
Inferring Preferred Extensions by

Minimal Models

Juan Carlos Nieves1, Mauricio Osorio2, and Ulises Cortés1

1 Universitat Politècnica de Catalunya
Software Department (LSI)

c/Jordi Girona 1-3, E08034, Barcelona, Spain
{jcnieves,ia}@lsi.upc.edu

2 Universidad de las Américas - Puebla
CENTIA, Sta. Catarina Mártir, Cholula, Puebla, 72820 México

osoriomauri@googlemail.com

Abstract. We identify that there is a direct relationship between the
minimal models of a propositional formula and the preferred extensions
of an argumentation framework. Then we show how to infer the preferred
extensions of an argumentation framework by using UNSAT algorithms
and disjunctive answer set solvers.

1 Introduction

Although several approaches have proposed for argument theory, Dung’s ap-
proach, presented in [11], is a unifying framework which has played an influential
role on argumentation research and Artificial Intelligence (AI). In fact, Dung’s
approach has influenced subsequent proposals for argumentation systems, e.g.,
[18, 3]. Besides, Dung’s approach is mainly relevant in fields where conflict man-
agement plays a central role. For instance, Dung showed that his theory naturally
captures the solutions of the theory of n-person game and the well-known stable
marriage problem.

Dung defined four argumentation semantics: stable semantics, preferred se-
mantics, grounded semantics, and complete semantics. The central notion of
these semantics is the acceptability of the arguments. An argument is called ac-
ceptable if and only if it belongs to a set of arguments which is called extension.
The main argumentation semantics for collective acceptability are the grounded
semantics and the preferred semantics [16, 1]. The first one represents a skepti-
cal approach, since for a given argumentation framework the grounded semantics
always identifies a single extension, called grounded extension. The preferred se-
mantics instead represents a credulous approach, since for a given argumentation
framework it identifies a set of extensions which are called preferred extensions.

It is well-known that the implementation of the decision problem of the
grounded semantics is quite straightforward. However, the decision problem of
the preferred semantics is hard since it is co-NP-Complete [12]. In the literature,
we can find different algorithms for computing the preferred semantics [4, 6, 9,

Inferring Preferred Extensions by Minimal Models 115

10, 2]. We have to point out that these algorithms are so specific; they are not
really flexible for developing small prototypes.

From the point of view that a proper representation of a given problem is a
major step in finding robust solutions to it, we explore a couple of representations
of an argumentation framework in order to compute their preferred extensions.
In general terms, we identify that there is a direct relationship between the
minimal models of a propositional formula and the preferred extensions of an
argumentation framework. We show how to infer the preferred extensions of an
argumentation framework by using UNSAT algorithms and disjunctive answer
set solvers e.g., DLV [8]. UNSAT is the complement of Satisfiability (SAT), a
problem for which very efficient systems have been developed in AI during the
last decade. Nowadays, there are fast answer set solvers e.g., DLV [8], SMODELS
[17], which have contributed to extend the applications of Answer Set Program-
ming (ASP).

The rest of the paper is divided as follows: In §2, we present some basic
concepts of logic programs and argumentation theory. In §3, we present a char-
acterization of the preferred semantics by minimal models. In §4, we present how
to compute the preferred semantics by using the minimal models of a positive
disjunctive logic program. Finally in the last section, we present our conclusions.

2 Background

In this section, we present the syntax of a valid logic program in ASP, the
definition of an answer set, and the definition of the preferred semantics. We will
use basic well-known definitions in complexity theory such as co-NP-complete
problem. We suggest the reader to consult [7] if s/he needs to read more on such
definitions.

2.1 Logic Programs: Syntax

The language of a propositional logic has an alphabet consisting of

(i) proposition symbols: p0, p1, ...

(ii) connectives : ∨,∧,←,¬,⊥,⊤
(iii) auxiliary symbols : (,).

where ∨,∧,← are 2-place connectives, ¬ is 1-place connective and ⊥,⊤ are 0-
place connectives. The proposition symbols and ⊥ stand for the indecomposable
propositions, which we call atoms, or atomic propositions. A literal is an atom,
a, or the negation of an atom ¬a. Given a set of atoms {a1, ..., an}, we write
¬{a1, ..., an} to denote the set of literals {¬a1, ...,¬an}.

A general clause, C, is denoted by a1 ∨ . . . ∨ am ← l1, . . . , ln,3 where m ≥ 0,
n ≥ 0, each ai is an atom, and each li is a literal. When n = 0 and m > 0 the
clause is an abbreviation of a1 ∨ . . . ∨ am ← ⊤, where ⊤ is ¬⊥. When m = 0

3 l1, . . . , ln represents the formula l1 ∧ · · · ∧ ln.

116 J.C. Nieves, M. Osorio, and U. Cortés

the clause is an abbreviation of ⊥ ← l1, . . . , ln. Clauses of this form are called
constraints (the rest, non-constraint clauses). A general program, P , is a finite
set of general clauses. By LP , we denote the set of atoms that occurs in P. Given
a set S and E ⊆ S, Ẽ denotes the complement of E w.r.t. S.

We point out that whenever we consider logic programs our negation ¬ cor-
responds to the default negation not used in Logic Programming. Also, it is
convenient to remark that in this paper we are not using at all the so called
strong negation used in ASP.

2.2 Answer set semantics

First, to define the answer set semantics, let us define some relevant concepts.
Let P be a general program. An interpretation I is a mapping from LP to
{0, 1}, where the generalization of I to connectives is as follows: I(a ∧ b) =
min{I(a), I(b)}, I(a∨ b) = max{I(a), I(b)}, I(a ← b) = 0 if and only if I(b) = 1
and I(a) = 0, I(¬a) = 1− I(a), I(⊥) = 0. An interpretation I is called a model
of P if and only if for each clause c ∈ P , I(c) = 1. Finally, I is a minimal model
of P if it does not exist a model I ′ of P such that I ′ ⊂ I.

By using answer set programming, it is possible to describe a computational
problem as a logic program whose answer sets correspond to the solutions of
the given problem. The answer set semantics was first defined in terms of the so
called Gelfond-Lifschitz reduction [13] and it is usually studied in the context of
syntax dependent transformations on programs. The following definition of an
answer set for general programs generalizes the definition presented in [13] and
it was presented in [14].

Let P be any general program. For any set S ⊆ LP , let PS be the general
program obtained from P by deleting

(i) each rule that has a formula ¬l in its body with l ∈ S, and then

(ii) all formulæ of the form ¬l in the bodies of the remaining rules.

Clearly PS does not contain ¬, then S is an answer set of P if and only if S is
a minimal model of PS .

2.3 Argumentation theory

Now, we define some basic concepts of Dung’s argumentation approach. The first
one is an argumentation framework. An argumentation framework captures the
relationships between the arguments (All the definitions of this subsection were
taken from the seminal paper [11]).

Definition 1. An argumentation framework is a pair AF := 〈AR, attacks〉,
where AR is a finite set of arguments, and attacks is a binary relation on AR,
i.e. attacks ⊆ AR × AR.

Inferring Preferred Extensions by Minimal Models 117

Fig. 1. A single argumentation framework

Any argumentation framework could be regarded as a directed graph. For
instance, if AF := 〈{a, b, c}, {(a, b), (b, c)}〉, then AF is represented as shown in
Fig. 1. We say that a attacks b (or b is attacked by a) if attacks(a, b) holds.
Similarly, we say that a set S of arguments attacks b (or b is attacked by S) if b

is attacked by an argument in S. For instance in Fig. 1, {a}attacks b.

Definition 2. A set S of arguments is said to be conflict-free if there are no
arguments A, B in S such that A attacks B.

By considering conflict-free sets of arguments, it is defined the concept of
admissible set.

Definition 3. (1) An argument A ∈ AR is acceptable with respect to a set S of
arguments if and only if for each argument B ∈ AR: If B attacks A then B is
attacked by S. (2) A conflict-free set of arguments S is admissible if and only if
each argument in S is acceptable w.r.t. S.

For instance, the argumentation framework of Fig. 1 has two admissible sets:
{a} and {a, c}. The (credulous) semantics of an argumentation framework is
defined by the notion of preferred extension.

Definition 4. A preferred extension of an argumentation framework AF is a
maximal (w.r.t. inclusion) admissible set of AF .

The only preferred extension of the argumentation framework of Fig. 1 is
{a, b}.

3 Preferred extensions and UNSAT algorithms

In this section, we provide a method for computing preferred extensions. This
method is based on model checking and Unsatisfiability (UNSAT). UNSAT is the
complement of Satisfiability (SAT), a problem for which very efficient systems
have been developed in AI during the last decade.

First of all, we introduce some notations which are used in the rest of the pa-
per. Our representations of an argumentation framework use the predicate d(X),
where the intended meaning of d(X) is: “the argument X is defeated”. Given
an argumentation framework AF := 〈AR,Attacks〉 and E ⊆ AR, we define the
set s(E) as {d(a)|a ∈ AR \E}. Essentially, s(E) expresses the complement of E

w.r.t. AR. Given A ∈ AR, we define D(A) as {B|(B,A) ∈ Attacks}. Intuitively
D(A) denotes the set of arguments which attacks A.

Now we definite a mapping from an argumentation framework to a proposi-
tional formula.

118 J.C. Nieves, M. Osorio, and U. Cortés

Definition 5. Let AF := 〈AR, attacks〉 be an argumentation framework, then
α(AF) is defined as follows:

α(AF) :=
∧

A∈AR

((
∧

B∈D(A)

d(A) ← ¬d(B)) ∧ (
∧

B∈D(A)

d(A) ←
∧

C∈D(B)

d(C)))

In the propositional formula α(AF), we can identify two parts for each ar-
gument A ∈ AR:

1. The first part (
∧

B∈D(A) d(A) ← ¬d(B)) suggests that the argument A is
defeated when one of its attackers is not defeated.

2. The last part (
∧

B∈D(A) d(A) ←
∧

C∈D(B) d(C)) suggests that the argument

A is defeated when all the arguments that defend4 A are defeated.

Notice that α(AF) is essentially a propositional formula (just considering the
atoms like d(a) as d a). In order to illustrate the propositional formula α(AF),
let us consider the following example.

Example 1. Let AF := 〈AR, attacks〉 be the argumentation framework of Fig. 1.
We can see that D(a) = {}, D(b) = {a} and D(c) = {b}. Hence if we consider the
propositional formula w.r.t. argument a, we obtain (in order to be syntactically
clear we use uppercase letters as variables and lowercase letters as constants):

(
∧

B∈{} d(a) ← ¬d(B)) ∧ (
∧

B∈{} d(a) ←
∧

C∈D(B) d(C)) ≡ ⊤ ∧⊤ ≡ ⊤

It is important to remember that the conjunction of an empty set is the true
value (⊤). Now if one considers the propositional formula w.r.t. argument b, we
get

(
∧

B∈{a} d(b) ← ¬d(B)) ∧ (
∧

B∈{a} d(b) ←
∧

C∈D(B) d(C)) ≡

(d(b) ← ¬d(a)) ∧ (d(b) ←
∧

C∈D(a) d(C)) ≡ (d(b) ← ¬d(a)) ∧ (d(b) ← ⊤)

And the propositional formula w.r.t. argument c is

(
∧

B∈{b} d(c) ← ¬d(B)) ∧ (
∧

B∈{b} d(c) ←
∧

C∈D(B) d(C)) ≡

(d(c) ← ¬d(b)) ∧ (d(c) ← d(a))

Then, α(AF) is:

(d(b) ← ¬d(a)) ∧ (d(b) ← ⊤) ∧ (d(c) ← ¬d(b)) ∧ (d(c) ← d(a))

Essentially α(AF) is a propositional representation of the argumentation
framework AF . However α(AF) has the property that its minimal models char-
acterize AF ’s preferred extensions. In order to formalize this property, let us
consider the following proposition which was proved by Besnard and Doutre in
[4].

4 We say that C defends A if B attacks A and C attacks B.

Inferring Preferred Extensions by Minimal Models 119

Proposition 1. [4] Let AF := 〈AR, attacks〉 be an argumentation framework.
A set S ⊆ AR is a preferred extension if and only if S is a maximal model of
the formula

∧

A∈AR

((A →
∧

B∈D(A)

¬B) ∧ (A →
∧

B∈D(A)

(
∨

C∈D(B)

C)))

Notice that α(AF) is related to defeated arguments and the formula of Propo-
sition 1 is related to acceptable arguments. It is not difficult to see that α(AF)
is the dual formula of the formula of Proposition 1. For instance, let us consider
the argumentation framework AF of Example 1. The formula related to AF ,
according to Proposition 1, is:

(¬a ← b) ∧ (⊥ ← b) ∧ (¬b ← c) ∧ (a ← c)

If we replace each atom x by the expression ¬d(x), we get:

(¬¬d(a) ← ¬d(b)) ∧ (⊥ ← ¬d(b)) ∧ (¬¬d(b) ← ¬d(c)) ∧ (¬d(a) ← ¬d(c))

Now, if we apply transposition to each implication

(d(b) ← ¬d(a)) ∧ (d(b) ← ⊤) ∧ (d(c) ← ¬d(b)) ∧ (d(c) ← d(a))

The latter formula corresponds to α(AF). The following theorem is a straight-
forward consequence of Proposition 1.

Theorem 1. Let AF := 〈AR, attacks〉 be an argumentation framework and S ⊆
AR. S is a preferred extension of AF if and only if s(S) is a minimal model of
α(AF).

In order to illustrate Theorem 1, let us consider again α(AF) of Example 1.
This formula has three models: {d(b)}, {d(b), d(c)} and {d(a), d(b), d(c)}. Then,
the only minimal model is {d(b)}, this implies that {a, c} is the only preferred
extension of AF. In fact, each model of α(AF) implies an admissible set of AF,
this means that {a, c}, {a} and {} are the admissible sets of AF.

There are several approaches for inferring minimal models from a proposi-
tional formula. For instance, it is possible to use UNSAT’s algorithms for infer-
ring minimal models. Hence, it is clear that we can use UNSAT’s algorithms for
computing the preferred extensions of an argumentation framework. This idea
is formalized with the following lemma. Let S be a set of well formed formulæ
then we define n(S) :=

∧
c∈S

c.

Lemma 1. Let AF := 〈AR, attacks〉 be an argumentation framework and S ⊆
AR. S is a preferred extension of AF if and only if s(S) is a model of α(AF)

and α(AF) ∧ n(¬s̃(S)) ∧ ¬n(s(S)) is unsatisfiable.

Proof. It is direct by Theorem 1.

120 J.C. Nieves, M. Osorio, and U. Cortés

In order to illustrate Lemma 1, let us consider again the argumentation
framework AF of Example 1. Let S = {a}, then s(S) = {d(b), d(c)}. We have
already seen that {d(b), d(c)} is a model of α(AF), hence the formula to verify
its unsatisfiability is:

(d(b) ← ¬d(a)) ∧ (d(b) ← ⊤) ∧ (d(c) ← ¬d(b)) ∧ (d(c) ← d(a))∧
¬d(a) ∧ (¬d(b) ∨ ¬d(c))

However, this formula is satisfiable by the model {d(b)}, then {a} is not a pre-
ferred extension. Now, let S = {a, c}, then s(S) = {d(b)}. As seen before, {d(b)}
is also a model of α(AF), hence the formula to verify its unsatisfiability is:

(d(b) ← ¬d(a)) ∧ (d(b) ← ⊤) ∧ (d(c) ← ¬d(b)) ∧ (d(c) ← d(a))∧
¬d(a) ∧ ¬d(c) ∧ ¬d(b)

It is easy to see that this formula is unsatisfiable, therefore {a, c} is a preferred
extension.

The relevance of Lemma 1 is that UNSAT is the prototypical and best-
researched co-NP-complete problem. Hence, Lemma 1 opens the possibilities for
using a wide variety of algorithms for inferring the preferred semantics.

4 Preferred extensions and general programs

In Section 3, we presented a representation of an argumentation framework in
terms of a propositional formula for inferring preferred extensions. Another op-
tion for computing the preferred semantics is by considering a straightforward
mapping from an argumentation framework to a general program. This approach
is an elegant and short form for inferring the preferred extensions of an argu-
mentation framework. The only system that we need for inferring the preferred
extensions of an argumentation framework is any disjunctive answer set solver
e.g., DLV [8].

We start this section by defining a simple mapping from an argumentation
framework to a positive disjunctive logic program.

Definition 6. Let AF := 〈AR, attacks〉 be an argumentation framework and
A ∈ AR. We define the transformation function Γ (A) as follows:

Γ (A) := (
∧

B∈D(A)

(d(A) ∨ d(B))) ∧ (
∧

B∈D(A)

(d(A) ←
∧

C∈D(B)

d(C)))

The generalization of the function Γ is defined as follows:

Definition 7. Let AF := 〈AR, attacks〉 be an argumentation framework. We
define its associated general program as follows:

ΓAF :=
∧

A∈AR

Γ (A)

Inferring Preferred Extensions by Minimal Models 121

Remark 1. Notice that α(AF) (see Definition 5) is similar to ΓAF . The main
syntactic difference of ΓAF w.r.t. α(AF) is the first parte of ΓAF which is
(
∧

B∈D(A)(d(A)∨ d(B))); however this part is logical equivalent to the first part

of α(AF) which is (
∧

B∈D(A) d(A) ← ¬d(B)). In fact, the main difference is their
behavior w.r.t. answer set semantics. In order to illustrate this difference, let us
consider the argumentation framework AF := 〈AR, attacks〉, where AR := {a}
and attacks := {(a, a)}. Then we can see that

ΓAF := (d(a) ∨ d(a)) ∧ (d(a) ← d(a))

and

α(AF) := (d(a) ← ¬d(a)) ∧ (d(a) ← d(a))

It is clear that both formulæ have a minimal model which is {d(a)}, however
α(AF) has no answer sets. In fact both formulæ are logically equivalent in classic
logic but not in answer set semantics.

In the following theorem we formalize a characterization of the preferred se-
mantics in terms of positive disjunctive logic programs and answer set semantics.

Theorem 2. Let AF := 〈AR, attacks〉 be an argumentation framework and S ⊆
AR. S is a preferred extension of AF if and only if s(S) is an answer set of
ΓAF .

Proof. S is a preferred extension of AF if and only if s(S) is a minimal model
of α(AF) (by Theorem 1) if and only if s(S) is a minimal model of ΓAF (since
ΓAF is logically equivalent to α(AF) in classical logic) if and only if s(S) is an
answer set of ΓAF (since ΓAF is a positive disjunctive program and for every
positive disjunctive program P, M is an answer set of P if and only if M is a
minimal model of P).

Let us consider the following example.

Example 2. Let AF := 〈AR, attacks〉 be an argumentation framework, where
AR := {a, b, c, d, e} and attacks := {(a, b), (b, a), (b, c), (c, d), (d, e), (e, c)} (see
Fig. 2). Then, ΓAF is

d(a) ∨ d(b). d(a) ← d(a).
d(b) ∨ d(a). d(b) ← d(b).
d(c) ∨ d(b). d(c) ∨ d(e).
d(c) ← d(a). d(c) ← d(d).
d(d) ∨ d(c). d(d) ← d(b), d(e).
d(e) ∨ d(d). d(e) ← d(c).

ΓAF has two answer sets which are {d(a), d(c), d(e)} and {d(b), d(c), d(e), d(d))},
therefore {b, d} and {a} are the preferred extensions of AF.

122 J.C. Nieves, M. Osorio, and U. Cortés

Fig. 2. An argumentation framework.

An alternative form for computing the preferred extensions of an argumen-
tation framework, without considering the predicate d(X), is taking advantage
of default negation. It is possible by considering a new dual symbol for each
argument of the argumentation framework. This means that we can infer the
acceptable arguments directly from the answers sets of the logic program.

This idea is formalized with the following lemma. First, let us present some
definitions.

Definition 8. Let AF := 〈AR, attacks〉 be an argumentation framework. We
define the function η as η : AR → AR′. Where AR′ has the same cardinality to
AR such that AR ∩ AR′ = ∅.

η is a bijective function which assigns a new symbol to each argument of AR.
Notice that the new symbol does not occurs in AR. We are going to denote the
image of A ∈ AR under η as A′.

Definition 9. Let AF := 〈AR, attacks〉 be an argumentation framework and
A ∈ AR. We define the transformation function Γ (A) as follows:

Λ(A) := (
∧

B∈D(A)

(A′ ∨ B′)) ∧ (
∧

B∈D(A)

(A′ ←
∧

C∈D(B)

C ′))

Definition 10. Let AF := 〈AR, attacks〉 be an argumentation framework. We
define its associated general program as follows:

ΛAF :=
∧

A∈AR

(Λ(A) ∧ (A ← ¬A′))

Notice that Γ (A) and Λ(A) are equivalent (module notation) and the main
difference between ΓAF and ΛAF is the rule A ← ¬A′ for each argument.

Lemma 2. Let AF := 〈AR, attacks〉 be an argumentation framework and S ⊆
AR. S is a preferred extension of AF if and only if there is an answer set M of
ΛAF such that S = M ∩ AR.

Proof. The proof is straightforward from Theorem 2 and the semantics of default
negation.

In order to illustrate this lemma let us consider the following example.

Inferring Preferred Extensions by Minimal Models 123

Example 3. Let AF := 〈AR, attacks〉 be the argumentation framework of Ex-
ample 2. So ΛAF is

a′ ∨ b′. a′ ← a′.

b′ ∨ a′. b′ ← b′.

c′ ∨ b′. c′ ∨ e′.

c′ ← a′. c′ ← d′.

d′ ∨ c′. d′ ← b′, e′.

e′ ∨ d′. e′ ← c′.

a ← ¬a′. b ← ¬b′.

c ← ¬c′. d ← ¬d′.

e ← ¬e′.

ΓAF has two answer sets which are {a′, c′, e′, b, d} and {b′, c′, e′, d′, a}, hence
{b, d} and {a} are the preferred extensions of AF .

5 Conclusions

The preferred semantics is regarded as the most satisfactory argumentation se-
mantics of Dung’s argumentation approach. For instance, John Pollock made
preferred semantics one of the key ingredients of his revised formalism [15].
Also, it has been shown that some non-monotonic logic programming semantics
can be viewed as a special form of this abstract argumentation semantics [5, 11].

It is well-known that the decision problem of the preferred semantics is co-
NP-Complete. Then, to have different approaches for inferring this semantics
could help to develop argumentation systems based on the preferred semantics.
The inference of minimal models from a propositional formula and a logic pro-
gram is a widely explored problem. Therefore, by defining a relationship between
the preferred semantics and minimal models, we identify a wide family of algo-
rithms for inferring the preferred semantics. In particular in this paper, we show
how to infer the preferred extensions of an argumentation framework by using
UNSAT algorithms and disjunctive answer set solvers.

Acknowledgement

We are grateful to anonymous referees for their useful comments. J.C. Nieves
thanks to CONACyT for his PhD Grant. J.C. Nieves and U. Cortés were partially
supported by the grant FP6-IST-002307 (ASPIC). The views expressed in this
paper are not necessarily those of ASPIC consortium.

References

1. ASPIC:Project. Deliverable D2.2:Formal semantics for inference and decision-
making. Argumentation Service Plarform with Integrated Components, 2005.

124 J.C. Nieves, M. Osorio, and U. Cortés

2. ASPIC:Project. ASPIC: Argumentation engine demo. http://aspic.acl.icnet.
uk/, 2006.

3. T. Bench-Capon. Value-based argumentation frameworks. In Proceedings of Non
Monotonic Reasoning, pages 444–453, 2002.

4. P. Besnard and S. Doutre. Checking the acceptability of a set of arguments. In
Tenth International Workshop on Non-Monotonic Reasoning (NMR 2004),, pages
59–64, June 2004.

5. A. Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni. An abstract,
argumentation-theoretic approach to default reasoning. Artificial Intelligence,
93:63–101, 1997.

6. C. Cayrol, S. Doutre, and J. Mengin. On Decision Problems related to the pre-
ferred semantics for argumentation frameworks. Journal of Logic and Computation,
13(3):377–403, 2003.

7. T. H. Cormen, C. E. Leiserson, R. L. Riverst, and C. Stein. Introduction to Algo-
rithms. MIT Press, second edition, 2001.

8. S. DLV. Vienna University of Technology. http://www.dbai.tuwien.ac.at/proj/
dlv/, 1996.

9. S. Doutre and J. Mengin. An algorithm that computes the preferred extensions
of argumentation frameworks. In ECAI’2000, Third International Workshop on
Computational Dialectics (CD’2000), pages 55–62, Aug. 2000.

10. S. Doutre and J. Mengin. Preferred Extensions of Argumentation Frameworks:
Computation and Query Answering. In R. Goré, A. Leitsch, and T. Nipkow,
editors, IJCAR 2001, volume 2083 of LNAI, pages 272–288. Springer-Verlag, 2001.

11. P. M. Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence, 77(2):321–358, 1995.

12. P. E. Dunne and T. J. M. Bench-Capon. Complexity in value-based argument
systems. In JELIA, volume 3229 of LNCS, pages 360–371. Springer, 2004.

13. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming.
In R. Kowalski and K. Bowen, editors, 5th Conference on Logic Programming,
pages 1070–1080. MIT Press, 1988.

14. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9:365–385, 1991.

15. J. L. Pollock. Cognitive Carpentry: a blueprint for how to build a person. The MIT
Press, May 4, 1995.

16. H. Prakken and G. A. W. Vreeswijk. Logics for defeasible argumentation. In
D. Gabbay and F. Günthner, editors, Handbook of Philosophical Logic, volume 4,
pages 219–318. Kluwer Academic Publishers, Dordrecht/Boston/London, second
edition, 2002.

17. S. SMODELS. Helsinki University of Technology. http://www.tcs.hut.fi/

Software/smodels/, 1995.
18. G. Vreeswijk. Abstract argumentation systems. Artificial Intelligence, 90(1-2):225–

279, 1997.

