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Abstract. The paradigm of argumentation has been used in the literature to as-
sign meaning to knowledge bases in general, and logic programs in pearticu
With this paradigm, rules of logic program are viewed as encoding angisnoé
an agent, and the meaning of the program is determined by those artguthen
somehow (depending on the specific semantics) can defend themfsetnethe
attacks of others arguments, named acceptable arguments. In grexaduwe
presented an argumentation based declarative semantics allowingnmiséent
reasoning and also dealing with sets of logic programs that argue apdret®
among each other. In this paper we focus on the properties of this Sesian
what regards paraconsistency and propose a procedure fongm@v argument
according to that semantics.

1 Introduction

In logic programming, several ways to formalise arguméorabased semantics have
been studied for logic programs. Intuitively, argumemtatbased semantics treat the
evaluation of a logic program as an argumentation processaigoalG is true if at
least one argument fa& cannot be successfully attacked. The ability to view logic
programming as a hon-monotonic knowledge representaiogulage, in equal stand-
ing with other non-monotonic logics, brought to light thepiontance of defining clear
declarative semantics for logic programs, for which proafgedures (and attending
implementations) are then defined (e.g. [8, 9, 15, 2,20,8,2,,114, 10]).

In [5] we proposed an argumentation based semantics foro$ddgic programs
that are able to cooperate and argue with each other. Inlit gagram relies on a set
of other programs with which it has to agree in order to aceepargument, and a set
of programs with which it can cooperate to build argumengsiées this distributed
nature, the semantics in [5] also allows for paraconsidtants of argumentation. In
fact, it was also a goal of that work to be able to deal with rallfuinconsistent, and
even inconsistent, knowledge bases. Moreover, when irepoesof contradiction we
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wanted to obtain ways of agent reasoning, ranging from ster#i (in which inconsis-
tencies lead to no result) to paraconsistent. For achighisgwe considered strong and
weak arguments.

The paraconsistency in the argumentation also yield a reéin¢ of the possible
status of arguments: besides the justified, overruled afehgible arguments as in
[16], justified arguments may now be contradictory, baseccamtradiction or non-
contradictory. Moreover, in some applications it might beeiesting to change easily
from a paraconsistent to a consistent way of reasoning ¢erwverse).

In this paper we focus on the properties of that semanticshiatwegards para-
consistency which are interesting by themselves, and entdgnt from its distributed
nature. With this purpose, we restrict our attention to frectal case of the semantics in
[5], where only a single logic programs is in the set of proggaMoreover, we provide
a notion of proof for an argument for that semantics in thassl

In the next section we present a version of the proposed rd¢iga semantics sim-
plified for the case of a single program, study some of its regtificant properties
regarding paraconsistency, and illustrate it in one exame then define the proof
method for it, and end with some conclusions. Due to lack aefcepall proofs have
been removed from this version of the paper, and they canlwelfm a longer version
available as a technical report from the first author.

2 Paraconsistent Argumentation Semantics

As motivated in the introduction, in our framework [5] thedwiedge base of an agent
is modelled by a logic program. More precisely, we &s¢ended Logic Program with
denials (ELPd), itself an extension of Extended Logic Programs [fbt]modelling
the knowledge bases. Besides default and explicit nega®osual in extended logic
programs, we allow a program to have denials of the form

L «—Lqy,...,L,not Liyq,...,n0t L, (0<1<mn)

where each of thd.;s is an objective literal (i.e. an atont in the language of the
program, or an explicitly negated aton). In other words, denial are simply rules
where the head is the special, reserved, symbol

An argument for some objective literalis acomplete well-defined sequermm-
cluding L over aset of rulesof the knowledge bas&’b. By completehere we mean
that all rules required for concluding are in the sequence. Byell-defined sequence
we mean a (minimal) sequence of rules concludings follows: the head of the last
rule in the sequence is an objective litefalfurthermore, if some atoni’ (ignoring
default literals) appears in the body of a rule then theretrbes rule before this one
with L’ in the head; moreover, the sequence must not be circularrdndise rules that
are strictly necessary.

Definition 1 (Complete Well-defined Sequence).et P be an ELPd, and. an objec-
tive literal in the language oP. A well-defined sequender L over a set of rules' is
a finite sequencg;. . . ;] of rulesr; from S of the formL; «— Body; such that

— L is the head of the rule,,, and
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— an objective literalL’ is the head of a rule; (1 < i < m) only if L’ is not in the
body of anyr;, (1 < k <) andL’ is in the body of some rulg (i < j < m).

We say that a well-defined sequence £ois completeif for each objective literal
L'’ in the body of the rules; (1 < i < m) there is a rulery, (k < i) such thatZ’ is the
head ofry,.

By theconclusion®f a sequence we mean the set of all objective literals in ¢aelh
of some rule of the sequence, and by éissumptionsve mean the set of all default
literal in bodies.

For dealing with consistent and paraconsistent reasowieggefine strong and weak
arguments, based on strong and weak sets of rules, the foeimgr simply the rules in
the Kb . A weak set of rulesesults from adding to all rule bodies the default negation
of the head’s complement, and of thus making the rules weaker (more susceptible
to being contradicted/attacked). Intuitively, if thereaigpotential inconsistency, be it
by proving the explicit complement of a rules head or by pngvi. then the weak
argument is attacked, whereas the strong is not.

Definition 2 (Strong and Weak Arguments).Let P be an ELPd, and_ a literal in its
language. Let theveak set of rules oP be defined as

% ={L <« Body,not -L,not L | L < Body € P}

A strong(resp.weak argumentof P for L, A; (resp.AY), is a complete well-
defined sequence fdrover P (resp.R%).

Let AY and A5 be two arguments dP. AY is the weakargument correspondirtg
Aj, and vice-verse, if both use exactly the same rules of tiggnadi program P (the
former by having rule®’s and the latter fromP alone).

We say thatd ; is anargumenbf P for L if it is either a strong argument or a weak
one of P for L. We also say thatl} is ak-argument ofP for L (wherek is eithers, for
strong arguments, ow, for weak ones).

After defining how arguments are built, we now move on to defjirthe attacking
relation between these arguments. By using two kinds ofraegts, strong and weak
arguments as just exposed, we may rely on a single kind aflattadeed the different
kinds of attacks usually considered in argumentation s¢insafor extended logic pro-
grams,undercutsandrebutsas in [15], can be captured by a single notion of attack. If
an argument for an objective literal (denoted byA;) has a default negatiomot L’
in it, any argument foi.” attacks (by undercutd;,. The rebut attacking relation states
that an argument also attacks another one when both argsiave complementary
conclusions (i.e. one concludésand the otherL). It is easy to see that with strong
and weak argumentsgbut can be reduced to undercugbutting reduces to undercut
attacks to weak arguments.

In our definition of attacks care must be taken in what regardgaments forL.
By simply using undercut attacks any argument foattacks every weak argument.
However, it does not make sense to attack arguments fortokgdicerals if they do not
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lead tofalsity. Informally, an objectivel literal leads tdfalsityif there is an argument
Ay such thatd | is built based on such an argument, e.g.

A5t AS + L« L,not L]

We only consider objective literals that are in the body @&f thle for L because these
literals immediately lead talsity. We assume that the involvement of other objective
literals are not as strong as those in the body of the derfiaken objective literals are
directly conflicting withA | if the following holds:

Definition 3 (Directly Conflict with A ).LetA, be anargumentfot , ‘1l «— Body’
be theruleind, and{Ly,..., L,} be the set of all objective literals iBody. The set
of objective literaldirectly conflicting withA | is

DC(AL) = {1} U{Ly,...,L,}.

Definition 4 (Attack). Let P be an ELPd. An argumem of P for L attacksan
argumentA . of P for L/ iff

— L is the symboll, not L belong to the body of some rule i/, and L' €
DC(Ap); or

— L is an objective literal different from_, andnot L belongs to the body of some
rulein Ay, .

Since attacking arguments can in turn be attacked by otlgenants, comparing
arguments is not enough to determine their acceptability. the set of overall argu-
ments. What is also required is a definition that determinesatiteptable arguments
on the basis of all the ways in which they interact, by propgsarguments and so
opposing them. A subset of proposed arguments dtf is acceptable only if the set
of all arguments of” does not have some valid opposing argument attacking the pro
posed arguments if. As in [8, 15], we demand acceptable sets to contain all such
arguments. Two questions remain open: how to obtain opg@uments and, among
these, which are valid?

An opposing argument for a proposed argument which makesamgtion, say
not L, is simply an argument for a conclusidn For an opposing argumedt® to be
valid for attacking a proposed argumetit in .S, S should not have another argument
that, in turn, attacksA® (i.e. another argument that reinstdte’). In this case, we
say thatS cannot defend itself against®. This motivation points to a definition of
acceptable sets of argumertsin P such as a sef is acceptabléf it can attack all
opposing arguments. So, we can say that a proposed arguthéntcceptable w.r.t. a
setS of acceptable arguments if and only if each opposing argtmemttacking AP
is (counter-)attacked by an argumentsn

8 We further assume they can be detected in a process of “belief revisign[3]. However, a
discussion of this issue is beyond the scope of this proposal.

4 The key observation is that an argumehthat is attacked by another argumeitcan only
be acceptable if it iseinstatedby a third argumen€, i.e by an acceptable argumefitthat
attacksB.
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However, it is still necessary to determine how strong argnuis and weak argu-
ments should interact w.r.t. such a $ebf arguments. Based on the idea of reinstate-
ment, both attacked and counter-attacking argumentsdheuwf the same kind. For in-
stance, if a proposing argument is strong (resp. weak) thety eounter-attack against
its opposing argument should be strong (resp. weak). A aimdason can be applied
for opposing arguments. Therefore, proposed (resp. opgparguments should be of
the same kind.

In the remainder of this paper we will use the notatiando to distinguish the pro-
posed argument from the opponent one,p.€esp.o) is a (strong or weak) proposed
(resp. opponent) argument. Since there are four posmbilitf interaction between a
proposed argumenti?, and an opposing argument?, the definition of arguments’ ac-
ceptability (and the corresponding characteristic fuorgtis generalised by parametris-
ing the possible kinds of arguments, viz. strong argumamisaseak arguments.

Definition 5 (Acceptable Argument). Let P be an ELPd,p (resp. o) be the kind
(strong or weak) of the proposed (resp. opposing) argumént,s? (P) (Args°(P))

be the set of all arguments iR of kind p (resp.o) , and S C ArgsP(P). An argu-
mentA; € ArgsP(P) is anacceptablg, argumentw.r.t. S iff each argumentd;, €

Args®(P) attacking A, is attacked by an argument; € S.

Note that this proposal is in accordance with the ‘Compaosél Principle’ of [20]:
“If an argumentS A is a sub-argument of argumenAt and.S A is not acceptable w.r.t.
a set of arguments, then A is also not acceptable w.r.§”. We now formalise the
concept of acceptable arguments with a fixpoint charatiefisctionp o of P:

Definition 6 (Characteristic Function). Let P be an ELPd, ang (resp.o) be the kind
(strong or weak) of the proposed (resp. opposing) argumeft and S C Args?(P).
Thecharacteristic functiop o of P and oversS is:

ngo . 2AT’gS(P) —, 9Args(P)
FP2°(S) = {Arg € Args(P) | Argis acceptable, , W.r.t. S}.

It can be proven that this function is monotonic, and so itdé&sast fixpoint that
can be obtained iteratively as usual:

Proposition 1. Define for anyP the following transfinite sequence of sets of argu-
ments:

80 =¢
- ST = FRO(SY)
- 8% = |J S« for limit ordinal &
a<d
Given thatF5” is monotonic, there must exist a small@stuch thatS* is a fixpoint of
FP° andS* = Ifp(F5°).

Note that!fp(F£°) is well-behaved, i.e. arguments in it ateceptable,, , W.I.t.
the set of all argument aP. By definition [ fp(F%°) is minimal, which guarantees
that it does not contain any argument of which acceptancetisaguired. Moreover,
when F7° is finitary the iterative process above is guaranteed toitext@ after an
enumerable number of steps.
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Proposition 2. F%“ is finitary if each argument ir§ is attacked by at most a finite
number of arguments if.

By knowing the set of all acceptablg arguments of?, we can split all arguments
from Args(P) into three classes: justified arguments, overruled argtsreerd defen-
sible arguments. Our definition of overruled is differerdnfr [15]'s proposal. In its
proposal, the restriction applies that overruled argusieaihnot be also justified and so
[15]'s argumentation semantics is always consistent.eSive aim to obtain a paracon-
sistent way of reasoning, the status of an argument is defiséallows:

Definition 7 (Justified, Overruled or Defensible Argument). Let P be an ELPdp
(resp.o) be the kind (strong or weak) of an argumentigfand F° be the character-
istic functionp o of P. An argumentd? is

— justifieds® iff it is in 1fp(F%°)
— overruled;’ iff the A9 corresponding tod? is attacked by a justifiéd’ argument
— defensibl&? iff it is neither a justified;° nor an overruled;” argument

We denote théfp(F2°) by Just Args'y°.

We may also iteratively obtain overruled arguments basethermgreatest fixpoint
of the characteristic function which, by monotonicity oétbharacteristic function is
guaranteed to exist and can also be obtained iterativelgwed .un fact:

Lemma 1. gfp(FpP") = {Ag, : =(3A], € Ifp(Fp°) | A} attacksAg )}

Lemma 2. Ifp(F5°) = {A%, : ~(3A%, € gfp(FE") | Ag, attacksA} )}
Then, the following holds:

Theorem 1. AY is overruled;” iff the A7 corresponding tad?” is noting fp(Fp").

Due to space limitations we do not detail here general ptgsewhen some other
weaker restriction are imposed. Instead, we discuss soopegies ofJustArgs’
and comparisons. Singe(resp.o) denote the kind of a proposed (resp. an opposing)
argument, i.e. strong argument or weak argument, assurhe {nasp.o) in {s, w}.
Both JustArgsy™ and JustArgsp® are both conflict-freeand non-contradictofy
Thus, every argument in botfustArgsy™ and JustArgsy’® is non-contradictory,
i.e. it is not related to a contradiction at all. Furthermafg " has more defensible
arguments thai’,”*. Therefore, we obtain a consistent way of reasoning rif we
apply F5"" over Args(P).

In contrast,JustArgsy® andJust Args3" may be contradictory. However, to eval-
uate the acceptability of available arguments without ghg the presence dal-
sity or both arguments fof. and—L, the proposed arguments should be strong ones,
and every opposing argument is a weak argument. Siticé respects the ‘Coherence
Principle’ of [13, 1], i.e. given that every opposing argumhés a weak one, it can be

5 A setS of arguments is conflict-free if there is no argumensiattacking an argument ifi.
6 A setS of arguments is non-contradictory if neither an argumentetsity nor both arguments
for L and—L areinS.



70 |. Carnevale de Almeida and J.J. Alferes

attacked by any proposed argument for its explicit negafidrerefore, we obtain a
paraconsistent way of reasoning if we apply"’ over Args(P).

Moreover, a justifieil"” argument of an agent can be related to a contradiction with
respect toJustArgs3" as follows. We first define that an argument that reinstate an-
other argument is itsounter-attack

Definition 8 (Counter-Attack). Let P be an ELPd,S a set of arguments fror, Ay,

be an argument itt, and A, be an argument o attackingAj . A counter-attackor

Ay, againstA;, is an argument inS that attacksAr.. CA4, (AL, S) is the set of all
counter-attacks for ; againstA;. in S

Definition 9 (Relation to a Contradiction). Let P be an ELPd. A justified” argu-
mentAj is

— contradictory” if JustArgsp" is contradictory w.r.t.L, or there exists a contra-
dictory;;" argumentAs andL € DC(A?); or
— based-on-contradictigst’ if for all A%, attacking A5 there exists a contradic-
tory;" or based-on-contradictign” argument inC A4, (AY,, JustArgsy™), or
there exists arl’ in the head of some rule iA3, different fromZ and L, such that
JustArgsy" is contradictory w.r.t.L’; or
— non-contradictory” iff it is neither contradictor{;" nor it is based-on-contra-
diction;".
Proposition 3. A justified;” argumentA? is non-contradictory" if for no headLZ’ of
arule in A3, JustArgsp" is contradictory w.rt.L’, and every counter-attack fot$
is a non-contradictory” argument.

A truth valueof an agent’s conclusion in a (consistent or paraconsisteay of
reasoning is as follows:

Definition 10 (Truth Value of a Conclusion).Let P be an ELPd, and. € H(P), and
k € {s,w}. Aliteral L overP is

— falsd;" iff everyk-argument forL is overruled;"
— trudy;" iff there exists a justifidg” argument forL. Moreover,L is
° contradictorﬁ;w if L is the symbolL or there exists ajustifiéjgfu argument for
-L
o based-on-contradictidrt” if it is both truei;" and falsé;"
e non-contradictor};”, otherwise
— undefined" iff L is neither tru&" nor falsé;" (i.e. there is no justifidd” argu-
ment forL and at least oné-argument forLL is not overruled;").

Example 1 (Privacy of Personal Life — PPIJsually, any person deserves privacy with
respect to her personal life. However, when such a persoavistin a way that is not
acceptable (e.g. selling drugs) she will suffer the consages. The first consequence
is the focus of media attention on her personal life and apunset loss of privacy. The
personal life of such a person might be exposed by the “&'sfliimedia attention (e.g.
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photos, reports, and so on), unless there is a law that psdtec against it. The above
description can be expressed by the following extended lpgigramming rules.

focusO f MediaAttention(X) — person(X), —acceptable Behavior(X).
—acceptable Behavior(X) « involved(X,Y), againstSociety(Y).
—hasPrivacy(X) «— focusO f MediaAttention(X).
personalLifeExposed(X) «— —hasPrivacy(X),not protected By Law(X).
hasPrivacy(X) « person(X), not —hasPrivacy(X).

In contrast, it is considered an absurdity that someone sy ther privacy when
she is involved in some event for which there is no evidend®ofg public (e.g. some-
one starting a long-term treatment for drugs dependendy. dbsurdity in the rule
below is represented as a denial:

1 «— —hasPrivacy(X), event(X,Y), not publicEvent(Y).

Moreover, modern society normally tries to protect chitdrand so their privacy is
guaranteed until evidence appears of some unusual beh&giguby having unaccept-
able behaviour).

hasPrivacy(X) « child(X), not unusualChild(X).
unusualChild(X) « child(X), —acceptable Behavior(X).
person(X) «— child(X).

However, famous persons are inherently the focus of methatain:

focusO f MediaAttention(X) « famousPerson(X).
person(X) «— famousPerson(X).

Assume an agendg with the knowledge above, plus some facts about Potira and
Ivoti . Potira is a famous child, and Ivoti is a famous soccer playgreatment for
drugs dependency:

child(potira). famousPerson(potira).
famousPerson(ivoti). event(ivoti, treatmentFor DrugsDependency).

Figure 1 illustrates, with obvious abbreviations, the guesattacks of arguments
for “privacy of Potira’s life” over.Args(PPL). The notation for that figure is as fol-
lows: Arguments are represented as nodes. A solid line frgunaentA to argument
B means ‘A attacksB”, a dotted line fromA to B means 4 is built based orB”, and
a line with dashes meansi“reinstatesB”. A round node means “it is an acceptable
argument” and a square node means “it is not an acceptahlmarg”, which are w.r.t.
the set of arguments @?. Then we can presume both the status of the arguments and
the truth value of the conclusions &P L.

" The following names are from Native South American, more specificadiynfthe Tupi-
Guarani family, Potira and Ivoti both mean “flower”.
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Fig. 1. Acceptable arguments iArgs(PPL) for Potira

The argument for “Potira has no PrivacyAf(hp(p)) and also the arguments for
“ H H (1] S s s H w . “
.Potlra has privacy (4h'p(p), Ahp(p) A hp(p)) gre gontradlctory b the arg.ur.r?ent Por-
tira has her personal life exposedt; . ) is either based-on-contradictipfi, and
overruled;, . The other arguments are non-contradicjgty . Therefore, the truth val-

ues for conclusions about Potira are as follows:

— fP(p), ch(p), FOM A(p) andpe(p) are non-contradictofyy ;
— hp(p) and—hp(p) are both (trug}, and) contradictory}, and falsg}, ; and
— pLE(p) is both based-on-contradictipli, and falséy,; .

Moreover, the truth values for conclusions regarding leogi as follows:

— fP(i), pe(p) and fOM A(i) are non-contradictofys ;
— hp(i) and—hp(i) are both contradictofy,, and falséy, ; and

— “There isfalsity in PPL" (i.e. L) is both (trué%, and) contradictory}, and

false:’, . Then
— ev(i,TFDD) andpLE(i) are both based-on-contradictigf), and falsg; .
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3 A proof for an argument

Though the declarative semantics just exposed may rely otewraiive procedure, its
usage for computing arguments may not always be appropfiaie is specially the
case when we are only interested in the proof for a (queryyraemt, rather than all
acceptable arguments, as is obtained by the iterative ggo&uch a query oriented
proof procedure can be viewed as conducting a “dispute legtvaeproponent player
and an opponent player” in which both proponent and oppoeertiange arguments.
In its simplest form, the dispute can be viewed as a sequdraleemating arguments:

PRy, 0Py, PRy,...,PR;,OP;i1,PRi o, ...

The proponent puts forward an initial arguméh®,. For every argumen®R; put for-
ward by the proponent, the opponent attempts to respondanithttacking argument
OP, 1, againstPR;. For every attacking argume@P; ; put forward by the opponent,
the proponent attempts to counter-attack with a propospd@entP R,  , againsiO P;.

To win the dispute, the proponent needs to have a proposacharg against every op-
posing argument of the opponent. Therefore, a winning déspan be represented as a
dialogue tree, which represents the top-down, step-ljyesiastruction of a proof tree.
We follow [15]'s proposal, which defines a proof for an argunné, as a dialogue tree
for Ay,. However, our definition of dialogue tree is in accordancénthie acceptability
of the arguments of an ELPH (see Def. 5):

A proposed argumenti;, € ArgsP(P) is acceptable if all of its opposing
arguments indrgs°(P) are attacked by acceptable arguments frbrgs? (P).

To define a dialogue tree for an argumeiyt we need first a definition afialogue
for an argumentA dialogue forAy, is a sequence aPR andO P moves of proposed
arguments and opposing arguments, such that theHiksmove is the argument .
EachOP (resp. PR) move of a dialogue consists of an argument fretngs®(P)
(resp.Args?(P)) attacking the previous proposed (resp. opposing) argtimesuch
a dialogue. Intuitively, we can see that evéty? move wants the conclusion dofy, to
be acceptable, and ea€hP? move only wants to prevent the conclusion4f from
being acceptable. In the case B moves, we can further say that if we impose a
restriction that proposing arguments cannot be used maredhce in a sequence of
moves of a dialogue, then the dialogue will have a finite seqgeeof PR and OP
moves. Therefore, none of the proposed arguments can benmedhan once in the
same dialogue, but any of the opposing arguments can betegjgsoften as required
to attack a proposed argument.

Definition 11 (dialogue’;?). Let P be an ELPdp (resp.o) be the kind (strong or weak)
of a proposed (resp. an opposing) argumenPoaind.Args? (P) and.Args®(P) be the
set ofp-arguments and-arguments ofP, respectively. Adialoguep o (in P) for an
argumentA;, € Args?(P), calleddialogue’;?, is a finite non-empty sequencerof
movesnove; = Ar, (1 < i < m) such that

1. move; = A,
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2. foreveryl <i <m, Ay, attacksA;, , and
— if i is odd thenAr, € Args”(P) and there is no odd < i such thatdy, =
Arp,,or
— if iis eventhem, € Args°(P).

We say thatnove; is odd if: is odd; otherwisemouve; is even.

A dialogue forA, succeed# its last move is @ R move. In this proposal, we want
to guarantee that a dialogue tree for an argumgnts finitary (cf. Prop. 2). Neverthe-
less, we only consider grounded finite ELPd in order to relaedeclarative semantics
(presented in the previous section) to this proposal ofateral semantics. By con-
sidering this, every dialogue in such a dialogue tree firidiexause there will always
be a last movePR (resp.OP) in such a dialogue, so no opposing (resp. proposed)
argument against it exists. For non-grounded (infinitegpms, there may be (failed)
dialogues with an infinite sequence of moves. In such a chesetdialogues should
be considered failures, and the argument for such a dialorgeeshould be deduced
as defensible. The main problem of such an approach is degeant infinite sequence
of moves in a dialogue. However, the following definition vgibnsider cases of both
‘grounded finite ELPd’ and ‘non-grounded (infinite) ELPd’.

Definition 12 (The Status of a dialogue)Let P an ELPd. A dialogue o (in P) for
an argumentd;, € ArgsP(P) is completedff its last move isn, and

— if m is odd then there is no argument.ifrgs®(P) attackingAy, , or
— if m is even then there is no argumentdirgs? (P) — S, attackingAp,
is the set of alld,; in the sequence such thats odd

wheres,,

m

(or itis infinite). A completed dialogue fgilediff its last move is)dd (or it is infinite);
otherwise, itsucceeds

Note that a dialogug’ in P and thel fp(F7 ) “grow up” in different ways. In the
former, an argumendl in the last movemovey, is not attacked by any argument in
Args(P). SinceA attacks the previous moveyoves_1, we can say that the argument
B in moves_» was reinstated byl. Thus, eachnove; (1 < i < f — 1) is reinstated
by move; 2. The latter evaluates argumeatas acceptable in the first iteration of the
characteristic functiod™>°. In the second iteration] reinstatesB, so thatB is accept-
able and might reinstate other arguments in all followiegdtions. We can further say
that dialogu&? decreases (in a top-down way) difgh( F7,°) increases (in a bottom-up
way) the set of evaluated arguments.

Proposition 4. Let move,, = A be the last move of a succeeded dialdguén P.
L
Then, Ay, € F2°(0).

A dialogue treeDT for Ay is held between a proposed argumé&it and its op-
posing argumen® P againstP R, where the root oD7T is Ar. The dialogue tre®T
considers all possible ways in whiely, can be attacked because each brancdhBfis
a dialogue forAy, i.e. every single dialogue fot, is built because we should consider
the overall arguments inlrgs(P) to deduce the status of;,. The dialogue tre®T
for an argument;, succeeds if every dialogue &fT" succeeds.
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Definition 13 (DT7). Let P be an ELPdp (resp.o) be the kind (strong or weak) of
the proposed (resp. opposing) argumentdef;s(P), and.Args?(P) (resp.Args®(P))
be the set op-arguments ¢-arguments) ofP. A dialogue treep o (in P) for Ay €
ArgsP(P), called DT%?, is a finite tree of movesiove; = Ar, (i > 0) such that

1. each branch oDT}” is adialogue’y? , and

2. forall ¢, if move; is
— even then its only child is p-argument attackingly,, € Args°(P), or
— odd then its children are abb-arguments attackingl;,, € Args?(P)

A DT}? succeedf all branches (i.e. alldialogue’y?) of the tree succeeds.

Based on the second condition of Definition 13, we might @btaore than one
dialogue tree for an argument. This occurs because only mp®pent’s move is built
for each opponent’s move of a dialogue tree. For instance,

Example 2.Let P = {p < not a; a < not b,not ¢; a < not d; b; ¢ — not g; g}.
There are two possibl@Tj’: in P: the first dialogue tree does not succeed because
there is a last move which is arargument, viZa < not b]; the second one also does
not succeed because every last move is-argument, viZg] and[a < not d.

At this point we can relate, for grounded finite programs,rdsults from aDTﬁ’LO
to the status of the argumeAt, (see Def. 7), as follows:

Proposition 5. An argument4d’ in a grounded finiteP is

— justifieds” iff there exists a successtlITY”

— overruleds” iff for all DT:”: there exists anove, = A7, such thatDT;"" suc-
ceeded

— defensibl&?’ iff it is neither justified;” nor overruled;”.

The following example illustrate the concepts presentderaposition 5.

Example 3.Let P2 = {a « not b; —a; b; —b; ¢; L < not c}. On the top of Figure 2,
itisillustrated the possiblé)le“Lw in P2. Note that each dialogue tree does not succeed
because its last move is arargument. Nevertheless, all arguments are deferjsjble
because none of these last moves are jusliffedOn the bottom of the Figure 2 it is
also illustrated the possible7’; " in P2. In such a case, all arguments are justifigd

Proposition 6. A justified;” argumentA3 in a finite groundP is

— contradictory ,, iff L is the symbollL, or different from_L and there exists at least
a successfubTy* ; or
— based-on-contradictiqn, iff A3, is not contradictory ,, and
o there exists a contradictofy’ A%, (with a rule L’ <« Body) such thatL €
Body, or
e there exists ail”’ in the head of arule i such thatd; ,, is contradictory-",

or
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P : [a — not b,not —a,not L]

O : [b« not =b,not L]
P : [-b«— not b,not L]

O : [b— not =b,not L]

P : [c — not —¢,not 1]

O:AY +[L «—¢,not L,not - 1]

P:AY 4+ [L «¢,not L,not -1]

O:AY +[L «¢,not L,not -1]

O : [-a < not a,not L]

P : [b— not —b,not L]

O : [-b < not b,not L]

P : [-b < not b,not 1]

O : [b < not =b,not L]

P : [-a < not a,not 1]

O : |a < not —a,not L]

P : [a < not b
!

O : [b « not =b,not 1]

P[]

P:lc; L]

Fig.2.SomeDT';,"” and DT} in {a < not b; ~a; b; —~b; ¢; L — not c}
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o for all dialogue;" in DT;: the last move has not a non-contradictory
argument; or
— non-contradictory,,,, otherwise.

To conclude about the truth value of an objective litetave evaluate more than
one dialogue tree of each argument for silich

Proposition 7. An objective literalH is

— truelp? iff there exists a successtiTy”. Thus,H is
e contradictoryy” iff for all successfulDT7°: A%, is contradictory;®, or
e based-on-contradictidy’ iff for all successfuDT%”: A%; is based-on-contra-
dictior3°, or
e non-contradictor§;” iff there exists a successfliT’’” such thatA?; is non-
contradictory};’;
— falselp® (in P)iff VDT °: A% is overruled;®;
— unde finedp® (in P) iff VDT °: A% is neither justifie” nor overruleds®.

Example 4.Following Example 3, all literals o2 are justified;, . However, all liter-
als of P2 are undefinef,”.

4 Conclusions and Further Work

Our argumentation semantics is based on the argumentattsphor, in the line of
the work developed in [9, 15, 2, 18] for defining semanticsiofle extended logic pro-
grams. In these argumentation-based semantics, rule®gfcadrogram are viewed as
encoding arguments of an agent. More precisely, an arguioeah objective literal.

is a sequence of rules that “proves; if all default literals (of the forrot L') in the
body of those rules are assumed true. In other words, arggreanoded by a program
can attack — by undercut — each other. Moreover, an arguroeftdttacks — by rebut
— another argument if this other argument assumes its é&xpégation (of the form
—L). The meaning of the program is so determined by those angisntiegat somehow
(depending on the specific semantics) can defend themdebraghe attacks of other
arguments.

We generalise [15]'s definition of argument by proposing tired of arguments,
viz. strong arguments and weak arguments. By having twoskofdarguments, viz.
strong arguments and weak arguments, the attack by undsrnot needed. Simply
note that rebut are undercut attacking weak argumentsefdrer rebut is not consid-
ered in our proposal since, as already shown in [17, 6, 188ritbe reduced to under-
cut by considering weaker versions of arguments. [2] al§mée a methodology for
transforming non-exact, defensible rules into exact ruligs explicit non-provability
conditions and shows that this transformation eliminatesrteed for rebuttal attacks
and for dealing with priorities in the semantics.

Similar to [9, 15] we formalise the concept of acceptablaiargnts with a fixpoint
operator. However, the acceptability of an argument mighetdifferent results and it
depends on which kind of interaction between (strong anckpe@@uments is chosen.
Therefore, our argumentation semantics assigns difféegats of acceptability to an
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argument for an objective literdl and so it can be justified, overruled, or defensible.
Moreover, a justified argument fdr can be contradictory, based on contradiction, or
non contradictory. Consequently, a truth valud.afan be true (and contradictory, based
on contradiction, or non contradictory), false or undefined

Since our argumentation semantics is parametrised by tite dfi interaction be-
tween arguments, we obtain results from a consistent wagasfoning to a paraconsis-
tent way of reasoning. A consistent way of reasoning neitbecludes thaf. nor - L
are true, even if one of these is a fact. A paraconsistent Wegagsoning can conclude
L is true even if it also concludes thatl. is true. Given that we consider denials in
the agent’s knowledge base — in a conflicting situation — @istent way of reasoning
cannot conclude that a givdnis true if L is related with the presence of tfedsity; a
paraconsistent way of reasoning might conclddeven it is related witHalsity. Fur-
thermore, our argumentation semantics (and the corresppiptdoof procedure) suc-
ceeds in detecting conflicts in a paraconsistent extendgclpoogram with denials, i.e.
it handles with contradictory arguments and with the preserifalsity.

For this proposal we have made two implementations, both9B ®ystem (by re-
sorting to tabling) [19] which computes the argumentationidty implementation over
an agent’'s knowledge base. One bottom-up implementatidheo§emantics, follow-
ing closely its declarative definition; another of querj#en proof procedures for the
semantics. The proof procedure has also been implementadiiny the toolkit Inter-
prolog [4], a middle-ware for Java and Prolog which providesthod/predicate calling
between both.

As we mentioned, the original semantics, defined in [5], i€aggalisation of the
one presented here to a distributed argumentation-baggdistton semantics. As fu-
ture work we intend to generalise this (centralised) prawicpdure to a distributed
proof procedure seeing the negotiation process as a fdrdi&tlogue trees, rather than
a single tree as here.
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