Reductio ad AbsurdunArgumentation in Normal Logic
Programs

Luis Moniz Pereira and Alexandre Miguel Pinto
{Imp|jamp} @di.fct.unl.pt

Centro de Inteligncia Artificial (CENTRIA)
Universidade Nova de Lisboa
Quinta da Torre
2829-516 Caparica, Portugal

Abstract. This paper introduces a new method for defining the argumentative se-
mantics of Normal Logic Programs. In doing so, our single and unifiuaach
allows one to obtain the Stable Models [11] as a special case, or the nmaeage
Revision Complete Scenarios here defined.

Normal Logic Programs are approached as assumption-basedeartation sys-
tems. We generalize this setting by allowing both negative and positive pssum
tions. Negative assumptions are made maximal, consistent with existéace o
semantics, and positive assumptions are adopted only insofar as tw@antpe
such existence. Our argumentation semantics thus extends the classiaal o
[7], and guarantees existence of semantics for any Normal Loggré&rg whilst
providing all the scenarios corresponding to Stable Models semantics.
Additionally, we provide equivalent and correct algorithms for incretally com-
puting our scenarios, with three variants. One starts by assuming all @®ms
positive assumptions; another assumes them all negative; a third nesstsoon-
bination of the first two, and may start with any choice of assumptions|aftes
may be employed to address the problem of finding those complete msenar
most compatible with an initial collection of complete scenarios. Consequently
argumentation can be put to collaborative use, not just an antagonisti©anre-
sults are achieved by generalizing the definitions of the classical appnehich
allows only for negative hypotheses, and our definitions fall back onl#ssical
ones when specialized to disallow positive hypotheses.

Finally, integrity constraints are introduced to prune undesired scenaiist
permitting these to be produced nevertheless.

Keywords: Argumentation, Reductio ad AbsurdumLogic Programs, Argu-
ment Revision

1 Introduction

After introducing in [15] and [14] the new Revised Stable Mtsisemantics for Normal
Logic Programs further work using tHeeductio ad AbsurdurtRAA) principle has

been developed, namely the Revised Well-Founded Semdt¢sConsidering an
argument-based view of Logic Programs, we define a new s@savttich inherits the
RAA principle studied in [15, 14] and apply it to argumentati

Reductio ad Absurdurgumentation in Normal Logic Programs 97

Logic Programs can be viewed as a collection of argumesetatatements (rules)
based on arguments (default negated literals) [5, 2, 6,13,9, 8, 7]. In the quest for
finding a Consistent and Complete argumentative scenagaan guess it and check
its compliance with these properties; or, innovativelgristvith an arbitrary scenario,
calculate its consequences, and make revisions to thal iagsumptions if necessary in
order to achieve 2-valued Completeness and ConsisteniyisTtine road we propose
now, revision of assumptions justified by mean&efiuctio ad Absurdumeasoning.

This paper introduces a hew method for defining the argurtieetsemantics of
Normal Logic Programs. In doing so, our single and unifiedrapgh allows one to
get the Stable Models [11] as a special case, or the more geRevision Complete
Scenarios here defined.

Normal Logic Programs are approached as assumption-bagechentation sys-
tems. We generalize this setting by allowing both negative positive assumptions.
Negative assumptions are made maximal, consistent withesde of a semantics, and
positive assumptions are adopted only insofar as they gteauch existence. The jus-
tification of positive assumptions rests on the useedfictio ad absurdurrto the effect
that replacing any one positive hypothesis (or assumphgnis negative counterpart,
in a complete scenario, would result in its inconsisten@né¢, that complete 2-valued
scenario must retain its positive assumptions. Our argtatien semantics thus extends
the classical one of [7], and guarantees existence of séadnt any Normal Logic
Program, whilst providing all the scenarios correspondin§table Models semantics.

Additionally, we provide equivalent and correct algorithfor incrementally com-
puting our scenarios, with three variants. One starts byrasgy all atoms as positive
assumptions; another assumes them all negative; a thislorsa combination of the
first two, and may start with any choice of assumptions. Titerdanay be employed
to address the problem of finding those complete scenaria$ coonpatible with an
initial collection of complete scenarios. Consequentiguanentation can be put to col-
laborative use, not just an antagonistic one. Our resuitsaahieved by generalizing
the definitions of the classical approach, which allow oolyrfegative hypotheses, and
our definitions fall back on the classical ones when spegdlito disallow positive
hypotheses.

Finally, integrity constraints are introduced to pruneesiced scenarios, whilst per-
mitting these to be produced nevertheless.

In essence, our approach caters for the treatment of loggrsasvodd number of
default negated literals, in that it assigns and justifieaglete 2-valued models to any
Normal Logic Program.

We start by presenting the general Motivation of this papet, after introducing
some needed Background Notation and Definitions, the maadeidProblem Descrip-
tion. We proceed by setting forth our proposal — the Revi€lomplete Scenarios—
and show how it extends previous known results.

Before the Conclusions and Future Work, we show how our amirecan enable
Collaborative Argumentation, complementing the clagdstzampetitive view of Argu-
mentation.

98 L.M. Pereira and A.M. Pinto

1.1 Motivation

Ever since the beginning of Logic Programming the scientifimmunity has formally
define, in several ways, the meaning, the semantics of a IRrgigram. Several seman-
tics were defined, some 2-valued, some 3-valued, and evaivalued semantics. The
current standard 2-valued semantics for Normal Logic Rnogr— the Stable Models
Semantics [11] — has been around for almost 20 years nowt &ngdnerally accepted
as thede factostandard 2-valued semantics for NLPs. This thoroughlyistuseman-
tics, however, lacks some important properties among whhielguarantee of Existence
of a Model for every NLP.

In [14] we defined a 2-valued semantics— the Revised Stabldelde— which ex-
tends the Stable Models Semantics, guarantees Existeackloflel for every Normal
Logic Program, enjoys Relevancy (allowing for top-downryuériven proof-procedures
to be built) and Cumulativity (allowing the programmer t&daadvantage of tabling
techniques for speeding up computations).

Aiming to find a general perspective to seamlessly unify ttadi® Models Seman-
tics and the Revised Stable Models Semantics we drew ountiatteto Argumentation
as a means to achieve it. This is the main motivation of thekww@ present in this pa-
per: by taking the Argumentation perspective we intend tmsimethods of identifying
and finding a 2-valued complete Model for any NLP. The apgrdaainifying in the
sense that it allows us to find the Stable Models and also stinee blodels needed to
ensure guarantee of Existence of a Model. In the process tgacihe argumentation
stance itself with the ability to incorporate positive hyipeses as needed.

Example 1.An invasion problem Some political leader thinks that “If Iran will have
Weapons of Mass Destruction then we intend to invade Irdab, ‘df we do not intend
to invade then surely they will have Weapons of Mass Destmtt

intend_we_to_invade <+ iran_will_have W M D
iran_will_have_W M D « not intend_we_to_invade

If we assume that “we do not intend to invade Iran” then, adiowy to this program
we will conclude that “Iran will have Weapons of Mass Destiot’ and “we intend
to invade Iran”. These conclusions, in particular “we imtéo invade Iran”, contradict
the initial hypothesis “we do not intend to invade Iran”. &®asoning byReductio ad
Absurdumin a 2-valued setting, we should “intend to invade Iran” ia fiist place.

This example gives a hint on how we resolve inconsistentat@nin the rest of
the paper.

Example 2.A vacation problem Another example puts together three friends that are
discussing where they will spend their next joint vacatiatehn says “If | cannot go
the mountains I'd rather go traveling”. Mary says “Well, | mtdo go to the beach, but
if that’s not possible then I'd rather go to the mountainshafy, Michael says “| want
to go traveling, and if that’s not possible then | want to gt¢hie beach”.

We put together the three friends’ statements formalizemlarNormal Logic Pro-
gram:

Reductio ad Absurdumrgumentation in Normal Logic Programs 99

travel < not mountain mountain < not beach beach «— not travel

Now, because the three friends need to save money, they nmistize the number
of places they will go to on vacation. So they start by assgrttiey are going nowhere
— the cheapest solution. That is, they assyme& mountain, not beach, not travel}
as true. According to the program above, with these initygdtheses the friends will
conclude they will go traveling, to the beach and to the maimst and this contradicts
the initial hypotheses. They need to revise some of thelialmissumptions. If they
revisenot mountain to mountain they will now conclude{mountain, beach} and if
we put it together with the new set of hypothegest beach, not travel, mountain}
we get the resulting setmountain, beach, not beach,not travel}. We still have a
contradiction orbeach andnot beach, which we can easily remove by transforming
the hypotheses set infonountain, beach, not travel}.

There are two more alternative solutions{beach, travel, not mountain} and
{travel, mountain, not beach} — which are symmetric to this one.

Example 3.A time-out problem John likes Mary a lot so he asked her out: he said
“We could go to the movies”. Mary is more of a sports girl, se seplies “Either that,

or we could go to the swimming pool”. “Now, that's an inteiagtidea”, John thought.
The problem is that John cannot swim because he hasn'tdiagening to. He now
thinks “Well, if I'm going to the swimming pool with Mary, anldhaven't learned how

to swim, I’'m might risk drowning! And if I'm risking drowninghen | really should
want to start learning to swim”.

Here is the Normal Logic Program corresponding to these=gent:

start_learning_to_swim «— risk_drowning

risk_drowning «— go_to_pool, not start_learning_to_swim
go_to_pool «— not go_to_movies
go_to_movies «— not go_to_pool

If John is not willing to go to the swimming pool — assumingt go_to_pool —
he just concludego_to_movies and maybe he can convince Mary to join him.

On the other hand, if the possibility of having a nice swimhaiflary is more
tempting, John assumes he is not going to the mowigsgo_to_movies and there-
fore he concludego_to_pool. In this case, since John does not know how to swim
he could also assumeot start_learning_to_swim. But since John is going to the
swimming pool, he concludesisk_drowning. And because ofisk_drowning he
also concludestart_learning_to_swim. That is, he must give up the hypothesis of
not start_learning_to_swim in favor of start_learning_to_swim because he wants
to go to the swimming pool with Mary. As a nice side-effect lodonger risks drown-

ing.

Example 4.Middle Region Politics In a Middle Region two factions are at odds. One
believes that if terrorism does not stop then oppressiohdsilit and hence become

100 L.M. Pereira and A.M. Pinto

unnecessary.
oppression < not end_of terrorism end_of _terrorism < oppression

The other faction believes that if oppression does not step terrorism will do it and
hence become unnecessary.

terrorism «— not end_of _oppression end_of _oppression «— terrorism

According to these rules, if we assume th& end_of _terrorism we conclude that
there isoppression which in turn will cause thend_of _terrorism. So, theend_of _terrorism
should be true in the first place, insteadnet end_of terrorism. The same happens

with end_of _oppression. In spite of the peaceful resulting scenario we propose,

{end_of _oppression, end_of terrorism}, there is no Stable Model for this program.

1.2 Background Notation and Definitions

Definition 1. Logic Rule A Logic Ruler has the general form
L « by,bs,...,b,,not c1,n0t co, ..., not ¢, WwhereL is a literal, i.e., an atonh or
its default negatiomot h, andn,m > 0.

We call L the head of the rule — also denoted byud(r). Andbody(r) denotes
the set{by,ba, ..., by, not c1,not ca,...,not ¢, } of all the literals in the body of.
Throughout this paper we will useét ' to denote the default negation.

When the body of the rule is empty, we say the head of rule istafa we write
the rule as just or not h. a0

Definition 2. Logic ProgramA Logic Program (LP for shortP is a (possibly infinite)
set of ground Logic Rules of the form presented in definitiolfi the heads of all the
rules in P are positive literals, i.e., they are simple atoms, and nefiadlt negated
literal, we say we have a Normal Logic Program (NLP). If atdeane of the heads of
arule of P is a default negated literal, and there is no explicit negatin the program
— we say we have a Generalized Logic Program (GLP). If theexjdicit negation,
besides default negation, in the program we say we have an#etl Logic Program
(ELP). 0

Definition 3. Atoms of a Logic ProgramP — Atoms(P) Atoms(P) denotes the set
of all atoms ofP. Formally,
Atoms(P) = {a : 3rep(head(r) = aV head(r) = not aVa € body(r)Vnot a €

body (7“)) } O

Throughout the rest of this paper we will focus solely on Nakiogic Programs
hence, when we write just a Program or a Logic Program we medaraal Logic
Program.

Definition 4. Default negation of a sefS of literals — not S Throughout this paper
we will sometimes use thet S default negation of a sef notation, whereS is a set
of literals, in order to denote the set resulting from defandgating every literal of.
Formally,not S = {nota:a € S} U{b:notb € S} O

Reductio ad Absurdurgumentation in Normal Logic Programs 101

Definition 5. Scenario A scenario of a NLPP is the Horn theoryP U H, where
H=H"UH",H" C Atoms(P), H- C not Atoms(P), andnot H™ and H ™~ are
disjoint. H is called a set of hypotheses, positive and negative. a0

Definition 6. operator Let P be a NLP andH a set of hypothese#”’ is the Horn
theory obtained fronP by replacing every default literal of the formvt L in P by
the atomnot_L. H' is likewise obtained fron#/ using the same replacement rule. By
definition, P’ U H' is a Horn theory, and so it has a least modél We define- in the
following way, whered is any atom ofP:

PUHFA iff Ae M PUHbFnot A iff not_, Ae M a

Definition 7. Consistent scenaricA scenarioP U H is consistent iff for all literald,
if PUHF LthenPU & H ¥ not L, wherenot not L = L. a

Definition 8. Consistent program A Logic ProgramP is consistent iffP U §) is a
consistent scenario. NLPs are of course consistent. ad

2 Revision Complete Scenarios

In [4] the author proves that every Stable Model (SM) of a NkR1i2-valued com-
plete (total), consistent, admissible scenario. The autbosiders a scenario as a set
of default negated literals — the hypotheses. However, netyeNLP has a consis-
tent, 2-valued complete scenario when one considers asheg®s just default negated
literals.

Also in [4], the author shows that preferred maximal (withkimaum default negated
literals) scenarios are always guaranteed to exist for NHBwever, preferred maximal
scenarios are, in general, 3-valued.

The problem we address now is to find a way to render 2-valuadl agpreferred
maximal scenario. In this paper we take a step further fromtwias previously achieved
in [4], extending its results. We allow a set of hypothesesduotain also positive lit-
erals, but only those absolutely necessary to guaranteseaee of a Model. These
positive hypotheses are those who are justified by a specifilReductio ad Absurdum
reasoning we accept.

Before presenting the formal Definition of a Revision Conypl8cenario we give a
general intuitive idea to help the reader grasp the conéeptthe formal definition of
Revision Complete Scenario we will also need some prelirginaxiliary definitions.

2.1 Intuition

In[3] the authors prove that every SM of a NLP correspondsstable set of hypotheses
which correspond in turn to a 2-valued complete, consisgahissible scenario.

In order to guarantee the Existence of a 2-valued total Méatebvery NLP we
allow positive hypotheses to be considered besides thénsgative hypotheses. Under
this setting, the easiest way to solve the problem would kectept every atom of a
program as a positive hypotheses. However, we want to ouarstirs to be the most
skeptical possible while ensuring stratification comghtybamong hypotheses.

102 L.M. Pereira and A.M. Pinto

To further keep the semantics skeptical we want to have thémmahpossible neg-
ative hypotheses and the minimum non-redundant positipethgses. Intuitively, a
positive hypothesid. is considered redundant if, by the rules of the program aed th
rest of the hypotheses,is already determineilue. The formal definition of this notion
of non-redundancy of positive hypotheses is presentedgidired below.

The formal notion of compatibility will also be depicted aexiplained below, but
for now the intuitive idea is that one positive hypotheBisnust not contradict other
hypotheses.

2.2 Definition

Definition 9. Evidence for aliteralL A negative set of hypothesBsC not Atoms(P)

is evidence for a literall in program P iff P U E - L. If P is understood we write
E ~~ L. We also say attacksnot L. Notice that we do not require an evidence to be
consistent. O

Definition 10. Weakly Admissible set of hypothesés™

The notion of weakly admissible set presented here is inviitle that of weak
stability, first defined in [12].

Let P be a NLP,H~ C not Atoms(P) a set of negative hypothesesyt L a
default negated literal irP and £ an evidence fol.. We sayH ~ is weakly admissible
iff Vnot LEH—vaLanot AGEP UH UERFA u

The classical notion of admissible set checks onli? if) H~ + A. By doing this test
with P U H~ U E we allow E to be inconsistent. It suffices to see thaPif) H~ ¥ A
andP U H~ U F F A it means that is essential to derivel in the P U H~ context.
Since we knowhot A € EandP U H~ U E + A we conclude thaF is inconsistent.

There are some sets of hypothe&Es which were not admissible according to the
classical definition (with jusP U H~) and are weakly admissible — according to the
definition usingP U H~ U E. These sets of hypotheses which are accepted as weakly
admissible are just the ones where the adding of the evideneas essential to derive
A, that is, wheréZ is inconsistent.

Since the- operator is monotonic, every admissible set of hypothesesrding to
the classical definition (usin§g U H ™) is also weakly admissible — according to the
definition withP U H~ U E.

Example 5.Weakly Admissible vs Non Weakly Admissible sets of negativay-
pothesesConsider the following NLP:

k—mnott t+—a,b a«<—notb b+ nota

In this program we can easily see that the bottom Even Loop R&gation (ELON,
for short) overa andb allows only one of them to be true — when we demand minimal-
ity of positive information. Under this setting we will nevieavet true for it needs both
a andb to be true simultaneously to support its truthfulness. &fwe, & will always
be true, since is always false.

Reductio ad Absurdurgumentation in Normal Logic Programs 103

Let us analyze the different possible sets of hypothesas &o admissibility point
of view. Consider the following two sets of negative hyps®H; = {not b, not t}
and H, = {not b,not k}. The other two sets of negative hypotheségésand H, are
just symmetric taH; and Hs, respectively, omot a andnot b; therefore we are going
to focus solely on{; and Hs.

H, is weakly admissible whereds$; is not. Let us see why. Analyzingot b we
verify that there is only one possible eviderfte= {not o} for b and thatPUH, UE +
a, i.e., H; U E attacks (in the sense presented in definitiom&) a. In this particular
case even just/; attacksnot a.

Analyzingnot ¢t we can see that there is only one evidefite- {not a,not b} for
t. PU H, U E derives both: andb, i.e.,PUH; UE+F aandP U H, U E + b, hence
H, is weakly admissible.

Let us see what happens with,. We have already seetwt b, we just need to test
not k. The only evidence fat is E = {not t}. We can see however thRtU H,UE ¥ ¢,
which leads us to conclude thak, is not weakly admissible.

Example 6.Allowing Inconsistent Evidence Consider the following NLP:

k<« nott t<« nott

The hypothese#l; = {not t} is admissible and weakly admissible. However, since
P U H; is not a consistent scenario, no model exists with¢.

The only possible hypotheses left are the empty settane: {not k}. Considering
the classical notion of admissible set (withu H~) Hs is non-admissible; however,
H, is weakly admissible. Notice that the evidence fds E = {not t} and thatP U
Hy U E F t. PU H,y is a consistent scenario, but it is not complete. Since weadir
know thatnot ¢t cannot be in any consistent model, in a 2-valued setting wddnlike
to “complete” the scenari® U H» with ¢ in order to obtain a 2-valued complete and
consistent model. In such case we $ayis our set of positive hypotheses.

Definition 11. Non-redundant seti + of positive hypothesed et P be a NLP, and
H = H* UH™ aset of positive and negative hypotheses, i}, C Atoms(P)) and
(H~ C not Atoms(P)). We sayH T is non-redundant iffVc g+ PUH\{L} ¥ L O

As just explained, we wish to allow some positive hypotheshen they are ab-
solutely needed in order to obtain 2-valued complete andistant scenarios. How-
ever, we require the positive set of hypotheses to be namadiaht, that is, all positive
hypotheses must not be already derived by other hypoth@&bésis the purpose of
definition 11 above.

Example 7.Redundant positive hypothesesConsider the following prograr:

b—a a<nota

In the previous example 6 we saw how a rule like- not t forbids the negative
hypothesisiot t. By the same token, in this example’s program, the hypathesi a
is also forbidden. Alsdnot b} is not a weakly admissible set of negative hypotheses.

104 L.M. Pereira and A.M. Pinto

Since we are looking for 2-valued complete (total) and csiesit scenarios, we would
like one including botla andb.

The question now is: should bothandb be considered positive hypotheses? Since
we are looking for the minimum possible set of positive hyyeses (compatible with
the negative ones), we answerin this case, because assuming the positive hypothesis
a is enough to automatically determine the truttbofhat is why we say the séti, b}
of positive hypotheses is redundant, whergasis not.

Definition 12. Unavoidable sef{ * of positive hypotheseset P be a NLP, andd =
H* U H~ a set of positive and negative hypotheses. Welsayis unavoidable iff
Vien+P U (H\ {L}) U{not L} is an inconsistent scenario O

In a nutshell, this definition imposes that every positivpdthesis must be accepted as
true for the sake of consistency and completeness in thextooftall other hypotheses.
We ensure this by demanding that any if positive hypothésigas to be considered
false —i.e.;not L considered true — the whole scenariofofvith all the hypotheses,
exceptL, and includingrot L instead (for the sake of 2-valued completeness) would be
inconsistent. So, there is no consistent 2-valued way tadwaving L true in the con-
text of the remaining hypotheses. Additionally, one maydise condition as stating
that, if the scenario withot L is consistent, thef is avoidable.

Example 8.Unavoidable vs Avoidable sets of positive hypotheselset P be the fol-
lowing NLP:

d«—mnotc c+notb b« nota a+< nota

In this example we considelf; = H;" U H;, whereH” = {a} and H; =
{not b,not d}; andH, = Hy U H, , whereH, = {a,b} andH, = {not c}.

By the same reason as in exampledt a cannot be in anyd ~ and, in order to
obtain a 2-valued total model with &, « must be accepted as true — in that sense we
saya is unavoidable.

Definition 13. Revision Complete Scenaridst P be aNLP andd = H* U H ™ a
set of positive §7) and negative lf ~) hypotheses. We sdy is a Revision Complete
Scenario iff

1. PU H is a consistent scenario aridast(P U H) is a 2-valued complete model of
P

2. H™ is weakly admissible

3. H™ is not redundant

4. H™* is unavoidable

2.3 The Exhaustive Model Generation Algorithm

Another method for finding the Revision Complete Scenasamiiterative and incre-
mental way.

Reductio ad Absurdurgumentation in Normal Logic Programs 105

Definition 14. Inconsistency avoidance algorithm for generating the Reiein Com-
plete Scenarios (RCSs)

1. Startwithi = 0, H;” = Atoms(P) andH; = 0.

2. If H; is not weakly admissible theffi; U H; is not a Revision Complete Scenario
and the algorithm terminates unsuccessfully.

3. If H; is weakly admissible then:

4. If HY = (thenH;” U H; is a RCS and the algorithm terminates successfully in
this case.

5. If H;" # () then non-deterministically take one arbitrafye H;" and check if;"
is redundant orL. If it is then:

6. H;, = H;" \ {L} and go back to step 3 (a).
7. If H;" is non-redundant then:
8. Check ifH;" is unavoidable and, if so, thefi;” U H, is a RCS and the algorithm

terminates successfully.
9. If H;f is not unavoidable and. € H;" is one of the positive hypotheses rendering
H;" non-unavoidable thew !, | = H;" \ {L} andH, , = H; U {not L} and go
on to step 2 again.
O

This algorithm starts with all the possible positive hymstés (all the atoms of the
program) and no negative hypotheses. By construction, mascewith suchH+ and
H~ is necessarily consistent and 2-valued complete. Alongxieeution of the algo-
rithm, at each time, we either just remove one positive Hygsis because redundant,
or non-deterministically remove one positive hypothesid add its correspondent de-
fault negation to the set of negative hypotheses. By cocisbny the algorithm guaran-
tees thatd = H* U H~ is consistent. When we just remove one positive hypothesis
L ¢ HT the 2-valued completeness of the resulting scenario isagteed becausk
was removed fron#l * only becausd, was renderindgZ + redundant. When we remove
L from H* and addnot L to H~ 2-valued completeness is naturally assured.

The requirement for weak admissibility &f ~ in step 3 ensures the resultiffy =
H+UH™ corresponds to a consistent scenario. The different ntermistic choices
engender all the RCSs.

Example 9.Generating RCSs by Inconsistency avoidance
a <« nota,notb b+ nota,notb

We start the algorithm with all the possible positive hy@sths and no negative
ones:

- Hy ={a,b},H; =0.

— H; is weakly admissible.

— H{ # 0 sowe check if it is redundant. It is not, so we checKjf is unavoidable.

— Hy is not unavoidable. We non-deterministically choose omenarom H =
{a, b} which makes it non-unavoidable (in this case, betandb are rendering
Hy™ non-unavoidable, so we can choose any one). Let us say wse&hothen
H = Hi \ {b} andH; = Hy U {not b}. And we go on to step 2 again.

106 L.M. Pereira and A.M. Pinto

— Hi is weakly admissible.

- H #0.

— H{ is not redundant on anl € H;".

— H{ is unavoidable and sf; = H,;'1 U H; = {a,not b} is a Revision Complete
Scenario and the algorithm terminates successfully.

If we were to choosewot a instead ofnot b in step 9, the resulting Revision Com-
plete Scenario would bgnot a, b}. There are no other Revision Complete Scenario for
this program besides these two.

Theorem 1. The setsH = HT U H~ resulting from the execution of algorithm of
definition 14 are the Revision Complete Scenarios

Proof. Trivial, by construction of the algorithm. ad

Theorem 2. Existence of Model For any given NLPP there is always at least one
Revision Complete Scenario.

Proof. In the algorithm described above, when we need to non-detestioally choose
one atomL to remove fromH,", and eventually adaot L to H, , if there are no
repetitions in the choice, then the algorithm is necessgtiaranteed to terminate.
Moreover, if the first positive hypothesis to remove cormspto atoms upon which
no other atoms depend, then removing that positive hypethieas causes no inconsis-
tency, nor does it compromise 2-valued completeness. lhéxé positive hypotheses
in the sequence to be removed always guarantee that theqamses of its removal
(and eventual adding of its default negated counterpahi¢esét of negative hypothe-
ses) does not change the truth value of positive hypothdsesdg removed, then it is
necessarily guaranteed that the algorithm will find a Revi€omplete Scenario.
Finally, it is always possible to find such a sequence of wesktypotheses to re-
move: the sequence just needs to be in reverse order of étidication of the program.
l.e., the first positive hypotheses in the sequence musbbethie top strata of the pro-
gram, the second hypotheses from the second strata codirtmghe top, and so on.
The notion of stratification we are unsing here can be ineliiexplained as: (1) atoms
in a loop are all in the same strata; (2) atoms which are notdo@m and are in the head
of arule are in a strata which is always one directly aboveatbes in the body of the
rule. O

Theorem 3. M is a Stable Model of a NLPP iff there is some Revision Complete
ScenarioH such thatM = least(P U H) with H = ()

Proof. Let H = H™ U H~ a set of positive and negative hypotheses. Let us consider
the particular case wheié™ = (), thereforeH = H~.
In [4], the author already proved that whé&h= H—, PU H is a consistent scenario
andM = least(P U H) is a 2-valued complete scenario iff is a Stable Model of°.
Stable Models are just a particular case of Revision Coraf8etnarios. O

A variation of this algorithm reversing the direction of tbleanges ifd+ and H ~
can also be depicted. In such an algorithm we start \iéith = not Atoms(P) and
H+ = (. 2-valued completeness is also assured at the starting ptilrough consis-
tency of P U H is not. The algorithm is:

Reductio ad Absurdurgumentation in Normal Logic Programs 107

Definition 15. Inconsistency removal algorithm for generating the Revisi Com-
plete Scenarios (RCSs)

1. Startwithi = 0, H; = not Atoms(P) andH;" = (.

2. If P U H; is a consistent scenario thdi, is a RCS and the algorithm terminates
successfully.

3. Check ifH;" is redundant:

4. If it is redundant then non-deterministically take onbitrary atomZ € H;" such
that P U H \ {L} - L and construct;, , = H;" \ {L}.

5. If H; is non-redundant construdf;’ , = H;".

6. Check ifH}, , is unavoidable:

7. If H} | is non-unavoidable the/;, , U H, , is not a RCS and the algorithm
terminates unsuccessfully.

8. Iijjr1 is unavoidable then check# U H; is a consistent scenario:

9. If PU H,,1 is a consistent scenario then:

10. Check ifP U H;,, is also a 2-valued complete scenario and if it is tHén ; is a
RCS and the algorithm terminates successfully.

11. If PUH, 1 is nota 2-valued complete scenario then constiiict, = H;', | U{L},
wherePU H; 1 ¥ Land P U H; 1 ¥ not L, andH;;2 is non-redundant. Go on
to step 4 again.

12. If P U H,4, is not a consistent scenario, take onet L € H, , such thatP U
Hiy1 F LandPUH; ;- not L (i.e., there is a contradiction il with PU H;_)
and constructd;,, = H;,, \ {not L} andH;,, = H} | U{L}, i.e., we revise
the assumptiomot L to L making it a positive hypothesis. Go on to step 3 again.

O

This algorithm starts with all the possible negative hypsts (the default negation
of all the atoms of the program) and no positive hypothesgsdBstruction, a scenario
with suchH+ andH ~ is necessarily consistent and 2-valued complete. Alongxke
cution of the algorithm, at each time, we either just remave positive hypothesis —
because it is redundant — , or remove one negative hypothesis and add its corre-
spondent positivd, to the set of positive hypotheses — i.e., we revise the asiomp
not L to L, when the set of negative hypotheses witlt L is not consistent.

Also by construction the algorithm guarantees tat: H+UH ~ is consistent and,
therefore, thafl ~ is weakly admissible. When we just remove one positive hyggith
L € HT the 2-valued completeness of the resulting scenario isagteed becausk
was redundant iif . When we removewot L from H~ and add to H* 2-valued
completeness is naturally assured. The different nomaétestic choices engender all
the RCSs.

Example 10.Generating RCSs by Inconsistency removal et us revisit the example
9 and see the Inconsistency removal version of it.

a +— nota,notb b+« nota,notb

We start the algorithm with all the possible negative hyps#fs and no positive
ones:

108 L.M. Pereira and A.M. Pinto

— Hy = {not a,not b}, HS = 0.

— P U Hy is not a consistent scenario.

— Hy = 0is non-redundant.

— H{" = H is unavoidable.

— P U H, is not a consistent scenario.

— We non-deterministically choose one negative hypothesid from H; = {not a, not b}
suchthatPUH, = L andPUH; + not L. In this case, bothot a andnot b, so we
can choose any one of them. Let us say we cheege.. ThenH, = H; U {1}
andH, = Hy \ {not a}. And we go on to step 3 again.

— H. is non-redundant.

— Hf = Hj is unavoidable.

— P U Hj is a consistent scenario.

— P U Hj; is a 2-valued complete scenario,Bg = Hy U Hy = {a} U {not b} =
{a,not b} is a Revision Complete Scenario and the algorithm terminsiecess-
fully.

If we were to chooseot b instead ofnot a in step 12, the resulting Revision Com-
plete Scenario would bgnot a,b}. These Revision Complete Scenario coincide with
those produced by the algorithm in definition 14.

Theorem 4. The setsH = HT U H~ resulting from the execution of algorithm of
definition 15 are the Revision Complete Scenarios

Proof. Trivial, by construction of the algorithm. O

2.4 The Name of the Game

Why the name “Revision” Complete Scenarios? The “Revisi@it pf the name comes
from the assumption revision we do when an assumptiohA € H~ leads to a
contradictioninP, i.e.,(PUH ™ - {A,not A}) A(PU(H~\{not A}) ¥ {A,not A}).

In such a case we accept to revis&t L to its positive counterpark. This is the
specific form of reasoning breductio ad Absurdume take here: if addingot A to P
in the context ofH — leads to self inconsistency, then, by absurdity, we shosgdime
Ainstead ofnot A. A becomes, thus, one of the positive hypotheses.

3 Syntactic Perspective of Revision Complete Scenarios ave
Normal Logic Programs

In [3] the authors proved that every Stable Model of a NLP esponds to a 2-valued
complete, consistent and admissible scenario. In [10]ukigoa shows that when a NLP
has no SMs it is because the Normal Logic Program has Odd LOops Negation
(OLONSs) and/or Infinite Chains Over Negation (ICONs), aithb the author does not
employ these designations. These designations are takear4].

For the sake of readability and self-containment we briefespnt some examples
of OLONs and ICONSs. Intuitively an OLON is a set of rules of aiwhich induce

Reductio ad Absurdurgumentation in Normal Logic Programs 109

a cycle over some literals in the dependency graph. The ofcén OLON has the
characteristic of having an Odd number of default Negates around the cycle.

An example of an OLON is given in example 1. There we can setethigaatom
intend_we_to_invade is in a cycle across the dependency graph, and that along that
cycle there is only 1 (an Odd number) default negation.

Another example of an OLON is present in example 2. There tih@ arountain
is in a cycle with 3 default negations along the circular adej@ncy graph. The same is
true fortravel andbeach.

The classical example of an ICON was first presented in [1@joés as follows:

p(X) —p(s(X)) p(X) « not p(s(X))

whereX is a variable. The ground version of this program when the@nly one
constanb is the infinite program

) p(0) « not p(s(0))
)) < p(s(5(0))) p(s(0)) < not p(s(s(0)))
p(s(s(0))) < p(s(s(s(0)))) p(s(s(0))) < not p(s(s(s(0))))

This example in particular is the one to which every othersfids variation of an
ICON reduces to (proven in [10]). As it can be easily seeretle an infinitely long
chain of support for any(X) with an infinite number of default negations.

As we just said, in [10] the author proves that only OLONs antiZONs can pre-
vent the existence of SMs in a NLP. Therefore, since our ReviSomplete Scenario
guarantee the Existence of a Model for any given NLP it folaivat the Revision
Complete Scenario deal with OLONs and ICONSs in a way that thél& Models se-
mantics did not. This is achieved by means of the reasonirigduuctio ad Absurdum
we explained in subsection 2.4.

4 Collaborative Argumentation

The classical perspective on Argumentation is typicallyaaompetitive nature: there
are arguments and counter-arguments, all of them attaddnb other and struggling
for admissibility. The ones which counter-attack all iteaakers are admissible.

Typically, one takes one argument — a set of hypothdées- and check if it is
admissible, and iP U H is a consistent scenario. If 2-valuedness is a requisi¢®, &
extra test for 2-valued completeness is required.

We now generalize this approach in a constructive way, bigimgi up a compro-
mise Revision Complete Scenario starting from several ioinfl 2-valued complete
and consistent Models d? — each corresponding to an argument. This is what the
algorithm below does.

First, we take all the conflicting models;, Vs, ..., N,, and calculate the set of
all the possible positive hypothesas* = J_, N;*; and the set of all the possible
negative hypothese®/~ = |J'_, N;". M and M~ will now be used to guide the
algorithm below in order to ensure consensus, i.e., thdtieglRevision Complete

110 L.M. Pereira and A.M. Pinto

ScenarioH will have no positive hypotheses outsidé™, nor will it have negative
hypotheses outsidk/ ~. The algorithm goes as follows:

Definition 16. Revision Complete Scenariéf construction from conflicting models
Ny, Ns,...N,

1. Start withAM = M+ U M~. My = M is inconsistent.

2. M- = M \{L e M :not L € M;}, andM; = M, . M is now consistent.

3. If M, is not weakly admissible then non-deterministically sete® L such that
not L € M, , there is anE such thattl ~ L, and there is someot a € E such
that PU M;” U E¥ a. ConstructM;; = M; \ {not L}. Repeat this step.

4. If M, is avoidable thed/;! , = M;" |\ {L}, wherePU (M, 1\{L})U{not L}

is an inconsistent scenarid{;, , = M, , U {not L} only if L € M~, otherwise

M, , = M; ;. Goonto step 3 again.

5. If P U M, is not a consistent scenario then non-deterministicallgceone
such thatP U M; = {L,not L}, and constructM; ; = M, \ {not L}. Goon
to step 3 again.

6. If PU M, is not a 2-valued complete scenario thef), ; = M;' , U{L}, where
PUM; o ¥ LandP U M;, 2 ¥ not LandL € M, and go on to step 4 again.

7. PU M;,- is a 2-valued complete and consistent scenario, WM[E2 is non-
redundant and unavoidable, ald;_, , is weakly admissible. By definitiof/; , » is
a Revision Complete Scenario, thereféfe= M, » and the algorithm terminates
successfully.

O

In essence, this algorithm is a mixture of the Inconsistémidance and Inconsis-
tency Removal algorithms presented in subsection 2.3. Wewsith two sets\/ ™ and
M~ containing, respectively, all the possible positive hyyeses that can be adopted
in the final Revision Complete Scenari®, and all the possible negative hypotheses
that can be adopted. Next, we remove from the set of positppmtheses all those
conflicting with the negative ones in order to ensure coesist Now we need to en-
sure a weak admissibility of the current negative hypotbédg . For that we check
if the M, is weakly admissible, and if it is not, then we non-deterstinally select
and remove fromlM/;” one of the negative hypotheses causivig failing to com-
ply to this requirement. This step is repeated until weak iasiility is verified by
M;". Now we turn to the set of positive hypothesk&'. If it is avoidable, then we
non-deterministically select and remove frami™ one positive hypothesig which
contributes td\/[j avoidability. We also add the correspondent default negaif that
positive hypothesesot L to M, , but only if not L was already im/~ — the initial
set of all the adoptable negative hypotheses. This extrairmgent ensures the final
compromise Revision Complete Scenakldo be found is maximally compatible with
all the initial modelsVy, Na, . .., N,,. When we adchot L to M, we need to recheck
its weak admissibility, so we go on to that step agairM]f was unavoidable, then we
need to check it the wholBU M; is consistent. If this scenario fails consistency, then we
remove from)M; one of the negative hypothesis whose positive counterpastalso
being produced by’ U M;. Notice that when the resulting scenario is not consistent w

Reductio ad Absurdurgumentation in Normal Logic Programs 111

remove one inconsistency in favour of the positive hypakgesince the presence of the
correspondent negative produced the inconsistency. $hiadically the mechanism of
reasoning byReductio ad Absurdumve use. Again we need to recheck the weak ad-
missibility, so we go on to that step again. If the scen&tio M; was consistent, then
we need to check if it is 2-valued complete. If it is not, thea mon-deterministically
select one adoptable positive hypothesis and add /fo. Now we need to recheck
M;"’s unavoidability; so we go on to that step again. FinallyPit) M; was 2-valued
complete therd = M; is a Revision Complete Scenario and the algorithm terménate
successfully.

Example 11.Example 2 revisited — A vacation problem Recall the example 2 pre-
sented earlier. The program is:

travel < not mountain mountain < not beach beach «— not travel

Now assume that one of the friends going on vacation with therdwo could not
be present when they were getting together to decide theatizans’ destinies. So, only
John (the one who preferred going to the mountains, otherraseling it is), and Mary
(she prefers going to the beach, otherwise going to the rmmsis ok).

John’s opinion is] = {mountain, not travel, not beach}, while Mary’s choice is
Z = {beach, not mountain, not travel }. We can already see that at least on one thing
they agreenot travel. We now find the largest set of positive hypotheses we can con-
siderM* = JTUZ™T = {mountain, beach} and the largest set of negative hypotheses
we can consided — = J~ U Z~ = {not travel, not beach,not mountain}. And
now the algorithm starts:

M = M* UM~ = {mountain, beach, not mountain, not beach,not travel}

Going through the steps of the algorithm we have:

— My =M.

— M;" = M\ {mountain, beach} = 0, M; = M .

— My is not weakly admissible, so we non-deterministically setee L such that
not L € My is one of the causes fdi/;” not complying to the weak admissibil-
ity condition: for exampleL = mountain. My = M; \ {not mountain} =
{not beach,not travel}. We repeat this set and now we must remawe beach
from M5 . My = M5 \ {not beach} = {not travel}.

— My = My = M;" = 0 is unavoidable.

— P U Mj5 is a consistent scenario.

— PUMj; is not a 2-valued complete scenario. Bg = M;"U{mountain} because
mountain is the only literal which verified® U M3 ¥ mountain and P U M3 ¥
not mountain. Now we go on to step 4 of the algorithm again.

— Mj is unavoidable.

— P U M, is consistent.

— PU M, is 2-valued complete, sH = M; UM, = {mountain,not travel} and
the algorithm terminates successfully.

In the end, the resulting modellsast(PUH) = {mountain, beach, not travel}.
Notice thatbeach is just a consequence abt travel in P, it does not have to be a
hypothesis. If other atoms were to be chosen at step 3 otieenative solutions would
be found.

112 L.M. Pereira and A.M. Pinto
5 Integrity Constraints

Example 12.Middle Region Politics Revisited Recall the example 4 presented earlier.
We are now going to add extra complexity to it.
We already know the two factions which are at odds and thiikithg.

oppression < not end_of terrorism end_of terrorism «— oppression
terrorism <« not end_of _oppression end_of _oppression « terrorism

We now combine these two sets of rules with the two followimiggrity Constraints
(ICs) which guarantee thappression andend_of_oppression are never simultane-
ously true; and the same happens with terror:

falsum «— oppression, end_of _oppression, not falsum
falsum «— terrorism,end_of _terrorism,not falsum

So far so good, there is still a single joint set of hypothe&seslting in a consistent
scenario{end_of _oppression, end_of terrorism}. Still, there is no SM for this pro-
gram. But introducing either one or both of the next two ruteakes it impossible to
satisfy the ICs:

oppression «— not terrorism terrorism <— not oppression

In this case all the consistent and 2-valued complete sicsnaontain the atom
falsum. There are still no Stable Models for the resulting prograihe semantics we
propose allows two models for this program, which corresigorthe 2-valued complete
consistent scenarios, both containifig sum. We can discard them on this account or
examine their failure to satisfy the ICs.

6 Conclusions and Future Work

We have managed to assign a complete 2-valued semanticetp ermal Logic
Program, by employing an argumentation framework thatiheagtends the argumen-
tation framework of Stable Models semantics. We also ptesetiiree algorithms for
finding the Revision Complete Scenario of any Normal LogiegPam. Every Stable
Model of a Normal Logic Program corresponds to a Revision flete Scenario and,
in that sense, our algorithms allow for a different persipeatn Stable Models seman-
tics: any Stable Model can be seen as the result of an iterptacess of Inconsistency
Removal or Inconsistency Avoidance. In any case, Stablediéaate the final result of
such inconsistency removal/avoidance where any initialtje hypotheses remain in
the end. In the process, we have extended argumentatiorReilctio ad Absurdum
reasoning for that purpose, and shown how Collaborativeidugntation can be defined
in that context.

Future work concerns the extension to Generalized Logigriaros and Extended
Logic Programs, and the seamless merging with more geneliaf bevision in Logic
Programs.

Reductio ad Absurdurgumentation in Normal Logic Programs 113

Some of the applications enabled by this improved semaotiteormal Logic Pro-
grams, concern the ability to guarantee that the meaning/efse programs, e.g. aris-
ing from Semantic Web usage, always has a semantics. Synila can also ensure
this property whenever updating programs, including theecghere an autonomous
program evolves through self-updating [1]. Such appl@aiwill be enabled by the
ongoing implementation.

Acknowledgments We deeply thank Robert A. Kowalski for his crucial help in
clarifying our ideas and their presentation.

References

1. J.J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Evolving logiograms. In S. Flesca
et al., editorJELIA, volume 2424 oL NCS pages 50-61. Springer, 2002.

2. J.J. Alferes and L. M. Pereira. An argumentation theoretic semdratsexl on non-refutable
falsity. In J. Dix et al., editodNMELP, pages 3—-22. Springer, 1994.

3. A. Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni. An abdfrargumentation-
theoretic approach to default reasonidgtif. Intell., 93:63-101, 1997.

4. P. M. Dung. Negations as hypotheses: An abductive foundatidndar programming. In
ICLP, pages 3—-17. MIT Press, 1991.

5. P. M. Dung. An argumentation semantics for logic programming withi@kpegation. In
ICLP, pages 616—630. MIT Press, 1993.

6. P. M. Dung. On the acceptability of arguments and its fundamental ralerimonotonic
reasoning, logic programming and n-person gamesf. Intell., 77(2):321-358, 1995.

7. P. M. Dung, R. A. Kowalski, and F. Toni. Dialectic proof procedum@sassumption-based,
admissible argumentatiorrtif. Intell., 170(2):114-159, 2006.

8. P. M. Dung, P. Mancarella, and F. Toni. Argumentation-based procedures for credulous
and sceptical non-monotonic reasoning.domputational Logic: Logic Programming and
Beyond volume 2408 LNCS, pages 289-310. Springer, 2002.

9. P. M. Dung and T. C. Son. An argument-based approach to riegswith specificity. Artif.
Intell., 133(1-2):35-85, 2001.

10. F. Fages. Consistency of Clark’s completion and existence of staidels. Methods of
Logic in Computer Sciencé&:51-60, 1994.

11. M. Gelfond and V. Lifschitz. The stable model semantics for logig@mming. In
ICLP/SLP, pages 1070-1080. MIT Press, 1988.

12. A. C. Kakas and P. Mancarella. Negation as stable hypotheseBNKIR pages 275-288.
MIT Press, 1991.

13. A. C. Kakas and F. Toni. Computing argumentation in logic programndin_Log. Comput.
9(4):515-562, 1999.

14. L. M. Pereira and A. M. Pinto. Revised stable models - a semantiésdiorprograms. In
G. Dias et al., editoRProgress in Al volume 3808 oL NCS pages 29-42. Springer, 2005.

15. A. M. Pinto. Explorations in revised stable models — a new semantidsdiar programs.
Master’s thesis, Universidade Nova de Lisboa, February 2005.

16. L. Soares. Revising undefinedness in the well-founded semafitggaprograms. Master’s
thesis, Universidade Nova de Lisboa, 2006.

17. F. Toni and R. A. Kowalski. An argumentation-theoretic approadbdic program transfor-
mation. INLOPSTRvolume 1048 of NCS pages 61-75. Springer, 1996.

