently, the special class of symmetric
argumentation frameworks [4] (where every attack is mutual) has been shown to
ensure agreement between preferred, stable and naive semantics. The present pa-
per provides some new results in this area by considering the recently introduced
class of SCC-recursive semantics [5], namely a parametric family of semantics
which has been shown to represent a quite general well-founded scheme where
specific proposals, including all traditional semantics mentioned above, can be
placed. In this context we obtain a characterization of some cases of agreement,
by exploiting the decomposition of the defeat graph into strongly connected
components.

The paper is organized as follows. After reviewing the necessary basic con-
cepts in Section 2, the notions of strongly connected component (SCC) and
SCC-recursiveness are introduced in Section 3. In section 4 the definition of
CF2 semantics is recalled and a property of its extensions, as significant for
the sequel of the paper, is proved. The issues of agreement with grounded and
stable semantics are dealt with in Sections 5 and 6 respectively. Finally Section
7 concludes the paper.

2 Basic concepts

The present work lies in the frame of the general theory of abstract argumenta-
tion frameworks proposed by Dung [1].

Definition 1. An argumentation framework is a pair AF = 〈A,→〉, where A is
a set, and →⊆ (A×A) is a binary relation on A, called attack relation.

In the following we will always assume that A is finite. An argumentation frame-
work AF = 〈A,→〉 can be represented as a directed graph, called defeat graph,
where nodes are the arguments and edges correspond to the elements of the
attack relation. In the following, the nodes that attack a given argument α are
called defeaters or parents of α and form a set which is denoted as parAF(α).

Definition 2. Given an argumentation framework AF = 〈A,→〉 and a node
α ∈ A, we define parAF(α) = {β ∈ A | β → α}. If parAF(α) = ∅, then α is
called an initial node.

Since we will frequently consider properties of sets of arguments, it is useful to
extend to them the notations defined for the nodes.

Characterizing defeat graphs where argumentation semantics agree 35

Definition 3. Given an argumentation framework AF = 〈A,→〉, a node α ∈ A
and two sets S, P ⊆ A, we define:

S → α ≡ ∃β ∈ S : β → α

α → S ≡ ∃β ∈ S : α → β

S → P ≡ ∃α ∈ S, β ∈ P : α → β

Two particular kinds of elementary argumentation frameworks need to be
introduced as they will play some role in the following. The empty argumentation
framework, denoted as AF∅, is simply defined as AF∅ = 〈∅, ∅〉. Furthermore, an
argumentation framework AF = 〈A,→〉 is monadic if |A| = 1 and →= ∅.

The notion of self-defeating argument will be used too.

Definition 4. Given an argumentation framework AF = 〈A,→〉 an argument
α ∈ A is self-defeating if α → α. An argumentation framework AF is free of
self-defeating arguments if ∄α ∈ A such that α → α.

We will also consider the restriction of an argumentation framework to a
given subset of its nodes:

Definition 5. Let AF = 〈A,→〉 be an argumentation framework, and let S ⊆ A
be a set of arguments. The restriction of AF to S is the argumentation framework
AF↓S = 〈S,→ ∩(S × S)〉.

In Dung’s theory, an argumentation semantics is defined by specifying the
criteria for deriving, given a generic argumentation framework, the set of all
possible extensions, each one representing a set of arguments considered to be
acceptable together. Accordingly, a basic requirement for any extension E is
that it is conflict-free, namely ∄α, β ∈ E : α → β. All argumentation semantics
proposed in the literature satisfy this fundamental conflict-free property.

Given a generic argumentation semantics S, the set of extensions prescribed
by S for a given argumentation framework AF = 〈A,→〉 is denoted as ES(AF). If
it holds that ∀AF |ES(AF)| = 1, then the semantics S is said to follow the unique-
status approach, otherwise it is said to follow the multiple-status approach [6].
We will say that two semantics S1 and S2 are in agreement on an argumentation
framework AF if ES1

(AF) = ES2
(AF).

3 Strongly connected components and SCC-recursiveness

SCC-recursiveness is a property of (the extensions prescribed by) a semantics
based on the graph theoretical notion of strongly connected components (SCCs).

Definition 6. Given an argumentation framework AF = 〈A,→〉, the binary
relation of path-equivalence between nodes, denoted as PEAF ⊆ (A × A), is
defined as follows:

– ∀α ∈ A, (α, α) ∈ PEAF

36 P. Baroni and M. Giacomin

– given two distinct nodes α, β ∈ A, (α, β) ∈ PEAF if and only if there is a
path from α to β and a path from β to α.

The strongly connected components of AF are the equivalence classes of nodes
under the relation of path-equivalence. The set of the SCCs of AF is denoted
as SCCSAF. In the case of the empty argumentation framework, we assume
SCCSAF∅

= {∅}. Moreover, a strongly connected component S ∈ SCCSAF will
be said to be monadic if AF↓S is monadic.

We extend to SCCs the notion of parents, namely the set of the other SCCs
that attack a SCC S, which is denoted as sccparAF(S), and we introduce the
definition of proper ancestors, denoted as sccancAF(S):

Definition 7. Given an argumentation framework AF = 〈A,→〉 and a SCC
S ∈ SCCSAF, we define

sccparAF(S) = {P ∈ SCCSAF | P 6= S and P → S}

and
sccancAF(S) = sccparAF(S) ∪

⋃

P∈sccparAF(S)

sccancAF(P)

A SCC S such that sccparAF(S) = ∅ is called initial. The set of initial SCCs
of AF, as it is easy to see, is non-empty and is denoted as IS(AF). The set of
nodes of initial strongly connected components of AF is denoted as IN(AF) =
⋃

S∈IS(AF) S.

It is well-known [7] that the graph obtained by considering SCCs as single
nodes is acyclic, in other words SCCs can be partially ordered according to the re-
lation of attack. This fact lies at the heart of the definition of SCC-recursiveness,
which is based on the intuition that extensions can be built incrementally start-
ing from initial SCCs and following the above mentioned partial order. In other
words, the choices concerning extension construction carried out in an initial
SCC do not depend on the choices concerning any other SCC, while they di-
rectly affect the choices about the subsequent SCCs and so on. While the basic
underlying intuition is rather simple, the formalization of SCC-recursiveness is
admittedly rather complex and involves some additional notions. Due to space
limitations, we can only give here a quick account, while referring the reader
to [5] for more details and examples. First of all, the choices (represented in
the following definition by the set E, corresponding to a specific extension) in
the antecedent SCCs determine a partition of the nodes of a set S (typically
representing one or more subsequent SCCs) into three subsets:

Definition 8. Given an argumentation framework AF = 〈A,→〉, a set E ⊆ A
and a set S ⊆ A, we define:

– DAF(S,E) = {α ∈ S | (E \ S) → α}
– PAF(S,E) = {α ∈ S | (E \ S) 6→ α ∧ ∃β /∈ S : β → α ∧ E 6→ β}
– UAF(S,E) = S \ (DAF(S,E) ∪ PAF(S,E)) =

= {α ∈ S | (E \ S) 6→ α ∧ ∀β /∈ S : β → α E → β}

Characterizing defeat graphs where argumentation semantics agree 37

Definition 8 is a slightly generalized version of the corresponding Definition
18 of [5]. In words, the set DAF(S,E) consists of the nodes of S attacked by E
from outside S, the set UAF(S,E) includes any node α of S that is not attacked
by E from outside S and is defended by E (i.e. the defeaters of α from outside
S are all attacked by E), and PAF(S,E) includes any node α of S that is not
attacked by E from outside S and is not defended by E (i.e. at least one of the
defeaters of α from outside S is not attacked by E). It is easy to verify that,
when S is a SCC, as in the original Definition 18 of [5], DAF(S,E), PAF(S,E)
and UAF(S,E) are determined only by the elements of E that belong to the
SCCs in sccancAF(S).

Regarding E as a part of an extension which is being constructed, the
idea is then that arguments in DAF(S,E), being attacked by nodes in E, can-
not be chosen in the construction of the extension E (i.e. do not belong to
E ∩ S). Selection of arguments to be included in E is therefore restricted to
(S \DAF(S,E)) = (UAF(S,E) ∪ PAF(S,E)), which, for ease of notation, will be
denoted in the following as UPAF(S,E). On this basis and taking also into
account the reinstatement principle [6, 2], we require the selection of nodes
within a SCC S to be carried out on the restricted argumentation framework
AF↓UPAF(S,E) without taking into account the attacks coming from DAF(S,E).

Combining these ideas and skipping some details not strictly necessary in
the context of the present paper, we can finally recall the definition of SCC-
recursiveness:

Definition 9. A given argumentation semantics S is SCC-recursive if and only
if for any argumentation framework AF = 〈A,→〉, ES(AF) = GF(AF,A), where
for any AF = 〈A,→〉 and for any set C ⊆ A, the function GF(AF, C) ⊆ 2A is
defined as follows:
for any E ⊆ A, E ∈ GF(AF, C) if and only if

– in case |SCCSAF| = 1, E ∈ BFS(AF, C)
– otherwise, ∀S ∈ SCCSAF

(E ∩ S) ∈ GF(AF↓UPAF(S,E), UAF(S,E) ∩ C)

where BFS(AF, C) is a function, called base function, that, given an argu-
mentation framework AF = 〈A,→〉 such that |SCCSAF| = 1 and a set C ⊆ A,
gives a subset of 2A.

The base function BFS of a SCC-recursive semantics S is said to be conflict-
free if ∀AF = 〈A,→〉 and ∀C ⊆ A each element of BFS(AF, C) is conflict
free. It is known from Theorem 48 of [5] that if BFS is conflict-free, then any
E ∈ ES(AF) is conflict free for any AF.

Since Definition 9 is somewhat arduous to examine in its full detail, we just
give some “quick and dirty” indications which are useful for the sequel of the
paper (in particular, we do not consider the meaning of the parameter C in the
description, as not necessary for the comprehension of this paper). The set of
extensions ES(AF) of an argumentation framework AF is given by GF(AF,A),
namely by the invocation of the function GF which receives as parameters an

38 P. Baroni and M. Giacomin

argumentation framework (in this case the whole AF) and a set of arguments (in
this case the whole A). The function GF(AF, C) is defined recursively. The base
of the recursion is reached when AF consists of a unique SCC: in this case the
set of extensions is directly given by the invocation of a semantics-specific base
function BFS(AF, C). In the other case, for each SCC S of AF the function GF
is invoked recursively on the restriction AF↓UPAF(S,E). Note that the restriction
concerns UPAF(S,E), namely the part of S which “survives” the attacks of the
preceding SCCs in the partial order.

The definition has also a constructive interpretation, which suggests an effec-
tive (recursive) procedure for computing all the extensions of an argumentation
framework AF = 〈A,→〉 once a specific base function characterizing the seman-
tics is assigned. A particular role in this context is played by the initial SCCs.
In fact, for any initial SCC I, since by definition there are no outer attacks,
the set of defended nodes coincides with I, i.e. UPAF(I, E) = UAF(I, E) = I
for any E. This gives rise to the invocation GF(AF↓I , I) for any initial SCC I.
Since AF↓I obviously consists of a unique SCC, according to Definition 9 the
base function BFS(AF↓I , I) is invoked, which returns the extensions of AF↓I

according to the semantics S. Therefore, the base function can be first computed
on the initial SCCs, where it directly returns the extensions prescribed by the
semantics. Then, the results of this computation are used to identify, within
the subsequent SCCs, the restricted argumentation frameworks on which the
procedure is recursively invoked.

All SCC-recursive semantics “share” this general scheme and only differ by
the specific base function adopted. It has been shown [5] that all traditional se-
mantics encompassed by Dung’s framework (namely grounded, stable, complete,
and preferred semantics) are SCC-recursive and the relevant base functions have
been identified. In the following we will assume a basic knowledge of grounded
semantics, denoted as GR, stable semantics, denoted as ST , and preferred se-
mantics, denoted as PR. We need to recall here only the formulation of the base
function of grounded semantics (Proposition 44 of [5]):

Proposition 1. For any argumentation framework AF = 〈A,→〉 such that
|SCCSAF| = 1, and for any C ⊆ A, we have that

BFGR(AF, C) =

{

{{α}}, if C = A = {α} and →= ∅;
{∅}, otherwise.

It is well-known that grounded semantics belongs to the unique-status ap-
proach. In the following we will denote the grounded extension of an argumen-
tation framework AF as GE(AF).

4 A property of CF2 semantics

Besides encompassing many significant previous proposals, the SCC-recursive
scheme allows the definition of novel semantics in a relatively easy way. Examples
of non-traditional SCC-recursive semantics and their properties are discussed in

Characterizing defeat graphs where argumentation semantics agree 39

[5], the most significant among them being CF2 semantics. In fact, CF2 seman-
tics exhibits rather interesting properties (in particular a “symmetric” treatment
of odd- and even-length cycles [8]) while its base function is particularly simple:
BFCF2(AF, C) = MCFAF, where MCFAF denotes the set made up of all the
maximal conflict-free sets of AF (note that the parameter C of Definition 9 plays
no role at all in this case).

As a first contribution of this paper, here we provide the proof of an im-
portant property of CF2 semantics which, in particular, will be useful for the
characterization of the cases of agreement between CF2 and grounded seman-
tics. In words, we will show that any extension prescribed by CF2 semantics for
an argumentation framework AF is a maximal conflict free set of AF.

A preliminary Lemma is needed.

Lemma 1. Given an argumentation framework AF = 〈A,→〉 and a conflict free
set E ⊆ A, E ∈ MCFAF ⇔ ∀α ∈ A such that α 6→ α, the following disjunction
of mutually exclusive conditions holds: α ∈ E ∨ E → α ∨ α → E.

Proof. ⇒. Assume that ∃α ∈ A, α 6→ α, such that none of the three condition
stated above holds. Then α /∈ E∧E 6→ α∧α 6→ E, which implies that E∪{α} is
conflict-free and a strict superset of E. But this contradicts the hypothesis that
E ∈MCFAF.
⇐. Conversely assume that E /∈ MCFAF, then ∃α ∈ A such that α /∈ E and
E ∪ {α} is conflict-free, namely α 6→ α, α /∈ E ∧E 6→ α ∧ α 6→ E, contradicting
the hypothesis that one of the three conditions above holds.

Proposition 2. For any argumentation framework AF = 〈A,→〉, ECF2(AF) ⊆
MCFAF.

Proof. Since the base function of CF2 semantics is conflict-free, we know that
any E ∈ ECF2(AF) is conflict free. We have now to prove that it is maximal.
First, recall that instantiating Definition 9 in the case of CF2 semantics we
obtain: E ∈ ECF2(AF) if and only if

– in case |SCCSAF| = 1, E ∈MCFAF

– otherwise, ∀S ∈ SCCSAF(E ∩ S) ∈ ECF2(AF↓UPAF(S,E))

If |SCCSAF| = 1, ECF2(AF) = MCFAF by definition and the thesis trivially
follows.

Consider now the case |SCCSAF| > 1 and assume recursively that ∀S ∈
SCCSAF ∀E ∈ ECF2(AF) (E ∩ S) ∈ MCFAF↓UPAF(S,E)

: we need to prove that

E ∈ MCFAF. Suppose by contradiction that E /∈ MCFAF. By Lemma 1 the
following condition (i) holds: ∃α ∈ A : α 6→ α, α /∈ E ∧ E 6→ α ∧ α 6→ E. Now
consider the strongly connected component S ∈ SCCSAF such that α ∈ S. Since
E 6→ α it is the case that α ∈ UPAF(S,E). By the inductive hypothesis (E∩S) ∈
MCFAF↓UPAF(S,E)

, which, by Lemma 1 applied to AF↓UPAF(S,E), entails that the

following disjunction holds: α ∈ (E ∩ S) ∨ (E ∩ S) → α ∨ α → (E ∩ S). This
clearly implies the following condition in AF: α ∈ E∨E → α∨α → E. However,
this is absurd since it contradicts condition (i) above.

40 P. Baroni and M. Giacomin

5 Agreement with grounded semantics

Grounded semantics [9, 1] plays an important role in argumentation theory as
it features desirable properties, such as conceptual clarity and computational
tractability. Moreover, it is often regarded as a paradigmatic unique-status scep-
tical approach that can be used as a reference to evaluate other semantics. For
these reasons the issue of agreement with grounded semantics is particularly
significant and has been first considered in [1], where it is shown that a suffi-
cient condition for agreement between grounded, preferred and stable semantics
is that the argumentation framework is well-founded.

Definition 10. (Definition 29 of [1]) An argumentation framework is well-
founded iff there exists no infinite sequence α0, α1, . . . , αn, . . . of (not necessarily
distinct) arguments such that for each i, αi+1 attacks αi.

In the case of a finite argumentation framework, well-foundedness coincides
with acyclicity of the defeat graph. We now consider the problem of agreement
with grounded semantics in the generalized context of SCC-recursive semantics.

5.1 Determined argumentation frameworks

We will show that a complete agreement among SCC-recursive semantics holds
if and only if the considered argumentation framework is determined.

Definition 11. An argumentation framework AF = 〈A,→〉 is determined if
and only if ∄α ∈ A : α /∈ GE(AF) ∧GE(AF) 6→ α.

In words, an argumentation framework AF is determined if and only if there
are no “provisionally defeated” arguments in AF according to grounded seman-
tics, i.e. the grounded extension is also a stable extension. Note that the empty
argumentation framework is determined.

The set of determined argumentation frameworks, denoted as DET , is of
special interest because for any SCC-recursive semantics S respecting an obvious
condition on the treatment of monadic argumentation frameworks it holds that
ES(AF) = {GE(AF)} for any argumentation framework AF ∈ DET . In other
words, a very comprehensive family of “reasonable” semantics show a uniform
single-status behavior on these argumentation frameworks.

Proposition 3. Let S be a SCC-recursive semantics identified by a conflict-free
base function BFS such that

BFS(〈{α}, ∅〉, {α}) = {{α}}

(such a SCC-recursive semantics will be called grounded-compatible).
For any argumentation framework AF = 〈A,→〉 ∈ DET it holds that ES(AF) =

{GE(AF)}.

Characterizing defeat graphs where argumentation semantics agree 41

Proof. The proof immediately follows from the fact that for any such SCC-
recursive semantics it holds that ∀E ∈ ES(AF), GE(AF) ⊆ E (Proposition 51
of [5]) and E is conflict-free. Since AF ∈ DET ∀α /∈ GE(AF) it necessarily
holds that GE(AF) → α, and therefore α /∈ E. As a consequence, only the case
E = GE(AF) is possible.

It is also immediate to note that no argumentation framework outside DET
features this property, namely, for any AF /∈ DET there is a grounded-compatible
SCC-recursive semantics S such that ES(AF) 6= {GE(AF)}, namely stable se-
mantics.

Well-founded argumentation frameworks [1] are a special case of determined
argumentation frameworks. In fact, if no cycles are present, all SCCs in AF
consist of a single node and it is then easy to see that AF ∈ DET . On the other
hand, the absence of cycles is a sufficient but not necessary topological condition
for AF ∈ DET . Actually the absence of cycles is necessary only in the initial
SCCs (which need to be monadic), and then recursively in the initial SCCs of
the restricted argumentation framework obtained by taking into account that the
nodes corresponding to the initial SCCs are necessarily included in any extension.
This observation gives rise to a characterization of determined argumentation
frameworks.

Definition 12. An argumentation framework AF = 〈A,→〉 is initial-acyclic if
AF = AF∅ or the following condition holds: ∀S ∈ IS(AF) S is monadic and
AF↓UPAF((A\IN(AF)),IN(AF)) is initial-acyclic.

The base of this recursive definition is represented by the empty argumenta-
tion framework. The recursion is well-founded as the set IN(AF) is non-empty
for a non-empty argumentation framework, which means that at each recursive
step an argumentation framework with a strictly lesser number of nodes is con-
sidered. The set of initial-acyclic argumentation frameworks is denoted by IAA.
The following proposition shows that IAA = DET .

Proposition 4. For any argumentation framework AF = 〈A,→〉, AF ∈ IAA
if and only if AF ∈ DET .

Proof. Let us first show that if AF ∈ IAA then the grounded extension is
also stable. It is known [1] that, for any finite AF, GE(AF) =

⋃

i≥1 Fi
AF(∅),

where, given a set S ⊆ A, FAF(S) = {α ∈ A : ∀β ∈ parAF(α), S → β},
F1

AF(S) = FAF(S), and Fi
AF(S) = FAF(Fi−1

AF (S)). Now, since AF ∈ IAA, it
holds that F1

AF(∅) = IN(AF). After suppressing the arguments attacked by
arguments in IN(AF) we obtain AF′ = AF↓UPAF((A\IN(AF)),IN(AF)). Now, if
AF′ is empty the statement is proved, since any argument of AF is either included
in or attacked by GE(AF). Otherwise we have, by hypothesis, that all initial
strongly connected components of AF′ are monadic. This entails that all their
nodes belong to F2

AF(∅) and therefore to GE(AF). Iterating the same reasoning
as above we obtain a restricted argumentation framework AF′′, and so on until
we reach the case of an empty restricted argumentation framework. Since any

42 P. Baroni and M. Giacomin

node considered at any step is either included in or attacked by GE(AF), it turns
out that AF ∈ DET .

Turning to the other part of the proof, let us show that if AF /∈ IAA then
AF /∈ DET . Let us first consider the case where some initial strongly connected
component of AF is not monadic, then its elements are not included in nor at-
tacked by GE(AF) and therefore AF /∈ DET . Otherwise with a similar reasoning
as in the first part of the proof, we are lead to consider a sequence of restricted
argumentation frameworks. Since at least one of them does not belong to IAA,
it turns out as before that some of its nodes are not included in nor attacked by
GE(AF) and the conclusion follows.

5.2 Almost determined argumentation frameworks

While only determined argumentation frameworks ensure complete agreement
among all grounded-compatible SCC-recursive semantics, it can be observed that
there is a larger class of argumentation frameworks where an almost complete
agreement is reached. Consider for instance the case of an argumentation frame-
work consisting just of a self-defeating argument, namely AF = 〈{α}, {(α, α)}〉.
In this case we have that EGR(AF) = {∅} and, in virtue of the conflict-free prop-
erty, for any semantics S which admits extensions on AF it must also hold that
ES(AF) = {∅}. However, since stable semantics is unable to prescribe estensions
in this case, EST (AF) = ∅ 6= {∅}. In this case, disagreement arises from the
non-existence of stable extensions rather than from the existence of extensions
different from GE(AF). Therefore, excluding AF from the set of argumentation
frameworks where semantics agree might be considered a little bit questionable
and/or misleading, since, actually, all semantics able to prescribe extensions for
AF are in agreement.

On the basis of this observation, it is useful to consider the question of agree-
ment focusing on those semantics that are universally defined.

Definition 13. An argumentation semantics S is universally defined if for any
argumentation framework AF ES(AF) 6= ∅.

As to our knowledge, stable semantics is the only example in the literature
of a semantics which is not universally defined.

As shown by the simple example above, the set of argumentation frameworks
where universally defined semantics agree is larger than DET : we will now char-
acterize this class of argumentation frameworks, called almost determined.

Definition 14. An argumentation framework AF = 〈A,→〉 is almost deter-
mined if and only if for any α ∈ A, (α /∈ GE(AF)∧GE(AF) 6→ α) ⇒ (α, α) ∈→.

In words, an argumentation framework is almost determined if all the nodes
which are not attacked nor included in the grounded extension are self-defeating.
The set of almost determined argumentation frameworks will be denoted as AD.
Clearly DET (AD.

Characterizing defeat graphs where argumentation semantics agree 43

Proposition 5. Let S be a universally defined and grounded compatible SCC-
recursive semantics identified by a conflict-free base function BFS . For any ar-
gumentation framework AF = 〈A,→〉 ∈ AD it holds that ES(AF) = {GE(AF)}.

Proof. We know that, since BFS is conflict-free, for any argumentation frame-
work AF, ∀E ∈ ES(AF) E is conflict free. Then, the statement follows from
the fact that ∀E ∈ ES(AF), GE(AF) ⊆ E, which entails that the arguments
attacked by the grounded extension are also attacked by any other extension.
Therefore only arguments not included in and not attacked by GE(AF) can be-
long to E \GE(AF). However, by hypothesis such arguments are self-defeating
and, since any extension E is conflict-free, can not belong to E.

The proposition above shows that agreement is ensured on almost determined
argumentation frameworks for any SCC-recursive semantics which satisfies the
three very reasonable properties of being universally defined, grounded compat-
ible and conflict-free. We now also show that such an agreement can not be
achieved outside the class of almost determined argumentation frameworks.

Proposition 6. For any argumentation framework AF = 〈A,→〉 /∈ AD there is
a universally defined and grounded compatible SCC-recursive semantics S iden-
tified by a conflict-free base function BFS such that ES(AF) 6= {GE(AF)}.

Proof. We prove that if AF /∈ AD then ECF2(AF) 6= {GE(AF)}. It is immediate
to see that CF2 semantics is universally defined and grounded compatible and
that its base function is conflict-free. By Proposition 2, ECF2(AF) ⊆ MCFAF,
namely the extensions prescribed by CF2 semantics for an argumentation frame-
work AF are maximal conflict free sets of AF. Now if AF /∈ AD, ∃α ∈ A such
that α is not self-defeating, α /∈ GE(AF) and GE(AF) 6→ α. This also implies
α 6→ GE(AF) due to the well-known property of admissibility of GE(AF) [1],
namely α → GE(AF) ⇒ GE(AF) → α. Then, by Lemma 1, GE(AF) /∈MCFAF

and necessarily ECF2(AF) 6= {GE(AF)}.

6 Agreement with stable semantics

Stable semantics represents a traditional and intuitively simple proposal among
multiple-status approaches: a stable extension is simply a conflict-free set which
attacks all arguments not included in it. For this reason, agreement with stable
semantics represents a sort of uncontroversial situation where no argument is left
in a sort of “undecided” status. In [1] an argumentation framework AF such that
preferred and stable semantics are in agreement is said to be coherent. Here we
will characterize a family of argumentation frameworks, called SCC-symmetric,
where agreement is ensured for a class of multiple-status semantics including
stable, preferred and CF2 semantics.

First we need to introduce the notion of symmetric argumentation framework
(slightly different from the one proposed in [4]), noting also that symmetry is
preserved by the restriction operator.

44 P. Baroni and M. Giacomin

Definition 15. An argumentation framework AF = 〈A,→〉 is symmetric if for
any α, β ∈ A, α → β ⇔ β → α.

Lemma 2. Given a symmetric argumentation framework AF = 〈A,→〉 and a
set S ⊆ A, AF↓S is symmetric.

Proof. Let us consider two arguments α, β in AF↓S such that α → β. It is
immediate to see that this relation also holds in AF and, since the latter is
symmetric, β → α in AF. Since α, β ∈ S, β → α also holds in AF↓S .

As it will be more evident from Proposition 7, it is quite natural that exten-
sions of a symmetric argumentation framework free of self-defeating arguments
coincide with its maximal conflict free sets, if the multiple-status approach is
adopted. Argumentation semantics satisfying this requirement will be called *-
symmetric.

Definition 16. An argumentation semantics S is *-symmetric if for any argu-
mentation framework AF which is symmetric and free of self-defeating arguments
ES(AF) = MCFAF.

As one may imagine, a SCC-recursive semantics is *-symmetric if and only
if its base function has a *-symmetric behavior on single-SCC argumentation
frameworks.

Lemma 3. A SCC-recursive semantics S is *-symmetric if and only if, for any
argumentation framework AF = 〈A,→〉 which is symmetric, free of self-defeating
arguments and such that |SCCSAF| = 1, BFS(AF,A) = MCFAF.

Proof. ⇒. Assume that the base function satisfies the hypothesis and consider
a generic argumentation framework AF which is symmetric and free of self-
defeating arguments. Notice first that ∀S ∈ SCCSAF sccparAF(S) = ∅, i.e. all of
the strongly connected components are initial. In fact, given S1, S2 ∈ SCCSAF

such that S1 → S2, since AF is symmetric also S2 → S1 holds, entailing that
all of the nodes of S1 ∪ S2 are mutually reachable, i.e. S1 = S2. Then, ∀S ∈
SCCSAF UAF(S,E) = UPAF(S,E) = S, and it is easy to see that, according to
Definition 9, E ∈ ES(AF) if and only if ∀S ∈ SCCSAF (E∩S) = BFS(AF↓S , S).
Now, ∀S ∈ SCCSAF AF↓S is free of self-defeating arguments and by Lemma 2
is also symmetric, thus by the hypothesis BFS(AF↓S , S) = MCFAF↓S

. In sum,
we have that E ∈ ES(AF) if and only if ∀S ∈ SCCSAF (E∩S) ∈MCFAF↓S

, and
since all of the strongly connected components are initial the latter condition is
equivalent to E ∈MCFAF.
⇐. Assuming by contradiction that the conclusion is not verified we are led to
consider an argumentation framework AF, which is symmetric and free of self-
defeating arguments, where ES(AF) = BFS(AF,A) 6= MCFAF, entailing that
S is not *-symmetric.

Several significant multiple-status semantics, though their definition is based
on quite different principles, share the property of being *-symmetric (a similar
result is proved in [4]).

Characterizing defeat graphs where argumentation semantics agree 45

Proposition 7. Stable semantics, preferred semantics and CF2 semantics are
*-symmetric.

Proof. According to Lemma 3, for any such semantics S we have to prove that,
given an argumentation framework AF = 〈A,→〉 which is symmetric, free of self-
defeating arguments and such that |SCCSAF| = 1, BFS(AF,A) = MCFAF. For
CF2 semantics this holds by definition. As for stable and preferred semantics,
notice that, as |SCCSAF| = 1, BFS(AF,A) = ES(AF). Taking into account from
[1] that EST (AF) ⊆ EPR(AF), it is sufficient to prove that MCFAF ⊆ EST (AF)
and that EPR(AF) ⊆MCFAF. First, let us consider a set E ∈MCFAF and let
us prove that it is a stable extension, i.e. that ∀α /∈ E E → α. Assuming by
contradiction that E 6→ α, since AF is symmetric also α 6→ E holds. Since α
cannot be self-defeating by the hypothesis on AF, the set E∪{α} is conflict-free,
contradicting the fact that E ∈MCFAF. Let us turn now to the other inclusion
condition, considering a set E ∈ EPR(AF) and assuming by contradiction that
E /∈MCFAF: since E is conflict-free, this entails that ∃E′ ⊆MCFAF such that
E (E′. However, by the first inclusion condition E′ ∈ EPR(AF), contradicting
the fact that E is a preferred extension.

In symmetric argumentation frameworks non-mutual attacks cannot exist:
this seriously limits their applicability for modeling practical situations. Their
properties however provide the basis for analyzing a more interesting family of
argumentation frameworks called SCC-symmetric.

Definition 17. An argumentation framework AF is SCC-symmetric if ∀S ∈
SCCSAF AF↓S is symmetric.

Definition 17 is equivalent to forbidding non-mutual attacks only within cy-
cles.

Proposition 8. An argumentation framework AF = 〈A,→〉 is SCC-symmetric
if and only if for every cycle α0 → α1 → . . . → αn → α0 it holds that ∀i ∈
{1 . . . n} αi → αi−1.

Proof. As for the if part of the proof, notice that any two nodes α, β ∈ S, such
that α 6= β and S ∈ SCCSAF, are mutually reachable, therefore in particular
they belong to a cycle. As a consequence, if α → β then by the hypothesis also
β → α holds. As for the other part of the proof, if αi and αi−1 belong to a cycle
then they are in the same strongly connected component, thus if αi−1 → αi then
by the SCC-symmetry of AF also αi → αi−1 holds.

To prove, in Theorem 1, the main result about agreement in SCC-symmetric
argumentation frameworks, we need a preliminary lemma concerning the SCC-
recursive schema.

Lemma 4. Given an SCC-recursive semantics S, E ∈ ES(AF) if and only if
∀S ∈ SCCSAF (E ∩S) ∈ GFS(AF↓UPAF(S,E), UAF(S,E)), where GFS(AF, C) is
a function specific for the semantics S. Moreover, ∀AF = 〈A,→〉 it holds that
GFS(AF,A) = ES(AF).

46 P. Baroni and M. Giacomin

Proof. By Definition 9, if |SCCSAF| = 1 then BFS(AF,A) = GF(AF,A), which
is also equal to GF(AF↓UPAF(S,E), UAF(S,E)) since in this case UPAF(S,E) =
UAF(S,E) = A. From Definition 9 we have that E ∈ ES(AF) if and only if
E ∈ GF(AF,A) and in case |SCCSAF| = 1 we can substitute BFS(AF,A)
with the expression above. This yields E ∈ GF(AF,A) if and only if ∀S ∈
SCCSAF(E ∩ S) ∈ GF(AF↓UPAF(S,E), UAF(S,E)). Then the conclusion easily
follows by taking into account that GF actually depends (through BFS) on the
specific semantics S.

Theorem 1. In any argumentation framework which is SCC-symmetric and
free of self-defeating arguments all of the *-symmetric semantics are in agree-
ment, i.e. they prescribe the same set of extensions.

Proof. It is sufficient to show that, given an argumentation framework AF satis-
fying the hypothesis and two *-simmetric semantics S1 and S2, ∀E ∈ ES1

(AF) E ∈
ES2

(AF) (the reverse condition can then be obtained by the same reasoning).
According to Lemma 4, given E ∈ ES1

(AF), we have to prove that ∀S ∈
SCCSAF(E ∩ S) ∈ GFS2

(AF↓UPAF(S,E), UAF(S,E)). We reason by induction
along the strongly connected components of the argumentation framework. In
particular, at any step we consider a specific S ∈ SCCSAF and we prove the
following conditions:

1. UPAF(S,E) = UAF(S,E) (i.e., PAF(S,E) = ∅)
2. (E ∩ S) ∈ GFS2

(AF↓UAF(S,E), UAF(S,E)) = ES2
(AF↓UAF(S,E))

3. ES2
(AF↓UAF(S,E)) = EST (AF↓UAF(S,E))

assuming that these conditions hold for any S′ ∈ sccancAF(S) (notice that the
case sccancAF(S) = ∅, i.e. S is an initial strongly connected component, is cov-
ered in the following proof). Then the conclusion is immediate from the first and
second conditions.
As for the first condition (which is obvious when S is initial), we have to
prove that ∀α ∈ UPAF(S,E) if β → α and β /∈ S then E → β. Notice that
β ∈ S′ with S′ ∈ sccancAF(S), and β /∈ E since α /∈ DAF(S,E). Since by
the first condition applied to S′ PAF(S′, E) = ∅, either β ∈ DAF(S′, E) or
β ∈ UAF(S′, E). In the first case, E → β by definition. In the second case,
since (E ∩ S′) ∈ EST (AF↓UAF(S′,E)) by the second and third conditions and
β /∈ (E ∩ S′), it holds that (E ∩ S′) → β, thus again E → β.
Let us turn to the second condition. Since E ∈ ES1

(AF), according to Lemma
4 (E ∩ S) ∈ GFS1

(AF↓UPAF(S,E), UAF(S,E)), which by the above proof is equal
to GFS1

(AF↓UAF(S,E), UAF(S,E)), the latter being equal to ES1
(AF↓UAF(S,E))

by Lemma 4. Now, since AF is SCC-symmetric AF↓S is symmetric by defini-
tion, entailing by Lemma 2 that AF↓UAF(S,E) is symmetric in turn. Notice that
this argumentation framework, as AF, is free of self-defeating arguments. Then,
since both S1 and S2 are *-symmetric ES1

(AF↓UAF(S,E)) = ES2
(AF↓UAF(S,E)) =

MCFAF↓UAF(S,E)
. In sum, (E ∩ S) ∈ ES2

(AF↓UAF(S,E)), which by Lemma 4 is

equal to GFS2
(AF↓UAF(S,E), UAF(S,E)).

Characterizing defeat graphs where argumentation semantics agree 47

Finally, the third condition follows from Proposition 7, which states in partic-
ular that stable semantics is *-symmetric, entailing that EST (AF↓UAF(S,E)) =
MCFAF↓UAF(S,E)

= ES2
(AF↓UAF(S,E)).

The following result immediately follows from the previous theorem and
Proposition 7.

Corollary 1. For any argumentation framework AF which is SCC-symmetric
and free of self-defeating arguments, EPR(AF) = ECF2(AF) = EST (AF), thus in
particular AF is coherent.

Theorem 1 and Corollary 1 generalize the results about agreement provided in
[4], where only symmetric argumentation frameworks are considered (which, as
already remarked, feature a limited expressivity since they prevent, for instance,
that an initial argument attacks any other argument). Moreover, agreement is
proved for a family of multiple-status SCC-recursive semantics, including the
most significant literature proposals we are aware of.

In [1] it was shown that a sufficient condition for agreement between preferred
and stable semantics is that the considered argumentation framework is limited
controversial. A finite argumentation framework is limited controversial if it does
not include any odd-length cycle. The classes of SCC-symmetric and limited
controversial argumentation frameworks are non-disjoint but distinct. In fact,
a SCC-symmetric argumentation framework may contain cycles of any length,
while a limited controversial argumentation framework may consist, for instance,
of an even-length cycle which is not symmetric.

It is interesting to note that the property of SCC-symmetry may be recovered
from assumptions on the attack relation which have been previously considered
in the literature and are not directly related to decomposition into SCCs. For in-
stance in [10] the case is considered where conflicts among arguments arise only
from contradicting conclusions, namely only the rebutting kind of defeat is al-
lowed while undercutting defeat is not (we follow here the terminology of [9], note
that the notion of rebutting defeat we adopt includes attack against subargu-
ments, that some authors call instead undercut). It is shown in Proposition 26 of
[10] that if only rebutting defeat is allowed, the defeat graph is SCC-symmetric
(such a graph is called r-type in [10]). From another perspective, in [11] it is
shown that when the attack relation results from a symmetric conflict relation
and a transitive preference relation between arguments the defeat graph satisfies
a property called strict acyclicity, which is actually equivalent to SCC-symmetry
through the characterization given in Proposition 8.

7 Conclusions

In this paper we have analyzed the issue of characterizing argumentation frame-
works where semantics agree, exploiting to this purpose the recently introduced
notion of SCC-recursiveness and the relevant existing results. Focusing on the
two traditional questions of agreement with grounded and stable semantics, some

48 P. Baroni and M. Giacomin

novel results have been obtained. As to the first question, the family of deter-
mined argumentation frameworks where any “reasonable” SCC-recursive seman-
tics agrees with grounded semantics has been identified. Adding the requirement
that the semantics is universally defined, a larger family of argumentation frame-
works where such an agreement is ensured has been characterized. As to the
second question, it has been shown that agreement is ensured, for a class of se-
mantics including stable, preferred and CF2 semantics, on the significant family
of SCC-symmetric argumentation frameworks. Among future work directions,
we mention in particular the definition and study of forms of agreement at the
level of justification states of arguments rather than of extensions.

Acknowledgments. The authors are indebted to the anonymous referees for
their helpful comments.

References

1. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming, and n-person games. Artificial Intelli-
gence 77(2) (1995) 321–357

2. Baroni, P., Giacomin, M.: Evaluation and comparison criteria for extension-based
argumentation semantics. In Dunne, P.E., Bench-Capon, T., eds.: Proc. of the
1st International Conference on Computational Models of Arguments (COMMA
2006), Liverpool, UK, IOS Press (2006) 157–168

3. Caminada, M.: On the issue of reinstatement in argumentation. In: Proc. of
the 10th European Conference on Logics in Artificial Intelligence (JELIA 06),
Liverpool, UK, Springer (2006) 111–123

4. Coste-Marquis, S., Devred, C., Marquis, P.: Symmetric argumentation frameworks.
In: Proceedings of the 8th European Conference on Symbolic and Quantitative
Approaches to Reasoning with Uncertainty (ECSQARU 2005), Barcelona, E (2005)
317–328

5. Baroni, P., Giacomin, M., Guida, G.: Scc-recursiveness: a general schema for ar-
gumentation semantics. Artificial Intelligence 168(1-2) (2005) 165–210

6. Prakken, H., Vreeswijk, G.A.W.: Logics for defeasible argumentation. In Gab-
bay, D.M., Guenthner, F., eds.: Handbook of Philosophical Logic, Second Edition.
Kluwer Academic Publishers, Dordrecht (2001)

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press and McGraw-Hill (2001)

8. Baroni, P., Giacomin, M.: Solving semantic problems with odd-length cycles in
argumentation. In: Proceedings of the 7th European Conference on Symbolic and
Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2003), Aal-
borg, Denmark, LNAI 2711, Springer-Verlag (2003) 440–451

9. Pollock, J.L.: How to reason defeasibly. Artificial Intelligence 57(1) (1992) 1–42
10. Baroni, P., Giacomin, M., Guida, G.: Self-stabilizing defeat status computation:

dealing with conflict management in multi-agent systems. Artificial Intelligence
165(2) (2005) 187–259

11. Kaci, S., van der Torre, L.W.N., Weydert, E.: Acyclic argumentation: Attack =
conflict + preference. In: Proceedings of the 17th European Conference on Artificial
Intelligence (ECAI 2006), Riva del Garda, Italy, IOS Press (2006) 725–726

A Sound and Complete Dialectical Proof

Procedure for Sceptical Preferred

Argumentation

Phan Minh Dung and Phan Minh Thang

Department of Computer Science, Asian Institute of Technology

GPO Box 4, Klong Luang, Pathumthani 12120, Thailand

dung@cs.ait.ac.th, thangphm@ait.ac.th

Abstract. We present a dialectical proof procedure for computing skep-

tical preferred semantics in argumentation frameworks. The proof proce-

dure is based on the dispute derivation introduced for assumption-based

framework. We prove the soundness of the procedure for any argumen-

tation frameworks and the completeness for a general class of finitary

argumentation frameworks containing the class of finite argumentation

frameworks as a subclass.

1 Introduction

Argumentation is a form of reasoning, that could be viewed as a debate, in
which the participants present their arguments to establish, defend, or attack
certain propositions. An argument could be said to represent a consensus if it is
accepted by all participants. For example, in legal domain, different members of
a jury could have different views of the presented evidence (different preferred
extensions) but a guilty verdict is the result of a consensus among members. This
form of reasoning to find a consensus is characterized by the skeptical semantics
in argumentation. Skeptical semantics is also useful in AI systems for negotiation
and decision making [14–17, 21].

Several procedures for computation of skeptical preferred semantics have
been proposed, e.g the TPI procedure [19] for coherent argumentation frame-
work [4, 10], and a dialectic procedure for finding ideal skeptical semantics, an
approximation of the skeptical preferred semantics [9]. In [4], an algorithm for
computing sceptical preferred semantics is proposed. Given an argument a, the
algorithm proceeds in two separate steps: It first checks that a is not attacked
by any admissible set. In the second step, it looks for an admissible set that can
not be extended into a bigger one containing a. Failure to find such a set implies
that a is included in each preferred extension. In other words, the algorithm
represents an indirect way of proving that a is skeptically preferred based on the
idea that failure to show that a is not skeptical preferred implies the contrary.
Though the idea is intuitively clear, no formal proof for the soundness of the
algorithm is given.

50 P.M. Dung and P.M. Thang

In contrast, in this paper we present a direct dialectical proof procedure for
general skeptical preferred semantics. We prove the soundness of the procedure
for any argumentation frameworks and its completeness for a general class of
finitary argumentation frameworks containing the class of finite argumentation
frameworks as a subclass.

The structure of the paper is as follows. In section 2 we recall and intro-
duce notions of proof tree, proof derivation and proof procedure for credulous
preferred semantics. We introduce finitary argumentation frameworks and prove
soundness and completeness of credulous proof procedure for them. In section 3
we present proof theories and algorithm for general skeptical preferred semantics.

2 Credulous Acceptance

Following [7], we define an argumentation framework as a pair AF = (A, att),
where A is a set of arguments, and att is a binary relation on A (att ⊆ A×A).
Given two arguments A and B, (A,B)∈ att means A attacks B. A set S of argu-
ments attacks an argument A if there is an argument B in S such that B attacks
A. The definitions of conflict-free set, admissible set and preferred extension are
recalled from [7] as follows:

Let S be a set of arguments

1. S is conflict-free iff there exist no arguments A, B in S such that A attacks
B

2. Argument A is acceptable with respect to S iff for each argument B if B
attacks A then S attacks B

3. S is admissible iff S is conflict-free and each argument in S is acceptable with
respect to S

4. S is a preferred extension of AF iff S is a maximal admissible set of AF
5. Argument A is credulously accepted iff A is contained in at least one pre-

ferred extension of AF
6. Argument A is skeptically accepted iff A is contained in every preferred

extensions of AF

To prove the credulous acceptance of an argument, a proof tree is constructed.
A proof tree can be viewed as a specification of a debate between a proponent
and an opponent, where an initial argument is put forward by the proponent,
and then the opponent and proponent alternatively present their arguments to
attack the arguments of the other. The proponent wins the dispute if he can
attack every attacking argument of the opponent. We recall the definition of
proof tree from [8, 9]:

Definition 1. A proof tree for an argument A with respect to an argument
framework AF is defined as following:

1. Nodes are labeled by arguments and the root is labeled by A. The argument
labeling a child node attacks the argument labeling its parent.

A Sound and Complete Dialectical Proof Procedure 51

2. There are two types of nodes: proponent nodes and opponent nodes
3. Each opponent node has exactly one child that is a proponent node
4. For each proponent node N labeled by an argument B, N has as many children

nodes as the number of arguments attacking B, and for every argument C
attacking B, there is a child node of N, which is an opponent node labeled by
C.

Definition 2. A proof tree is said to be admissible if there is no argument that
labels both a proponent node and an opponent node.

Fig. 1.

Fig. 2.

Example 1. The argumentation framework AF=(A,att) is depicted on Fig. 1,
where: A={A,G,E,F} and att = {(G, A),(E, G),(F, G),(E,F),(F, E)}.

A proof tree for argument A is depicted in Fig. 2 where:

– argument A labels the root
– arguments A, E label proponent nodes
– arguments G, F label opponent nodes
– this tree is admissible, since there is no argument labeling both opponent

and proponent nodes.

The following lemma is similar to a theorem from [8] and proved in the
extended version of [9].

Lemma 1.

52 P.M. Dung and P.M. Thang

1. Let T be an admissible proof tree for A and S the set of all arguments labeling
proponent nodes of T. Then S is admissible.

2. Let S be an admissible set of arguments and A in S. Then there exists an
admissible proof tree T for A such that the set of arguments labeling the
proponent nodes in T is a subset of S

A proof tree is often infinite as example 1 shows. A proof derivation is a
finite top-down construction of an (possibly infinite) admissible proof tree by a
sequence of tuples < P ,O ,SP ,SO >, where P is a set of arguments, put forward
by the proponent but which have not been attacked yet, and O is a set of
arguments put forward by the opponent to attack the proponent’s arguments,
against which the proponent doesn’t have counter-attack until now. SP is the
set of arguments presented by proponent, and SO is the set of arguments put
forward by the opponent, and already counter-attacked by the proponent. Our
proof derivation is defined in a spirit like the dispute derivation in [8] and the
dialectical games in [4]. In each step of a proof derivation building process only
one argument is selected. Let B be a selected argument and let OB be the set
of all arguments attacking B. In the first case if B labeling a proponent node,
then OB consists of all arguments labeling opponent child nodes of the node
labeled by B. In the second case if B labeling an opponent node, then OB is a
set of arguments, from which one argument is chose to label a proponent child
node of the node labeled by B. Hence there exists no proof derivation if there
is one argument in OB labeling a proponent node in the first case, or there is
one argument in OB labeling an opponent node or OB = ∅ in the second case,
because our proof tree is not admisible.

Definition 3. A proof derivation D for an argument A is a sequence < P0, O0,
SP0, SO0 > ... < Pn, On, SPn, SOn > where:

1. Pi, Oi, SPi, and SOi are argument sets
2. P0 = SP0 = {A}, SO0 = O0 = ∅, Pn = On = ∅
3. Let B be the argument selected at step i, and let OB be the set consisting of

all arguments attacking B.
(a) If B ∈ Pi and OB ∩ SPi = ∅ then

Pi+1 = Pi \ {B}
Oi+1 = Oi ∪ (OB \ SOi)
SPi+1 = SPi

SOi+1 = SOi

(b) If B ∈ Oi then select an argument C ∈ OB such that C 6∈ (SOi ∪Oi)
Pi+1 = Pi ∪ {C} if C 6∈ SPi, otherwise Pi+1 = Pi

Oi+1 = Oi \ β where β = {B′ | C attacks B′}
SPi+1 = SPi ∪ {C}
SOi+1 = SOi ∪ (β ∩Oi) (Note that B∈ β ∩Oi)

Example 2. Let argumentation framework AF=(A,att), where A = {A} and
att=∅ then a sequence < {A}, ∅, {A}, ∅ >< ∅, ∅, {A}, ∅ > is the proof derivation
for A.

A Sound and Complete Dialectical Proof Procedure 53

Example 3. (Continue example 1) A proof derivation for A is presented in fol-
lowing table, where the notation X means that X is selected in step 3 of definition
3.

i Pi Oi SPi SOi comment

0 A ∅ A ∅ OA={G} according to step3.a

1 ∅ G A ∅ OG={E,F}, E is selected form OG, β={G,F} according to step3.b

2 E ∅ A, E G OE={F} according to step3.a

3 ∅ F A, E G OF ={E}, E is selected and E∈ SP3, β={G,F} according to step3.b

4 ∅ ∅ A, E G, F

Table 1. The construction of a proof derivation for A

Theorem 1.

1. Suppose < P0, O0, SP0, SO0 > ... < Pn, On, SPn, SOn > is a proof deriva-
tion for A. Then SPn is admissible and A ∈ SPn.

2. Let AF be a finite argumentation framework, and let A be an argument of
AF. If A belongs to an admissible set then there is a proof derivation for A.

Consider the infinite argumentation framework in Fig. 3. It is not diffi-
cult to see that there is an unique preferred extension consisting of arguments
A0, A2, ..., A2n, ... It is obvious that for each argument A2n there is a proof
derivation for A2n. The reason for the existence of a proof derivation for A2n

is that the argumentation framework consisting of the arguments from which
there is a directed path to A2n is finite. In the following, we introduce the class
of finitary argumentation frameworks generalizing this property.

Fig. 3.

Let AF=(A, att) and A ∈ A.1 The environment of A denoted by ENVA is
the set of all arguments B in A such that there is a directed path from B to A in
the graph of AF (i.e.there is a sequence B1, B2..., Bn such that Bi attacks Bi+1

and B=B1 and A=Bn). Let AFA = (ENVA, attA), where attA is the restriction
of att to ENVA.

1 For purpose of reference, we often identify AF with the graph representing it.

54 P.M. Dung and P.M. Thang

Definition 4. An argumentation framework is said to be finitary if for each
argument A, AFA is finite.

Lemma 2.

1. Let S be an admissible set of arguments in AF. Then S ∩ ENVA is also
admissible in both AF and AFA.

2. Let S ⊆ ENVA be an admissible set in AFA. Then S is also admissible in
AF.

From the lemma 2, it is obvious that

Corollary 1. A is credulously accepted in AF iff A is credulously accepted in
AFA.

The soundness and completeness of proof derivation for finitary argumen-
tation frameworks follows immediately from the above corollary and theorem
1.

Theorem 2. Let AF be a finitary argumentation framework, and A be an ar-
gument of AF. A belongs to an admissible set iff there is a proof derivation for
A.

3 Skeptical Acceptance

An argumentation framework AF is said to be coherent if each preferred exten-
sion of AF is stable. In other words, coherence implies the coincidence between
stable and preferred semantics. TPI procedures are based on the following propo-
sition [4, 11, 19] to check whether a given argument A is skeptically accepted in
coherent argumentation frameworks: An argument A is skeptically accepted in a
coherent argumentation frameworks if A is credulously accepted and there exists
no admissible set attacking A.

The following example shows that TPI procedures can not be used for an-
swering whether a given argument belongs to all preferred extensions in general
cases.

Example 4. The argumentation framework AF=(A,att) is depicted in Fig. 4,
where A = {A,B,G,E,F} and att = {(G,A),(A,B),(B,G),(E,G),(F,E),(E,F)}

It is clear that {A,E} and {F} are the only preferred extensions, and argument
A is not skeptically accepted, although A is credulously accepted and there exist
no admissible set attacking A.

In this chapter we introduce a proof procedure for skeptical preferred seman-
tics in general cases, which is based on the following simple lemma.

Lemma 3. Let S be an admissible set of arguments and E be a preferred set of
arguments, and S is not a subset of E. Then E attacks S (and S also attacks E).

A Sound and Complete Dialectical Proof Procedure 55

Fig. 4.

Definition 5. Let A be an argument, and let B be a set of admissible sets such
that each element of B contains A.

1. If for each preferred extension E such that A∈ E, there exists an admissible
set S ∈ B such that S ⊆ E then B is called a base of A.

2. A base B of A is said to be complete if for each preferred extension E, there
is a set S∈ B such that S ⊆ E

Lemma 4. (Skeptical Lemma) An argument A is sceptically accepted iff there
exist a complete base B of A.

The skeptical lemma suggests that a proof procedure for showing that A is
skeptically accepted, could proceed in two steps:

1. Generate a base B of A
2. Verify that B is a complete base of A

3.1 Generating a Base of A

We define a BG2-derivation for an argument A by constructing all possible proof
derivations for A.

Definition 6. BG-derivation for A is a sequence T0, T1, ..., Tn, where:

1. Ti is a set of tuples of the form < P,O, SP, SO >

2. T0= {< {A}, ∅, {A}, ∅ >}
3. Each tuple t of Tn has the form < ∅,∅, SP, SO >

4. At each step Ti one tuple ti =< Pi, Oi, SPi, SOi > is selected from Ti and
one argument B is selected from Pi or Oi.

(a) If B is selected from Pi, then: Ti+1 = (Ti \ {ti})∪{t’}, where t’ is com-
puted from ti as in definition 3 step 3.a.

2 BG stands for ”Base Generation”

56 P.M. Dung and P.M. Thang

(b) If B is selected from Oi and let OB be the set consisting of all argu-
ments attacking B, then: Ti+1 = (Ti \ {ti}) ∪ {t

′ | t’ is computed from
ti as in definition 3 step 3.b for some argument C ∈ OB such that C
6∈ (SOi ∪Oi)}

It is not difficult to see the following:

Theorem 3.

1. Let T0, T1, ..., Tn be a BG-derivation for A. Let B ={SP |< ∅, ∅, SP, SO >∈
Tn}. Then B is a base of A.

2. Let AF be finitary. Then there exists a BG-derivation for A.

3.2 Verifying the Completion of a Base

Before giving the procedure for verifying the completeness of a base, we need a
few technical results.

Lemma 5. Let B be a base of argument A. B is a complete base of A iff there
exist no preferred extension E attacking every element of B.

A proof derivation for a given argument A is constructed to find an admis-
sible set of arguments defending A. However in some cases we want to answer
the question ”can the proponent admissibly attack arguments proposed by the
opponent”. A notion of a proof derivation D against S is introduced for this
purpose.

Definition 7. A proof derivation D against a set S of arguments is defined as
a sequence < P0, O0, SP0, SO0 > ... < Pn, On, SPn, SOn > where:

1. Pi, Oi, SPi, and SOi are argument sets
2. P0 = SP0 = ∅, O0 = S, SO0 = ∅, Pn = On = ∅
3. < Pi+1, Oi+1, SPi+1, SOi+1 > is constructed from < Pi, Oi, SPi, SOi > as in

definition 3 step 3.

Lemma 6. For finitary argumentation frameworks, there exists a proof deriva-
tion D against a set S iff there exist an admissible set S’ attacking every element
in S.

Let A be an argument and B = {S1, ..., Sn} where Si is an admissible set
containing A, and let CB = {S | ∃e ∈ S1 × S2 × ...× Sn and S is the set of ar-
guments appearing in e}, and let XB = {S | S ∈ CB and S is minimal in CB wrt
set inclusion}

Lemma 7. For finitary argumentation frameworks, let B be a base of A. B is a
complete base of A iff for each S∈ XB there exist no proof derivation D against
S.

A Sound and Complete Dialectical Proof Procedure 57

Based on lemma 7 we define now a CB3-verification for a base B of an argu-
ment A to verify the completeness condition of B.

Definition 8. Let B be a finite set. A CB-verification for B is a sequence J0, J1...Jn

where

1. Ji is a set of tuples of the form < P,O, SP, SO >

2. J0={< ∅, O, ∅, ∅ >| O ∈ XB}

3. Jn=∅

4. Jk+1 is obtained from Jk like Tk+1 is obtained from Tk in definition 6.

Theorem 4. Let AF be a finitary framework and B be a finite base of argument
A. There exists a CB-verification for B iff B is a complete base of A.

3.3 Proof Procedure for Skeptical Acceptance

We define a SA4-derivation for A as a combination of a BG-derivation for A and
a CB-verification for the base created by the BG-derivation.

Definition 9. Let A be an argument. An SA-derivation for A is a sequence
T0, T1, ..., Tn, J0, J1...Jm where:

1. The sequence T0, T1, ..., Tn is a BG-derivation for A

2. The sequence J0, J1...Jm is a CB-verfication for B, where B={SP |< ∅, ∅, SP, SO >∈ Tn}

The following theorem follows directly from theorems 3, 4

Theorem 5. Let AF be a finitary argumentation framework and A be an argu-
ment in AF. A is sceptically accepted iff there exists a SA-derivation for A.

Example 5. (Continue example 1) Our proof procedure shows that A is skep-
tically accepted (see table 2). The notion fails means ’fails to build a proof
derivation’.

Example 6. (Continue example 4) Our proof procedure shows that A is not
skeptically acceptedm(see table 3), something that can not be done using TPI-
procedures.

From table 3 we see that there exist no SA-derivation for A. Hence A is not
sceptically accepted.

3 CB stands for Complete Base
4 SA stands for Skeptical Acceptance

58 P.M. Dung and P.M. Thang

BG-derivation for A CB-verification for B
P O SP SO comment P O SP SO comment

T0 A ∅ A ∅ step4.a, OA={G} J0 ∅ A ∅ ∅ step4.b, OA={G}
T1 ∅ G A ∅ step4.b, OG={E,F} ∅ E, F ∅ ∅
T2 E ∅ A, E G step4.a, OE={F} J1 G ∅ G A step4.a, OG={E,F}

F ∅ F, A G ∅ E,F ∅ ∅
T3 ∅ F A, E G step4.b, OF∩ SP={E} J2 ∅ E,F G A step4.b OE∩O={F}, fails

F ∅ F, A G ∅ E,F ∅ ∅
T4 ∅ ∅ A, E G J3 ∅ E,F ∅ ∅ step4.b OE∩O={E}, fails

F ∅ A, F G step4.a OF ={E} J4 Empty

T5 ∅ ∅ E,A G

∅ E F,A G step4.b OE∩SP={F}
T6 ∅ ∅ E,A G B={{E,A}, {F,A}} and

∅ ∅ F,A G XB ={{A},{E,F}}

Table 2. Construction of a BG for A and CB-verification for B

P O SP SO comment P O SP SO comment

T0 A ∅ A ∅ step3.a, OA={G} J0 ∅ E ∅ ∅ step3.b, OE={F}
T1 ∅ G A ∅ step3.b, OG={E,B} ∅ A ∅ ∅
T2 E ∅ A, E G step3.a, OE={F} J1 F ∅ F E step3.a, OF =SO={E}

B ∅ A, B G ∅ A ∅ ∅
T3 ∅ F A, E G step3.b, OF ={E}, {E}in SP J2 ∅ ∅ F E

B ∅ A, B G ∅ A ∅ ∅ step3.b OA={G}
T4 ∅ ∅ A, E G, F J3 ∅ ∅ F E

B ∅ A, B G step3.a OB∩ SP={A} fails G ∅ G A step3.a OG={E, B}
T5 ∅ ∅ A, E G, F B={{A, E}} and J4 ∅ ∅ F E

XB={{A}, {E}} ∅ B, E G A step3.b OB∩SO={A} fails

J5 ∅ ∅ F E not empty

Table 3. Construction of the SA-derivation for A

A Sound and Complete Dialectical Proof Procedure 59

4 Conclusion and Discussions

It is a well-known result from [11] that skeptical acceptance is
∏(p)

2 -complete.
Therefore in worst cases, computing a SA derivation is not polynomial.

Consider the argumentation framework in Fig. 5. Using the BG-derivation,
we would be able to generate a base B = {{A,E,C},{A,E,D},{A,F,C},{A,F,D}}.
Looking at the subgraph consisting of only E,F, we could realize that if there is
any attack against E or F, it should come from within this subgraph. Similarly
for C,D. Hence, it would be enough if in the CB-verification, we consider only
derivations againsts {A},{E,F},{C,D}. Structuring argumentation frameworks
into strongly connected component like in [1] would facilitate optimizing the
SA-derivations in this direction.

Fig. 5.

5 Acknowledgements

We would like to thank the referees for their constructive comments and criti-
cisms. The authors are partially supported by the EU sponsored project, Argu-
Grid.

A Appendix

A.1 Proof of lemma 2

1. Let R=S ∩ENVA . It is obvious that R is conflict-free. Let B be an argument
attacking R. It is obvious that B ∈ ENVA. Hence there is C ∈ S such that
C attacks B. Hence C ∈ ENVA. Hence C ∈ R. Hence R is admissible both
wrt AF and AFA.

2. It is clear that S is conflict-free in AF. Let B be an argument attacks S in
AF. Hence B ∈ ENVA. Hence S attacks B in AFA. Hence S attacks B in
AF.

60 P.M. Dung and P.M. Thang

A.2 Proof of lemma 3

It is clear that if E attacks S then S also attacks E and vice versa. Assume
that S, E do not attack each other. Hence C=S ∪ E is conflict-free. For each
argument A in C if there is an argument B attacking A then B is attacked by
S or by E since A is in S or E. So B is attacked by C. Hence each argument in
C is acceptable wrt C. Then C is admissible and contains E and there exists an
argument G in C which is not in E because S is not subset of E. Contradiction
since E is preferred. Hence S attacks E and E also attacks S.

A.3 Proof of lemma 4

1. Only if part
Let B be the set of all preferred extensions, then B is a complete base of A.

2. If part
Let B be a complete base of A, then for each preferred extension E there
exists a set S ∈ B such that S ⊆ E. Since A ∈ S for each S ∈ B then A is
contained in each preferred extension E. Hence A is sceptically accepted.

A.4 Proof of lemma 5

1. Only if part
Let B be a complete base of A, and E be an arbitrary preferred extension.
Then there is an admissible set S of B such that S⊆ E . Hence E does not
attack S. Hence E does not attack every element of B.

2. If part
Assume B is not a complete base of A. Then there exists a preferred extension
E such that E 6⊇ S for every element S of B. Hence E attacks every element
S of B (lemma 3). Contradiction.

A.5 Proof of lemma 6

Let AF=(A,att) be the argumentation framework we are working in. Let AF’=(A′,att’)
be another argumentation framework such that A′= A∪ {T}, where T is a new
argument not in A, att’=att∪ {(C, T) | C ∈ S}. Then each proof derivation D
against S can be transferred into a proof derivation D′ for T by adding the tuple
< {T}, ∅, {T}, ∅ > to the beginning of D and add T to the SP component in
each tuple in D

1. Only if part
Since there is a proof derivation D against a set S in AF, then there is a
proof derivation D′ for T in AF’. Hence there exists an admissible set R
in AF’ containing T. Since T is attacked by every element of S, then each
element of S is attacked by R. Let S’=R \ {T}. Hence each element of S
is attacked by S’. S’ is conflict-free, because R is an admissible set. Since
S’ ⊆ A, every argument attacking S’ belongs to A. For each argument B

A Sound and Complete Dialectical Proof Procedure 61

attacking S’, there is an argument B’ ∈ S’ such that (B’,B)∈ att, because
att’=att ∪ {(C, T) | C ∈ S). Hence S’ is an admissible set wrt AF. So there
exists an admissible set attacking every element in S.

2. If part
Let R=S’ ∪ {T}. T is not in A, then T is not in S’. Furthermore S’ is
admissible, and set S’ defends T, then R is admissible. Hence there is a
proof derivation D′ for T. Hence there is a proof derivation D against a set
S by dropping the first tuple from D′.

A.6 Proof of lemma 7

1. Only if part
Let E be a preferred extension. Since B is a complete base for A, then there
is a set Si ∈ B such that Si ⊆ E. That means for each S ∈ XB there is an
argument C ∈ (S ∩Si) such that E doesn’t attack C. Hence for each S ∈ XB
there exist no preferred extension attacking every element in S. Then for
each S ∈ XB there exists no admissible set attacking every element in S.
Hence there exists no proof derivation D against S (lemma 6).

2. If part
Assume the contradiction, that means B is not complete base of A. Hence
there exists a preferred extension E attacking every element Si of B (lemma
5). Hence for each Si there is an argument Ci in Si such that E attacks Ci.
Hence E attacks every element in S={C1, C2...Cn} ∈ XB. Hence there exists
proof derivation D against S (lemma 6). Contradiction.

A.7 Proof of theorem 4

Let XB = {O1, ..., On}. Let AF=(A,att). Let AF’=(A′,att’) and A′ = A∪ R
where R={A’,Q,G1, ..., Gn} and A∩ R=∅, att’=att ∪{(C1, G1) | C1 ∈ O1}∪ ...
∪{(Cn, Gn) | Cn ∈ On} ∪ {(G1, Q), ..., (Gn, Q), (Q,A′)} (figure 6). A CB-verification
D for B can be transferred to a proof derivation D′ for A’ by

adding a sequence T0, T1, T2 to the beginning of D, and

T0 =< {A′}, ∅, {A′}, ∅ >

T1 =< ∅, {Q}, {A′}, ∅ >

T2 = {< {Gi}, ∅, {Gi, A
′}, {Q} >| i ∈ [1, n]}

T3 = {< ∅, Oi, {Gi, A
′}, {Q} >| i ∈ [1, n]}.

It is not difficult to see that T3 corresponds to J0 of D in the sense that the
first two components of the tuples in T3 coincide with the first two components
of the tuples in D. D could be easily modified to have T3 as its first element since
Gi, A

′, Q do not have any effects on the status of the elements in A. Abusing
the notation, we still identify T3 and J0.

62 P.M. Dung and P.M. Thang

1. Only if part

There is a CB-verification for B wrt AF. Hence there exists no proof deriva-
tion for A’ in AF’. Hence there exists no admissible set containing one of
G1, ..., Gn. That means ∀i there is no admissible set containing Gi. Therefore
∀i there is no admissible set attacks each argument in Oi. Hence there is no
admissible set attacking each element in B. Hence B is complete.

2. If part

B is complete then there is no admissible set attacking every Si ∈ B wrt
AF. So there is no admissible set attacking every element of Oi for each
Oi ∈ XB. We prove that there is no proof derivation for A’ wrt AF’. Assume
contradiction, that means there is an admissible set S containing A’. Let
S’=S \ {A’}. Since S is admissible and A’ doesn’t defend any argument,
then S’ is admissible. Gi defends A’, then at least one Gi ∈ S’. Set Oi attacks
Gi then every element of Oi is attacked by S’ in AF’. Let S”=S’ \ {Gi}.
Since S’ is admissible and Gi does not attack any argument in S’, then S”
is admissible, and every element of Oi is attacked by S” in AF’. Since R ∩
S”=∅ and S” is not attacked by R and S” is admissible, then every element
of Oi is attacked by S” in AF. Contradiction. Hence there exists no proof
derivation for A’. Hence there is a CB-verification for B.

References

1. P. Baroni, M. Giacomin, and G. Guida SCC-recursiveness: a general schema for

argumentation sematics. In Artificial Intelligence, 168(1-2):162-210,2005.
2. A. Bondarenko, P.M. Dung, R.A. Kowalski, and F. Toni An abstract, argumenta-

tion theoretic approach to default reasoning. In Artificial Intelligence, 93:63-101,
1997.

3. M. Caminada On the Issue of Reinstatement in Argumentation. Technical report
UU-CS-023-2006.

4. C. Cayrol, S. Doutre, and M. Jerome On Decision Problems related to the Preferred

Semantics for Argumentation Framework. In Journal of logic and computation,
13(3):377403,2003.

5. C.R. Chesnevar, A.G. Maguitman, and R.P. Loui Logical Models of Argument. In

ACM Computing Surveys,32(4):337383,2000.
6. S. Doutre, and M. Jerome On sceptical vs credulous acceptance for abstract sys-

tems. In Lecture notes in computer science, 3229:462-473,2004.
7. P.M. Dung On the acceptability of arguments and its fundamental role in mono-

tonic reasoning, logic programming and n-person games. In Artificial Intelligence,
77:321-357, 1995.

8. P.M. Dung, R.A. Kowalski, and F. Toni Dialectic proof procedures for assumption-

base, admissible argumentation. In ArtificialIntelligence, 170: 114-159, 2006.
9. P.M. Dung, P. Mancarella, and F. Toni A dialectic procedure for sceptical,

assumption-based argumentation. In COMMA 2006.10S Press.
10. Paul E. Dunne, and T.J.M. Bench-Capon Two party immediate response disputes:

Properties and efficiency. In Artificial Intelligence, 149:221-250, 2003.

A Sound and Complete Dialectical Proof Procedure 63

11. Paul E. Dunne, and TJ.M. Bench-Capon Coherence in finite argument systems.

In Artificial Intelligence, 141: 187203,2002.
12. H. Iakobovits and D. Vermeir Dialectic Semantics for Argumentation Frameworks.

In Proc. ICAIL’99, pp 53-62. ACM Press, 1999.
13. A.C. Kakas and F. Toni Computing Argumentation in Logic Programming. In

Journal of Logic and Computation, 9(4):515562, August 1999.
14. S. Kraus, K. Sycara, and A. Evenchik Reaching agreements throughs argumen-

tation: a logical model and implementation. In Artificial Intelligence, 104: 1-69,
1998.

15. S. Parson, C. Sierra, and N.R. Jennings Agent that reason and negotiate by

arguing. In Journal of Logic and Computation, 8(3):261-292, 1998.
16. I. Rahwan, S.D. Ramchurn, N.R. Jennings, P. McBurney, S. Parsons, and L. So-

nenberg. Argumentation-Base Negotiation. In The Knowledge Engineering Review,
18(4):343-375,2004.

17. I. Rahwan, L. Sonenberg, and F. Dignum. Towards Interest-Based Negotiation. In

MMAS’03, pp 773-780, ACM Press, 2003.
18. B. Verheij A Labeling Approach to the Computation of Credulous Acceptance in

Argumentation. In IJCAI07, pp 623-628
19. G.A.W. Vreeswijk, and H. Prakken. Credulous and Sceptical Argument Games for

Preferred Semantics. In Proc. JELIA’2000, pp 239-253. LNAI 1919,2000.
20. G. Vreeswijk. An algorithm to compute minimally grounded and admissible defence

sets in argument systems. In Proceedings of the First International Conference on
Computational Models of Argument, pp 109-120. IOS Press 2006.

21. M. Wooldridge. An Introduction to Multiagent Systems. John Wiley & Sons, Ltd,
2002.

Argumentation-based Proof for an Argument in a
Paraconsistent Setting⋆

Iara Carnevale de Almeida2 and Jośe J́ulio Alferes1

1 CENTRIA, Universidade Nova de Lisboa
2829-516 Caparica, Portugal
jja@di.fct.unl.pt

2 CITI, Departamento de Inforḿatica, Universidade déEvora
Colégio Luis Verney; 7000-671́Evora, Portugal

ica@di.uevora.pt

Abstract. The paradigm of argumentation has been used in the literature to as-
sign meaning to knowledge bases in general, and logic programs in particular.
With this paradigm, rules of logic program are viewed as encoding arguments of
an agent, and the meaning of the program is determined by those arguments that
somehow (depending on the specific semantics) can defend themselvesfrom the
attacks of others arguments, named acceptable arguments. In previous work we
presented an argumentation based declarative semantics allowing paraconsistent
reasoning and also dealing with sets of logic programs that argue and cooperate
among each other. In this paper we focus on the properties of this semantics in
what regards paraconsistency and propose a procedure for proving an argument
according to that semantics.

1 Introduction

In logic programming, several ways to formalise argumentation-based semantics have
been studied for logic programs. Intuitively, argumentation-based semantics treat the
evaluation of a logic program as an argumentation process, i.e. a goalG is true if at
least one argument forG cannot be successfully attacked. The ability to view logic
programming as a non-monotonic knowledge representation language, in equal stand-
ing with other non-monotonic logics, brought to light the importance of defining clear
declarative semantics for logic programs, for which proof procedures (and attending
implementations) are then defined (e.g. [8, 9, 15, 2, 20, 12, 18, 7, 14, 10]).

In [5] we proposed an argumentation based semantics for setsof logic programs
that are able to cooperate and argue with each other. In it each program relies on a set
of other programs with which it has to agree in order to acceptan argument, and a set
of programs with which it can cooperate to build arguments. Besides this distributed
nature, the semantics in [5] also allows for paraconsistentforms of argumentation. In
fact, it was also a goal of that work to be able to deal with mutually inconsistent, and
even inconsistent, knowledge bases. Moreover, when in presence of contradiction we

⋆ The work was partially supported by the Brazilian CAPES, and by the European Commission
within the 6th Framework Programme project REWERSE, number 506779.

Argumentation-based Proof for an Argument in a Paraconsistent Setting 65

wanted to obtain ways of agent reasoning, ranging from consistent (in which inconsis-
tencies lead to no result) to paraconsistent. For achievingthis, we considered strong and
weak arguments.

The paraconsistency in the argumentation also yield a refinement of the possible
status of arguments: besides the justified, overruled and defensible arguments as in
[16], justified arguments may now be contradictory, based oncontradiction or non-
contradictory. Moreover, in some applications it might be interesting to change easily
from a paraconsistent to a consistent way of reasoning (or vice-verse).

In this paper we focus on the properties of that semantics in what regards para-
consistency which are interesting by themselves, and independent from its distributed
nature. With this purpose, we restrict our attention to the special case of the semantics in
[5], where only a single logic programs is in the set of programs. Moreover, we provide
a notion of proof for an argument for that semantics in that class.

In the next section we present a version of the proposed declarative semantics sim-
plified for the case of a single program, study some of its mostsignificant properties
regarding paraconsistency, and illustrate it in one example. We then define the proof
method for it, and end with some conclusions. Due to lack of space all proofs have
been removed from this version of the paper, and they can be found in a longer version
available as a technical report from the first author.

2 Paraconsistent Argumentation Semantics

As motivated in the introduction, in our framework [5] the knowledge base of an agent
is modelled by a logic program. More precisely, we useExtended Logic Program with
denials (ELPd), itself an extension of Extended Logic Programs [11]for modelling
the knowledge bases. Besides default and explicit negation, as usual in extended logic
programs, we allow a program to have denials of the form

⊥ ← L1, . . . , Ll, not Ll+1, . . . , not Ln (0 ≤ l ≤ n)

where each of theLis is an objective literal (i.e. an atomA in the language of the
program, or an explicitly negated atom¬A). In other words, denial are simply rules
where the head is the special, reserved, symbol⊥.

An argument for some objective literalL is acomplete well-defined sequencecon-
cluding L over aset of rulesof the knowledge baseKb. By completehere we mean
that all rules required for concludingL are in the sequence. Bywell-defined sequence
we mean a (minimal) sequence of rules concludingL as follows: the head of the last
rule in the sequence is an objective literalL; furthermore, if some atomL′ (ignoring
default literals) appears in the body of a rule then there must be a rule before this one
with L′ in the head; moreover, the sequence must not be circular and only use rules that
are strictly necessary.

Definition 1 (Complete Well-defined Sequence).LetP be an ELPd, andL an objec-
tive literal in the language ofP . A well-defined sequencefor L over a set of rulesS is
a finite sequence[r1; . . . ; rm] of rulesri fromS of the formLi ← Bodyi such that

– L is the head of the rulerm, and

66 I. Carnevale de Almeida and J.J. Alferes

– an objective literalL′ is the head of a ruleri (1 ≤ i < m) only if L′ is not in the
body of anyrk (1 ≤ k ≤ i) andL′ is in the body of some rulerj (i < j ≤ m).

We say that a well-defined sequence forL is completeif for each objective literal
L′ in the body of the rulesri (1 ≤ i ≤ m) there is a rulerk (k < i) such thatL′ is the
head ofrk.

By theconclusionsof a sequence we mean the set of all objective literals in the head
of some rule of the sequence, and by theassumptionswe mean the set of all default
literal in bodies.

For dealing with consistent and paraconsistent reasoning,we define strong and weak
arguments, based on strong and weak sets of rules, the formerbeing simply the rules in
theKb . A weak set of rulesresults from adding to all rule bodies the default negation
of the head’s complement, and of⊥, thus making the rules weaker (more susceptible
to being contradicted/attacked). Intuitively, if there isa potential inconsistency, be it
by proving the explicit complement of a rules head or by proving ⊥ then the weak
argument is attacked, whereas the strong is not.

Definition 2 (Strong and Weak Arguments).LetP be an ELPd, andL a literal in its
language. Let theweak set of rules ofP be defined as

Rw
P = { L ← Body, not ¬L, not ⊥ | L ← Body ∈ P }

A strong(resp.weak) argumentof P for L, As
L (resp.Aw

L), is a complete well-
defined sequence forL overP (resp.Rw

P).
LetAw

L andAs
L be two arguments ofP . Aw

L is the weakargument correspondingto
As

L, and vice-verse, if both use exactly the same rules of the original programP (the
former by having rulesRw

P and the latter fromP alone).
We say thatAL is anargumentof P for L if it is either a strong argument or a weak

one ofP for L. We also say thatAk
L is ak-argument ofP for L (wherek is eithers, for

strong arguments, orw, for weak ones).

After defining how arguments are built, we now move on to defining the attacking
relation between these arguments. By using two kinds of arguments, strong and weak
arguments as just exposed, we may rely on a single kind of attack. Indeed the different
kinds of attacks usually considered in argumentation semantics for extended logic pro-
grams,undercutsandrebutsas in [15], can be captured by a single notion of attack. If
an argument for an objective literalL (denoted byAL) has a default negationnot L′

in it, any argument forL′ attacks (by undercut)AL. The rebut attacking relation states
that an argument also attacks another one when both arguments have complementary
conclusions (i.e. one concludesL and the other¬L). It is easy to see that with strong
and weak arguments,rebut can be reduced to undercut: rebutting reduces to undercut
attacks to weak arguments.

In our definition of attacks care must be taken in what regardsarguments for⊥.
By simply using undercut attacks any argument for⊥ attacks every weak argument.
However, it does not make sense to attack arguments for objective literals if they do not

Argumentation-based Proof for an Argument in a Paraconsistent Setting 67

lead tofalsity. Informally, an objectiveL literal leads tofalsityif there is an argument
AL such thatA⊥ is built based on such an argument, e.g.

As
⊥ : As

L + [⊥ ← L, not L′]

We only consider objective literals that are in the body of the rule for⊥ because these
literals immediately lead tofalsity. We assume that the involvement of other objective
literals are not as strong as those in the body of the denial3. Then objective literals are
directly conflicting withA⊥ if the following holds:

Definition 3 (Directly Conflict with A⊥). LetA⊥ be an argument for⊥, ‘⊥ ← Body’
be the rule inA⊥ and{L1, . . . , Ln} be the set of all objective literals inBody. The set
of objective literalsdirectly conflicting withA⊥ is

DC(A⊥) = {⊥} ∪ {L1, . . . , Ln}.

Definition 4 (Attack). Let P be an ELPd. An argumentAL of P for L attacksan
argumentAL′ of P for L′ iff

– L is the symbol⊥, not ⊥ belong to the body of some rule inAL′ , and L′ ∈
DC(AL); or

– L is an objective literal different from⊥, andnot L belongs to the body of some
rule in AL′ .

Since attacking arguments can in turn be attacked by other arguments, comparing
arguments is not enough to determine their acceptability w.r.t. the set of overall argu-
ments. What is also required is a definition that determines the acceptable arguments
on the basis of all the ways in which they interact, by proposing arguments and so
opposing them. A subsetS of proposed arguments ofP is acceptable only if the set
of all arguments ofP does not have some valid opposing argument attacking the pro-
posed arguments inS. As in [8, 15], we demand acceptable sets to contain all such
arguments. Two questions remain open: how to obtain opposing arguments and, among
these, which are valid?

An opposing argument for a proposed argument which makes an assumption, say
not L, is simply an argument for a conclusionL. For an opposing argumentAo to be
valid for attacking a proposed argumentAp in S, S should not have another argument
that, in turn, attacksAo (i.e. another argument that reinstates4 Ap). In this case, we
say thatS cannot defend itself againstAo. This motivation points to a definition of
acceptable sets of argumentsSi in P such as a setS is acceptableif it can attack all
opposing arguments. So, we can say that a proposed argumentAp is acceptable w.r.t. a
setS of acceptable arguments if and only if each opposing argument Ao attackingAp

is (counter-)attacked by an argument inS.

3 We further assume they can be detected in a process of “belief revision”, e.g. [3]. However, a
discussion of this issue is beyond the scope of this proposal.

4 The key observation is that an argumentA that is attacked by another argumentB can only
be acceptable if it isreinstatedby a third argumentC, i.e by an acceptable argumentC that
attacksB.

68 I. Carnevale de Almeida and J.J. Alferes

However, it is still necessary to determine how strong arguments and weak argu-
ments should interact w.r.t. such a setS of arguments. Based on the idea of reinstate-
ment, both attacked and counter-attacking arguments should be of the same kind. For in-
stance, if a proposing argument is strong (resp. weak) then every counter-attack against
its opposing argument should be strong (resp. weak). A similar reason can be applied
for opposing arguments. Therefore, proposed (resp. opposing) arguments should be of
the same kind.

In the remainder of this paper we will use the notationp ando to distinguish the pro-
posed argument from the opponent one, i.e.p (resp.o) is a (strong or weak) proposed
(resp. opponent) argument. Since there are four possibilities of interaction between a
proposed argument,Ap, and an opposing argument,Ao, the definition of arguments’ ac-
ceptability (and the corresponding characteristic function) is generalised by parametris-
ing the possible kinds of arguments, viz. strong arguments and weak arguments.

Definition 5 (Acceptable Argument). Let P be an ELPd,p (resp. o) be the kind
(strong or weak) of the proposed (resp. opposing) argument,Argsp(P) (Argso(P))
be the set of all arguments inP of kind p (resp.o) , andS ⊆ Argsp(P). An argu-
mentAL ∈ Argsp(P) is anacceptablep,o argumentw.r.t. S iff each argumentAL′ ∈
Argso(P) attackingAL is attacked by an argumentAL′′ ∈ S.

Note that this proposal is in accordance with the ‘Compositional Principle’ of [20]:
“If an argumentSA is a sub-argument of argumentA, andSA is not acceptable w.r.t.
a set of argumentsS, thenA is also not acceptable w.r.t.S”. We now formalise the
concept of acceptable arguments with a fixpoint characteristic functionp o of P :

Definition 6 (Characteristic Function). LetP be an ELPd, andp (resp.o) be the kind
(strong or weak) of the proposed (resp. opposing) argument of P , andS ⊆ Argsp(P).
Thecharacteristic functionp o of P and overS is:

F
p,o
P : 2Args(P) → 2Args(P)

F
p,o
P (S) = {Arg ∈ Args(P) | Arg is acceptablep,o w.r.t. S}.

It can be proven that this function is monotonic, and so it hasa least fixpoint that
can be obtained iteratively as usual:

Proposition 1. Define for anyP the following transfinite sequence of sets of argu-
ments:

– S0 = ∅
– Si+1 = F

p,o
P (Si)

– Sδ =
⋃

α<δ

Sα for limit ordinal δ

Given thatF p,o
P is monotonic, there must exist a smallestλ such thatSλ is a fixpoint of

F
p,o
P , andSλ = lfp(F p,o

P).

Note thatlfp(F p,o
P) is well-behaved, i.e. arguments in it areacceptablep,o w.r.t.

the set of all argument ofP . By definition lfp(F p,o
P) is minimal, which guarantees

that it does not contain any argument of which acceptance is not required. Moreover,
when F

p,o
P is finitary the iterative process above is guaranteed to terminate after an

enumerable number of steps.

Argumentation-based Proof for an Argument in a Paraconsistent Setting 69

Proposition 2. F
p,o
P is finitary if each argument inS is attacked by at most a finite

number of arguments inS.

By knowing the set of all acceptablep,o arguments ofP , we can split all arguments
fromArgs(P) into three classes: justified arguments, overruled arguments and defen-
sible arguments. Our definition of overruled is different from [15]’s proposal. In its
proposal, the restriction applies that overruled arguments cannot be also justified and so
[15]’s argumentation semantics is always consistent. Since we aim to obtain a paracon-
sistent way of reasoning, the status of an argument is definedas follows:

Definition 7 (Justified, Overruled or Defensible Argument). Let P be an ELPd,p
(resp.o) be the kind (strong or weak) of an argument ofP , andF

p,o
P be the character-

istic functionp o of P . An argumentAp
L is

– justifiedp,o
P iff it is in lfp(F p,o

P)
– overruledp,o

P iff theAo
L corresponding toAp

L is attacked by a justifiedp,o
P argument

– defensiblep,o
P iff it is neither a justifiedp,o

P nor an overruledp,o
P argument

We denote thelfp(F p,o
P) byJustArgs

p,o
P .

We may also iteratively obtain overruled arguments based onthe greatest fixpoint
of the characteristic function which, by monotonicity of the characteristic function is
guaranteed to exist and can also be obtained iteratively as usual. In fact:

Lemma 1. gfp(F o,p
P) = {Ao

L1
: ¬(∃Ap

L2
∈ lfp(F p,o

P) | Ap
L2

attacksAo
L1

)}

Lemma 2. lfp(F p,o
P) = {Ap

L1
: ¬(∃Ao

L2
∈ gfp(F o,p

P) | Ao
L2

attacksAp
L1

)}

Then, the following holds:

Theorem 1. A
p
L is overruledp,o

P iff theAo
L corresponding toAp

L is not ingfp(F o,p
P).

Due to space limitations we do not detail here general properties when some other
weaker restriction are imposed. Instead, we discuss some properties ofJustArgs

p,o
P

and comparisons. Sincep (resp.o) denote the kind of a proposed (resp. an opposing)
argument, i.e. strong argument or weak argument, assume that p (resp.o) in {s, w}.
Both JustArgs

w,w
P andJustArgs

w,s
P are both conflict-free5 and non-contradictory6.

Thus, every argument in bothJustArgs
w,w
P andJustArgs

w,s
P is non-contradictory,

i.e. it is not related to a contradiction at all. Furthermore, F
w,w
P has more defensible

arguments thanFw,s
P . Therefore, we obtain a consistent way of reasoning inAg if we

applyF
w,w
P overArgs(P).

In contrast,JustArgs
s,s
P andJustArgs

s,w
P may be contradictory. However, to eval-

uate the acceptability of available arguments without considering the presence offal-
sity or both arguments forL and¬L, the proposed arguments should be strong ones,
and every opposing argument is a weak argument. SinceF

s,w
P respects the ‘Coherence

Principle’ of [13, 1], i.e. given that every opposing argument is a weak one, it can be

5 A setS of arguments is conflict-free if there is no argument inS attacking an argument inS.
6 A setS of arguments is non-contradictory if neither an argument forfalsity nor both arguments

for L and¬L are inS.

70 I. Carnevale de Almeida and J.J. Alferes

attacked by any proposed argument for its explicit negation. Therefore, we obtain a
paraconsistent way of reasoning if we applyF

s,w
P overArgs(P).

Moreover, a justifieds,w
P argument of an agent can be related to a contradiction with

respect toJustArgs
s,w
P as follows. We first define that an argument that reinstate an-

other argument is itscounter-attack:

Definition 8 (Counter-Attack). Let P be an ELPd,S a set of arguments fromP , AL

be an argument inS, andAL′ be an argument ofP attackingAL. A counter-attackfor
AL againstAL′ is an argument inS that attacksAL′ . CAAL

(AL′ , S) is the set of all
counter-attacks forAL againstAL′ in S

Definition 9 (Relation to a Contradiction). Let P be an ELPd. A justifieds,w
P argu-

mentAs
L is

– contradictorys,w
P if JustArgs

s,w
P is contradictory w.r.t.L, or there exists a contra-

dictorys,w
P argumentAs

⊥
andL ∈ DC(As

⊥
); or

– based-on-contradictions,w
P if for all Aw

L′ attackingAs
L there exists a contradic-

torys,w
P or based-on-contradictions,w

P argument inCAAL
(Aw

L′ , JustArgs
s,w
P), or

there exists anL′ in the head of some rule inAs
L, different fromL and⊥, such that

JustArgs
s,w
P is contradictory w.r.t.L′; or

– non-contradictorys,w
P iff it is neither contradictorys,w

P nor it is based-on-contra-
dictions,w

P .

Proposition 3. A justifieds,w
P argumentAp

L is non-contradictorys,w
P if for no headL′ of

a rule in As
L, JustArgs

s,w
P is contradictory w.r.t.L′, and every counter-attack forAs

L

is a non-contradictorys,w
P argument.

A truth valueof an agent’s conclusion in a (consistent or paraconsistent) way of
reasoning is as follows:

Definition 10 (Truth Value of a Conclusion).LetP be an ELPd, andL ∈ H(P), and
k ∈ {s, w}. A literal L overP is

– falsek,w
P iff everyk-argument forL is overruledk,w

P

– truek,w
P iff there exists a justifiedk,w

P argument forL. Moreover,L is

• contradictoryk,w
P if L is the symbol⊥ or there exists a justifiedk,w

P argument for
¬L

• based-on-contradictionk,w
P if it is both truek,w

P and falsek,w
P

• non-contradictoryk,w
P , otherwise

– undefinedk,w
P iff L is neither truek,w

P nor falsek,w
P (i.e. there is no justifiedk,w

P argu-
ment forL and at least onek-argument forL is not overruledk,w

P).

Example 1 (Privacy of Personal Life – PPL).Usually, any person deserves privacy with
respect to her personal life. However, when such a person behaves in a way that is not
acceptable (e.g. selling drugs) she will suffer the consequences. The first consequence
is the focus of media attention on her personal life and consequent loss of privacy. The
personal life of such a person might be exposed by the “results” of media attention (e.g.

Argumentation-based Proof for an Argument in a Paraconsistent Setting 71

photos, reports, and so on), unless there is a law that protects her against it. The above
description can be expressed by the following extended logic programming rules.

focusOfMediaAttention(X) ← person(X), ¬acceptableBehavior(X).
¬acceptableBehavior(X) ← involved(X,Y), againstSociety(Y).
¬hasPrivacy(X) ← focusOfMediaAttention(X).
personalLifeExposed(X) ← ¬hasPrivacy(X), not protectedByLaw(X).
hasPrivacy(X) ← person(X), not ¬hasPrivacy(X).

In contrast, it is considered an absurdity that someone may lose her privacy when
she is involved in some event for which there is no evidence ofbeing public (e.g. some-
one starting a long-term treatment for drugs dependency). The absurdity in the rule
below is represented as a denial:

⊥ ← ¬hasPrivacy(X), event(X,Y), not publicEvent(Y).

Moreover, modern society normally tries to protect children, and so their privacy is
guaranteed until evidence appears of some unusual behaviour (e.g. by having unaccept-
able behaviour).

hasPrivacy(X) ← child(X), not unusualChild(X).
unusualChild(X) ← child(X),¬acceptableBehavior(X).
person(X) ← child(X).

However, famous persons are inherently the focus of media attention:

focusOfMediaAttention(X) ← famousPerson(X).
person(X) ← famousPerson(X).

Assume an agentAg with the knowledge above, plus some facts about Potira and
Ivoti 7. Potira is a famous child, and Ivoti is a famous soccer playerin treatment for
drugs dependency:

child(potira). famousPerson(potira).
famousPerson(ivoti). event(ivoti, treatmentForDrugsDependency).

Figure 1 illustrates, with obvious abbreviations, the possible attacks of arguments
for “privacy of Potira’s life” overArgs(PPL). The notation for that figure is as fol-
lows: Arguments are represented as nodes. A solid line from argumentA to argument
B means “A attacksB”, a dotted line fromA to B means “A is built based onB”, and
a line with dashes means “A reinstatesB”. A round node means “it is an acceptable
argument” and a square node means “it is not an acceptable argument”, which are w.r.t.
the set of arguments ofP. Then we can presume both the status of the arguments and
the truth value of the conclusions ofPPL.

7 The following names are from Native South American, more specifically from the Tupi-
Guarani family, Potira and Ivoti both mean “flower”.

72 I. Carnevale de Almeida and J.J. Alferes

As
ch(p)

As
fP (p)

As
pe(p)

A′s
pe(p)

As
fOMA(p)

A′′s
hP (p)

As
hP (p)

A′s
hP (p)

As
¬hp(p)

Aw
¬hP (p)

As
pLE(p)

Fig. 1.Acceptable arguments inArgs(PPL) for Potira

The argument for “Potira has no Privacy” (As
¬hp(p)) and also the arguments for

“Potira has privacy” (As
hp(p), A

′s
hp(p), A

′′s
hp(p)) are contradictorys,w

PPL; the argument “Por-
tira has her personal life exposed” (As

pLE(p)) is either based-on-contradictions,w
PPL and

overruleds,w
PPL. The other arguments are non-contradictorys,w

PPL. Therefore, the truth val-
ues for conclusions about Potira are as follows:

– fP (p), ch(p), fOMA(p) andpe(p) are non-contradictorys,w
PPL;

– hp(p) and¬hp(p) are both (trues,w
PPL and) contradictorys,w

PPL and falses,w
PPL; and

– pLE(p) is both based-on-contradictions,w
PPL and falses,w

PPL.

Moreover, the truth values for conclusions regarding Ivotiare as follows:

– fP (i), pe(p) andfOMA(i) are non-contradictorys,w
PPL;

– hp(i) and¬hp(i) are both contradictorys,w
PPL and falses,w

PPL; and
– “There is falsity in PPL” (i.e. ⊥) is both (trues,w

PPL and) contradictorys,w
PPL and

falses,w
PPL. Then

– ev(i, TFDD) andpLE(i) are both based-on-contradictions,w
PPL and falses,w

PPL.

Argumentation-based Proof for an Argument in a Paraconsistent Setting 73

3 A proof for an argument

Though the declarative semantics just exposed may rely on aniterative procedure, its
usage for computing arguments may not always be appropriate. This is specially the
case when we are only interested in the proof for a (query) argument, rather than all
acceptable arguments, as is obtained by the iterative process. Such a query oriented
proof procedure can be viewed as conducting a “dispute between a proponent player
and an opponent player” in which both proponent and opponentexchange arguments.
In its simplest form, the dispute can be viewed as a sequence of alternating arguments:

PR0, OP0, PR1, . . . , PRi, OPi+1, PRi+2, . . .

The proponent puts forward an initial argumentPR0. For every argumentPRi put for-
ward by the proponent, the opponent attempts to respond withan attacking argument
OPi+1 againstPRi. For every attacking argumentOPi+1 put forward by the opponent,
the proponent attempts to counter-attack with a proposed argumentPRi+2 againstOPi.
To win the dispute, the proponent needs to have a proposed argument against every op-
posing argument of the opponent. Therefore, a winning dispute can be represented as a
dialogue tree, which represents the top-down, step-by-step construction of a proof tree.
We follow [15]’s proposal, which defines a proof for an argument AL as a dialogue tree
for AL. However, our definition of dialogue tree is in accordance with the acceptability
of the arguments of an ELPdP (see Def. 5):

A proposed argumentAL ∈ Argsp(P) is acceptable if all of its opposing
arguments inArgso(P) are attacked by acceptable arguments fromArgsp(P).

To define a dialogue tree for an argumentAL we need first a definition ofdialogue
for an argument. A dialogue forAL is a sequence ofPR andOP moves of proposed
arguments and opposing arguments, such that the firstPR move is the argumentAL.
EachOP (resp.PR) move of a dialogue consists of an argument fromArgso(P)
(resp.Argsp(P)) attacking the previous proposed (resp. opposing) argument in such
a dialogue. Intuitively, we can see that everyPR move wants the conclusion ofAL to
be acceptable, and eachOP move only wants to prevent the conclusion ofAL from
being acceptable. In the case ofPR moves, we can further say that if we impose a
restriction that proposing arguments cannot be used more than once in a sequence of
moves of a dialogue, then the dialogue will have a finite sequence of PR and OP

moves. Therefore, none of the proposed arguments can be usedmore than once in the
same dialogue, but any of the opposing arguments can be repeated as often as required
to attack a proposed argument.

Definition 11 (dialogue
p,o
AL

). LetP be an ELPd,p (resp.o) be the kind (strong or weak)
of a proposed (resp. an opposing) argument ofP , andArgsp(P) andArgso(P) be the
set ofp-arguments ando-arguments ofP , respectively. Adialoguep o (in P) for an
argumentAL ∈ Argsp(P), calleddialogue

p,o
AL

, is a finite non-empty sequence ofm

movesmovei = ALi
(1 ≤ i ≤ m) such that

1. move1 = AL

74 I. Carnevale de Almeida and J.J. Alferes

2. for every1 < i ≤ m, ALi
attacksALi−1

and
– if i is odd thenALi

∈ Argsp(P) and there is no oddj < i such thatALj
=

ALi
, or

– if i is even thenALi
∈ Argso(P).

We say thatmovei is odd ifi is odd; otherwise,movei is even.

A dialogue forAL succeedsif its last move is aPR move. In this proposal, we want
to guarantee that a dialogue tree for an argumentAL is finitary (cf. Prop. 2). Neverthe-
less, we only consider grounded finite ELPd in order to relatethe declarative semantics
(presented in the previous section) to this proposal of operational semantics. By con-
sidering this, every dialogue in such a dialogue tree finishes because there will always
be a last movePR (resp.OP) in such a dialogue, so no opposing (resp. proposed)
argument against it exists. For non-grounded (infinite) programs, there may be (failed)
dialogues with an infinite sequence of moves. In such a case, these dialogues should
be considered failures, and the argument for such a dialoguetree should be deduced
as defensible. The main problem of such an approach is detecting an infinite sequence
of moves in a dialogue. However, the following definition will consider cases of both
‘grounded finite ELPd’ and ‘non-grounded (infinite) ELPd’.

Definition 12 (The Status of a dialogue).Let P an ELPd. A dialoguep o (in P) for
an argumentAL ∈ Argsp(P) is completediff its last move ism, and

– if m is odd then there is no argument inArgso(P) attackingALm
, or

– if m is even then there is no argument inArgsp(P)− Sp attackingALm
whereSp

is the set of allALj
in the sequence such thatj is odd

(or it is infinite). A completed dialogue isfailed iff its last move isodd (or it is infinite);
otherwise, itsucceeds.

Note that a dialoguep,o
AL

in P and thelfp(F p,o
P) “grow up” in different ways. In the

former, an argumentA in the last move,movef , is not attacked by any argument in
Args(P). SinceA attacks the previous move,movef−1, we can say that the argument
B in movef−2 was reinstated byA. Thus, eachmovei (1 ≤ i < f − 1) is reinstated
by movei+2. The latter evaluates argumentA as acceptable in the first iteration of the
characteristic functionF p,o

P . In the second iteration,A reinstatesB, so thatB is accept-
able and might reinstate other arguments in all following iterations. We can further say
that dialoguep,o

AL
decreases (in a top-down way) andlfp(F p,o

P) increases (in a bottom-up
way) the set of evaluated arguments.

Proposition 4. Let movem = AL be the last move of a succeeded dialoguep,o

A′

L

in P .

Then,AL ∈ F
p,o
P (∅).

A dialogue treeDT for AL is held between a proposed argumentPR and its op-
posing argumentOP againstPR, where the root ofDT is AL. The dialogue treeDT

considers all possible ways in whichAL can be attacked because each branch ofDT is
a dialogue forAL, i.e. every single dialogue forAL is built because we should consider
the overall arguments inArgs(P) to deduce the status ofAL. The dialogue treeDT

for an argumentAL succeeds if every dialogue ofDT succeeds.

Argumentation-based Proof for an Argument in a Paraconsistent Setting 75

Definition 13 (DT
p,o
AL

). Let P be an ELPd,p (resp.o) be the kind (strong or weak) of
the proposed (resp. opposing) argument ofArgs(P), andArgsp(P) (resp.Argso(P))
be the set ofp-arguments (o-arguments) ofP . A dialogue treep o (in P) for AL ∈
Argsp(P), calledDT

p,o
AL

, is a finite tree of movesmovei = ALi
(i > 0) such that

1. each branch ofDT
p,o
AL

is adialogue
p,o
AL

, and
2. for all i, if movei is

– even then its only child is ap-argument attackingALi
∈ Argso(P), or

– odd then its children are allo-arguments attackingALi
∈ Argsp(P)

A DT
p,o
AL

succeedsiff all branches (i.e. alldialogue
p,o
AL

) of the tree succeeds.

Based on the second condition of Definition 13, we might obtain more than one
dialogue tree for an argument. This occurs because only one proponent’s move is built
for each opponent’s move of a dialogue tree. For instance,

Example 2.Let P = {p ← not a; a ← not b, not c; a ← not d; b; c ← not g; g}.
There are two possibleDT

s,s
Ap

in P : the first dialogue tree does not succeed because
there is a last move which is ano-argument, viz[a ← not b]; the second one also does
not succeed because every last move is ano-argument, viz[g] and[a ← not d].

At this point we can relate, for grounded finite programs, theresults from aDT
p,o
AL

to the status of the argumentAL (see Def. 7), as follows:

Proposition 5. An argumentAp
L in a grounded finiteP is

– justifiedp,o
P iff there exists a successfulDT

p,o
AL

– overruledp,o
P iff for all DT

p,o
AL

: there exists amove2 = Ao
L′ such thatDT

o,p
AL′

suc-
ceeded

– defensiblep,o
P iff it is neither justifiedp,o

P nor overruledp,o
P .

The following example illustrate the concepts presented inProposition 5.

Example 3.Let P2 = {a ← not b; ¬a; b; ¬b; c; ⊥ ← not c}. On the top of Figure 2,
it is illustrated the possibleDT

w,w
AL

in P2. Note that each dialogue tree does not succeed
because its last move is ano-argument. Nevertheless, all arguments are defensiblew,w

P2

because none of these last moves are justifiedw,w
P2 . On the bottom of the Figure 2 it is

also illustrated the possibleDT
s,w
AL

in P2. In such a case, all arguments are justifieds,w
P2 .

Proposition 6. A justifieds,w
P argumentAs

L in a finite groundP is

– contradictorys,w iff L is the symbol⊥, or different from⊥ and there exists at least
a successfulDT

s,w
A¬L

; or
– based-on-contradictions,w iff As

H is not contradictorys,w and
• there exists a contradictorys,w As

L′ (with a ruleL′ ← Body) such thatL ∈
Body, or

• there exists anL′′ in the head of a rule inAs
L such thatAs

L′′ is contradictorys,w,
or

76 I. Carnevale de Almeida and J.J. Alferes

P : [a ← not b, not ¬a, not ⊥]

O : [b ← not ¬b, not ⊥] O : [¬a ← not a, not ⊥]

P : [¬b ← not b, not ⊥]

O : [b ← not ¬b, not ⊥]

P : [c ← not ¬c, not ⊥]

O : Aw
c + [⊥ ← c, not ⊥, not ¬⊥]

P : Aw
c + [⊥ ← c, not ⊥, not ¬⊥]

O : Aw
c + [⊥ ← c, not ⊥, not ¬⊥]

P : [b ← not ¬b, not ⊥]

O : [¬b ← not b, not ⊥]

P : [¬b ← not b, not ⊥]

O : [b ← not ¬b, not ⊥]

P : [¬a ← not a, not ⊥]

O : [a ← not ¬a, not ⊥]

P : [b]

P : [¬b]

P : [c]

P : [¬a]

P : [a ← not b]

O : [b ← not ¬b, not ⊥]

P : [¬b]

P : [c; ⊥ ← c]

Fig. 2.SomeDT
w,w
AL

andDT
s,w
AL

in {a ← not b;¬a; b;¬b; c;⊥ ← not c}

Argumentation-based Proof for an Argument in a Paraconsistent Setting 77

• for all dialogue
s,w
AH

in DT
s,w
AH

: the last move has not a non-contradictorys,w

argument; or
– non-contradictorys,w, otherwise.

To conclude about the truth value of an objective literalL we evaluate more than
one dialogue tree of each argument for suchL:

Proposition 7. An objective literalH is

– true
p,o
P iff there exists a successfulDT

p,o
AH

. Thus,H is
• contradictoryp,o

P iff for all successfulDT
p,o
AH

: A
p
H is contradictoryp,o

P , or
• based-on-contradictionp,o

P iff for all successfulDT
p,o
AH

: A
p
H is based-on-contra-

dictionp,o
P , or

• non-contradictoryp,o
P iff there exists a successfulDT

p,o
AH

such thatAp
H is non-

contradictoryp,o
P ;

– false
p,o
P (in P) iff ∀DT

p,o
AH

: A
p
H is overruledp,o

P ;
– undefined

p,o
P (in P) iff ∀DT

p,o
AH

: A
p
H is neither justifiedp,o

P nor overruledp,o
P .

Example 4.Following Example 3, all literals ofP2 are justifieds,w
P2 . However, all liter-

als ofP2 are undefinedw,w
P2 .

4 Conclusions and Further Work

Our argumentation semantics is based on the argumentation metaphor, in the line of
the work developed in [9, 15, 2, 18] for defining semantics of single extended logic pro-
grams. In these argumentation-based semantics, rules of a logic program are viewed as
encoding arguments of an agent. More precisely, an argumentfor an objective literalL
is a sequence of rules that “proves”L, if all default literals (of the formnot L′) in the
body of those rules are assumed true. In other words, arguments encoded by a program
can attack – by undercut – each other. Moreover, an argument for L attacks – by rebut
– another argument if this other argument assumes its explicit negation (of the form
¬L). The meaning of the program is so determined by those arguments that somehow
(depending on the specific semantics) can defend themselvesfrom the attacks of other
arguments.

We generalise [15]’s definition of argument by proposing twokind of arguments,
viz. strong arguments and weak arguments. By having two kinds of arguments, viz.
strong arguments and weak arguments, the attack by undercutis not needed. Simply
note that rebut are undercut attacking weak arguments. Therefore, rebut is not consid-
ered in our proposal since, as already shown in [17, 6, 18], itcan be reduced to under-
cut by considering weaker versions of arguments. [2] also defines a methodology for
transforming non-exact, defensible rules into exact ruleswith explicit non-provability
conditions and shows that this transformation eliminates the need for rebuttal attacks
and for dealing with priorities in the semantics.

Similar to [9, 15] we formalise the concept of acceptable arguments with a fixpoint
operator. However, the acceptability of an argument might have different results and it
depends on which kind of interaction between (strong and weak) arguments is chosen.
Therefore, our argumentation semantics assigns differentlevels of acceptability to an

78 I. Carnevale de Almeida and J.J. Alferes

argument for an objective literalL and so it can be justified, overruled, or defensible.
Moreover, a justified argument forL can be contradictory, based on contradiction, or
non contradictory. Consequently, a truth value ofL can be true (and contradictory, based
on contradiction, or non contradictory), false or undefined.

Since our argumentation semantics is parametrised by the kind of interaction be-
tween arguments, we obtain results from a consistent way of reasoning to a paraconsis-
tent way of reasoning. A consistent way of reasoning neitherconcludes thatL nor¬L

are true, even if one of these is a fact. A paraconsistent way of reasoning can conclude
L is true even if it also concludes that¬L is true. Given that we consider denials in
the agent’s knowledge base – in a conflicting situation – a consistent way of reasoning
cannot conclude that a givenL is true if L is related with the presence of thefalsity; a
paraconsistent way of reasoning might concludeL even it is related withfalsity. Fur-
thermore, our argumentation semantics (and the corresponding proof procedure) suc-
ceeds in detecting conflicts in a paraconsistent extended logic program with denials, i.e.
it handles with contradictory arguments and with the presence offalsity.

For this proposal we have made two implementations, both in XSB System (by re-
sorting to tabling) [19] which computes the argumentation Prolog implementation over
an agent’s knowledge base. One bottom-up implementation ofthe semantics, follow-
ing closely its declarative definition; another of query-driven proof procedures for the
semantics. The proof procedure has also been implemented byusing the toolkit Inter-
prolog [4], a middle-ware for Java and Prolog which providesmethod/predicate calling
between both.

As we mentioned, the original semantics, defined in [5], is a generalisation of the
one presented here to a distributed argumentation-based negotiation semantics. As fu-
ture work we intend to generalise this (centralised) proof procedure to a distributed
proof procedure seeing the negotiation process as a forest of dialogue trees, rather than
a single tree as here.

References

1. J. J. Alferes, C. V. Daḿasio, and L. M. Pereira. A logic programming system for non-
monotonic reasoning.Journal of Automated Reasoning, 14(1):93–147, 1995.

2. A. Bondarenko, P. M. Dung, R. Kowalski, and F. Toni. An abstract,argumentation-theoretic
approach to default reasoning.Journal of Artificial Intelligence, 93(1–2):63–101, 1997.

3. L. M. Pereira e M. Schroeder C. V. Damásio. Revise: Logic programming and diagnosis.
In U. Furbach J. Dix and A. Nerode, editors,4th International Conference (LPNMR’97),
volume LNAI 1265 ofLogic Programming and NonMonotonic Reasoning, pages 353–362.
Springer, July 1997.

4. M. Calejo. Interprolog: Towards a declarative embedding of logic programming in java.
In J. J. Alferes and J. Leite, editors,9th European Conference (JELIA 2004), LNAI, pages
714–71. Springer, 2004. Toolkit available at http://www.declarativa.com/InterProlog/.

5. Iara Carnevale de Almeida and José J́ulio Alferes. An argumentation-based negotiation
framework. In K. Inoue, K. Satoh, and F Toni, editors,VII International Workshop on Com-
putational Logic in Multi-agent Systems (CLIMA), volume 4371 ofLNAI, pages 191–210.
Springer, 2006. Revised Selected and Invited Papers.

Argumentation-based Proof for an Argument in a Paraconsistent Setting 79

6. Iara de Almeida Ḿora and Jośe J́ulio Alferes. Argumentative and cooperative multi-agent
system for extended logic programs. In F. M. Oliveira, editor,XIVth Brazilian Symposium
on Artificial Intelligence, volume 1515 ofLNAI, pages 161–170. Springer, 1998.

7. P. Dung, P. Mancarella, and F. Toni.Computational Logic: Logic Programming and Beyond
– Essays in Honour of Robert A. Kowalski, volume 2408, chapter Argumentation-based proof
procedures for credulous and sceptical non-monotonic reasoning,pages 289–310. Springer,
2002.

8. P. M. Dung. An argumentation semantics for logic programming with explicit negation. In
10th International Conference on LP (ICLP), pages 616–630. MIT Press, 1993.

9. P. M. Dung. On the acceptability of arguments and its fundamental role innonmono-
tonic reasoning, logic programming and n-person games.Journal of Artificial Intelligence,
77(2):321–357, 1995.

10. P. M. Dung, R. Kowalski, and F. Toni. Argumentation-theoretic proof procedures for default
reasoning. Technical Report. Available at http://www.doc.ic.ac.uk/˜ft/PAPERS/arg03.pdf,
May 2003.

11. M. Gelfond and V. Lifschitz. Logic programs with classical negation.In Warren and Szeredi,
editors,7th International Conference on LP (ICLP), pages 579–597. MIT Press, 1990.

12. R. P. Loui. Process and policy: Resource-bounded non-demonstrative reasoning.Journal of
Computational Intelligence, 14:1–38, May 1998.

13. L. M. Pereira and J. J. Alferes. Well founded semantics for logic programs with explicit
negation. InEuropean Conference on Artificial Intelligence (ECAI), pages 102–106. John
Wiley & Sons, 1992.

14. J. L. Pollock. Defeasible reasoning with variable degrees of justification. Journal of Artificial
Intelligence, 133:233–282, 2002.

15. H. Prakken and G. Sartor. Argument-based extended logic programming with defeasible
priorities. Journal of Applied Non-Classical Logics, 7:25–75, 1997.

16. H. Prakken and G. A. W. Vreeswijk.Handbook of Philosophical Logic, volume 4, chapter
Logics for Defeasible Argumentation, pages 218–319. Kluwer Academic, 2 edition, 2002.

17. Michael Schroeder, Iara de Almeida Móra, and Jośe J́ulio Alferes. Vivid agents arguing
about distributed extended logic programs. In Ernesto Costa and AmilcarCardoso, edi-
tors,Progress in Artificial Intelligence, 8th Portuguese Conference on Artificial Intelligence
(EPIA), volume 1323 ofLNAI, pages 217–228. Springer, 1997.

18. R. Schweimeier and M. Schroeder. Notions of attack and justified arguments for extended
logic programs. In F. van Harmelen, editor,15th European Conference on Artificial Intelli-
gence. IOS Press, 2002.

19. T. Swift and et all. Xsb - a logic programming and deductive database system
for unix and windows. Technical report, XSB project, 2003. Toolkit available at
http://xsb.sourceforge.net/.

20. G. A. W. Vreeswijk. Abstract argumentation systems.Journal of Artificial Intelligence,
90(1–2):225–279, 1997.

CaSAPI: a system for credulous and sceptical

argumentation

Dorian Gaertner and Francesca Toni

Department of Computing
Imperial College London

Email: {dg00,ft}@doc.ic.ac.uk

Abstract. We present the CaSAPI system, implementing (a generalisa-
tion of) three existing computational mechanisms [8–10] for determining
argumentatively whether potential beliefs can be deemed to be accept-
able and, if so, for computing supports for them. These mechanisms are
defined in terms of dialectical disputes amongst two fictional agents: a
proponent agent, eager to determine the acceptability of the beliefs, and
an opponent agent, trying to undermine the existence of an acceptable
support for the beliefs, by finding attacks against it that the propo-
nent needs to counter-attack in turn. The three mechanisms differ in
the level of scepticism of the proponent agent and are defined for (flat)
assumption-based argumentation frameworks [3]. Thus, they can serve
as decision-making mechanisms for all instances of these frameworks. In
this paper we show how they can be used for logic programming, legal
reasoning, practical reasoning, and agent reasoning.

1 Introduction

Assumption-based argumentation [3] has been proven to be a powerful mecha-
nism to understand commonalities and differences amongst many existing frame-
works for non-monotonic reasoning, including logic programming [3]. It has also
been studied in the context of legal reasoning [14]. Furthermore, the computa-
tional complexity of several instances of assumption-based argumentation frame-
works for non-monotonic reasoning has been studied in [7].

Assumption-based argumentation frameworks can be coupled with a number
of different semantics, all defined in dialectical terms, some credulous and some
sceptical, of various degrees. Different computational mechanisms can be defined
to match these semantics. In this paper, we consider three existing such mech-
anisms: GB-dispute derivations for computing the sceptical grounded semantics
[9], AB-dispute derivations for computing the credulous admissible semantics [8,
9] and IB-dispute derivations for computing the sceptical ideal semantics [9, 10].

All mechanisms are defined as “dialogues” between two fictional agents: the
proponent and the opponent, trying to establish the acceptability of given beliefs
with respect to the chosen semantics. The three mechanisms (and corresponding
semantics) differ in the level of scepticism of the proponent agent: in GB-dispute
derivations the agent is not prepared to take any chances and is completely

CaSAPI: a system for credulous and sceptical argumentation 81

sceptical in the presence of seemingly equivalent alternatives; in AB-dispute
derivations the agent would adopt any alternative that is capable of counter-
attacking all attacks without attacking itself; in IB-dispute derivations, the agent
is wary of alternatives, but is prepared to accept common ground between them.

In this paper we describe the CaSAPI 1 system implementating these mech-
anisms and we illustrate the system and its potential for application in the con-
text of some application scenarios. The system relies upon a generalisation of the
original assumption-based argumentation framework and of the computational
mechanisms, whereby multiple contraries are allowed. This generalisation is use-
ful to widen the applicability of assumption-based argumentation (e.g. for rea-
soning about decisions). We provide this generalisation explicitly for AB-dispute
derivations. The application scenarios we consider are non-monotonic reasoning
(using logic programming), legal reasoning (where different regulations need to
be applied, taking into account dynamic preferences amongst them), practical
reasoning (where decisions need to be made as to which is the appropriate course
of action for a given agent), and reasoning to support autonomous agents (about
their individual beliefs, desires and intentions, as well as relationships amongst
them). Most of these application scenarios require a mapping from appropriate
frameworks into assumption-based argumentation.

The paper is structured as follows: in the next section, we will briefly in-
troduce the concept of assumption-based argumentation and describe the three
dispute derivations upon which our system is based. Section 3 presents the gener-
alised assumption-based framework and the generalised AB-dispute derivations
that our system implements. Section 4 provides a brief description of the CaSAPI
system. Applications of this system to the areas of non-monotonic reasoning and
legal, practical and agent reasoning are given in Section 5. Finally, we conclude
and discuss future work.

2 Background

The definitions and notions in this section are adapted from [3, 8, 10, 9].

Definition 1. An assumption-based argumentation framework is a tuple
〈L, R, A, 〉 where

– (L,R) is a deductive system, with a language L and a set R of inference
rules,

– A ⊆ L is a (non-empty) set, whose elements are referred to as assumptions,
– is a (total) mapping from A into L, where α is the contrary of α.

We will assume that the inference rules in R have the syntax

c0 ← c1, . . . , cn

with n > 0 or
c0

1 CaSAPI stands for Credulous and Sceptical Argumentation: Prolog Implementation.

82 D. Gaertner and F. Toni

where each ci ∈ L. c0 is referred to as the head and c1, . . . , cn as the body of a
rule c0 ← c1, . . . , cn. The body of a rule c0 is considered to be empty.

As in [8], we will restrict attention to flat assumption-based frameworks, such
that if c ∈ A, then there exists no inference rule of the form c ← c1, . . . , cn ∈ R.

Example 1. L = {p, a,¬a, b,¬b}, R = {p ← a;¬a ← b;¬b ← a}, A = {a, b} and
a = ¬a, b = ¬b.

An argument in favour of a sentence or belief x in L supported by a set of
assumptions X ⊆ A is a backward (or tight) deduction [8] from x to X, via the
backward application of rules in R. For the simple assumption-based framework
in example 1, an argument in favour of p supported by {a} may be obtained by
applying p ← a backwards.

In order to determine whether a belief is to be held, a set of assumptions
needs to be identified that would provide an “acceptable” support for the belief,
namely a “consistent” set of assumptions including a “core” support as well
as assumptions that defend it. This informal definition of “acceptable” support
can be formalised in many ways, using a notion of “attack” amongst sets of
assumptions:

Definition 2. X attacks Y iff there is an argument in favour of some y sup-
ported by (a subset of) X, where y is in Y .

In Example 1 above, {b} attacks {a}. In this paper we are concerned with the
following formalisations of the notion of “acceptability”:

– a set of assumptions is admissible, iff it does not attack itself and it counter-
attacks every set of assumptions attacking it;

– complete, iff it is admissible and it contains all assumptions it can defend,
by counter-attacking all attacks against them;

– grounded, iff it is minimally complete;
– ideal, iff it is admissible and contained in all maximally admissible sets.

In the remainder of this section we will illustrate, by means of examples, the
three forms of dispute derivations presented in [8, 10, 9], for computing grounded,
admissible and ideal sets of assumptions (respectively) in support of given beliefs.
For any formal details and results see [8, 10, 9].

2.1 GB-dispute derivations

GB-dispute derivations compute grounded sets of assumptions supporting a
given input belief. They are finite sequences of tuples

〈Pi,Oi, Ai, Ci〉

where Pi and Oi represent (the set of sentences held by) the proponent and op-
ponent in a dispute, Ai holds the set of assumptions generated by the proponent
in support of its belief and to defend itself against the opponent, and Ci holds

CaSAPI: a system for credulous and sceptical argumentation 83

the set of assumptions in attacks generated by the opponent that the proponent
has chosen as “culprits” to be counter-attacked. Each derivation starts with a
tuple

〈P0 = {x},O0 = {}, A0 = A ∩ {x}, C0 = {}〉

where x is the belief whose acceptability the derivation aims at establishing.
Then, for every 0 ≤ i < n, only one σ in Pi or one S in Oi is selected, and 2:

1. If σ ∈ Pi is selected then

(i) if σ is an assumption, then
Pi+1 = Pi − {σ}
Oi+1 = Oi ∪ {{σ}}

(ii) if σ is not an assumption, then there exists some inference rule σ ← R ∈
R such that Ci ∩R = {} and
Pi+1 = Pi − {σ} ∪R

Ai+1 = Ai ∪ (A ∩R).

2. If S is selected in Oi and σ is selected in S then

(i) if σ is an assumption, then

(a) either σ is ignored, i.e.
Oi+1 = Oi − {S} ∪ {S − {σ}}

(b) or σ 6∈ Ai and
Oi+1 = Oi − {S}
Pi+1 = Pi ∪ {σ}
Ai+1 = Ai ∪ ({σ} ∩ A)
Ci+1 = Ci ∪ {σ}

(ii) if σ is not an assumption, then
Oi+1 = Oi − {S} ∪

{

S − {σ} ∪R
∣

∣ σ ← R ∈ R
}

.

In Example 1, no GB-dispute derivation for p exists (and, indeed, p is not
an acceptable belief according to the grounded semantics) as the search for any
such derivation loops and hence no finite sequence of tuples can be found:

〈P0 = {p},O0 = {}, A0 = {}, C0 = {}〉,
〈P1 = {a},O1 = {}, A1 = {a}, C1 = {}〉, by using rule p ← a,
〈P2 = {},O2 = {{¬a}}, A2 = {a}, C2 = {}〉, since a = ¬a,
〈P3 = {},O3 = {{b}}, A3 = {a}, C3 = {}〉, by using rule ¬a ← b,
〈P4 = {¬b},O4 = {}, A4 = {a}, C4 = {b}〉, since b = ¬b,
〈P5 = {a},O5 = {}, A5 = {a}, C5 = {b}〉, by using rule ¬b ← a,
. . .

Note that P1 = P5 and O1 = O5, so both proponent and opponent are repeating
their arguments.

2 For brevity, we indicate here and in all the dispute derivations in the paper only the
items of the i+1-th tuple that are different from the corresponding items in the i-th
tuple: all other items are as in the i-th tuple. For full details, see [9].

84 D. Gaertner and F. Toni

2.2 AB-dispute derivations

AB-dispute derivations3 are modifications of GB-dispute derivation to determine
whether beliefs can be held according to the admissible semantics, as follows:

– at step 1.(ii): Pi+1 = Pi − {σ} ∪ (R−Ai)
– step 2.(i)(b) becomes: σ 6∈ Ai and σ ∈ Ci and Oi+1 = Oi − {S}
– a new step 2.(i)(c) is added: σ 6∈ Ai and σ 6∈ Ci and

(c.1) if σ is not an assumption, then
Oi+1 = Oi − {S}
Pi+1 = Pi ∪ {σ}
Ci+1 = Ci ∪ {σ}

(c.2) if σ is an assumption, then
Oi+1 = Oi − {S}
Ai+1 = Ai ∪ {σ}
Ci+1 = Ci ∪ {σ}

– at step 2. (ii): Oi+1 = Oi−{S}∪
{

S−{σ}∪R
∣

∣ σ ← R ∈ R, andR∩Ci = {}
}

.

For Example 1, an AB-dispute derivation exists, following up from the earlier
GB-derivation with a terminating step

〈P5 = {},O5 = {}, A5 = {a}, C5 = {b}〉

computing an admissible support {a} for p ({a} is indeed admissible since it
does not attack itself and it counter-attacks {b}, the only attack against it).

2.3 IB-dispute derivations

IB-dispute derivations are extensions of AB-dispute derivations, in that they are
finite sequences of tuples

〈Pi,Oi, Ai, Ci,Fi〉

where the new component Fi holds the set of all (potential) attacks against Pi.
IB-dispute derivations deploy Fail-dispute derivations to check that no admissible
extensions of any element in any Fi exists. For lack of space we simply exemplify
IB-dispute derivations here (see [10, 9] for details).

Example 2. L = {a,¬a, b,¬b, c,¬c, d,¬d}, R = {¬a ← a;¬a ← b;¬b ← a;
¬c ← d;¬d ← c}, A = {a, b, c, d} and x = ¬x, for all x ∈ A.

Given the framework in Example 2, an IB-derivation for ¬a is:

〈P0 = {¬a},O0 = {}, A0 = {}, C0 = {},F0 = {}〉
〈P1 = {b},O1 = {}, A1 = {b}, C1 = {},F1 = {}〉,

3 AB-dispute derivations are a slight modification of the dispute derivations of [8],
presented in [9].

CaSAPI: a system for credulous and sceptical argumentation 85

〈P2 = {},O2 = {{¬b}}, A2 = {b}, C2 = {},F2 = {}〉,
〈P3 = {},O3 = {{a}}, A3 = {b}, C3 = {},F3 = {}〉,
〈P4 = {¬a},O4 = {}, A4 = {b}, C4 = {a},F4 = {{a}}〉,
〈P5 = {},O5 = {}, A5 = {b}, C5 = {a},F5 = {{a}}〉,
〈P6 = {},O6 = {}, A6 = {b}, C6 = {a},F6 = {}〉.

The transition between the penultimate and the last tuple in the sequence above
requires the existence of a Fail-dispute derivation confirming that no admissible
extension of {a} ∈ F5 exists.

The derivation succeeds in computing support {b} for ¬a. The set {b} is
ideal as it is admissible and contained in every maximally admissible set of
assumptions (there are two such sets: {b, c} and {b, d}).

Note that there is no GB-dispute derivation for ¬a (which indeed is not
supported by any grounded set of assumptions). Also, note that there exists
an AB-dispute derivation for ¬a, as well as for ¬c and ¬d, but no GB- or IB-
dispute derivation exists for the latter two beliefs. Thus, the proponent agent
in GB-derivations is the most sceptical, followed by the proponent agent in
IB-derivations. The proponent agent in AB-derivations on the other hand is
completely credulous.

3 Generalisation of assumption-based argumentation

frameworks

In order to widen their applicability (e.g. for practical reasoning), assumption-
based argumentation frameworks need to be generalised as follows:

Definition 3. A generalised assumption-based framework is a tuple
〈L, R, A, Con〉 where L, R, A are as in conventional assumption-based
frameworks, and Con is a (total) mapping from assumptions in A into sets of
sentences in L.

Intuitively, in this generalised framework, assumptions admit multiple con-
traries. Given a generalised assumption-based argumentation framework, the
notion of attack between sets of assumptions becomes:

Definition 4. X attacks Y iff there is an argument in favour of some x sup-
ported by (a subset of) X where x ∈ Con(y) and y is in Y .

All dispute derivations defined in previous works [8, 10, 9] can thus be modi-
fied for generalised assumption-based frameworks. In what follows, we show how
this can be done for AB-dispute derivations (the modifications are typeset in
bold font), as this is the “core” form of dispute derivation (GB-dispute deriva-
tions are a simplification and IB-dispute derivation an extension of AB-dispute
derivations):

86 D. Gaertner and F. Toni

Definition 5. Let 〈L, R, A, Con〉 be a generalised assumption-based argumen-
tation framework. Given a selection function, a generalised AB-dispute deriva-
tion of a defence set A for a sentence α is a finite sequence of quadruples

〈

P0,O0, A0, C0

〉

, . . . ,
〈

Pi,Oi, Ai, Ci

〉

, . . . ,
〈

Pn,On, An, Cn

〉

where P0 = {α} A0 = A ∩ {α} O0 = C0 = {}
Pn = On = {} A = An

and for every 0 ≤ i < n, only one σ in Pi or one S in Oi is selected, and:

1. If σ ∈ Pi is selected then

(i) if σ is an assumption, then

Pi+1 = Pi − {σ}

Oi+1 = Oi ∪ {{x} | x ∈ Con(σ)}

(In the original AB-dispute derivation, Oi+1 = Oi ∪ {{σ}}.)

(ii) if σ is not an assumption, then there exists some inference rule σ ← R ∈
R such that Ci ∩R = {} and

Pi+1 = Pi − {σ} ∪ (R−Ai)

Ai+1 = Ai ∪ (A ∩R).

2. If S is selected in Oi and σ is selected in S then

(i) if σ is an assumption, then

(a) either σ is ignored, i.e.
Oi+1 = Oi − {S} ∪ {S − {σ}}

(b) or σ 6∈ Ai and σ ∈ Ci and
Oi+1 = Oi − {S}

(c) or σ 6∈ Ai and σ 6∈ Ci and chosen some x ∈ Con(σ) (in the

original AB-dispute derivations, x = σ)

(c.1) if x is not an assumption, then
Oi+1 = Oi − {S}
Pi+1 = Pi ∪ {x}
Ci+1 = Ci ∪ {σ}

(c.2) if x is an assumption and it does not belong to Ci, then
Oi+1 = Oi − {S}
Ai+1 = Ai ∪ {x}
Ci+1 = Ci ∪ {σ}

(ii) if σ is not an assumption, then

Oi+1 = Oi − {S} ∪
{

S − {σ} ∪R
∣

∣ σ ← R ∈ R, andR ∩ Ci = {}
}

.

CaSAPI: a system for credulous and sceptical argumentation 87

Note that in step 2(i)(c) the choice of counter-attack is based upon the choice
of contrary of the selected culprit. This choice is made randomly, but can be
customised if necessary.

The definitions of GB- and IB-dispute derivations can be modified in a similar
fashion, by considering all contraries (of a given assumption) when extending O
(to find attacks against the assumption) and by choosing one contrary (of a given
“culprit” assumption) when extending P (to counter-attack the assumption).

4 System Description

In this section, we will describe the CaSAPI system, a Prolog implemen-
tation for credulous and sceptical argumentation based upon the computa-
tion of dispute derivations for grounded beliefs (GB-dispute derivations), ad-
missible beliefs (AB-dispute derivations) and ideal beliefs (IB-dispute deriva-
tions) for the generalised assumption-based frameworks described in the
previous section. The latest version of CaSAPI can be downloaded from
www.doc.ic.ac.uk/∼dg00/casapi.html. The system is developed in Sicstus
Prolog but runs on most variants of Prolog4.

4.1 How to use CaSAPI

After invoking a Prolog process and loading the CaSAPI program, users need
to load the input assumption-based framework5 and the beliefs to be proved.
These are best specified in a separate file, prior to invoking Prolog.

Rules in R are represented as facts of a binary relation myRule/2 consist-
ing of a left- and right-hand side. The first argument holds the head of the
rule and the second argument a list containing the body of the rule. Assump-
tions in A and beliefs to be proved are represented as unary predicates myAsm/1
and toBeProved/1 (respectively) using a list notation for their respective ar-
gument. The latter predicate allows queries about more than one belief to be
expressed. The notion of contrary can also be customised using an binary rela-
tion contrary/2. In order to illustrate the representation of assumption-based
frameworks, Example 1 from Section 2 is represented as follows:

myRule(p,[a]).

myRule(not(a),[b]).

myRule(not(b),[a]).

myAsm([a,b]).

toBeProved([p]).

4 CaSAPI has been successfully tested using SWI Prolog, for example.
5 The language L does not need to be specified explicitly.

88 D. Gaertner and F. Toni

contrary(a,not(a)).

contrary(b,not(b)).

The users can then control the kind of dispute derivation they want to employ
(GB, AB or IB), the amount of output to the screen (silent, compact or noisy)
and the number of supports computed (one or all). They specify their choices
as arguments to the command run/3 and CaSAPI will begin the argumentation
process in a manner dictated by the users’ choices. For example, in order to
run AB-dispute derivations in silent mode and asking for only one answer, one
needs to specify: run(ab,s,1). Furthermore, for running GB-dispute derivations
in noisy mode asking for all answers, one needs to execute: run(gb,n,a). Note
that all answers here refers to all answers that can be computed using the dispute
derivation in question.

4.2 Design Choices

We have picked Sicstus Prolog as the implementation language of choice since
we intend to employ some of its constraint solving features in future versions of
CaSAPI. In the current version 2.0 we do not make use of any Sicstus specific
code and hence it should run on most standard Prolog engines

One of the interesting properties of Prolog is its handling of variables. Instan-
tiation takes place when a binding can be made, but backtracking allows new
instantiations to override old ones where possible. We made use of this feature in
that we allow variables in the definition of rules, assumptions and contraries in
CaSAPI. This can be seen as a shortcut to writing out all the ground instances
of the predicate in question.

A further design choice, that paves the way to interesting experimental re-
search, is the fact that the selection strategies of the agent are not hard-wired
into CaSAPI. Different selection strategies do not affect the result of the ar-
gumentation process, but have a significant impact on efficiency. Indeed, these
strategies control how the dispute trees are generated and hence can lead to
early pruning for certain trees. One simple example for a selection strategy is:

selFunc([HeadProponent|_],_,HeadProponent,[]).

selFunc([],[[OppHead|OppTail]|_],OppHead,[OppHead|OppTail]).

selFunc([],[],_,_). % Finished.

The first two arguments are the beliefs held by the proponent and oppo-
nent, respectively. The third argument is used to return the chosen element and
the fourth one returns the set of beliefs of the opponent that this element was
chosen from – if applicable. If both the proponent and the opponent have no
further beliefs to investigate, the argumentation process terminates. In this sim-
ple example, all beliefs of the proponent are handled before the opponent gets
to reply. More sophisticated selection strategies can easily be imagined and have
been used as defaults in the CaSAPI system.

CaSAPI: a system for credulous and sceptical argumentation 89

As we have hinted to before, CaSAPI allows queries to involve sets of beliefs to
be proved, rather than individual beliefs as in the original formulation of dispute
derivations. But the biggest innovation is the extension of the argumentation
framework to allow multiple contraries. The theoretical aspects of this extension
have been discussed in the previous section. An example where this extension is
employed will be given in Section 5.3 on practical reasoning.

4.3 Worked Example

We illustrate an exemplary execution trace of the CaSAPI system in the case of
Example 2 from Section 2. Here and in the remainder of the paper, we represent
negative literals ¬p as not(p). In this example, basically a, b and c, d are (pair-
wise) mutually exclusive. Intending to prove the belief not(a), after feeding the
following input program:

myRule(not(a),[a]).

myRule(not(a),[b]).

myRule(not(b),[a]).

myRule(not(c),[d]).

myRule(not(d),[c]).

myAsm([a,b,c,d]).

toBeProved([not(a)]).

contrary(X,not(X)) :- myAsm(L), member(X,L).

into CaSAPI, one needs to choose the execution options. Deciding to use ad-
missible belief semantics, demanding verbose output and requesting only one
solution, the following will happen: not(a) can only be proved by either the
first or second of the rules given above.

Step 0:

- Content of this quadruple:

- PropNods: [not(a)]

- OppoNods: []

- DfnceAss: []

- Culprits: []

CASE 1ii

Step 1:

- Content of this quadruple:

- PropNods: [a]

- OppoNods: []

- DfnceAss: [a]

- Culprits: []

90 D. Gaertner and F. Toni

CASE 1i

Step 2:

- Content of this quadruple:

- PropNods: []

- OppoNods: [[not(a)]]

- DfnceAss: [a]

- Culprits: []

After some backtracking, the output ends with the final answer:

Step 5:

- Content of this quadruple:

- PropNods: []

- OppoNods: []

- DfnceAss: [b,b]

- Culprits: [a]

FINISHED, the defence set is: [b,b]

Without duplicates it is: [b]

yes

The defence set [b] indicates which assumption(s) need to be made and are
sufficient to defend the belief not(a) against all possible attacks.

5 Applications

In this section we give examples of how assumption-based argumentation in
general and CaSAPI in particular can be applied. First we consider logic pro-
gramming as an instance of non-monotonic reasoning, and then look at legal,
practical and agent reasoning. Note that non-monotonic reasoning using default
logic could also be modelled, following [3].

5.1 Non-monotonic reasoning: Logic programming.

A logic program P can be seen as an assumption-based framework 〈L, R, A, 〉
where R=P , L is the Herbrand base of P together with the set of all negations of
atoms in such Herbrand base, A is the set of all negative literals in L, and not p =
p for all negative literals not p in A. Logic programming queries correspond to
sets (conjunctions) of beliefs for which we want to compute dispute derivations.

In this instance of assumption-based frameworks, the admissible, grounded,
and ideal semantics correspond (see [3] and [9]) to partial stable models [17],
well-founded model [13], and ideal semantics [1], respectively. Although the the-
oretical framework is propositional, our Prolog implementation allows us to deal
with variables, both in the rules of the deductive system and in the beliefs to be
proved, as shown below.

CaSAPI: a system for credulous and sceptical argumentation 91

Example 3. P = {p(X) ← not p(X);
p(X) ← not q(X);
q(X) ← not p(X);
r(X) ← not t(X);
t(X) ← not r(X)}

Given the logic program from Example 3 and queries Q1 = p(a), Q2 = q(a),
Q3 = r(a), Q4 = t(a), the system computes the following answers, respectively:

GB-dispute derivations: loops, no, loops, loops
AB-dispute derivations: {not q(a)}, no, {not t(a)}, {not r(a)}
IB-dispute derivations: {not q(a)}, no, no, no

Example 4. P = {p ← not q;
q ← not r;
r ← not s;
s ← not q}

Given the logic program from Example 4 — with an odd-loop via negation —
and query Q1 = p, the system computes no for all three kinds of derivations.

5.2 Legal reasoning.

This kind of reasoning often requires dealing with defeasible rules and facts
(possibly under dispute), strict rules and facts (beyond dispute) and preferences
amongst defeasible rules and facts (possibly under dispute). We show here how
a concrete example of legal reasoning from [15] can be dealt with by means of
our CaSAPI system, following the formalisation of the problem given in [14].

Example 5. Consider the following set of defeasible rules, including rules defining
preferences between rules6:

r1(X): X’s exterior may not be modified if X is a protected building.
r2(X): X’s exterior may be modified if X needs restructuring.
r3(X,Y): R1(X) > R2(Y) if R1(X) concerns artistic buildings and

R2(Y) concerns town planning.
t(X,Y): R1(X) > R2(Y) if R1(X) is later than R2(Y).

and the following six facts/strict rules:

r1(X) concerns artistic buildings.
r2(X) concerns town planning.
r2(X) is later than r1(X).
r3(X,Y) is later than t(X,Y).
villa is a protected building.

6 For all kinds of rules, we adopt a representation in pseudo-natural language, with
variables implicitly universally quantified with scope the rules.

92 D. Gaertner and F. Toni

villa needs restructuring.

Intuitively, the conclusion that the exterior of the villa may not be modified
should be drawn. Both rules r1 and r2 apply and the meta-rules r3 and t deciding
the priorities between r1 and r2 also apply both, but according to meta-rule t, the
importance of r3 is higher than its own importance. Hence, r3 should be applied
which gives r1 priority over r2. Following [14], this problem can be represented
as a logic program (and thus as an assumption-based framework, as explained
above):

villa’s exterior may not be modified ← not defeated(r1(villa))
villa’s exterior may be modified ← not defeated(r2(villa))
defeated(r1(villa)) ← not defeated(t(villa, villa)), not defeated(r2(villa))
defeated(r2(villa)) ← not defeated(r3(villa, villa)), not defeated(r1(villa))
defeated(t(villa, villa)) ← not defeated(t((villa, villa), (villa, villa))),

not defeated(r3(villa, villa))

GB-, AB- and IB-dispute derivations for the belief villa’s exterior not mod-
ified all give the following defence set as an answer: {not defeated(r1(villa)),
not defeated(r3(villa, villa)), not defeated(t((villa, villa), (villa, villa)))}.

This can be understood as follows: the villa’s exterior should not be modified
since rule r1 is not defeated (stating that artistic buildings should not be modi-
fied) and rule r3 is not defeated (stating that rules concerning artistic buildings
override rules concerning town planning) and the temporal ordering rule t is not
defeated either.

5.3 Practical reasoning.

This form of reasoning requires making decisions in order to achieve certain
properties/objectives, having only partial information. We show how to deal
with the concrete example in [2], requiring multiple contraries.

Example 6. A judge needs to decide how best to punish a criminal found guilty,
while deterring the general public, rehabilitating the offender, and protecting
society from further crime. The judge can choose amongst three forms of pun-
ishment: (i) imprisonment, (ii) a fine, or (iii) community service. The judge
believes that: (i) promotes deterrence and protection to society, but it demotes
rehabilitation; (ii) promotes deterrence but has no effect on rehabilitation and
protection of society; (iii) promotes rehabilitation but demotes deterrence.

We can represent the problem as a generalised assumption-based framework:

– A = {prison, fine, service, α, β, γ, δ},
– Con(prison) = {fine, service}, Con(fine) = {prison, service},
Con(service) = {prison, fine}, Con(α) = {¬deter}, Con(β) = {deter},
Con(γ) = {¬rehabilitate}, Con(δ) = {rehabilitate},

CaSAPI: a system for credulous and sceptical argumentation 93

– R consists of nine rules:
punish ← prison deter ← prison, α rehabilitate ← service, γ

punish ← fine deter ← fine, α ¬rehabilitate ← prison, δ

punish ← service ¬deter ← service, β protect ← prison

Then, given the goal (belief) punish, AB dispute derivations compute the defence
set {prison}, for example. Given also goal rehab the defence set {service} is
computed. One cannot have all goals punish, deter, rehabilitate and protect

provable (AB dispute derivations return no) and it would be interesting to give
preferences amongst these, as suggested in [2]. We leave this for future research.

5.4 Agent reasoning

Finally, we will give an example involving a traditional BDI agent [16] that
reasons about its beliefs, desires and intentions. We chose the ballroom scenario
from [11] and the following setup: picture a traditional ballroom with several
male and female dancers; the rules of etiquette state among other things that
two dancers agreeing to dance together should be of opposite sex and that female
dancers should wait to be approached by a male dancer (with the exception of
ladies’ choice night).

Imagine a female dancer called anna, who considers both bob and charlie

to be pretty and who generally intends whatever she desires. This information
can be expressed with the following rules in an assumption-based argumentation
framework7:

intend(X) ← desire(X)
desire(danceWith(X)) ← belief(pretty(X)), β(X)
¬desire(danceWith(X)) ← belief(sameSex(self,X)), α(X)
intend(danceWith(X)) ← belief(approachedBy(X))

belief(pretty(bob))
belief(pretty(charlie))

Note that the first rule is domain-independent, whereas the other rules are
domain-dependent.

Let A be the set of (all ground instances of) ¬belief(X) together
with α(X) and β(X). The latter two assumptions are needed to relate
desire(danceWith(X)) and ¬desire(danceWith(X)) as opposite notions. One
cannot directly make them contraries of one another, since neither of them is an
assumption.

The Con relation defines the contrary of any ¬belief(X) as belief(X) and
the contrary of α(X) as desire(danceWith(X)) and finally, the contrary of β(X)
as ¬desire(danceWith(X)).

Then, asking CaSAPI whether anna should intend to dance with charlie, the
system returns that yes, she should intend to dance with that person, provided

7 We ignore here nested beliefs, desires and intentions for simplicity’s sake.

94 D. Gaertner and F. Toni

that anna believes that charlie is not of the same gender. Thus CaSAPI replies
with the following defence set: beta(charlie). This is the assumption needed to
defend the belief in question and it ensures that ¬desire(danceWith(charlie))
does not hold.

The reasoning goes roughly as follows: using the fourth rule, anna should
intend to dance with charlie if she beliefs to have been approached by charlie.
However, this is not the case. Using the first rule, anna should intend to dance
with charlie if she desires it. She does desire it, since she believes charlie is
pretty. Now, the fictional opponent who plays devil’s advocate in anna’s mind
may argue that she should not desire (and hence not intend) to dance with
charlie because charlie may be female, too. Therefore, the fictional proponent
who defends the query needs to make the additional assumption that anna and
charlie are of opposite gender in order to render the third rule inapplicable.

Note that this is just one simple example of agent reasoning, and more com-
plex and sophisticated forms of reasoning may be afforded by CaSAPI. For ex-
ample, in case conflicts may arise, e.g. due to intending and not intending the
same action, the use of preferences, as modelled in legal reasoning, can provide
an effective means of conflict resolution. We leave this for future work.

6 Conclusions

In this paper, we have presented a generalisation of computational mechanisms
for assumption-based argumentation that allows multiple contraries of assump-
tions to be expressed. This generalisation enables this kind of argumentation
to handle a broader class of applications. Furthermore, we have described the
CaSAPI system which implements credulous and (two forms of) sceptical argu-
mentation for this generalisation of assumption-based argumentation and shown
how to use the system in some application areas.

Two of these application areas (legal and practical reasoning) assumed a
translation (by-hand) from a given formalism into assumption-based argumen-
tation [18]. Future work includes providing appropriate front-ends to our system
in order to automate this translation.

We have implemented a number of extensions to theoretical assumption-
based argumentation (e.g. variables in rules) that would also be worthwhile to
formalise in the future.

A number of other argumentation systems exist, for example GORGIAS
[6], for credulous argumentation in argumentation frameworks with preferences
amongst defeasible rules, the ASPIC system (http://aspic.acl.icnet.uk/) [5]
dealing with quantitative uncertainty, DeLP [12] for defeasible logic program-
ming, and the system by Krause et al. [4]. These systems are defined for different
frameworks for argumentation than ours. It would be interesting to provide a
mapping from these various frameworks onto assumption-based argumentation
(possibly extended) in order to carry out a full comparison.

CaSAPI: a system for credulous and sceptical argumentation 95

Acknowledgements

This research was partially funded by the EC-funded ARGUGRID project. The
second author has also been supported by a UK Royal Academy of Engineer-
ing/Leverhulme Trust senior fellowship.

References

1. José Júlio Alferes, Phan Minh Dung, and Lúıs Moniz Pereira. Scenario semantics
of extended logic programs. In LPNMR, 1993.

2. T. Bench-Capon and H. Prakken. Justifying actions by accruing arguments. In
COMMA, 2006.

3. A. Bondarenko, P.M. Dung, R.A. Kowalski, and F. Toni. An abstract,
argumentation-theoretic framework for default reasoning. Artificial Intelligence,
93(1-2), 1997.

4. D. Bryant and P. Krause. An implementation of a lightweight argumentation
engine for agent applications. In JELIA, 2006.

5. M. Caminada, S. Doutre, S. Modgil, H. Prakken, and G.A.W. Vreeswijk. Imple-
mentations of argument-based inference. In Review of Argumentation Tech., 2004.

6. N. Demetriou and A. C. Kakas. Argumentation with abduction. In Proceedings of

the fourth Panhellenic Symposium on Logic, 2003.
7. Y. Dimopoulos, B. Nebel, and F. Toni. On the computational complexity of

assumption-based argumentation for default reasoning. Artificial Intelligence, 141,
2002.

8. P.M. Dung, R.A. Kowalski, and F. Toni. Dialectic proof procedures for assumption-
based, admissible argumentation. Artificial Intelligence, 170, 2006.

9. P.M. Dung, P. Mancarella, and F. Toni. Computing ideal sceptical argumentation.
Technical report, Imperial College London, 2006.

10. P.M. Dung, P. Mancarella, and F. Toni. A dialectic procedure for sceptical,
assumption-based argumentation. In COMMA, 2006.

11. Dorian Gaertner, Keith Clark, and Marek Sergot. Ballroom etiquette: a case study
for norm-governed multi-agent systems. In 1st International Workshop on Coor-

dination, Organisation, Institutions and Norms, 2006.
12. A. Garcia and G. Simari. Defeasible logic programming: An argumentative ap-

proach. Theory and Practice of Logic Programming, 4(1-2), 2004.
13. A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for

general logic programs. Journal of the ACM, 38(3), 1991.
14. R. A. Kowalski and F. Toni. Abstract argumentation. Journal of AI and Law,

Special Issue on Logical Models of Argumentation, 4(3-4), 1996.
15. H. Prakken and G. Sartor. On the relation between legal language and legal

argument: assumptions, applicability and dynamic priorities. In ICAIL, 1995.
16. A. S. Rao and M. P. Georgeff. BDI-agents: from theory to practice. In Proceedings

of the First Intl. Conference on Multiagent Systems, San Francisco, 1995.
17. Domenico Saccà and Carlo Zaniolo. Partial models and three-valued models in

logic programs with negation. In LPNMR, 1991.
18. F. Toni. Assumption-based argumentation for epistemic and practical reasoning.

Technical report, Imperial College London, 2007.

Reductio ad AbsurdumArgumentation in Normal Logic
Programs

Luı́s Moniz Pereira and Alexandre Miguel Pinto
{lmp|amp}@di.fct.unl.pt

Centro de Inteliĝencia Artificial (CENTRIA)
Universidade Nova de Lisboa

Quinta da Torre
2829-516 Caparica, Portugal

Abstract. This paper introduces a new method for defining the argumentative se-
mantics of Normal Logic Programs. In doing so, our single and unified approach
allows one to obtain the Stable Models [11] as a special case, or the more general
Revision Complete Scenarios here defined.
Normal Logic Programs are approached as assumption-based argumentation sys-
tems. We generalize this setting by allowing both negative and positive assump-
tions. Negative assumptions are made maximal, consistent with existence of a
semantics, and positive assumptions are adopted only insofar as they guarantee
such existence. Our argumentation semantics thus extends the classical one of
[7], and guarantees existence of semantics for any Normal Logic Program, whilst
providing all the scenarios corresponding to Stable Models semantics.
Additionally, we provide equivalent and correct algorithms for incrementally com-
puting our scenarios, with three variants. One starts by assuming all atomsas
positive assumptions; another assumes them all negative; a third rests on a com-
bination of the first two, and may start with any choice of assumptions. Thelatter
may be employed to address the problem of finding those complete scenarios
most compatible with an initial collection of complete scenarios. Consequently,
argumentation can be put to collaborative use, not just an antagonistic one. Our re-
sults are achieved by generalizing the definitions of the classical approach, which
allows only for negative hypotheses, and our definitions fall back on theclassical
ones when specialized to disallow positive hypotheses.
Finally, integrity constraints are introduced to prune undesired scenarios, whilst
permitting these to be produced nevertheless.
Keywords: Argumentation, Reductio ad Absurdum, Logic Programs, Argu-
ment Revision

1 Introduction

After introducing in [15] and [14] the new Revised Stable Models semantics for Normal
Logic Programs further work using theReductio ad Absurdum(RAA) principle has
been developed, namely the Revised Well-Founded Semantics[16]. Considering an
argument-based view of Logic Programs, we define a new semantics which inherits the
RAA principle studied in [15, 14] and apply it to argumentation.

Reductio ad AbsurdumArgumentation in Normal Logic Programs 97

Logic Programs can be viewed as a collection of argumentative statements (rules)
based on arguments (default negated literals) [5, 2, 6, 17, 3, 13, 9, 8, 7]. In the quest for
finding a Consistent and Complete argumentative scenario one can guess it and check
its compliance with these properties; or, innovatively, start with an arbitrary scenario,
calculate its consequences, and make revisions to the initial assumptions if necessary in
order to achieve 2-valued Completeness and Consistency. This is the road we propose
now, revision of assumptions justified by means ofReductio ad Absurdumreasoning.

This paper introduces a new method for defining the argumentative semantics of
Normal Logic Programs. In doing so, our single and unified approach allows one to
get the Stable Models [11] as a special case, or the more general Revision Complete
Scenarios here defined.

Normal Logic Programs are approached as assumption-based argumentation sys-
tems. We generalize this setting by allowing both negative and positive assumptions.
Negative assumptions are made maximal, consistent with existence of a semantics, and
positive assumptions are adopted only insofar as they guarantee such existence. The jus-
tification of positive assumptions rests on the use ofreductio ad absurdum, to the effect
that replacing any one positive hypothesis (or assumption)by its negative counterpart,
in a complete scenario, would result in its inconsistency. Hence, that complete 2-valued
scenario must retain its positive assumptions. Our argumentation semantics thus extends
the classical one of [7], and guarantees existence of semantics for any Normal Logic
Program, whilst providing all the scenarios correspondingto Stable Models semantics.

Additionally, we provide equivalent and correct algorithms for incrementally com-
puting our scenarios, with three variants. One starts by assuming all atoms as positive
assumptions; another assumes them all negative; a third rests on a combination of the
first two, and may start with any choice of assumptions. The latter may be employed
to address the problem of finding those complete scenarios most compatible with an
initial collection of complete scenarios. Consequently, argumentation can be put to col-
laborative use, not just an antagonistic one. Our results are achieved by generalizing
the definitions of the classical approach, which allow only for negative hypotheses, and
our definitions fall back on the classical ones when specialized to disallow positive
hypotheses.

Finally, integrity constraints are introduced to prune undesired scenarios, whilst per-
mitting these to be produced nevertheless.

In essence, our approach caters for the treatment of loops over an odd number of
default negated literals, in that it assigns and justifies complete 2-valued models to any
Normal Logic Program.

We start by presenting the general Motivation of this paper and, after introducing
some needed Background Notation and Definitions, the more detailed Problem Descrip-
tion. We proceed by setting forth our proposal — the RevisionComplete Scenarios—
and show how it extends previous known results.

Before the Conclusions and Future Work, we show how our approach can enable
Collaborative Argumentation, complementing the classical Competitive view of Argu-
mentation.

98 L.M. Pereira and A.M. Pinto

1.1 Motivation

Ever since the beginning of Logic Programming the scientificcommunity has formally
define, in several ways, the meaning, the semantics of a LogicProgram. Several seman-
tics were defined, some 2-valued, some 3-valued, and even multi-valued semantics. The
current standard 2-valued semantics for Normal Logic Programs— the Stable Models
Semantics [11] — has been around for almost 20 years now, and it is generally accepted
as thede factostandard 2-valued semantics for NLPs. This thoroughly studied seman-
tics, however, lacks some important properties among whichthe guarantee of Existence
of a Model for every NLP.

In [14] we defined a 2-valued semantics— the Revised Stable Models— which ex-
tends the Stable Models Semantics, guarantees Existence ofa Model for every Normal
Logic Program, enjoys Relevancy (allowing for top-down query-driven proof-procedures
to be built) and Cumulativity (allowing the programmer to take advantage of tabling
techniques for speeding up computations).

Aiming to find a general perspective to seamlessly unify the Stable Models Seman-
tics and the Revised Stable Models Semantics we drew our attention to Argumentation
as a means to achieve it. This is the main motivation of the work we present in this pa-
per: by taking the Argumentation perspective we intend to show methods of identifying
and finding a 2-valued complete Model for any NLP. The approach is unifying in the
sense that it allows us to find the Stable Models and also some other Models needed to
ensure guarantee of Existence of a Model. In the process we extend the argumentation
stance itself with the ability to incorporate positive hypotheses as needed.

Example 1.An invasion problem Some political leader thinks that “If Iran will have
Weapons of Mass Destruction then we intend to invade Iran”, also “If we do not intend
to invade then surely they will have Weapons of Mass Destruction”.

intend we to invade ← iran will have WMD

iran will have WMD ← not intend we to invade

If we assume that “we do not intend to invade Iran” then, according to this program
we will conclude that “Iran will have Weapons of Mass Destruction” and “we intend
to invade Iran”. These conclusions, in particular “we intend to invade Iran”, contradict
the initial hypothesis “we do not intend to invade Iran”. So,reasoning byReductio ad
Absurdumin a 2-valued setting, we should “intend to invade Iran” in the first place.

This example gives a hint on how we resolve inconsistent scenarios in the rest of
the paper.

Example 2.A vacation problem Another example puts together three friends that are
discussing where they will spend their next joint vacations. John says “If I cannot go
the mountains I’d rather go traveling”. Mary says “Well, I want to go to the beach, but
if that’s not possible then I’d rather go to the mountains”. Finally, Michael says “I want
to go traveling, and if that’s not possible then I want to go tothe beach”.

We put together the three friends’ statements formalized into a Normal Logic Pro-
gram:

Reductio ad AbsurdumArgumentation in Normal Logic Programs 99

travel ← not mountain mountain ← not beach beach ← not travel

Now, because the three friends need to save money, they must minimize the number
of places they will go to on vacation. So they start by assuming they are going nowhere
— the cheapest solution. That is, they assume{not mountain, not beach, not travel}
as true. According to the program above, with these initial hypotheses the friends will
conclude they will go traveling, to the beach and to the mountains; and this contradicts
the initial hypotheses. They need to revise some of their initial assumptions. If they
revisenot mountain to mountain they will now conclude{mountain, beach} and if
we put it together with the new set of hypotheses{not beach, not travel,mountain}
we get the resulting set{mountain, beach, not beach, not travel}. We still have a
contradiction onbeach andnot beach, which we can easily remove by transforming
the hypotheses set into{mountain, beach, not travel}.

There are two more alternative solutions —{beach, travel, not mountain} and
{travel,mountain, not beach} — which are symmetric to this one.

Example 3.A time-out problem John likes Mary a lot so he asked her out: he said
“We could go to the movies”. Mary is more of a sports girl, so she replies “Either that,
or we could go to the swimming pool”. “Now, that’s an interesting idea”, John thought.
The problem is that John cannot swim because he hasn’t started learning to. He now
thinks “Well, if I’m going to the swimming pool with Mary, andI haven’t learned how
to swim, I’m might risk drowning! And if I’m risking drowningthen I really should
want to start learning to swim”.

Here is the Normal Logic Program corresponding to these sentences:

start learning to swim ← risk drowning

risk drowning ← go to pool, not start learning to swim

go to pool ← not go to movies

go to movies ← not go to pool

If John is not willing to go to the swimming pool — assumingnot go to pool —
he just concludesgo to movies and maybe he can convince Mary to join him.

On the other hand, if the possibility of having a nice swim with Mary is more
tempting, John assumes he is not going to the moviesnot go to movies and there-
fore he concludesgo to pool. In this case, since John does not know how to swim
he could also assumenot start learning to swim. But since John is going to the
swimming pool, he concludesrisk drowning. And because ofrisk drowning he
also concludesstart learning to swim. That is, he must give up the hypothesis of
not start learning to swim in favor of start learning to swim because he wants
to go to the swimming pool with Mary. As a nice side-effect he no longer risks drown-
ing.

Example 4.Middle Region Politics In a Middle Region two factions are at odds. One
believes that if terrorism does not stop then oppression will do it and hence become

100 L.M. Pereira and A.M. Pinto

unnecessary.

oppression ← not end of terrorism end of terrorism ← oppression

The other faction believes that if oppression does not stop then terrorism will do it and
hence become unnecessary.

terrorism ← not end of oppression end of oppression ← terrorism

According to these rules, if we assume thenot end of terrorism we conclude that
there isoppression which in turn will cause theend of terrorism. So, theend of terrorism

should be true in the first place, instead ofnot end of terrorism. The same happens
with end of oppression. In spite of the peaceful resulting scenario we propose,
{end of oppression, end of terrorism}, there is no Stable Model for this program.

1.2 Background Notation and Definitions

Definition 1. Logic Rule A Logic Ruler has the general form
L ← b1, b2, . . . , bn, not c1, not c2, . . . , not cm whereL is a literal, i.e., an atomh or
its default negationnot h, andn,m ≥ 0.

We callL the head of the rule — also denoted byhead(r). And body(r) denotes
the set{b1, b2, . . . , bn, not c1, not c2, . . . , not cm} of all the literals in the body ofr.
Throughout this paper we will use ‘not ’ to denote the default negation.

When the body of the rule is empty, we say the head of rule is a fact and we write
the rule as justh or not h. ⊓⊔

Definition 2. Logic ProgramA Logic Program (LP for short)P is a (possibly infinite)
set of ground Logic Rules of the form presented in definition 1. If the heads of all the
rules in P are positive literals, i.e., they are simple atoms, and not default negated
literal, we say we have a Normal Logic Program (NLP). If at least one of the heads of
a rule ofP is a default negated literal, and there is no explicit negation in the program
— we say we have a Generalized Logic Program (GLP). If there isexplicit negation,
besides default negation, in the program we say we have an Extended Logic Program
(ELP). ⊓⊔

Definition 3. Atoms of a Logic ProgramP — Atoms(P) Atoms(P) denotes the set
of all atoms ofP . Formally,

Atoms(P) = {a : ∃r∈P

(

head(r) = a∨head(r) = not a∨a ∈ body(r)∨not a ∈

body(r)
)

} ⊓⊔

Throughout the rest of this paper we will focus solely on Normal Logic Programs
hence, when we write just a Program or a Logic Program we mean aNormal Logic
Program.

Definition 4. Default negation of a setS of literals — not S Throughout this paper
we will sometimes use thenot S default negation of a setS notation, whereS is a set
of literals, in order to denote the set resulting from default negating every literal ofS.
Formally,not S = {not a : a ∈ S} ∪ {b : not b ∈ S} ⊓⊔

Reductio ad AbsurdumArgumentation in Normal Logic Programs 101

Definition 5. Scenario A scenario of a NLPP is the Horn theoryP ∪ H, where
H = H+ ∪H−, H+ ⊆ Atoms(P), H− ⊆ not Atoms(P), andnot H+ andH− are
disjoint.H is called a set of hypotheses, positive and negative. ⊓⊔

Definition 6. ⊢ operator Let P be a NLP andH a set of hypotheses.P ′ is the Horn
theory obtained fromP by replacing every default literal of the formnot L in P by
the atomnot L. H ′ is likewise obtained fromH using the same replacement rule. By
definition,P ′ ∪H ′ is a Horn theory, and so it has a least modelM . We define⊢ in the
following way, whereA is any atom ofP :

P ∪H ⊢ A iff A ∈ M P ∪H ⊢ not A iff not A ∈ M ⊓⊔

Definition 7. Consistent scenarioA scenarioP ∪H is consistent iff for all literalsL,
if P ∪H ⊢ L thenP∪ ⊢ H 0 not L, wherenot not L ≡ L. ⊓⊔

Definition 8. Consistent program A Logic ProgramP is consistent iffP ∪ ∅ is a
consistent scenario. NLPs are of course consistent. ⊓⊔

2 Revision Complete Scenarios

In [4] the author proves that every Stable Model (SM) of a NLP is a 2-valued com-
plete (total), consistent, admissible scenario. The author considers a scenario as a set
of default negated literals — the hypotheses. However, not every NLP has a consis-
tent, 2-valued complete scenario when one considers as hypotheses just default negated
literals.

Also in [4], the author shows that preferred maximal (with maximum default negated
literals) scenarios are always guaranteed to exist for NLPs. However, preferred maximal
scenarios are, in general, 3-valued.

The problem we address now is to find a way to render 2-valued total a preferred
maximal scenario. In this paper we take a step further from what was previously achieved
in [4], extending its results. We allow a set of hypotheses tocontain also positive lit-
erals, but only those absolutely necessary to guarantee Existence of a Model. These
positive hypotheses are those who are justifiedtrueby a specificReductio ad Absurdum
reasoning we accept.

Before presenting the formal Definition of a Revision Complete Scenario we give a
general intuitive idea to help the reader grasp the concept.For the formal definition of
Revision Complete Scenario we will also need some preliminary auxiliary definitions.

2.1 Intuition

In [3] the authors prove that every SM of a NLP corresponds to astable set of hypotheses
which correspond in turn to a 2-valued complete, consistent, admissible scenario.

In order to guarantee the Existence of a 2-valued total Modelfor every NLP we
allow positive hypotheses to be considered besides the usual negative hypotheses. Under
this setting, the easiest way to solve the problem would be toaccept every atom of a
program as a positive hypotheses. However, we want to our semantics to be the most
skeptical possible while ensuring stratification compatibility among hypotheses.

102 L.M. Pereira and A.M. Pinto

To further keep the semantics skeptical we want to have the maximal possible neg-
ative hypotheses and the minimum non-redundant positive hypotheses. Intuitively, a
positive hypothesisL is considered redundant if, by the rules of the program and the
rest of the hypotheses,L is already determinedtrue. The formal definition of this notion
of non-redundancy of positive hypotheses is presented and explained below.

The formal notion of compatibility will also be depicted andexplained below, but
for now the intuitive idea is that one positive hypothesisL must not contradict other
hypotheses.

2.2 Definition

Definition 9. Evidence for a literalL A negative set of hypothesesE ⊆ not Atoms(P)
is evidence for a literalL in programP iff P ∪ E ⊢ L. If P is understood we write
E Ã L. We also sayE attacksnot L. Notice that we do not require an evidence to be
consistent. ⊓⊔

Definition 10. Weakly Admissible set of hypothesesH−

The notion of weakly admissible set presented here is in linewith that of weak
stability, first defined in [12].

Let P be a NLP,H− ⊆ not Atoms(P) a set of negative hypotheses,not L a
default negated literal inP andE an evidence forL. We sayH− is weakly admissible
iff ∀not L∈H−∀EÃL∃not A∈EP ∪H− ∪E ⊢ A ⊓⊔

The classical notion of admissible set checks only ifP ∪ H− ⊢ A. By doing this test
with P ∪H− ∪E we allowE to be inconsistent. It suffices to see that ifP ∪H−

0 A

andP ∪H− ∪ E ⊢ A it means thatE is essential to deriveA in theP ∪H− context.
Since we knownot A ∈ E andP ∪H− ∪ E ⊢ A we conclude thatE is inconsistent.

There are some sets of hypothesesH− which were not admissible according to the
classical definition (with justP ∪ H−) and are weakly admissible — according to the
definition usingP ∪H− ∪ E. These sets of hypotheses which are accepted as weakly
admissible are just the ones where the adding of the evidenceE was essential to derive
A, that is, whereE is inconsistent.

Since the⊢ operator is monotonic, every admissible set of hypotheses according to
the classical definition (usingP ∪ H−) is also weakly admissible — according to the
definition withP ∪H− ∪ E.

Example 5.Weakly Admissible vs Non Weakly Admissible sets of negativehy-
pothesesConsider the following NLP:

k ← not t t ← a, b a ← not b b ← not a

In this program we can easily see that the bottom Even Loop Over Negation (ELON,
for short) overa andb allows only one of them to be true — when we demand minimal-
ity of positive information. Under this setting we will never havet true for it needs both
a andb to be true simultaneously to support its truthfulness. Therefore,k will always
be true, sincet is always false.

Reductio ad AbsurdumArgumentation in Normal Logic Programs 103

Let us analyze the different possible sets of hypotheses from an admissibility point
of view. Consider the following two sets of negative hypothesesH1 = {not b, not t}
andH2 = {not b, not k}. The other two sets of negative hypothesesH3 andH4 are
just symmetric toH1 andH2, respectively, onnot a andnot b; therefore we are going
to focus solely onH1 andH2.

H1 is weakly admissible whereasH2 is not. Let us see why. Analyzingnot b we
verify that there is only one possible evidenceE = {not a} for b and thatP ∪H1∪E ⊢
a, i.e.,H1 ∪ E attacks (in the sense presented in definition 9)not a. In this particular
case even justH1 attacksnot a.

Analyzingnot t we can see that there is only one evidenceE = {not a, not b} for
t. P ∪H1 ∪ E derives botha andb, i.e.,P ∪H1 ∪ E ⊢ a andP ∪H1 ∪ E ⊢ b; hence
H1 is weakly admissible.

Let us see what happens withH2. We have already seennot b, we just need to test
not k. The only evidence fork isE = {not t}. We can see however thatP∪H2∪E 0 t,
which leads us to conclude thatH2 is not weakly admissible.

Example 6.Allowing Inconsistent Evidence Consider the following NLP:

k ← not t t ← not t

The hypothesesH1 = {not t} is admissible and weakly admissible. However, since
P ∪H1 is not a consistent scenario, no model exists withnot t.

The only possible hypotheses left are the empty set andH2 = {not k}. Considering
the classical notion of admissible set (withP ∪ H−) H2 is non-admissible; however,
H2 is weakly admissible. Notice that the evidence fork is E = {not t} and thatP ∪
H2 ∪ E ⊢ t. P ∪ H2 is a consistent scenario, but it is not complete. Since we already
know thatnot t cannot be in any consistent model, in a 2-valued setting we would like
to “complete” the scenarioP ∪ H2 with t in order to obtain a 2-valued complete and
consistent model. In such case we say{t} is our set of positive hypotheses.

Definition 11. Non-redundant setH+ of positive hypothesesLet P be a NLP, and
H = H+ ∪H− a set of positive and negative hypotheses, i.e., (H+ ⊆ Atoms(P)) and
(H− ⊆ not Atoms(P)). We sayH+ is non-redundant iff∀L∈H+P ∪H \{L} 0 L ⊓⊔

As just explained, we wish to allow some positive hypotheseswhen they are ab-
solutely needed in order to obtain 2-valued complete and consistent scenarios. How-
ever, we require the positive set of hypotheses to be non-redundant, that is, all positive
hypotheses must not be already derived by other hypotheses.This is the purpose of
definition 11 above.

Example 7.Redundant positive hypothesesConsider the following programP :

b ← a a ← not a

In the previous example 6 we saw how a rule liket ← not t forbids the negative
hypothesisnot t. By the same token, in this example’s program, the hypothesis not a

is also forbidden. Also{not b} is not a weakly admissible set of negative hypotheses.

104 L.M. Pereira and A.M. Pinto

Since we are looking for 2-valued complete (total) and consistent scenarios, we would
like one including botha andb.

The question now is: should botha andb be considered positive hypotheses? Since
we are looking for the minimum possible set of positive hypotheses (compatible with
the negative ones), we answerno in this case, because assuming the positive hypothesis
a is enough to automatically determine the truth ofb. That is why we say the set{a, b}
of positive hypotheses is redundant, whereas{a} is not.

Definition 12. Unavoidable setH+ of positive hypothesesLetP be a NLP, andH =
H+ ∪ H− a set of positive and negative hypotheses. We sayH+ is unavoidable iff
∀L∈H+P ∪

(

H \ {L}
)

∪ {not L} is an inconsistent scenario ⊓⊔

In a nutshell, this definition imposes that every positive hypothesis must be accepted as
true for the sake of consistency and completeness in the context of all other hypotheses.
We ensure this by demanding that any if positive hypothesisL was to be considered
false — i.e.,not L considered true — the whole scenario ofP with all the hypotheses,
exceptL, and includingnot L instead (for the sake of 2-valued completeness) would be
inconsistent. So, there is no consistent 2-valued way to avoid havingL true in the con-
text of the remaining hypotheses. Additionally, one may need the condition as stating
that, if the scenario withnot L is consistent, thenL is avoidable.

Example 8.Unavoidable vs Avoidable sets of positive hypothesesLet P be the fol-
lowing NLP:

d ← not c c ← not b b ← not a a ← not a

In this example we considerH1 = H+

1 ∪ H−

1 , whereH+

1 = {a} and H−

1 =
{not b, not d}; andH2 = H+

2 ∪H−

2 , whereH+

2 = {a, b} andH−

2 = {not c}.
By the same reason as in example 7not a cannot be in anyH− and, in order to

obtain a 2-valued total model with anH, a must be accepted as true — in that sense we
saya is unavoidable.

Definition 13. Revision Complete ScenariosLet P be a NLP andH = H+ ∪ H− a
set of positive (H+) and negative (H−) hypotheses. We sayH is a Revision Complete
Scenario iff

1. P ∪H is a consistent scenario andleast(P ∪H) is a 2-valued complete model of
P

2. H− is weakly admissible
3. H+ is not redundant
4. H+ is unavoidable

⊓⊔

2.3 The Exhaustive Model Generation Algorithm

Another method for finding the Revision Complete Scenarios is an iterative and incre-
mental way.

Reductio ad AbsurdumArgumentation in Normal Logic Programs 105

Definition 14. Inconsistency avoidance algorithm for generating the Revision Com-
plete Scenarios (RCSs)

1. Start withi = 0, H+

i
= Atoms(P) andH−

i
= ∅.

2. If H−

i
is not weakly admissible thenH+

i
∪H−

i
is not a Revision Complete Scenario

and the algorithm terminates unsuccessfully.
3. If H−

i
is weakly admissible then:

4. If H+

i
= ∅ thenH+

i
∪ H−

i
is a RCS and the algorithm terminates successfully in

this case.
5. If H+

i
6= ∅ then non-deterministically take one arbitraryL ∈ H+

i
and check ifH+

i

is redundant onL. If it is then:
6. H+

i+1
= H+

i
\ {L} and go back to step 3 (a).

7. If H+

i
is non-redundant then:

8. Check ifH+

i
is unavoidable and, if so, thenH+

i
∪H−

i
is a RCS and the algorithm

terminates successfully.
9. If H+

i
is not unavoidable andL ∈ H+

i
is one of the positive hypotheses rendering

H+

i
non-unavoidable thenH+

i+1
= H+

i
\ {L} andH−

i+1
= H−

i
∪ {not L} and go

on to step 2 again.
⊓⊔

This algorithm starts with all the possible positive hypotheses (all the atoms of the
program) and no negative hypotheses. By construction, a scenario with suchH+ and
H− is necessarily consistent and 2-valued complete. Along theexecution of the algo-
rithm, at each time, we either just remove one positive hypothesis because redundant,
or non-deterministically remove one positive hypothesis and add its correspondent de-
fault negation to the set of negative hypotheses. By construction, the algorithm guaran-
tees thatH = H+ ∪ H− is consistent. When we just remove one positive hypothesis
L ∈ H+ the 2-valued completeness of the resulting scenario is guaranteed becauseL
was removed fromH+ only becauseL was renderingH+ redundant. When we remove
L from H+ and addnot L to H− 2-valued completeness is naturally assured.

The requirement for weak admissibility ofH− in step 3 ensures the resultingH =
H+∪H− corresponds to a consistent scenario. The different non-deterministic choices
engender all the RCSs.

Example 9.Generating RCSs by Inconsistency avoidance

a ← not a, not b b ← not a, not b

We start the algorithm with all the possible positive hypotheses and no negative
ones:

– H+

0 = {a, b},H−

0 = ∅.
– H−

0 is weakly admissible.
– H+

0 6= ∅ so we check if it is redundant. It is not, so we check ifH+

0 is unavoidable.
– H+

0 is not unavoidable. We non-deterministically choose one atom from H+

0 =
{a, b} which makes it non-unavoidable (in this case, botha and b are rendering
H+

0 non-unavoidable, so we can choose any one). Let us say we chooseb. Then
H+

1 = H+

0 \ {b} andH−

1 = H−

0 ∪ {not b}. And we go on to step 2 again.

106 L.M. Pereira and A.M. Pinto

– H−

1 is weakly admissible.
– H+

1 6= ∅.
– H+

1 is not redundant on anyL ∈ H+

1 .
– H+

1 is unavoidable and soH1 = H+

1 1 ∪H−

1 = {a, not b} is a Revision Complete
Scenario and the algorithm terminates successfully.

If we were to choosenot a instead ofnot b in step 9, the resulting Revision Com-
plete Scenario would be{not a, b}. There are no other Revision Complete Scenario for
this program besides these two.

Theorem 1. The setsH = H+ ∪ H− resulting from the execution of algorithm of
definition 14 are the Revision Complete Scenarios

Proof. Trivial, by construction of the algorithm. ⊓⊔

Theorem 2. Existence of Model For any given NLPP there is always at least one
Revision Complete Scenario.

Proof. In the algorithm described above, when we need to non-deterministically choose
one atomL to remove fromH+

i
, and eventually addnot L to H−

i
, if there are no

repetitions in the choice, then the algorithm is necessarily guaranteed to terminate.
Moreover, if the first positive hypothesis to remove correspond to atoms upon which

no other atoms depend, then removing that positive hypotheses has causes no inconsis-
tency, nor does it compromise 2-valued completeness. If thenext positive hypotheses
in the sequence to be removed always guarantee that the consequences of its removal
(and eventual adding of its default negated counterpart to the set of negative hypothe-
ses) does not change the truth value of positive hypotheses already removed, then it is
necessarily guaranteed that the algorithm will find a Revision Complete Scenario.

Finally, it is always possible to find such a sequence of positive hypotheses to re-
move: the sequence just needs to be in reverse order of the stratification of the program.
I.e., the first positive hypotheses in the sequence must be from the top strata of the pro-
gram, the second hypotheses from the second strata countingfrom the top, and so on.
The notion of stratification we are unsing here can be intuitively explained as: (1) atoms
in a loop are all in the same strata; (2) atoms which are not in aloop, and are in the head
of a rule are in a strata which is always one directly above theatoms in the body of the
rule. ⊓⊔

Theorem 3. M is a Stable Model of a NLPP iff there is some Revision Complete
ScenarioH such thatM = least(P ∪H) with H+ = ∅

Proof. Let H = H+ ∪ H− a set of positive and negative hypotheses. Let us consider
the particular case whereH+ = ∅, thereforeH = H−.

In [4], the author already proved that whenH = H−, P ∪H is a consistent scenario
andM = least(P ∪H) is a 2-valued complete scenario iffM is a Stable Model ofP .

Stable Models are just a particular case of Revision Complete Scenarios. ⊓⊔

A variation of this algorithm reversing the direction of thechanges inH+ andH−

can also be depicted. In such an algorithm we start withH− = not Atoms(P) and
H+ = ∅. 2-valued completeness is also assured at the starting point, although consis-
tency ofP ∪H is not. The algorithm is:

Reductio ad AbsurdumArgumentation in Normal Logic Programs 107

Definition 15. Inconsistency removal algorithm for generating the Revision Com-
plete Scenarios (RCSs)

1. Start withi = 0, H−

i
= not Atoms(P) andH+

i
= ∅.

2. If P ∪ Hi is a consistent scenario thenHi is a RCS and the algorithm terminates
successfully.

3. Check ifH+

i
is redundant:

4. If it is redundant then non-deterministically take one arbitrary atomL ∈ H+

i
such

thatP ∪H \ {L} ⊢ L and constructH+

i+1
= H+

i
\ {L}.

5. If H+

i
is non-redundant constructH+

i+1
= H+

i
.

6. Check ifH+

i+1
is unavoidable:

7. If H+

i+1
is non-unavoidable thenH+

i+1
∪ H−

i+1
is not a RCS and the algorithm

terminates unsuccessfully.
8. If H+

i+1
is unavoidable then check ifP ∪Hi+1 is a consistent scenario:

9. If P ∪Hi+1 is a consistent scenario then:
10. Check ifP ∪Hi+1 is also a 2-valued complete scenario and if it is thenHi+1 is a

RCS and the algorithm terminates successfully.
11. IfP∪Hi+1 is not a 2-valued complete scenario then constructH+

i+2
= H+

i+1
∪{L},

whereP ∪Hi+1 0 L andP ∪Hi+1 0 not L, andH+

i+2
is non-redundant. Go on

to step 4 again.
12. If P ∪ Hi+1 is not a consistent scenario, take onenot L ∈ H−

i+1
such thatP ∪

Hi+1 ⊢ L andP ∪Hi+1 ⊢ not L (i.e., there is a contradiction inL with P ∪H−

i+1
)

and constructH−

i+2
= H−

i+1
\ {not L} andH+

i+2
= H+

i+1
∪ {L}, i.e., we revise

the assumptionnot L to L making it a positive hypothesis. Go on to step 3 again.
⊓⊔

This algorithm starts with all the possible negative hypotheses (the default negation
of all the atoms of the program) and no positive hypotheses. By construction, a scenario
with suchH+ andH− is necessarily consistent and 2-valued complete. Along theexe-
cution of the algorithm, at each time, we either just remove one positive hypothesis —
because it is redundant — , or remove one negative hypothesisnot L and add its corre-
spondent positiveL to the set of positive hypotheses — i.e., we revise the assumption
not L to L, when the set of negative hypotheses withnot L is not consistent.

Also by construction the algorithm guarantees thatH = H+∪H− is consistent and,
therefore, thatH− is weakly admissible. When we just remove one positive hypothesis
L ∈ H+ the 2-valued completeness of the resulting scenario is guaranteed becauseL
was redundant inH+. When we removenot L from H− and addL to H+ 2-valued
completeness is naturally assured. The different non-deterministic choices engender all
the RCSs.

Example 10.Generating RCSs by Inconsistency removalLet us revisit the example
9 and see the Inconsistency removal version of it.

a ← not a, not b b ← not a, not b

We start the algorithm with all the possible negative hypotheses and no positive
ones:

108 L.M. Pereira and A.M. Pinto

– H−

0 = {not a, not b},H+

0 = ∅.
– P ∪H0 is not a consistent scenario.
– H+

0 = ∅ is non-redundant.
– H+

1 = H+

0 is unavoidable.
– P ∪H1 is not a consistent scenario.
– We non-deterministically choose one negative hypothesisnot L fromH−

1 = {not a, not b}
such thatP ∪H1 ⊢ L andP ∪H1 ⊢ not L. In this case, bothnot a andnot b, so we
can choose any one of them. Let us say we choosenot a. ThenH+

2 = H+

1 ∪ {1}
andH−

2 = H−

1 \ {not a}. And we go on to step 3 again.
– H+

2 is non-redundant.
– H+

3 = H+

2 is unavoidable.
– P ∪H3 is a consistent scenario.
– P ∪H3 is a 2-valued complete scenario, soH3 = H+

3 ∪H−

3 = {a} ∪ {not b} =
{a, not b} is a Revision Complete Scenario and the algorithm terminates success-
fully.

If we were to choosenot b instead ofnot a in step 12, the resulting Revision Com-
plete Scenario would be{not a, b}. These Revision Complete Scenario coincide with
those produced by the algorithm in definition 14.

Theorem 4. The setsH = H+ ∪ H− resulting from the execution of algorithm of
definition 15 are the Revision Complete Scenarios

Proof. Trivial, by construction of the algorithm. ⊓⊔

2.4 The Name of the Game

Why the name “Revision” Complete Scenarios? The “Revision” part of the name comes
from the assumption revision we do when an assumptionnot A ∈ H− leads to a
contradiction inP , i.e.,

(

P∪H− ⊢ {A,not A}
)

∧
(

P∪(H−\{not A}) 0 {A,not A}
)

.
In such a case we accept to revisenot L to its positive counterpartL. This is the

specific form of reasoning byReductio ad Absurdumwe take here: if addingnot A to P

in the context ofH− leads to self inconsistency, then, by absurdity, we should assume
A instead ofnot A. A becomes, thus, one of the positive hypotheses.

3 Syntactic Perspective of Revision Complete Scenarios over
Normal Logic Programs

In [3] the authors proved that every Stable Model of a NLP corresponds to a 2-valued
complete, consistent and admissible scenario. In [10] the author shows that when a NLP
has no SMs it is because the Normal Logic Program has Odd LoopsOver Negation
(OLONs) and/or Infinite Chains Over Negation (ICONs), although the author does not
employ these designations. These designations are taken from [14].

For the sake of readability and self-containment we briefly present some examples
of OLONs and ICONs. Intuitively an OLON is a set of rules of a NLP which induce

Reductio ad AbsurdumArgumentation in Normal Logic Programs 109

a cycle over some literals in the dependency graph. The cycleof an OLON has the
characteristic of having an Odd number of default Negated arcs around the cycle.

An example of an OLON is given in example 1. There we can see that the atom
intend we to invade is in a cycle across the dependency graph, and that along that
cycle there is only 1 (an Odd number) default negation.

Another example of an OLON is present in example 2. There the atom mountain

is in a cycle with 3 default negations along the circular dependency graph. The same is
true fortravel andbeach.

The classical example of an ICON was first presented in [10]. It goes as follows:

p(X) ← p(s(X)) p(X) ← not p(s(X))

whereX is a variable. The ground version of this program when there is only one
constant0 is the infinite program

p(0) ← p(s(0)) p(0) ← not p(s(0))
p(s(0)) ← p(s(s(0))) p(s(0)) ← not p(s(s(0)))
p(s(s(0))) ← p(s(s(s(0)))) p(s(s(0))) ← not p(s(s(s(0))))
...

...

This example in particular is the one to which every other possible variation of an
ICON reduces to (proven in [10]). As it can be easily seen, there is an infinitely long
chain of support for anyp(X) with an infinite number of default negations.

As we just said, in [10] the author proves that only OLONs and/or ICONs can pre-
vent the existence of SMs in a NLP. Therefore, since our Revision Complete Scenario
guarantee the Existence of a Model for any given NLP it follows that the Revision
Complete Scenario deal with OLONs and ICONs in a way that the Stable Models se-
mantics did not. This is achieved by means of the reasoning byReductio ad Absurdum
we explained in subsection 2.4.

4 Collaborative Argumentation

The classical perspective on Argumentation is typically ofa competitive nature: there
are arguments and counter-arguments, all of them attackingeach other and struggling
for admissibility. The ones which counter-attack all its attackers are admissible.

Typically, one takes one argument — a set of hypothesesH — and check if it is
admissible, and ifP ∪H is a consistent scenario. If 2-valuedness is a requisite, then an
extra test for 2-valued completeness is required.

We now generalize this approach in a constructive way, by building up a compro-
mise Revision Complete Scenario starting from several conflicting 2-valued complete
and consistent Models ofP — each corresponding to an argument. This is what the
algorithm below does.

First, we take all the conflicting modelsN1, N2, . . . , Nn and calculate the set of
all the possible positive hypothesesM+ =

⋃n

i=1
N+

i
; and the set of all the possible

negative hypothesesM− =
⋃n

i=1
N−

i
. M+ andM− will now be used to guide the

algorithm below in order to ensure consensus, i.e., the resulting Revision Complete

110 L.M. Pereira and A.M. Pinto

ScenarioH will have no positive hypotheses outsideM+, nor will it have negative
hypotheses outsideM−. The algorithm goes as follows:

Definition 16. Revision Complete ScenarioH construction from conflicting models
N1, N2, . . . Nn

1. Start withM = M+ ∪M−. M0 = M is inconsistent.
2. M+

1 = M+

0 \ {L ∈ M+

0 : not L ∈ M−

0 }, andM−

1 = M−

0 . M1 is now consistent.
3. If M−

i
is not weakly admissible then non-deterministically select oneL such that

not L ∈ M−

i
, there is anE such thatE Ã L, and there is somenot a ∈ E such

thatP ∪M−

i
∪ E 0 a. ConstructM−

i+1
= M−

i
\ {not L}. Repeat this step.

4. If M+

i+1
is avoidable thenM+

i+2
= M+

i+1
\{L}, whereP ∪(Mi+1\{L})∪{not L}

is an inconsistent scenario.M−

i+2
= M−

i+1
∪ {not L} only if L ∈ M−, otherwise

M−

i+2
= M−

i+1
. Go on to step 3 again.

5. If P ∪ Mi+2 is not a consistent scenario then non-deterministically select oneL

such thatP ∪Mi+2 ⊢ {L, not L}, and constructM−

i+3
= M−

i+2
\ {not L}. Go on

to step 3 again.
6. If P ∪Mi+2 is not a 2-valued complete scenario thenM+

i+3
= M+

i+2
∪{L}, where

P ∪Mi+2 0 L andP ∪Mi+2 0 not L andL ∈ M+, and go on to step 4 again.
7. P ∪ Mi+2 is a 2-valued complete and consistent scenario, whereM+

i+2
is non-

redundant and unavoidable, andM−

i+2
is weakly admissible. By definition,Mi+2 is

a Revision Complete Scenario, thereforeH = Mi+2 and the algorithm terminates
successfully.

⊓⊔

In essence, this algorithm is a mixture of the InconsistencyAvoidance and Inconsis-
tency Removal algorithms presented in subsection 2.3. We start with two setsM+ and
M− containing, respectively, all the possible positive hypotheses that can be adopted
in the final Revision Complete ScenarioH, and all the possible negative hypotheses
that can be adopted. Next, we remove from the set of positive hypotheses all those
conflicting with the negative ones in order to ensure consistency. Now we need to en-
sure a weak admissibility of the current negative hypotheses M−

i
. For that we check

if the M−

i
is weakly admissible, and if it is not, then we non-deterministically select

and remove fromM−

i
one of the negative hypotheses causingM−

i
failing to com-

ply to this requirement. This step is repeated until weak admissibility is verified by
M−

i
. Now we turn to the set of positive hypothesesM+

i
. If it is avoidable, then we

non-deterministically select and remove fromM+

i
one positive hypothesisL which

contributes toM+

i
avoidability. We also add the correspondent default negation of that

positive hypothesesnot L to M−

i
, but only if not L was already inM− — the initial

set of all the adoptable negative hypotheses. This extra requirement ensures the final
compromise Revision Complete ScenarioH to be found is maximally compatible with
all the initial modelsN1, N2, . . . , Nn. When we addnot L to M−

i
we need to recheck

its weak admissibility, so we go on to that step again. IfM+

i
was unavoidable, then we

need to check it the wholeP∪Mi is consistent. If this scenario fails consistency, then we
remove fromM−

i
one of the negative hypothesis whose positive counterpart was also

being produced byP ∪Mi. Notice that when the resulting scenario is not consistent we

Reductio ad AbsurdumArgumentation in Normal Logic Programs 111

remove one inconsistency in favour of the positive hypotheses, since the presence of the
correspondent negative produced the inconsistency. This is basically the mechanism of
reasoning byReductio ad Absurdumwe use. Again we need to recheck the weak ad-
missibility, so we go on to that step again. If the scenarioP ∪Mi was consistent, then
we need to check if it is 2-valued complete. If it is not, then we non-deterministically
select one adoptable positive hypothesis and add it toM+

i
. Now we need to recheck

M+

i
’s unavoidability; so we go on to that step again. Finally, ifP ∪ Mi was 2-valued

complete thenH = Mi is a Revision Complete Scenario and the algorithm terminates
successfully.

Example 11.Example 2 revisited — A vacation problem Recall the example 2 pre-
sented earlier. The program is:

travel ← not mountain mountain ← not beach beach ← not travel

Now assume that one of the friends going on vacation with the other two could not
be present when they were getting together to decide their vacations’ destinies. So, only
John (the one who preferred going to the mountains, otherwise traveling it is), and Mary
(she prefers going to the beach, otherwise going to the mountains is ok).

John’s opinion isJ = {mountain, not travel, not beach}, while Mary’s choice is
Z = {beach, not mountain, not travel}. We can already see that at least on one thing
they agree:not travel. We now find the largest set of positive hypotheses we can con-
siderM+ = J+∪Z+ = {mountain, beach} and the largest set of negative hypotheses
we can considerM− = J− ∪ Z− = {not travel, not beach, not mountain}. And
now the algorithm starts:

M = M+ ∪M− = {mountain, beach, not mountain, not beach, not travel}
Going through the steps of the algorithm we have:

– M0 = M .
– M+

1 = M+

0 \ {mountain, beach} = ∅, M−

1 = M−

0 .
– M−

1 is not weakly admissible, so we non-deterministically select oneL such that
not L ∈ M−

1 is one of the causes forM−

1 not complying to the weak admissibil-
ity condition: for example,L = mountain. M−

2 = M−

1 \ {not mountain} =
{not beach, not travel}. We repeat this set and now we must removenot beach

from M−

2 . M−

3 = M−

2 \ {not beach} = {not travel}.
– M+

3 = M+

2 = M+

1 = ∅ is unavoidable.
– P ∪M3 is a consistent scenario.
– P∪M3 is not a 2-valued complete scenario. SoM+

4 = M+

3 ∪{mountain} because
mountain is the only literal which verifiesP ∪ M3 0 mountain andP ∪ M3 0

not mountain. Now we go on to step 4 of the algorithm again.
– M+

4 is unavoidable.
– P ∪M4 is consistent.
– P ∪M4 is 2-valued complete, soH = M+

4 ∪M−

4 = {mountain, not travel} and
the algorithm terminates successfully.

In the end, the resulting model isleast(P ∪H) = {mountain, beach, not travel}.
Notice thatbeach is just a consequence ofnot travel in P , it does not have to be a
hypothesis. If other atoms were to be chosen at step 3 other alternative solutions would
be found.

112 L.M. Pereira and A.M. Pinto

5 Integrity Constraints

Example 12.Middle Region Politics RevisitedRecall the example 4 presented earlier.
We are now going to add extra complexity to it.

We already know the two factions which are at odds and their thinking.

oppression ← not end of terrorism end of terrorism ← oppression

terrorism ← not end of oppression end of oppression ← terrorism

We now combine these two sets of rules with the two following Integrity Constraints
(ICs) which guarantee thatoppression andend of oppression are never simultane-
ously true; and the same happens with terror:

falsum ← oppression, end of oppression, not falsum

falsum ← terrorism, end of terrorism, not falsum

So far so good, there is still a single joint set of hypothesesresulting in a consistent
scenario{end of oppression, end of terrorism}. Still, there is no SM for this pro-
gram. But introducing either one or both of the next two rules, makes it impossible to
satisfy the ICs:

oppression ← not terrorism terrorism ← not oppression

In this case all the consistent and 2-valued complete scenarios contain the atom
falsum. There are still no Stable Models for the resulting program.The semantics we
propose allows two models for this program, which correspond to the 2-valued complete
consistent scenarios, both containingfalsum. We can discard them on this account or
examine their failure to satisfy the ICs.

6 Conclusions and Future Work

We have managed to assign a complete 2-valued semantics to every Normal Logic
Program, by employing an argumentation framework that readily extends the argumen-
tation framework of Stable Models semantics. We also presented three algorithms for
finding the Revision Complete Scenario of any Normal Logic Program. Every Stable
Model of a Normal Logic Program corresponds to a Revision Complete Scenario and,
in that sense, our algorithms allow for a different perspective on Stable Models seman-
tics: any Stable Model can be seen as the result of an iterative process of Inconsistency
Removal or Inconsistency Avoidance. In any case, Stable Models are the final result of
such inconsistency removal/avoidance where any initial positive hypotheses remain in
the end. In the process, we have extended argumentation withReductio ad Absurdum
reasoning for that purpose, and shown how Collaborative Argumentation can be defined
in that context.

Future work concerns the extension to Generalized Logic Programs and Extended
Logic Programs, and the seamless merging with more general belief revision in Logic
Programs.

Reductio ad AbsurdumArgumentation in Normal Logic Programs 113

Some of the applications enabled by this improved semanticsof Normal Logic Pro-
grams, concern the ability to guarantee that the meaning of diverse programs, e.g. aris-
ing from Semantic Web usage, always has a semantics. Similarly, we can also ensure
this property whenever updating programs, including the case where an autonomous
program evolves through self-updating [1]. Such applications will be enabled by the
ongoing implementation.

Acknowledgments We deeply thank Robert A. Kowalski for his crucial help in
clarifying our ideas and their presentation.

References

1. J. J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Evolving logicprograms. In S. Flesca
et al., editor,JELIA, volume 2424 ofLNCS, pages 50–61. Springer, 2002.

2. J. J. Alferes and L. M. Pereira. An argumentation theoretic semanticsbased on non-refutable
falsity. In J. Dix et al., editor,NMELP, pages 3–22. Springer, 1994.

3. A. Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni. An abstract, argumentation-
theoretic approach to default reasoning.Artif. Intell., 93:63–101, 1997.

4. P. M. Dung. Negations as hypotheses: An abductive foundation forlogic programming. In
ICLP, pages 3–17. MIT Press, 1991.

5. P. M. Dung. An argumentation semantics for logic programming with explicit negation. In
ICLP, pages 616–630. MIT Press, 1993.

6. P. M. Dung. On the acceptability of arguments and its fundamental role innonmonotonic
reasoning, logic programming and n-person games.Artif. Intell., 77(2):321–358, 1995.

7. P. M. Dung, R. A. Kowalski, and F. Toni. Dialectic proof proceduresfor assumption-based,
admissible argumentation.Artif. Intell., 170(2):114–159, 2006.

8. P. M. Dung, P. Mancarella, and F. Toni. Argumentation-based proof procedures for credulous
and sceptical non-monotonic reasoning. InComputational Logic: Logic Programming and
Beyond, volume 2408 LNCS, pages 289–310. Springer, 2002.

9. P. M. Dung and T. C. Son. An argument-based approach to reasoning with specificity.Artif.
Intell., 133(1-2):35–85, 2001.

10. F. Fages. Consistency of Clark’s completion and existence of stablemodels. Methods of
Logic in Computer Science, 1:51–60, 1994.

11. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
ICLP/SLP, pages 1070–1080. MIT Press, 1988.

12. A. C. Kakas and P. Mancarella. Negation as stable hypotheses. InLPNMR, pages 275–288.
MIT Press, 1991.

13. A. C. Kakas and F. Toni. Computing argumentation in logic programming. J. Log. Comput.,
9(4):515–562, 1999.

14. L. M. Pereira and A. M. Pinto. Revised stable models - a semantics forlogic programs. In
G. Dias et al., editor,Progress in AI, volume 3808 ofLNCS, pages 29–42. Springer, 2005.

15. A. M. Pinto. Explorations in revised stable models — a new semantics forlogic programs.
Master’s thesis, Universidade Nova de Lisboa, February 2005.

16. L. Soares. Revising undefinedness in the well-founded semantics of logic programs. Master’s
thesis, Universidade Nova de Lisboa, 2006.

17. F. Toni and R. A. Kowalski. An argumentation-theoretic approach tologic program transfor-
mation. InLOPSTR, volume 1048 ofLNCS, pages 61–75. Springer, 1996.

Inferring Preferred Extensions by

Minimal Models

Juan Carlos Nieves1, Mauricio Osorio2, and Ulises Cortés1

1 Universitat Politècnica de Catalunya
Software Department (LSI)

c/Jordi Girona 1-3, E08034, Barcelona, Spain
{jcnieves,ia}@lsi.upc.edu

2 Universidad de las Américas - Puebla
CENTIA, Sta. Catarina Mártir, Cholula, Puebla, 72820 México

osoriomauri@googlemail.com

Abstract. We identify that there is a direct relationship between the
minimal models of a propositional formula and the preferred extensions
of an argumentation framework. Then we show how to infer the preferred
extensions of an argumentation framework by using UNSAT algorithms
and disjunctive answer set solvers.

1 Introduction

Although several approaches have proposed for argument theory, Dung’s ap-
proach, presented in [11], is a unifying framework which has played an influential
role on argumentation research and Artificial Intelligence (AI). In fact, Dung’s
approach has influenced subsequent proposals for argumentation systems, e.g.,
[18, 3]. Besides, Dung’s approach is mainly relevant in fields where conflict man-
agement plays a central role. For instance, Dung showed that his theory naturally
captures the solutions of the theory of n-person game and the well-known stable
marriage problem.

Dung defined four argumentation semantics: stable semantics, preferred se-
mantics, grounded semantics, and complete semantics. The central notion of
these semantics is the acceptability of the arguments. An argument is called ac-
ceptable if and only if it belongs to a set of arguments which is called extension.
The main argumentation semantics for collective acceptability are the grounded
semantics and the preferred semantics [16, 1]. The first one represents a skepti-
cal approach, since for a given argumentation framework the grounded semantics
always identifies a single extension, called grounded extension. The preferred se-
mantics instead represents a credulous approach, since for a given argumentation
framework it identifies a set of extensions which are called preferred extensions.

It is well-known that the implementation of the decision problem of the
grounded semantics is quite straightforward. However, the decision problem of
the preferred semantics is hard since it is co-NP-Complete [12]. In the literature,
we can find different algorithms for computing the preferred semantics [4, 6, 9,

Inferring Preferred Extensions by Minimal Models 115

10, 2]. We have to point out that these algorithms are so specific; they are not
really flexible for developing small prototypes.

From the point of view that a proper representation of a given problem is a
major step in finding robust solutions to it, we explore a couple of representations
of an argumentation framework in order to compute their preferred extensions.
In general terms, we identify that there is a direct relationship between the
minimal models of a propositional formula and the preferred extensions of an
argumentation framework. We show how to infer the preferred extensions of an
argumentation framework by using UNSAT algorithms and disjunctive answer
set solvers e.g., DLV [8]. UNSAT is the complement of Satisfiability (SAT), a
problem for which very efficient systems have been developed in AI during the
last decade. Nowadays, there are fast answer set solvers e.g., DLV [8], SMODELS
[17], which have contributed to extend the applications of Answer Set Program-
ming (ASP).

The rest of the paper is divided as follows: In §2, we present some basic
concepts of logic programs and argumentation theory. In §3, we present a char-
acterization of the preferred semantics by minimal models. In §4, we present how
to compute the preferred semantics by using the minimal models of a positive
disjunctive logic program. Finally in the last section, we present our conclusions.

2 Background

In this section, we present the syntax of a valid logic program in ASP, the
definition of an answer set, and the definition of the preferred semantics. We will
use basic well-known definitions in complexity theory such as co-NP-complete
problem. We suggest the reader to consult [7] if s/he needs to read more on such
definitions.

2.1 Logic Programs: Syntax

The language of a propositional logic has an alphabet consisting of

(i) proposition symbols: p0, p1, ...

(ii) connectives : ∨,∧,←,¬,⊥,⊤
(iii) auxiliary symbols : (,).

where ∨,∧,← are 2-place connectives, ¬ is 1-place connective and ⊥,⊤ are 0-
place connectives. The proposition symbols and ⊥ stand for the indecomposable
propositions, which we call atoms, or atomic propositions. A literal is an atom,
a, or the negation of an atom ¬a. Given a set of atoms {a1, ..., an}, we write
¬{a1, ..., an} to denote the set of literals {¬a1, ...,¬an}.

A general clause, C, is denoted by a1 ∨ . . . ∨ am ← l1, . . . , ln,3 where m ≥ 0,
n ≥ 0, each ai is an atom, and each li is a literal. When n = 0 and m > 0 the
clause is an abbreviation of a1 ∨ . . . ∨ am ← ⊤, where ⊤ is ¬⊥. When m = 0

3 l1, . . . , ln represents the formula l1 ∧ · · · ∧ ln.

116 J.C. Nieves, M. Osorio, and U. Cortés

the clause is an abbreviation of ⊥ ← l1, . . . , ln. Clauses of this form are called
constraints (the rest, non-constraint clauses). A general program, P , is a finite
set of general clauses. By LP , we denote the set of atoms that occurs in P. Given
a set S and E ⊆ S, Ẽ denotes the complement of E w.r.t. S.

We point out that whenever we consider logic programs our negation ¬ cor-
responds to the default negation not used in Logic Programming. Also, it is
convenient to remark that in this paper we are not using at all the so called
strong negation used in ASP.

2.2 Answer set semantics

First, to define the answer set semantics, let us define some relevant concepts.
Let P be a general program. An interpretation I is a mapping from LP to
{0, 1}, where the generalization of I to connectives is as follows: I(a ∧ b) =
min{I(a), I(b)}, I(a∨ b) = max{I(a), I(b)}, I(a ← b) = 0 if and only if I(b) = 1
and I(a) = 0, I(¬a) = 1− I(a), I(⊥) = 0. An interpretation I is called a model
of P if and only if for each clause c ∈ P , I(c) = 1. Finally, I is a minimal model
of P if it does not exist a model I ′ of P such that I ′ ⊂ I.

By using answer set programming, it is possible to describe a computational
problem as a logic program whose answer sets correspond to the solutions of
the given problem. The answer set semantics was first defined in terms of the so
called Gelfond-Lifschitz reduction [13] and it is usually studied in the context of
syntax dependent transformations on programs. The following definition of an
answer set for general programs generalizes the definition presented in [13] and
it was presented in [14].

Let P be any general program. For any set S ⊆ LP , let PS be the general
program obtained from P by deleting

(i) each rule that has a formula ¬l in its body with l ∈ S, and then

(ii) all formulæ of the form ¬l in the bodies of the remaining rules.

Clearly PS does not contain ¬, then S is an answer set of P if and only if S is
a minimal model of PS .

2.3 Argumentation theory

Now, we define some basic concepts of Dung’s argumentation approach. The first
one is an argumentation framework. An argumentation framework captures the
relationships between the arguments (All the definitions of this subsection were
taken from the seminal paper [11]).

Definition 1. An argumentation framework is a pair AF := 〈AR, attacks〉,
where AR is a finite set of arguments, and attacks is a binary relation on AR,
i.e. attacks ⊆ AR×AR.

Inferring Preferred Extensions by Minimal Models 117

Fig. 1. A single argumentation framework

Any argumentation framework could be regarded as a directed graph. For
instance, if AF := 〈{a, b, c}, {(a, b), (b, c)}〉, then AF is represented as shown in
Fig. 1. We say that a attacks b (or b is attacked by a) if attacks(a, b) holds.
Similarly, we say that a set S of arguments attacks b (or b is attacked by S) if b

is attacked by an argument in S. For instance in Fig. 1, {a}attacks b.

Definition 2. A set S of arguments is said to be conflict-free if there are no
arguments A, B in S such that A attacks B.

By considering conflict-free sets of arguments, it is defined the concept of
admissible set.

Definition 3. (1) An argument A ∈ AR is acceptable with respect to a set S of
arguments if and only if for each argument B ∈ AR: If B attacks A then B is
attacked by S. (2) A conflict-free set of arguments S is admissible if and only if
each argument in S is acceptable w.r.t. S.

For instance, the argumentation framework of Fig. 1 has two admissible sets:
{a} and {a, c}. The (credulous) semantics of an argumentation framework is
defined by the notion of preferred extension.

Definition 4. A preferred extension of an argumentation framework AF is a
maximal (w.r.t. inclusion) admissible set of AF .

The only preferred extension of the argumentation framework of Fig. 1 is
{a, b}.

3 Preferred extensions and UNSAT algorithms

In this section, we provide a method for computing preferred extensions. This
method is based on model checking and Unsatisfiability (UNSAT). UNSAT is the
complement of Satisfiability (SAT), a problem for which very efficient systems
have been developed in AI during the last decade.

First of all, we introduce some notations which are used in the rest of the pa-
per. Our representations of an argumentation framework use the predicate d(X),
where the intended meaning of d(X) is: “the argument X is defeated”. Given
an argumentation framework AF := 〈AR,Attacks〉 and E ⊆ AR, we define the
set s(E) as {d(a)|a ∈ AR \E}. Essentially, s(E) expresses the complement of E

w.r.t. AR. Given A ∈ AR, we define D(A) as {B|(B,A) ∈ Attacks}. Intuitively
D(A) denotes the set of arguments which attacks A.

Now we definite a mapping from an argumentation framework to a proposi-
tional formula.

118 J.C. Nieves, M. Osorio, and U. Cortés

Definition 5. Let AF := 〈AR, attacks〉 be an argumentation framework, then
α(AF) is defined as follows:

α(AF) :=
∧

A∈AR

((
∧

B∈D(A)

d(A) ← ¬d(B)) ∧ (
∧

B∈D(A)

d(A) ←
∧

C∈D(B)

d(C)))

In the propositional formula α(AF), we can identify two parts for each ar-
gument A ∈ AR:

1. The first part (
∧

B∈D(A) d(A) ← ¬d(B)) suggests that the argument A is
defeated when one of its attackers is not defeated.

2. The last part (
∧

B∈D(A) d(A) ←
∧

C∈D(B) d(C)) suggests that the argument

A is defeated when all the arguments that defend4 A are defeated.

Notice that α(AF) is essentially a propositional formula (just considering the
atoms like d(a) as d a). In order to illustrate the propositional formula α(AF),
let us consider the following example.

Example 1. Let AF := 〈AR, attacks〉 be the argumentation framework of Fig. 1.
We can see that D(a) = {}, D(b) = {a} and D(c) = {b}. Hence if we consider the
propositional formula w.r.t. argument a, we obtain (in order to be syntactically
clear we use uppercase letters as variables and lowercase letters as constants):

(
∧

B∈{} d(a) ← ¬d(B)) ∧ (
∧

B∈{} d(a) ←
∧

C∈D(B) d(C)) ≡ ⊤ ∧⊤ ≡ ⊤

It is important to remember that the conjunction of an empty set is the true
value (⊤). Now if one considers the propositional formula w.r.t. argument b, we
get

(
∧

B∈{a} d(b) ← ¬d(B)) ∧ (
∧

B∈{a} d(b) ←
∧

C∈D(B) d(C)) ≡

(d(b) ← ¬d(a)) ∧ (d(b) ←
∧

C∈D(a) d(C)) ≡ (d(b) ← ¬d(a)) ∧ (d(b) ← ⊤)

And the propositional formula w.r.t. argument c is

(
∧

B∈{b} d(c) ← ¬d(B)) ∧ (
∧

B∈{b} d(c) ←
∧

C∈D(B) d(C)) ≡

(d(c) ← ¬d(b)) ∧ (d(c) ← d(a))

Then, α(AF) is:

(d(b) ← ¬d(a)) ∧ (d(b) ← ⊤) ∧ (d(c) ← ¬d(b)) ∧ (d(c) ← d(a))

Essentially α(AF) is a propositional representation of the argumentation
framework AF . However α(AF) has the property that its minimal models char-
acterize AF ’s preferred extensions. In order to formalize this property, let us
consider the following proposition which was proved by Besnard and Doutre in
[4].

4 We say that C defends A if B attacks A and C attacks B.

Inferring Preferred Extensions by Minimal Models 119

Proposition 1. [4] Let AF := 〈AR, attacks〉 be an argumentation framework.
A set S ⊆ AR is a preferred extension if and only if S is a maximal model of
the formula

∧

A∈AR

((A →
∧

B∈D(A)

¬B) ∧ (A →
∧

B∈D(A)

(
∨

C∈D(B)

C)))

Notice that α(AF) is related to defeated arguments and the formula of Propo-
sition 1 is related to acceptable arguments. It is not difficult to see that α(AF)
is the dual formula of the formula of Proposition 1. For instance, let us consider
the argumentation framework AF of Example 1. The formula related to AF ,
according to Proposition 1, is:

(¬a ← b) ∧ (⊥ ← b) ∧ (¬b ← c) ∧ (a ← c)

If we replace each atom x by the expression ¬d(x), we get:

(¬¬d(a) ← ¬d(b)) ∧ (⊥ ← ¬d(b)) ∧ (¬¬d(b) ← ¬d(c)) ∧ (¬d(a) ← ¬d(c))

Now, if we apply transposition to each implication

(d(b) ← ¬d(a)) ∧ (d(b) ← ⊤) ∧ (d(c) ← ¬d(b)) ∧ (d(c) ← d(a))

The latter formula corresponds to α(AF). The following theorem is a straight-
forward consequence of Proposition 1.

Theorem 1. Let AF := 〈AR, attacks〉 be an argumentation framework and S ⊆
AR. S is a preferred extension of AF if and only if s(S) is a minimal model of
α(AF).

In order to illustrate Theorem 1, let us consider again α(AF) of Example 1.
This formula has three models: {d(b)}, {d(b), d(c)} and {d(a), d(b), d(c)}. Then,
the only minimal model is {d(b)}, this implies that {a, c} is the only preferred
extension of AF. In fact, each model of α(AF) implies an admissible set of AF,
this means that {a, c}, {a} and {} are the admissible sets of AF.

There are several approaches for inferring minimal models from a proposi-
tional formula. For instance, it is possible to use UNSAT’s algorithms for infer-
ring minimal models. Hence, it is clear that we can use UNSAT’s algorithms for
computing the preferred extensions of an argumentation framework. This idea
is formalized with the following lemma. Let S be a set of well formed formulæ
then we define n(S) :=

∧
c∈S

c.

Lemma 1. Let AF := 〈AR, attacks〉 be an argumentation framework and S ⊆
AR. S is a preferred extension of AF if and only if s(S) is a model of α(AF)

and α(AF) ∧ n(¬s̃(S)) ∧ ¬n(s(S)) is unsatisfiable.

Proof. It is direct by Theorem 1.

120 J.C. Nieves, M. Osorio, and U. Cortés

In order to illustrate Lemma 1, let us consider again the argumentation
framework AF of Example 1. Let S = {a}, then s(S) = {d(b), d(c)}. We have
already seen that {d(b), d(c)} is a model of α(AF), hence the formula to verify
its unsatisfiability is:

(d(b) ← ¬d(a)) ∧ (d(b) ← ⊤) ∧ (d(c) ← ¬d(b)) ∧ (d(c) ← d(a))∧
¬d(a) ∧ (¬d(b) ∨ ¬d(c))

However, this formula is satisfiable by the model {d(b)}, then {a} is not a pre-
ferred extension. Now, let S = {a, c}, then s(S) = {d(b)}. As seen before, {d(b)}
is also a model of α(AF), hence the formula to verify its unsatisfiability is:

(d(b) ← ¬d(a)) ∧ (d(b) ← ⊤) ∧ (d(c) ← ¬d(b)) ∧ (d(c) ← d(a))∧
¬d(a) ∧ ¬d(c) ∧ ¬d(b)

It is easy to see that this formula is unsatisfiable, therefore {a, c} is a preferred
extension.

The relevance of Lemma 1 is that UNSAT is the prototypical and best-
researched co-NP-complete problem. Hence, Lemma 1 opens the possibilities for
using a wide variety of algorithms for inferring the preferred semantics.

4 Preferred extensions and general programs

In Section 3, we presented a representation of an argumentation framework in
terms of a propositional formula for inferring preferred extensions. Another op-
tion for computing the preferred semantics is by considering a straightforward
mapping from an argumentation framework to a general program. This approach
is an elegant and short form for inferring the preferred extensions of an argu-
mentation framework. The only system that we need for inferring the preferred
extensions of an argumentation framework is any disjunctive answer set solver
e.g., DLV [8].

We start this section by defining a simple mapping from an argumentation
framework to a positive disjunctive logic program.

Definition 6. Let AF := 〈AR, attacks〉 be an argumentation framework and
A ∈ AR. We define the transformation function Γ (A) as follows:

Γ (A) := (
∧

B∈D(A)

(d(A) ∨ d(B))) ∧ (
∧

B∈D(A)

(d(A) ←
∧

C∈D(B)

d(C)))

The generalization of the function Γ is defined as follows:

Definition 7. Let AF := 〈AR, attacks〉 be an argumentation framework. We
define its associated general program as follows:

ΓAF :=
∧

A∈AR

Γ (A)

Inferring Preferred Extensions by Minimal Models 121

Remark 1. Notice that α(AF) (see Definition 5) is similar to ΓAF . The main
syntactic difference of ΓAF w.r.t. α(AF) is the first parte of ΓAF which is
(
∧

B∈D(A)(d(A)∨ d(B))); however this part is logical equivalent to the first part

of α(AF) which is (
∧

B∈D(A) d(A) ← ¬d(B)). In fact, the main difference is their
behavior w.r.t. answer set semantics. In order to illustrate this difference, let us
consider the argumentation framework AF := 〈AR, attacks〉, where AR := {a}
and attacks := {(a, a)}. Then we can see that

ΓAF := (d(a) ∨ d(a)) ∧ (d(a) ← d(a))

and

α(AF) := (d(a) ← ¬d(a)) ∧ (d(a) ← d(a))

It is clear that both formulæ have a minimal model which is {d(a)}, however
α(AF) has no answer sets. In fact both formulæ are logically equivalent in classic
logic but not in answer set semantics.

In the following theorem we formalize a characterization of the preferred se-
mantics in terms of positive disjunctive logic programs and answer set semantics.

Theorem 2. Let AF := 〈AR, attacks〉 be an argumentation framework and S ⊆
AR. S is a preferred extension of AF if and only if s(S) is an answer set of
ΓAF .

Proof. S is a preferred extension of AF if and only if s(S) is a minimal model
of α(AF) (by Theorem 1) if and only if s(S) is a minimal model of ΓAF (since
ΓAF is logically equivalent to α(AF) in classical logic) if and only if s(S) is an
answer set of ΓAF (since ΓAF is a positive disjunctive program and for every
positive disjunctive program P, M is an answer set of P if and only if M is a
minimal model of P).

Let us consider the following example.

Example 2. Let AF := 〈AR, attacks〉 be an argumentation framework, where
AR := {a, b, c, d, e} and attacks := {(a, b), (b, a), (b, c), (c, d), (d, e), (e, c)} (see
Fig. 2). Then, ΓAF is

d(a) ∨ d(b). d(a) ← d(a).
d(b) ∨ d(a). d(b) ← d(b).
d(c) ∨ d(b). d(c) ∨ d(e).
d(c) ← d(a). d(c) ← d(d).
d(d) ∨ d(c). d(d) ← d(b), d(e).
d(e) ∨ d(d). d(e) ← d(c).

ΓAF has two answer sets which are {d(a), d(c), d(e)} and {d(b), d(c), d(e), d(d))},
therefore {b, d} and {a} are the preferred extensions of AF.

122 J.C. Nieves, M. Osorio, and U. Cortés

Fig. 2. An argumentation framework.

An alternative form for computing the preferred extensions of an argumen-
tation framework, without considering the predicate d(X), is taking advantage
of default negation. It is possible by considering a new dual symbol for each
argument of the argumentation framework. This means that we can infer the
acceptable arguments directly from the answers sets of the logic program.

This idea is formalized with the following lemma. First, let us present some
definitions.

Definition 8. Let AF := 〈AR, attacks〉 be an argumentation framework. We
define the function η as η : AR → AR′. Where AR′ has the same cardinality to
AR such that AR ∩AR′ = ∅.

η is a bijective function which assigns a new symbol to each argument of AR.
Notice that the new symbol does not occurs in AR. We are going to denote the
image of A ∈ AR under η as A′.

Definition 9. Let AF := 〈AR, attacks〉 be an argumentation framework and
A ∈ AR. We define the transformation function Γ (A) as follows:

Λ(A) := (
∧

B∈D(A)

(A′ ∨B′)) ∧ (
∧

B∈D(A)

(A′ ←
∧

C∈D(B)

C ′))

Definition 10. Let AF := 〈AR, attacks〉 be an argumentation framework. We
define its associated general program as follows:

ΛAF :=
∧

A∈AR

(Λ(A) ∧ (A ← ¬A′))

Notice that Γ (A) and Λ(A) are equivalent (module notation) and the main
difference between ΓAF and ΛAF is the rule A ← ¬A′ for each argument.

Lemma 2. Let AF := 〈AR, attacks〉 be an argumentation framework and S ⊆
AR. S is a preferred extension of AF if and only if there is an answer set M of
ΛAF such that S = M ∩AR.

Proof. The proof is straightforward from Theorem 2 and the semantics of default
negation.

In order to illustrate this lemma let us consider the following example.

Inferring Preferred Extensions by Minimal Models 123

Example 3. Let AF := 〈AR, attacks〉 be the argumentation framework of Ex-
ample 2. So ΛAF is

a′ ∨ b′. a′ ← a′.

b′ ∨ a′. b′ ← b′.

c′ ∨ b′. c′ ∨ e′.

c′ ← a′. c′ ← d′.

d′ ∨ c′. d′ ← b′, e′.

e′ ∨ d′. e′ ← c′.

a ← ¬a′. b ← ¬b′.

c ← ¬c′. d ← ¬d′.

e ← ¬e′.

ΓAF has two answer sets which are {a′, c′, e′, b, d} and {b′, c′, e′, d′, a}, hence
{b, d} and {a} are the preferred extensions of AF .

5 Conclusions

The preferred semantics is regarded as the most satisfactory argumentation se-
mantics of Dung’s argumentation approach. For instance, John Pollock made
preferred semantics one of the key ingredients of his revised formalism [15].
Also, it has been shown that some non-monotonic logic programming semantics
can be viewed as a special form of this abstract argumentation semantics [5, 11].

It is well-known that the decision problem of the preferred semantics is co-
NP-Complete. Then, to have different approaches for inferring this semantics
could help to develop argumentation systems based on the preferred semantics.
The inference of minimal models from a propositional formula and a logic pro-
gram is a widely explored problem. Therefore, by defining a relationship between
the preferred semantics and minimal models, we identify a wide family of algo-
rithms for inferring the preferred semantics. In particular in this paper, we show
how to infer the preferred extensions of an argumentation framework by using
UNSAT algorithms and disjunctive answer set solvers.

Acknowledgement

We are grateful to anonymous referees for their useful comments. J.C. Nieves
thanks to CONACyT for his PhD Grant. J.C. Nieves and U. Cortés were partially
supported by the grant FP6-IST-002307 (ASPIC). The views expressed in this
paper are not necessarily those of ASPIC consortium.

References

1. ASPIC:Project. Deliverable D2.2:Formal semantics for inference and decision-
making. Argumentation Service Plarform with Integrated Components, 2005.

124 J.C. Nieves, M. Osorio, and U. Cortés

2. ASPIC:Project. ASPIC: Argumentation engine demo. http://aspic.acl.icnet.
uk/, 2006.

3. T. Bench-Capon. Value-based argumentation frameworks. In Proceedings of Non
Monotonic Reasoning, pages 444–453, 2002.

4. P. Besnard and S. Doutre. Checking the acceptability of a set of arguments. In
Tenth International Workshop on Non-Monotonic Reasoning (NMR 2004),, pages
59–64, June 2004.

5. A. Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni. An abstract,
argumentation-theoretic approach to default reasoning. Artificial Intelligence,
93:63–101, 1997.

6. C. Cayrol, S. Doutre, and J. Mengin. On Decision Problems related to the pre-
ferred semantics for argumentation frameworks. Journal of Logic and Computation,
13(3):377–403, 2003.

7. T. H. Cormen, C. E. Leiserson, R. L. Riverst, and C. Stein. Introduction to Algo-
rithms. MIT Press, second edition, 2001.

8. S. DLV. Vienna University of Technology. http://www.dbai.tuwien.ac.at/proj/
dlv/, 1996.

9. S. Doutre and J. Mengin. An algorithm that computes the preferred extensions
of argumentation frameworks. In ECAI’2000, Third International Workshop on
Computational Dialectics (CD’2000), pages 55–62, Aug. 2000.

10. S. Doutre and J. Mengin. Preferred Extensions of Argumentation Frameworks:
Computation and Query Answering. In R. Goré, A. Leitsch, and T. Nipkow,
editors, IJCAR 2001, volume 2083 of LNAI, pages 272–288. Springer-Verlag, 2001.

11. P. M. Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence, 77(2):321–358, 1995.

12. P. E. Dunne and T. J. M. Bench-Capon. Complexity in value-based argument
systems. In JELIA, volume 3229 of LNCS, pages 360–371. Springer, 2004.

13. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming.
In R. Kowalski and K. Bowen, editors, 5th Conference on Logic Programming,
pages 1070–1080. MIT Press, 1988.

14. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9:365–385, 1991.

15. J. L. Pollock. Cognitive Carpentry: a blueprint for how to build a person. The MIT
Press, May 4, 1995.

16. H. Prakken and G. A. W. Vreeswijk. Logics for defeasible argumentation. In
D. Gabbay and F. Günthner, editors, Handbook of Philosophical Logic, volume 4,
pages 219–318. Kluwer Academic Publishers, Dordrecht/Boston/London, second
edition, 2002.

17. S. SMODELS. Helsinki University of Technology. http://www.tcs.hut.fi/

Software/smodels/, 1995.
18. G. Vreeswijk. Abstract argumentation systems. Artificial Intelligence, 90(1-2):225–

279, 1997.

Formal Properties of the SCIFF-AF Multiagent

Argumentation Framework

Paolo Torroni

DEIS, University of Bologna
V.le Risorgimento 2, 40136 Bologna, Italy

Paolo.Torroni@UniBO.it

Abstract. Argumentation theories have recently emerged and gained
popularity in the agents community, since argumentation represents a
natural and intuitive way to model non-monotonic reasoning. In a multi-
agent context, argumentation has recently been proposed as a component
of dialogue frameworks. However, despite the large interest in argumen-
tation theories in multiagent domains, most proposed frameworks stay at
a general though abstract level, and operational counterparts to abstract
frameworks are not many. The aim of this work is to present the main
formal properties of the SCIFF-AF: an operational argumentation-based
multiagent dialogue framework.

1 Introduction

Argumentation theories have recently emerged and gained popularity in the
agents community, since argumentation represents a natural and intuitive way
to model non-monotonic reasoning. In a multiagent context, argumentation has
recently been proposed as a component of dialogue frameworks. A typical setting
is that of collaborative problem solving, for example to tackle resource allocation
and achievement [17]. In such a context, multiple agents have to coordinate in
order to take joint decisions about possible allocations of resources.

In general, argumentative reasoning can be utilized by agents intending to
decide about possible future courses of action. Typically, in collaborative problem
solving domains, individual agents have own goals to achieve and own constraints
to satisfy, but they are situated in a common environment in which there are
resources they need to share. Thus when agents take actions they need to ensure
that their activity does not clash with other agents’ actions and constraints.

We then have to consider two aspects of collaborative problem solving: from
an individual’s perspective, an agent should be able to reason about what is the
most appropriate course of action to take in a given situation. We believe that
the theories and logics of argumentation are a very promising approach to this
problem. From a “social” perspective, instead, agents can use argumentation in
order to engage in dialogues, and use their arguments to make their decisions
accepted by other agents.

The first aspect is related to decision making and practical reasoning, central
issues in agent architectures and reasoning since the early days of BDI agent

126 P. Torroni

models and implementations [16, 8] and further pursued in recent work such as
[14, 10, 5]. The aspect of argumentation in agent dialogue has also been addressed
by conspicuous work [4, 17, 13], and considered by many as the natural evolution
of agent dialogue in domains such as negotiation [15]. Among others, Atkinson et
al. explore the issue of multiagent argument over proposals for action [5].

Despite the large interest in argumentation theories in multiagent domains,
most proposed frameworks stay at a general though abstract level, and seldom
there exist operational counterparts to much of the existing proposals. One im-
portant contribution in this direction is work by Kakas and Toni [11] on map-
ping Dung’s abstract argumentation framework [6] onto the Abductive Logic
Programming (ALP) framework [9].

Drawing inspiration from Atkinsons et al.’s work about the PARMA action
persuasion protocol [5], we have proposed an Argumentation Framework [19]
based on the ALP SCIFF framework (SCIFF-AF) for multiagent argumentation,
aimed at addressing explicitly this aspect. SCIFF-AF encompasses multiagent
dialogues over proposals for action, and it is equipped with a declarative and
operational model with an ALP semantics.

The formal foundations of this framework rely on previous results from ALP,
and from Dung’s studies on argumentation. Basically, SCIFF-AF is a casting of
Dung’s abstract argumentation framework in SCIFF, augmented with a notion
of 2-party agent dialogue and agreement over proposals for actions. In fact,
agent dialogues in SCIFF-AF can be used by the interacting parties to reach
a consensus on a possible future course of action and consequent state, and
ultimately such actions may be adopted by agents as future internal goals.

The aim of this work is to present the main formal properties of SCIFF-AF,
which insure a consistent and meaningful system evolution. We will start by
showing semantic properties of the argumentation framework in relation with
Dung’s argumentation semantics. Later, we will refine the definition of multi-
agent dialogue proposed in [19] and we will show what properties multiagent
agreements exhibit.

2 Background

SCIFF-AF is built on three main ingredients: Dung’s abstract argumentation
framework [6], the SCIFF language and Abductive Logic Programming (ALP)
proof-procedure [2], and the PARMA action persuasion protocol and its locutions
[5].

ALP is a computational paradigm aimed to introduce hypothetical reasoning
in the context of Logic Programming (see [12] for an introduction to LP and
[9] for a survey on ALP). A logic program P is a collection of clauses, with an
associated notion of entailment, usually indicated by ². In ALP, some predicates
(“abducibles”), belonging to a special setA, can be assumed to be true, if need be.
In order to prevent unconstrained hypothesis-making, P is typically augmented
with expressions which must be true at all times, called integrity constraints (IC).

Formal Properties of the SCIFF-AF Framework 127

An abductive logic program is the triplet 〈P,A, IC〉, with an associated notion
of abductive entailment.

SCIFF is an ALP proof-procedure defined by Alberti et al. [2] as an exten-
sion of Fung and Kowalski’s IFF [7], and it is the reference ALP framework
for this work. One distinguishing feature of SCIFF is its notion of expectations
about events. Expectations are abducibles denoted as E(X) (positive expecta-
tions) and EN(X) (negative expectations), where E(X)/EN(X) stand for “X
is expected/expected not to happen”. Variables in events, expectations and in
other atoms can be subject to CLP constraints and quantifier restrictions.

Two fundamental concepts in SCIFF are those of consistency and entailment.
We report their definition below.

Definition 1 (Consistent sets of hypotheses). A set of hypotheses ∆ is
consistent if and only if ∀ (ground) p,
{p, not p} * ∆ and {E(p),EN(p)} * ∆

Definition 2 (Entailment). A (SCIFF) ALP S = 〈P,A, IC〉 entails a goal G
(written S ²∆ G), if and only if:

{

Comp(P ∪∆) ∪ CET ∪ Tχ ² Gσ
Comp(P ∪∆) ∪ CET ∪ Tχ ² IC

where Comp is the symbol of completion, CET is Clark’s equality theory, ² is
Kunen’s logical consequence relation for three-valued logic, σ is a substitution
of ground terms for the variables in G, Tχ the theory of constraints, and ∆ a
consistent subset of A.

SCIFF operates by considering G together with IC as the initial goal, and
by calculating a frontier as a disjunction of conjunctions of formulae, using at
each step one among the inference rules defined in [2]. Given the frontier, at
any step a selection function can be used to pick one among all the equally true
disjuncts in the frontier. When no more inference rule applies (quiescence), if
there exists at least one disjunct which is not false, then SCIFF has succeeded,
and ∆ contains an answer to G. The SCIFF proof-procedure is sound, and under
reasonable restrictions it is also complete [2]. SCIFF has been implemented and
instantiated into a large number of scenarios involving agent communication,
and it can be downloaded from its web site.1

Following Kakas and Toni [11], in SCIFF-AF arguments are mapped onto
abducibles. For example, an assumption E(p), “p is expected”, could be con-
sidered as a argument which possibly supports some goal g. Arguments can
be circumstances (in the sense of [5]), actions, and related constraints. Thus an
agent may justify a goal g by saying, e.g., “in order to achieve a goal g, under the
circumstances c and the constraints x, actions a1 and a2 should be carried out.”
In order to take this kind of position, an agent will utter the various elements
of it (the circumstances, the goal, the actions, the constraints) via a suitable

1 http://lia.deis.unibo.it/research/sciff/.

128 P. Torroni

argumentation language and using the appropriate locutions. Argumentation
dialogues will provide implicit links among such uttered elements.

Our proposed argumentation framework is an instantiation of Dung’s work
[6] and of the abstract computational framework developed by Kakas and Toni
[11]. In particular, Dung’s notion of attack is rephrased in the following way:

Definition 3. A set of arguments A attacks another set ∆ if and only if at least
one of the following expressions is true:

(1) S ²A not p, for some p ∈ ∆;

(2) S ²A E(p), for some EN(p) ∈ ∆;

(3) S ²A EN(p), for some E(p) ∈ ∆;

Definition 4. An Argumentation Framework (AF) is the pair 〈S, attacks〉.

In a multiagent context, agents can locally reason about circumstances, con-
straints, and actions (not) to be taken, based on the SCIFF-AF, and produce –
at the social level – dialogues in the style of PARMA dialogues.

PARMA considers a general argument schema for a rational position propos-
ing an action, and handles possible attacks on one or more elements of a general
argument schema. Attacks arise from disagreements originating from different
sources. PARMA uses four categories of locutions, for dialogue control (C), ac-
tion proposal (P), inquiry (A), and denial (D) of existence/validity of elements
of a position. Such elements could be goals, circumstances, and actions (not) to
be taken. While Atkinson et al. focus on addressing divergences on all elements
of a position, SCIFF-AF focusses instead on a more restricted number of issues,
and adopts only a small set of locutions. In particular, it only considers some
control locutions (C) and some proposal/denial locutions about circumstances
and actions (P/D).2

Definition 5 (Agent system). An agent system is a finite set Σ, where each
x ∈ Σ is a ground term, representing the name of an agent, equipped with a
SCIFF program S = {P,A, IC}.

Definition 6 (Performative or dialogue move). A performative or dialogue
move p is an instance of a schema tell(a, b, L[, Arg]), where a is the utterer, b
is the receiver, L is the locution and (optionally) Arg is the argument of the
performative. For a given p, utterer(p) = a, receiver(p) = b, locution(p) = L and
argument(p) = Arg (if present). The set of all possible performatives is called
argumentation language.

2 A characteristic of PARMA is that it mixes elements of different levels, like turn-
taking. We consider this as a feature rather than a limitation, since it makes it
possible for agents to reason at different levels, and to implement high-level strategic
decisions about which course a dialogue should follow. However, we will not cover
this aspect in this work.

Formal Properties of the SCIFF-AF Framework 129

Note that Arg is optional, since a dialogue move not necessarily contains
arguments all the time. In general, dialogue control (C) locutions will not need it.
For instance, at start, an agent may simply want to declare that he is listening. In
the definition below, we gear SCIFF-AF with a concrete argumentation language
inspired to PARMA.

Definition 7 (The argumentation language Larg). The argumentation lan-
guage Larg is the set of all performatives p, such that:

– locution(p) ∈ {‘enter dialogue’, ‘leave dialogue’, ‘term finished’, ‘accept denial’,
‘state circumstances’, ‘deny
circumstances’, ‘state actions’, ‘deny actions’, }, and

– argument(p) is a conjunction of abducible atoms (possibly including E/EN
expectations) and CLP constraints.

SCIFF-AF thus defines a concrete language for argumentation, Larg, which
includes four dialogue control locutions (type C), two proposal locutions (P) and
two denial locutions (D). Agents conversing in Larg will not exchange formulae
stating e.g. consequences of actions, such as implications, but only conjunctions
of atoms.

Definition 8 (MAS argumentation framework). A MAS argumentation
framework M is a pair 〈Σ,Actions〉 where Σ is a multiagent system of agents
with the same A which communicate using Larg, and Actions is a finite set,
where each element is a ground term, representing the name of an action.

Beside assuming a common language, SCIFF-AF also assumes a common
ontology (thus in Definition 8 A is the same for all agents in Σ). Otherwise
some ontological middleware may be used so that, for example, in a position in-
volving a sales, “buy” and “purchase” converge down to the same meaning. This
is most necessary in open systems, to prevent misunderstandings arising from
the use of terminology. Note that the presence of an argumentation framework
based on ALP does not prevent agents from having and reasoning upon their
private knowledge, and especially it does not prevent them from having private
abducibles. However, for the sake of simplicity, in this article we will focus only
on those abducibles which are functional to agent dialogue, and we assume that
such abducibles are common to all agents for the reasons above.

In [19] argumentation dialogues are defined between two agents, and their
evolution is modelled as a sequence of states. Each state contains a set of argu-
ments modelling stated/agreed circumstances and actions, and possibly agree-
ments reached by the agents.

3 Properties of SCIFF-AF

In this section we refine the original SCIFF-AF framework. The idea is to define
a notion of agent agreement about actions, and focus on the fundamental prop-
erties of multiagent agreements in SCIFF-AF. Before doing so, we also discuss
some important semantic properties of the SCIFF-AF framework.

130 P. Torroni

3.1 Admissible sets and grounded semantics of SCIFF-AF

Let us consider the attacks relation taken from [19] and reported in Section 2.
From now on, if not explicitly mentioned otherwise, we will always refer to an
arbitrary but fixed instance S = 〈P,A, IC〉 of a SCIFF abductive framework.
We will also use the terms “argument” and “hypothesis” interchangeably.

Lemma 1 The following propositions are true:

– No set of arguments attacks the empty set of arguments ∅;
– attacks is monotonic, i.e. for all (consistent) A, A′, ∆, ∆′ ⊆ A, if A attacks

∆ then
(i) if A ⊆ A′ then A′ attacks ∆, and

(ii) if ∆ ⊆ ∆′ then A attacks ∆′;
– attacks is compact, i.e. for all A, ∆ ⊆ A, if A attacks ∆ then there exists a

finite A′ ⊆ A such that A′ attacks ∆;

Proof. The first proposition follows from the definition of attacks. The second
proposition follows from the fact that if S ²A not p, for some p ∈ ∆, then
∀A′ ⊇ A, p ∈ A′, therefore A′ attacks ∆ (i), and ∀∆′ ⊇ ∆,not p ∈ ∆′, therefore
A′ attacks ∆ (ii). The same holds if the attack is on some E(p)/EN(p). The
third proposition follows from the compactness of ²A, by which finite expressions
are always derivable from a finite set of antecedents.

These properties are considered by Kakas and Toni fundamental of an at-
tacking relation [11, pag.518].

Remark 1. For an argument A such that S ²A p, it follows from the declarative
semantics of SCIFF that A is consistent, and that if an argument ∆ is attacked
by A, A ∪∆ is not consistent (in the sense of SCIFF).

The definitions that follow are taken from Dung’s abstract argumentation
framework [6]. Corollaries 1 and 2 show the results of its instantiation in the
SCIFF framework.

Definition 9. A set ∆ of arguments is said to be conflict-free if there are no
arguments A and B in ∆ such that A attacks B.

Corollary 1. All consistent sets of arguments (in the sense of SCIFF) are
conflict-free.

Proof. Let A be one among {not p,E(p),EN(p)}, and let Â be the corresponding
“attacked” hypothesis (p,EN(p), or E(p), respectively). Let ∆ be a consistent
set of arguments, and A,B two arguments in ∆. A attacks B means S ²∆′ A for
some ∆′, and B = Â; but this would imply that {A, Â} ⊆ ∆. Contradiction!

As a consequence of of Remark 1 and Corollary 1, we have:

Corollary 2. All arguments A such that S ²A p are conflict-free.

Formal Properties of the SCIFF-AF Framework 131

Finally, admissible sets of arguments are defined following Dung [6, Definition
6] and Kakas & Toni [11, Definition 2.3].

Definition 10. A (conflict-free) set of arguments ∆ is admissible iff for all sets
of arguments A, if A attacks ∆, then ∆ attacks A \∆.

Dung’s Fundamental Lemma [6, pag. 327], together with the fact that the
empty set is always admissible, implies the following corollary:

Corollary 3. All arguments A such that S ²A p are admissible sets of argu-
ments for S.

Dung defines preferred extensions as maximal sets of admissible sets of argu-
ments [6, Definition 7], but we will focus on admissible sets of arguments rather
than on preferred extensions. In fact, as stressed by Kakas and Toni [11], since
every admissible set of arguments is contained in some preferred extension, in
order to determine whether a given query holds with respect to the preferred ex-
tension and partial stable model semantics, it is sufficient to determine whether
the query holds with respect to the semantics of admissible sets.

Finally, the IFF proof-procedure upon which SCIFF is built has a grounded
argumentation semantics. Therefore we can conclude this section with a last
important semantic property of the SCIFF-AF framework.

Corollary 4. All arguments A such that S ²A p are grounded sets of arguments
for S.

3.2 Properties of SCIFF-AF dialogues and agreements

In this section, we specialize the SCIFF-AF dialogue framework, to define pre-
cisely what multiagent agreements are, and to show what properties they exhibit.
The following definitions are based on the notions of agent system, performative,
argumentation language and MAS argumentation framework given in Section 2.

Definition 11 (Dialogue). Given an agent system Σ, a dialogue D in a lan-
guage L, between two agents x, y ∈ Σ, is an ordered set of performatives {p0, p1,
. . .} ⊆ L, such that ∀pj = tell(aj , bj , Lj , Aj) ∈ D, (aj , bj) ∈ {(x, y), (y, x)}

An example of dialogue will be provided later on (Example 1). The one above
is a general definition, and it can be instantiated by choosing a concrete language,
e.g. L = Larg.

Definition 12 (State of a dialogue in Larg). Given a dialogue D in Larg,
for each j, 1 < j < |D| the state of the dialogue, state(D, j) is a tuple

〈Ψsc
j , Ψdc

j , Ψsa
j , Ψda

j , Ψaa
j 〉,

defined based on the dialogue history Dj = {p0, p1, . . . , pj−1} as follows:

132 P. Torroni

– Ψsc
j is the set of stated circumstances, defined as:

Ψsc
j = { circ such that ∃pk ∈ Dj ∧ k < j

∧ locution(pk) = ‘state circumstances’
∧ circ ∈ argument(pk)
∧ ∄pl ∈ Dj ∧ k < l < j such that (

locution(pl) = ‘state circumstances’
∧ argument(pk) 6= argument(pl)) }

– Ψdc
j is the set of denied circumstances, defined as:

Ψdc
j = { circ such that ∃pk ∈ Dj ∧ k < j

∧ locution(pk) = ‘deny circumstances’
∧ circ ∈ argument(pk)
∧ ∄pl ∈ Dj ∧ k < l < j such that

locution(pl) = ‘state circumstances’ }
– Ψsa

j is the set of stated actions, defined as:
Ψsa

j = { E(act) such that ∃pk ∈ Dj ∧ k < j
∧ locution(pk) = ‘state actions’
∧ E(act) ∈ argument(pk)
∧ ∄pl ∈ Dj ∧ k < l < j such that (

locution(pl) = ‘state actions’
∧ argument(pk) 6= argument(pl)) }

– Ψda
j is the set of denied actions, defined as:

Ψda
j = { E(act) such that ∃pk ∈ Dj ∧ k < j

∧ locution(pk) = ‘deny actions’
∧ E(act) ∈ argument(pk)
∧ ∄pl ∈ Dj ∧ k < l < j such that

locution(pl) = ‘state actions’ }
– Ψaa

j is the set of agreed actions, defined as:
Ψaa

j = { E(act) such that ∃pk, pl ∈ Dj

∧ k < j ∧ l < j
∧ locution(pk) = locution(pl) = ‘state actions’
∧ argument(pk) = argument(pl)
∧ E(act) ∈ argument(pk) }

By Definition 12, the state of the dialogue at a step j with respect to cir-
cumstances/actions is determined by the last relevant move made.

Note that state(D, j) is defined independently of control locutions, and that
locutions ‘state circumstances’ and ‘state actions’ operate some sort of reset of
the current state: if an agent utters ‘state circumstances’ at step j, the set of
stated circumstances will only contain the new circumstances Ψsc

j , until some
agent again states ‘state circumstances’, and ‘deny circumstances’ becomes the
empty set, since the previously denied circumstances become obsolete. A similar
semantics is that of ‘state actions’ and ‘deny actions’. Note that memory of past
moves is not necessarily lost, since agents may reason based on the previous
states.

This definition of state is a specialization of the one given in [19]. We can
immediately see what structural properties it exhibits:

Formal Properties of the SCIFF-AF Framework 133

Corollary 5. Given a dialogue D in Larg, the state of D at step j, state(D, j) =
〈Ψsc

j , Ψdc
j , Ψsa

j , Ψda
j , Ψaa

j 〉, enjoys the following structural properties:

1. Ψdc
j ⊆ Ψsc

j (“coherence” between the set of denied circumstances and the set
of stated circumstances)

2. Ψda
j ⊆ Ψsa

j (“coherence” between the set of denied actions and the set of
stated actions)

3. Ψaa
j = Ψsa

j ∨ Ψaa
j = ∅ (“coherence” between the set of agreed actions and the

set of stated actions)

Proof. The proof follows from Definition 12.

We can now proceed with defining the central concept of argumentation
dialogue, which is as well a specialization of the one proposed in [19].

Definition 13 (Argumentation Dialogue). Given a multiagent argumen-
tation framework M = 〈Σ,Actions〉, an argumentation dialogue D between
x, y ∈ Σ, respectively equipped with Sx/Sy, about a goal Gx is a dialogue in
Larg such that:

1. p0 = tell(x, y, ‘enter dialogue’, Gx);
2. ∀pj = tell(aj , bj , Lj , Aj) ∈ D:

(i) if Lj = ‘state circumstances’ then

Saj ²∆ Gx ∪ Ψsc
k ∪ Ψsa

k

for some k ≤ j, and argument(pj) = ∆ \ actions(∆);
(ii) if Lj = ‘state actions’ then

Saj ²∆ Gx ∪ Ψsc
j ∪ Ψsa

j

and argument(pj) = actions(∆);
(iii) if Lj = ‘deny circumstances’ then

∃Ψsc ⊆ Ψsc
j , Ψsa ⊆ Ψsa

j , h ∈ Ψsc
j \ Ψsc

such that Saj∪Ψsc∪Ψsa
²∆ h′∪Gx and h′attacks h, and argument(pj) =

h;
(iv) if Lj = ‘deny actions’ then

∃Ψsc ⊆ Ψsc
j , Ψsa ⊆ Ψsa

j , h ∈ Ψsa
j \ Ψsa

such that Saj∪Ψsc∪Ψsa
²∆ h′∪Gx and h′attacks h, and argument(pj) =

h;
(v) in all other cases, except for Lj = ‘enter dialogue’, argument(pj) = ∅.

3. ∄pj , pk ∈ D such that pj = pk ∧ j 6= k,

where for a given set ∆, actions(∆) = {E(a) ∈ ∆ such that a ∈ Actions}. We
will call x the initiator of D.

134 P. Torroni

Thus, in an argumentation dialogue, the agents focus on a specific goal (1).
They do not exchange purely “dialogical” arguments, but genuine products of
their own reasoning based on the knowledge available to them. In particular, we
require that circumstances/actions stated are supported by the uttering agent
(2-i/ii), and for those denied the agent is able to produce an attacking argument
based on the goal subject of the dialogue (2-iii/iv). Finally, we require that an
agent does not utter the same performative twice (3). In this way, at each step
j, the dialogue develops by an agent reasoning on the state at step k, for some
k < j, to propose a new state to the receiver. Dialogue moves need not directly
address the previous move, but are free to refer to moves uttered in the past, in
the course of the same dialogue. This leaves agents free to try several alternative
arguments, so that the dialogue can proceed even if an agent does not have an
answer to the last move.

One can easily see that, given a finite number of ground arguments, dialogues
will always finite length [18]. However, we are interested here not only in dia-
logues that terminate, but especially we want to be able to define what dialogues
are “fruitful.” We will then focus on the notion of agreement:

Definition 14 (Agreement between two agents). Given a multiagent ar-
gumentation framework M, an agreement between two agents x, y ∈ M about
a goal Gx is a set C such that there exists an argumentation dialogue D =
{p0, p1, . . .} between x and y about Gx, whose state(D, j) is such that Ψaa

j = C
for some j.

In other words, we say that two agents reach an agreement when they come
up in the course of the same dialogue with a set C which contains the same
actions. By definition of argumentation dialogue, they are supported by the
same arguments (circumstances) from both sides.

This formulation of argumentation dialogue makes it possible to prove some
important properties of the framework, which to the best of our knowledge are
not to be found in other multiagent argumentation frameworks.

Proposition 1. Given an argumentation dialogue D and a performative p ∈ D,
argument(p) is a conflict-free set of arguments.

Proof. By Definition 13, ∀p ∃∆,S, and G such that S ²∆ G and argument(p) ⊆
∆. Thus Proposition 1 follows from Corollary 2.

Proposition 2. Given an argumentation dialogue D and a performative p ∈ D:

1. if locution(p) ∈ {‘state circumstances’, ‘state actions’}, then argument(p) is
an admissible set of arguments for utterer(p);

2. if locution(p) ∈ {‘deny circumstances’, ‘deny actions’}, then argument(p) is
an admissible set of arguments for receiver(p);

Proof. The proof follows from Corollary 3 and from Definition 13.

Formal Properties of the SCIFF-AF Framework 135

Proposition 3. Every agreement C between two agents x and y about a goal
Gx, is an admissible set of arguments for both x and y.

Proof. If C = ∅, Proposition 3 follows from Definition 10, which implies that
the empty set is always admissible. If C 6= ∅, by Definition 14 there exists an
argumentation dialogue D = {p0, p1, . . .} between x and y about Gx, whose
state(D, j) is such that Ψaa

j = C for some j. By Corollary 5 it is a structural prop-
erty of state(D, j) that Ψaa

j = Ψsa
j , and by Definition 12 ∃l, k such that Ψsa

j =
argument(pl) = argument(pk) and locution(pl) = locution(pk) = ‘state actions′

for some l, k ≤ j. It thus follows from Proposition 2 that Ψsa
j is admissible for

both x and y.

We believe that this is a very important property of SCIFF-AF. If two agents
reach what we call an agreement during a dialogue, it is important that such an
agreement identifies a possible future system development which is admissible by
both – which is the case here. In this way, agents can step through agreements
and thus develop plans for future courses of action which ensure a consistent
system evolution.

4 An example of an argumentation dialogue leading to

an agreement using SCIFF-AF

In order to illustrate the usage of the SCIFF-AF framework and its properties, we
propose as a scenario an adaptation of Rahwan & Amgoud’s conference example
[14]:

Example 1. A scientist s (based in the UK) wishes to attend a conference. Prior
to his departure, however, he needs to reach a preliminary agreement with his
department d. s knows that conf is in Liverpool, and that the fee can be 400
(on-site) or 200 (early), that a limo is a comfortable car, and that Liverpool is a
far but domestic destination. s has some constraints: he knows that if he wishes
to attend a conference, then he must reach the place of the conference, and pay
the fee. If he wishes to reach a place, he must either fly or drive. In addition, if he
wishes to reach a place, either it is not a domestic destination, and he does not
want to fly economy, nor he wants to drive; or it is a far destination, and in that
case he does not want to drive; or else he wants to rent a comfortable car. s’s
department, d, has a number of constraints. If one wants to reach a destination
and pay a conference fee, then he must attend the conference; the fee must be
lower than 300, or else it is not permitted to rent a limo, nor to fly business, or
else it is a domestic destination, and then it is not permitted to fly business.

Given such a scenario, a possible argumentation dialogue that we would like
to obtain in this framework could be the following:

1. (s): I wish to attend a conference (conf).
2. (d): I am listening.

136 P. Torroni

A {early, on site} ∪EXP

Actions {reach, fly, drive, pay, buy ticket, rent car}

Gs {E(attend(conf))}
ICs E(attend(Conf)) → conference(Conf, V enue, Fee) ∧ E(reach(V enue))

∧ E(pay(Conf, Fee)).
E(reach(Dest)) → E(fly(Dest)) ∨ E(drive(Dest)).
E(reach(Dest)) → non domestic(Dest) ∧ EN(buy ticket(Dest, economy))

∧ EN(drive(Dest))
∨ far(Dest) ∧ EN(drive(Dest))
∨ domestic(Dest) ∧ E(rent car(Dest, Car)) ∧ comfortable(Car).

E(fly(Dest)) → E(buy ticket(Dest, economy)) ∨ E(buy ticket(Dest, business)).
E(drive(Dest)) → E(rent car(Dest, sedan)) ∨ E(rent car(Dest, limo)).
E(fly(Dest)) ∧ E(drive(Dest)) → ⊥.

E(fly(Dest)) → EN(rent car(Dest, Car)).
E(drive(Dest)) → EN(buy ticket(Dest, Class)).
early ∧ on site → ⊥.

Ps conference(conf, lvp, Fee) ← (on site ∧ Fee = 400) ∨ (early ∧ Fee = 200).
comfortable(limo).
far(lvp).
domestic(lvp).

ICd E(reach(Dest)) ∧ E(pay(Conf, Fee)) → E(attend(Conf)) ∧ Fee < 300
∨ EN(rent car(Dest, limo)) ∧ EN(buy ticket(Dest, business))
∧ domestic(Dest) ∨ EN(buy ticket(Dest, business)).

E(buy ticket(Dest, business)) ∧ E(buy ticket(Dest, economy)) → ⊥.

Pd domestic(lvp).

Fig. 1. SCIFF programs of scientist (s) and department (d)

3. (s): There are some circumstances I wish to bring to your attention. I do
not want to drive there. So I will not rent a car. Also, I think I have to pay
on-site registration.

4. (s): I was thinking I can do the following: buy a business plane ticket, fly
and reach Liverpool, pay 400 as a fee.

5. (d): You are not allowed to fly business class!

6. (s): I take your point.

7. (s): I can fly economy.

8. (d): Agreed. Go ahead.

Figure 1 shows its possible implementation in the SCIFF-AF. Note that, in
addition to its formulation given above, some additional domain-specific con-
straints are specified: in order to fly one must either buy an economy ticket or
a business ticket, one does never want to fly and drive at the same time, etc.
Note also that s does not know which one is the fee he has to pay, so it considers
early and on site to be an abducible atoms belonging to A. s’s goal, ICs and
goal are denoted by Gs, ICs and Ps; similarly for d.

Formal Properties of the SCIFF-AF Framework 137

p0 : tell(s, d, ‘enter dialogue′, {E(attend(conf))}).
p1 : tell(s, d, ‘turn finished′).
p2 : tell(d, s, ‘enter dialogue′, {E(attend(conf))}).
p3 : tell(d, s, ‘turn finished′).
p4 : tell(s, d, ‘state circumstances′, T erms1).
p5 : tell(s, d, ‘state actions′, Actions1).
p6 : tell(s, d, ‘turn finished′).
p7 : tell(d, s,′ deny actions′,E(buy ticket(lvp, business)))
p8 : tell(d, s, ‘turn finished′)
p9 : tell(s, d,′ accept denial′)
p10 : tell(s, d, ‘state circumstances′, T erms2).
p11 : tell(s, d, ‘state actions′, Actions2).
p12 : tell(s, d, ‘turn finished′)
p13 : tell(d, s,′ state actions′, Action2)
p14 : tell(d, s, ‘turn finished′)
p15 : tell(s, d,′ leave dialogue′)
p16 : tell(d, s,′ leave dialogue′)

Actions1 = { E(reach(lvp)),E(pay(conf, 400)),E(buy ticket(lvp, business)),E(fly(lvp)) }
Terms1 = { on site, not early,EN(rent car(lvp, Car)),EN(drive(lvp)), notE(drive(lvp)) }
Actions2 = { E(reach(lvp)),E(pay(conf, 400)),E(buy ticket(lvp, economy)),E(fly(lvp)) }
Terms2 = { on site, not early,EN(buy ticket(lvp, business)),EN(rent car(lvp, Car)),

EN(drive(lvp)), notE(drive(lvp)),EN(drive(lvp)), notE(drive(lvp)) }

Fig. 2. Sample argumentation dialogue between s and d about Gs = E(attend(conf))

The agents can engage in argumentation dialogues to find a possible future
evolution upon which both agree. One such dialogue is shown in Figure 2. At
each step, the dialogue complies with Definition 13, and it therefore produces a
result which (i) is consistent with both constraints, and (ii) is such that in the
end both agree on the present/future circumstances. In fact, the dialogue ends
with an agreement (Actions2).

Thanks to the result enunciated in Proposition 3, we know that Actions2 is
indeed an admissible set of arguments for both s and d.

5 Conclusion and Future Work

The main contribution of this paper is the illustration of some fundamental
properties of a declarative framework for multiagent reasoning and dialogue-
based argumentation about actions (SCIFF-AF), initially proposed in [19].

SCIFF-AF is equipped with a sound operational model, an admissible sets
semantics, a notion of (argumentation) dialogue and a notion of agreement about
actions. Thanks to these properties, it is possible to accommodate in SCIFF-
AF a declarative representation of the agent knowledge, upon which agents can
reason, and interact by argumentation dialogues.

Although agent reasoning is not covered by this work, Alberti et al. have
proposed in [1] an agent architecture in which the reasoning activity of agents is

138 P. Torroni

type of goal type of expectation

positive E

negative EN

in abeyance not E ∧ not EN

Fig. 3. Mapping between types of goals and types of expectations

based on SCIFF, so we have ground to believe that SCIFF-AF can be actually
used as a concrete, operational multiagent argumentation framework.

The operational nature of SCIFF-AF is maybe one of its main distinguishing
features, compare to other existing work. Argumentation dialogues are useful be-
cause through them agents may eventually reach mutual agreements, which they
can directly use, for example by adopting them as possible future internal goals.
Importantly, in this article we have demonstrated that SCIFF-AF is grounded
on a solid formal basis, which includes a number of results about its relation
with Dung’s abstract argumentation framework.

This work builds on previous results on abstract argumentation frameworks
[6], on the SCIFF proof-procedure [2], on computing arguments in ALP [11], and
on multi-agent dialogue framework [17, 5], as cited in the text. In the future, we
intend to investigate more thoroughly the formal relations between SCIFF-AF
and other argumentation frameworks. investigate other forms of argumentation
and the enrichment of SCIFF-AF by introducing a notion of value. We also in-
tend to investigate the relation between SCIFF-AF’s notion of positive/negative
expectations and Amgoud & Kaci’s work about generation of bipolar goals [3].
In [3] goals are partitioned into three categories: positive goals, negative goals,
and goals in abeyance. If positive goals reward the agent that satisfies them,
negative goals are on the contrary those considered unacceptable, while goals in
abeyance just mirror what is not rejected, although they do not really reward the
agent that adopts them. We think that the SCIFF-AF metaphor of expectations
applies smoothly to this understanding of goals. One obvious relation among the
two paradigms is shown in Figure 3.

Beside the very similar understanding of goals/expectations, Amgoud &
Kaci’s framework and its recent refinement by Rahwan & Amgoud [14] do have
many motivations in common with this work. We plan to investigate these as-
pects in depth in the future. Some possible interesting extensions of the SCIFF-
AF framework could be a notion of attack that accommodates a priority degree,
and a more comprehensive argumentation setting in which agents argue using
not only atomic entities, but also implications (i.e., integrity constraints, or con-
ditional rules).

Another aspect worth investigating is that of knowledge representation, for
example to distinguish between explanatory arguments, used to provide rea-
sons of adopting goals, beliefs or disbeliefs, and instrumental arguments, used to
present plans to achieve goals [3, 14].

Formal Properties of the SCIFF-AF Framework 139

Acknowledgements

The author thanks Federico Chesani, Marco Gavanelli and Francesca Toni for
their valuable comments on earlier versions of this work, and the anonymous
referees for their valuable suggestions. This research has been partially supported
by the MIUR PRIN 2005 project No 2005-011293, Specification and verification
of agent interaction protocols,3 and by the National FIRB project TOCAI.IT,4.

References

1. M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, and P. Mello. A verifiable logic-
based agent architecture. In Foundations of Intelligent Systems. 16th International
Symposium, ISMIS 2006, Bari, Italy, September 27-29, 2006. Proceedings, volume
2870 of Lecture Notes in Computer Science, pages 338–343. Springer-Verlag, 2006.

2. M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Ver-
ifiable agent interaction in abductive logic programming: the SCIFF framework.
ACM Transactions On Computational Logic (TOCL), 8, 2007.

3. L. Amgoud and S. Kaci. On the generation of bipolar goals in argumentation-
based negotiation. In I. Rahwan, P. Moraitis, and C. Reed, editors, ArgMAS 2004,
volume 3366 of Lecture Notes in Artificial Intelligence, pages 192–207. Springer-
Verlag, 2005.

4. L. Amgoud, S. Parsons, and N. Maudet. Arguments, dialogue and negotiation. In
W. Horn, editor, Proceedings of the Fourteenth European Conference on Artificial
Intelligence, Berlin, Germany (ECAI 2000). IOS Press, Aug. 2000.

5. K. Atkinson, T. Bench-Capon, and P. McBurney. A dialogue game protocol for
multi-agent argument over proposals for action. Journal of Autonomous Agents
and Multi-Agent Systems, 11:153–171, 2005.

6. P. M. Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence, 77(2):321–357, 1995.

7. T. H. Fung and R. A. Kowalski. The IFF proof procedure for abductive logic
programming. Journal of Logic Programming, 33(2):151–165, Nov. 1997.

8. M. P. Georgeff and A. L. Lansky. Reactive reasoning and planning. In Proceedings
of the 6th National Conference on Artificial Intelligence, AAAI’87, pages 677–682,
Seattle, WA, USA, July 1987. Morgan Kaufmann Publishers.

9. A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive Logic Programming. Journal
of Logic and Computation, 2(6):719–770, 1993.

10. A. C. Kakas and P. Moräıtis. Argumentation based decision making for au-
tonomous agents. Technical report, Department of Computer Science, University
of Cyprus, 2002.

11. A. C. Kakas and F. Toni. Computing argumentation in logic programming. Journal
of Logic and Computation, 9(4):515–562, 1999.

12. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd extended
edition, 1987.

3 http://www.ricercaitaliana.it/prin/dettaglio_completo_prin_

en-2005011293.htm
4 http://www.dis.uniroma1.it/~tocai/

140 P. Torroni

13. P. McBurney, S. Parsons, and M. Wooldridge. Desiderata for agent argumenta-
tion protocols. In C. Castelfranchi and W. Lewis Johnson, editors, Proceedings of
the First International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS-2002), Part I, pages 402–409, Bologna, Italy, July 15–19 2002.
ACM Press.

14. I. Rahwan and L. Amgoud. An argumentation-based approach for practical rea-
soning. In Proceedings of the Fifth International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS-2006), Hakodate, Hokkaido, Japan. ACM
Press, 2006.

15. I. Rahwan, S. D. Ramchurn, N. R. Jennings, P. McBurney, S. Parsons, and L. So-
nenberg. Argumentation-based negotiation. The Knowledge Engineering Review,
18:343–375, 2003.

16. A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-architecture.
In R. Fikes and E. Sandewall, editors, Proceedings of Knowledge Representation
and Reasoning (KR&R-91), pages 473–484. Morgan Kaufmann Publishers, Apr.
1991.

17. F. Sadri, F. Toni, and P. Torroni. Logic agents, dialogues and negotiation: an
abductive approach. In Proceedings AISB’01 Convention, York, UK, Mar. 2001.

18. P. Torroni. A study on the termination of negotiation dialogues. In C. Castelfranchi
and W. Lewis Johnson, editors, Proceedings of the First International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS-2002), Part III,
pages 1223–1230, Bologna, Italy, July 15–19 2002. ACM Press.

19. P. Torroni. Multi-agent agreements about actions through argumentation. In
P. Dunne and T. Bench-Capon, editors, Computational Models of Argument, vol-
ume 144 of Frontiers in Artificial Intelligence and Application, pages 323–328. IOS
Press, 2006.

Author Index

Alferes, José Júlio 64

Almeida, Iara . 64

Atkinson, Katie . 1

Baroni, Pietro .33

Bench-Capon, Trevor J.M. 1

Chesñevar, Carlos Iván 17

Cortés, Ulises . 114

Dung, Phan Minh 49

Gaertner, Dorian 80

Garćıa, Alejandro 17

Giacomin, Massimiliano 33

Nieves, Juan Carlos 114

Osorio Galindo, Mauricio 114

Pereira, Lúıs Moniz 96

Pinto, Alexandre Miguel 96

Rotstein, Nicolás Daniel 17

Simari, Guillermo R. 17

Thang, Phan Minh 49

Toni, Francesca 80

Torroni, Paolo 125

Wyner, Adam . 1

