
Argumentation-based Proof for an Argument in a
Paraconsistent Setting⋆

Iara Carnevale de Almeida2 and Jośe J́ulio Alferes1

1 CENTRIA, Universidade Nova de Lisboa
2829-516 Caparica, Portugal
jja@di.fct.unl.pt

2 CITI, Departamento de Inforḿatica, Universidade déEvora
Colégio Luis Verney; 7000-671́Evora, Portugal

ica@di.uevora.pt

Abstract. The paradigm of argumentation has been used in the literature to as-
sign meaning to knowledge bases in general, and logic programs in particular.
With this paradigm, rules of logic program are viewed as encoding arguments of
an agent, and the meaning of the program is determined by those arguments that
somehow (depending on the specific semantics) can defend themselvesfrom the
attacks of others arguments, named acceptable arguments. In previous work we
presented an argumentation based declarative semantics allowing paraconsistent
reasoning and also dealing with sets of logic programs that argue and cooperate
among each other. In this paper we focus on the properties of this semantics in
what regards paraconsistency and propose a procedure for proving an argument
according to that semantics.

1 Introduction

In logic programming, several ways to formalise argumentation-based semantics have
been studied for logic programs. Intuitively, argumentation-based semantics treat the
evaluation of a logic program as an argumentation process, i.e. a goalG is true if at
least one argument forG cannot be successfully attacked. The ability to view logic
programming as a non-monotonic knowledge representation language, in equal stand-
ing with other non-monotonic logics, brought to light the importance of defining clear
declarative semantics for logic programs, for which proof procedures (and attending
implementations) are then defined (e.g. [8, 9, 15, 2, 20, 12, 18, 7, 14, 10]).

In [5] we proposed an argumentation based semantics for setsof logic programs
that are able to cooperate and argue with each other. In it each program relies on a set
of other programs with which it has to agree in order to acceptan argument, and a set
of programs with which it can cooperate to build arguments. Besides this distributed
nature, the semantics in [5] also allows for paraconsistentforms of argumentation. In
fact, it was also a goal of that work to be able to deal with mutually inconsistent, and
even inconsistent, knowledge bases. Moreover, when in presence of contradiction we

⋆ The work was partially supported by the Brazilian CAPES, and by the European Commission
within the 6th Framework Programme project REWERSE, number 506779.



Argumentation-based Proof for an Argument in a Paraconsistent Setting 65

wanted to obtain ways of agent reasoning, ranging from consistent (in which inconsis-
tencies lead to no result) to paraconsistent. For achievingthis, we considered strong and
weak arguments.

The paraconsistency in the argumentation also yield a refinement of the possible
status of arguments: besides the justified, overruled and defensible arguments as in
[16], justified arguments may now be contradictory, based oncontradiction or non-
contradictory. Moreover, in some applications it might be interesting to change easily
from a paraconsistent to a consistent way of reasoning (or vice-verse).

In this paper we focus on the properties of that semantics in what regards para-
consistency which are interesting by themselves, and independent from its distributed
nature. With this purpose, we restrict our attention to the special case of the semantics in
[5], where only a single logic programs is in the set of programs. Moreover, we provide
a notion of proof for an argument for that semantics in that class.

In the next section we present a version of the proposed declarative semantics sim-
plified for the case of a single program, study some of its mostsignificant properties
regarding paraconsistency, and illustrate it in one example. We then define the proof
method for it, and end with some conclusions. Due to lack of space all proofs have
been removed from this version of the paper, and they can be found in a longer version
available as a technical report from the first author.

2 Paraconsistent Argumentation Semantics

As motivated in the introduction, in our framework [5] the knowledge base of an agent
is modelled by a logic program. More precisely, we useExtended Logic Program with
denials (ELPd), itself an extension of Extended Logic Programs [11]for modelling
the knowledge bases. Besides default and explicit negation, as usual in extended logic
programs, we allow a program to have denials of the form

⊥ ← L1, . . . , Ll, not Ll+1, . . . , not Ln (0 ≤ l ≤ n)

where each of theLis is an objective literal (i.e. an atomA in the language of the
program, or an explicitly negated atom¬A). In other words, denial are simply rules
where the head is the special, reserved, symbol⊥.

An argument for some objective literalL is acomplete well-defined sequencecon-
cluding L over aset of rulesof the knowledge baseKb. By completehere we mean
that all rules required for concludingL are in the sequence. Bywell-defined sequence
we mean a (minimal) sequence of rules concludingL as follows: the head of the last
rule in the sequence is an objective literalL; furthermore, if some atomL′ (ignoring
default literals) appears in the body of a rule then there must be a rule before this one
with L′ in the head; moreover, the sequence must not be circular and only use rules that
are strictly necessary.

Definition 1 (Complete Well-defined Sequence).LetP be an ELPd, andL an objec-
tive literal in the language ofP . A well-defined sequencefor L over a set of rulesS is
a finite sequence[r1; . . . ; rm] of rulesri fromS of the formLi ← Bodyi such that

– L is the head of the rulerm, and



66 I. Carnevale de Almeida and J.J. Alferes

– an objective literalL′ is the head of a ruleri (1 ≤ i < m) only if L′ is not in the
body of anyrk (1 ≤ k ≤ i) andL′ is in the body of some rulerj (i < j ≤ m).

We say that a well-defined sequence forL is completeif for each objective literal
L′ in the body of the rulesri (1 ≤ i ≤ m) there is a rulerk (k < i) such thatL′ is the
head ofrk.

By theconclusionsof a sequence we mean the set of all objective literals in the head
of some rule of the sequence, and by theassumptionswe mean the set of all default
literal in bodies.

For dealing with consistent and paraconsistent reasoning,we define strong and weak
arguments, based on strong and weak sets of rules, the formerbeing simply the rules in
theKb . A weak set of rulesresults from adding to all rule bodies the default negation
of the head’s complement, and of⊥, thus making the rules weaker (more susceptible
to being contradicted/attacked). Intuitively, if there isa potential inconsistency, be it
by proving the explicit complement of a rules head or by proving ⊥ then the weak
argument is attacked, whereas the strong is not.

Definition 2 (Strong and Weak Arguments).LetP be an ELPd, andL a literal in its
language. Let theweak set of rules ofP be defined as

Rw
P = { L ← Body, not ¬L, not ⊥ | L ← Body ∈ P }

A strong(resp.weak) argumentof P for L, As
L (resp.Aw

L), is a complete well-
defined sequence forL overP (resp.Rw

P ).
LetAw

L andAs
L be two arguments ofP . Aw

L is the weakargument correspondingto
As

L, and vice-verse, if both use exactly the same rules of the original programP (the
former by having rulesRw

P and the latter fromP alone).
We say thatAL is anargumentof P for L if it is either a strong argument or a weak

one ofP for L. We also say thatAk
L is ak-argument ofP for L (wherek is eithers, for

strong arguments, orw, for weak ones).

After defining how arguments are built, we now move on to defining the attacking
relation between these arguments. By using two kinds of arguments, strong and weak
arguments as just exposed, we may rely on a single kind of attack. Indeed the different
kinds of attacks usually considered in argumentation semantics for extended logic pro-
grams,undercutsandrebutsas in [15], can be captured by a single notion of attack. If
an argument for an objective literalL (denoted byAL) has a default negationnot L′

in it, any argument forL′ attacks (by undercut)AL. The rebut attacking relation states
that an argument also attacks another one when both arguments have complementary
conclusions (i.e. one concludesL and the other¬L). It is easy to see that with strong
and weak arguments,rebut can be reduced to undercut: rebutting reduces to undercut
attacks to weak arguments.

In our definition of attacks care must be taken in what regardsarguments for⊥.
By simply using undercut attacks any argument for⊥ attacks every weak argument.
However, it does not make sense to attack arguments for objective literals if they do not



Argumentation-based Proof for an Argument in a Paraconsistent Setting 67

lead tofalsity. Informally, an objectiveL literal leads tofalsityif there is an argument
AL such thatA⊥ is built based on such an argument, e.g.

As
⊥ : As

L + [⊥ ← L, not L′]

We only consider objective literals that are in the body of the rule for⊥ because these
literals immediately lead tofalsity. We assume that the involvement of other objective
literals are not as strong as those in the body of the denial3. Then objective literals are
directly conflicting withA⊥ if the following holds:

Definition 3 (Directly Conflict with A⊥). LetA⊥ be an argument for⊥, ‘⊥ ← Body’
be the rule inA⊥ and{L1, . . . , Ln} be the set of all objective literals inBody. The set
of objective literalsdirectly conflicting withA⊥ is

DC(A⊥) = {⊥} ∪ {L1, . . . , Ln}.

Definition 4 (Attack). Let P be an ELPd. An argumentAL of P for L attacksan
argumentAL′ of P for L′ iff

– L is the symbol⊥, not ⊥ belong to the body of some rule inAL′ , and L′ ∈
DC(AL); or

– L is an objective literal different from⊥, andnot L belongs to the body of some
rule in AL′ .

Since attacking arguments can in turn be attacked by other arguments, comparing
arguments is not enough to determine their acceptability w.r.t. the set of overall argu-
ments. What is also required is a definition that determines the acceptable arguments
on the basis of all the ways in which they interact, by proposing arguments and so
opposing them. A subsetS of proposed arguments ofP is acceptable only if the set
of all arguments ofP does not have some valid opposing argument attacking the pro-
posed arguments inS. As in [8, 15], we demand acceptable sets to contain all such
arguments. Two questions remain open: how to obtain opposing arguments and, among
these, which are valid?

An opposing argument for a proposed argument which makes an assumption, say
not L, is simply an argument for a conclusionL. For an opposing argumentAo to be
valid for attacking a proposed argumentAp in S, S should not have another argument
that, in turn, attacksAo (i.e. another argument that reinstates4 Ap). In this case, we
say thatS cannot defend itself againstAo. This motivation points to a definition of
acceptable sets of argumentsSi in P such as a setS is acceptableif it can attack all
opposing arguments. So, we can say that a proposed argumentAp is acceptable w.r.t. a
setS of acceptable arguments if and only if each opposing argument Ao attackingAp

is (counter-)attacked by an argument inS.

3 We further assume they can be detected in a process of “belief revision”, e.g. [3]. However, a
discussion of this issue is beyond the scope of this proposal.

4 The key observation is that an argumentA that is attacked by another argumentB can only
be acceptable if it isreinstatedby a third argumentC, i.e by an acceptable argumentC that
attacksB.



68 I. Carnevale de Almeida and J.J. Alferes

However, it is still necessary to determine how strong arguments and weak argu-
ments should interact w.r.t. such a setS of arguments. Based on the idea of reinstate-
ment, both attacked and counter-attacking arguments should be of the same kind. For in-
stance, if a proposing argument is strong (resp. weak) then every counter-attack against
its opposing argument should be strong (resp. weak). A similar reason can be applied
for opposing arguments. Therefore, proposed (resp. opposing) arguments should be of
the same kind.

In the remainder of this paper we will use the notationp ando to distinguish the pro-
posed argument from the opponent one, i.e.p (resp.o) is a (strong or weak) proposed
(resp. opponent) argument. Since there are four possibilities of interaction between a
proposed argument,Ap, and an opposing argument,Ao, the definition of arguments’ ac-
ceptability (and the corresponding characteristic function) is generalised by parametris-
ing the possible kinds of arguments, viz. strong arguments and weak arguments.

Definition 5 (Acceptable Argument). Let P be an ELPd,p (resp. o) be the kind
(strong or weak) of the proposed (resp. opposing) argument,Argsp(P ) (Argso(P ))
be the set of all arguments inP of kind p (resp.o) , andS ⊆ Argsp(P ). An argu-
mentAL ∈ Argsp(P ) is anacceptablep,o argumentw.r.t. S iff each argumentAL′ ∈
Argso(P ) attackingAL is attacked by an argumentAL′′ ∈ S.

Note that this proposal is in accordance with the ‘Compositional Principle’ of [20]:
“If an argumentSA is a sub-argument of argumentA, andSA is not acceptable w.r.t.
a set of argumentsS, thenA is also not acceptable w.r.t.S”. We now formalise the
concept of acceptable arguments with a fixpoint characteristic functionp o of P :

Definition 6 (Characteristic Function). LetP be an ELPd, andp (resp.o) be the kind
(strong or weak) of the proposed (resp. opposing) argument of P , andS ⊆ Argsp(P ).
Thecharacteristic functionp o of P and overS is:

F
p,o
P : 2Args(P ) → 2Args(P )

F
p,o
P (S) = {Arg ∈ Args(P ) | Arg is acceptablep,o w.r.t. S}.

It can be proven that this function is monotonic, and so it hasa least fixpoint that
can be obtained iteratively as usual:

Proposition 1. Define for anyP the following transfinite sequence of sets of argu-
ments:

– S0 = ∅
– Si+1 = F

p,o
P (Si)

– Sδ =
⋃

α<δ

Sα for limit ordinal δ

Given thatF p,o
P is monotonic, there must exist a smallestλ such thatSλ is a fixpoint of

F
p,o
P , andSλ = lfp(F p,o

P ).

Note thatlfp(F p,o
P ) is well-behaved, i.e. arguments in it areacceptablep,o w.r.t.

the set of all argument ofP . By definition lfp(F p,o
P ) is minimal, which guarantees

that it does not contain any argument of which acceptance is not required. Moreover,
when F

p,o
P is finitary the iterative process above is guaranteed to terminate after an

enumerable number of steps.



Argumentation-based Proof for an Argument in a Paraconsistent Setting 69

Proposition 2. F
p,o
P is finitary if each argument inS is attacked by at most a finite

number of arguments inS.

By knowing the set of all acceptablep,o arguments ofP , we can split all arguments
from Args(P ) into three classes: justified arguments, overruled arguments and defen-
sible arguments. Our definition of overruled is different from [15]’s proposal. In its
proposal, the restriction applies that overruled arguments cannot be also justified and so
[15]’s argumentation semantics is always consistent. Since we aim to obtain a paracon-
sistent way of reasoning, the status of an argument is definedas follows:

Definition 7 (Justified, Overruled or Defensible Argument). Let P be an ELPd,p
(resp.o) be the kind (strong or weak) of an argument ofP , andF

p,o
P be the character-

istic functionp o of P . An argumentAp
L is

– justifiedp,o
P iff it is in lfp(F p,o

P )
– overruledp,o

P iff theAo
L corresponding toAp

L is attacked by a justifiedp,o
P argument

– defensiblep,o
P iff it is neither a justifiedp,o

P nor an overruledp,o
P argument

We denote thelfp(F p,o
P ) byJustArgs

p,o
P .

We may also iteratively obtain overruled arguments based onthe greatest fixpoint
of the characteristic function which, by monotonicity of the characteristic function is
guaranteed to exist and can also be obtained iteratively as usual. In fact:

Lemma 1. gfp(F o,p
P ) = {Ao

L1
: ¬(∃A

p
L2

∈ lfp(F p,o
P ) | A

p
L2

attacksAo
L1

)}

Lemma 2. lfp(F p,o
P ) = {Ap

L1
: ¬(∃Ao

L2
∈ gfp(F o,p

P ) | Ao
L2

attacksAp
L1

)}

Then, the following holds:

Theorem 1. A
p
L is overruledp,o

P iff theAo
L corresponding toAp

L is not ingfp(F o,p
P ).

Due to space limitations we do not detail here general properties when some other
weaker restriction are imposed. Instead, we discuss some properties ofJustArgs

p,o
P

and comparisons. Sincep (resp.o) denote the kind of a proposed (resp. an opposing)
argument, i.e. strong argument or weak argument, assume that p (resp.o) in {s, w}.
Both JustArgs

w,w
P andJustArgs

w,s
P are both conflict-free5 and non-contradictory6.

Thus, every argument in bothJustArgs
w,w
P andJustArgs

w,s
P is non-contradictory,

i.e. it is not related to a contradiction at all. Furthermore, F
w,w
P has more defensible

arguments thanFw,s
P . Therefore, we obtain a consistent way of reasoning inAg if we

applyF
w,w
P overArgs(P ).

In contrast,JustArgs
s,s
P andJustArgs

s,w
P may be contradictory. However, to eval-

uate the acceptability of available arguments without considering the presence offal-
sity or both arguments forL and¬L, the proposed arguments should be strong ones,
and every opposing argument is a weak argument. SinceF

s,w
P respects the ‘Coherence

Principle’ of [13, 1], i.e. given that every opposing argument is a weak one, it can be

5 A setS of arguments is conflict-free if there is no argument inS attacking an argument inS.
6 A setS of arguments is non-contradictory if neither an argument forfalsity nor both arguments

for L and¬L are inS.



70 I. Carnevale de Almeida and J.J. Alferes

attacked by any proposed argument for its explicit negation. Therefore, we obtain a
paraconsistent way of reasoning if we applyF

s,w
P overArgs(P ).

Moreover, a justifieds,w
P argument of an agent can be related to a contradiction with

respect toJustArgs
s,w
P as follows. We first define that an argument that reinstate an-

other argument is itscounter-attack:

Definition 8 (Counter-Attack). Let P be an ELPd,S a set of arguments fromP , AL

be an argument inS, andAL′ be an argument ofP attackingAL. A counter-attackfor
AL againstAL′ is an argument inS that attacksAL′ . CAAL

(AL′ , S) is the set of all
counter-attacks forAL againstAL′ in S

Definition 9 (Relation to a Contradiction). Let P be an ELPd. A justifieds,w
P argu-

mentAs
L is

– contradictorys,w
P if JustArgs

s,w
P is contradictory w.r.t.L, or there exists a contra-

dictorys,w
P argumentAs

⊥
andL ∈ DC(As

⊥
); or

– based-on-contradictions,w
P if for all Aw

L′ attackingAs
L there exists a contradic-

torys,w
P or based-on-contradictions,w

P argument inCAAL
(Aw

L′ , JustArgs
s,w
P ), or

there exists anL′ in the head of some rule inAs
L, different fromL and⊥, such that

JustArgs
s,w
P is contradictory w.r.t.L′; or

– non-contradictorys,w
P iff it is neither contradictorys,w

P nor it is based-on-contra-
dictions,w

P .

Proposition 3. A justifieds,w
P argumentAp

L is non-contradictorys,w
P if for no headL′ of

a rule in As
L, JustArgs

s,w
P is contradictory w.r.t.L′, and every counter-attack forAs

L

is a non-contradictorys,w
P argument.

A truth valueof an agent’s conclusion in a (consistent or paraconsistent) way of
reasoning is as follows:

Definition 10 (Truth Value of a Conclusion).LetP be an ELPd, andL ∈ H(P ), and
k ∈ {s, w}. A literal L overP is

– falsek,w
P iff everyk-argument forL is overruledk,w

P

– truek,w
P iff there exists a justifiedk,w

P argument forL. Moreover,L is

• contradictoryk,w
P if L is the symbol⊥ or there exists a justifiedk,w

P argument for
¬L

• based-on-contradictionk,w
P if it is both truek,w

P and falsek,w
P

• non-contradictoryk,w
P , otherwise

– undefinedk,w
P iff L is neither truek,w

P nor falsek,w
P (i.e. there is no justifiedk,w

P argu-
ment forL and at least onek-argument forL is not overruledk,w

P ).

Example 1 (Privacy of Personal Life – PPL).Usually, any person deserves privacy with
respect to her personal life. However, when such a person behaves in a way that is not
acceptable (e.g. selling drugs) she will suffer the consequences. The first consequence
is the focus of media attention on her personal life and consequent loss of privacy. The
personal life of such a person might be exposed by the “results” of media attention (e.g.



Argumentation-based Proof for an Argument in a Paraconsistent Setting 71

photos, reports, and so on), unless there is a law that protects her against it. The above
description can be expressed by the following extended logic programming rules.

focusOfMediaAttention(X) ← person(X), ¬acceptableBehavior(X).
¬acceptableBehavior(X) ← involved(X,Y ), againstSociety(Y ).
¬hasPrivacy(X) ← focusOfMediaAttention(X).
personalLifeExposed(X) ← ¬hasPrivacy(X), not protectedByLaw(X).
hasPrivacy(X) ← person(X), not ¬hasPrivacy(X).

In contrast, it is considered an absurdity that someone may lose her privacy when
she is involved in some event for which there is no evidence ofbeing public (e.g. some-
one starting a long-term treatment for drugs dependency). The absurdity in the rule
below is represented as a denial:

⊥ ← ¬hasPrivacy(X), event(X,Y ), not publicEvent(Y ).

Moreover, modern society normally tries to protect children, and so their privacy is
guaranteed until evidence appears of some unusual behaviour (e.g. by having unaccept-
able behaviour).

hasPrivacy(X) ← child(X), not unusualChild(X).
unusualChild(X) ← child(X),¬acceptableBehavior(X).
person(X) ← child(X).

However, famous persons are inherently the focus of media attention:

focusOfMediaAttention(X) ← famousPerson(X).
person(X) ← famousPerson(X).

Assume an agentAg with the knowledge above, plus some facts about Potira and
Ivoti 7. Potira is a famous child, and Ivoti is a famous soccer playerin treatment for
drugs dependency:

child(potira). famousPerson(potira).
famousPerson(ivoti). event(ivoti, treatmentForDrugsDependency).

Figure 1 illustrates, with obvious abbreviations, the possible attacks of arguments
for “privacy of Potira’s life” overArgs(PPL). The notation for that figure is as fol-
lows: Arguments are represented as nodes. A solid line from argumentA to argument
B means “A attacksB”, a dotted line fromA to B means “A is built based onB”, and
a line with dashes means “A reinstatesB”. A round node means “it is an acceptable
argument” and a square node means “it is not an acceptable argument”, which are w.r.t.
the set of arguments ofP. Then we can presume both the status of the arguments and
the truth value of the conclusions ofPPL.

7 The following names are from Native South American, more specifically from the Tupi-
Guarani family, Potira and Ivoti both mean “flower”.



72 I. Carnevale de Almeida and J.J. Alferes

As
ch(p)

As
fP (p)

As
pe(p)

A′s
pe(p)

As
fOMA(p)

A′′s
hP (p)

As
hP (p)

A′s
hP (p)

As
¬hp(p)

Aw
¬hP (p)

As
pLE(p)

Fig. 1.Acceptable arguments inArgs(PPL) for Potira

The argument for “Potira has no Privacy” (As
¬hp(p)) and also the arguments for

“Potira has privacy” (As
hp(p), A

′s
hp(p), A

′′s
hp(p)) are contradictorys,w

PPL; the argument “Por-
tira has her personal life exposed” (As

pLE(p)) is either based-on-contradictions,w
PPL and

overruleds,w
PPL. The other arguments are non-contradictorys,w

PPL. Therefore, the truth val-
ues for conclusions about Potira are as follows:

– fP (p), ch(p), fOMA(p) andpe(p) are non-contradictorys,w
PPL;

– hp(p) and¬hp(p) are both (trues,w
PPL and) contradictorys,w

PPL and falses,w
PPL; and

– pLE(p) is both based-on-contradictions,w
PPL and falses,w

PPL.

Moreover, the truth values for conclusions regarding Ivotiare as follows:

– fP (i), pe(p) andfOMA(i) are non-contradictorys,w
PPL;

– hp(i) and¬hp(i) are both contradictorys,w
PPL and falses,w

PPL; and
– “There is falsity in PPL” (i.e. ⊥) is both (trues,w

PPL and) contradictorys,w
PPL and

falses,w
PPL. Then

– ev(i, TFDD) andpLE(i) are both based-on-contradictions,w
PPL and falses,w

PPL.



Argumentation-based Proof for an Argument in a Paraconsistent Setting 73

3 A proof for an argument

Though the declarative semantics just exposed may rely on aniterative procedure, its
usage for computing arguments may not always be appropriate. This is specially the
case when we are only interested in the proof for a (query) argument, rather than all
acceptable arguments, as is obtained by the iterative process. Such a query oriented
proof procedure can be viewed as conducting a “dispute between a proponent player
and an opponent player” in which both proponent and opponentexchange arguments.
In its simplest form, the dispute can be viewed as a sequence of alternating arguments:

PR0, OP0, PR1, . . . , PRi, OPi+1, PRi+2, . . .

The proponent puts forward an initial argumentPR0. For every argumentPRi put for-
ward by the proponent, the opponent attempts to respond withan attacking argument
OPi+1 againstPRi. For every attacking argumentOPi+1 put forward by the opponent,
the proponent attempts to counter-attack with a proposed argumentPRi+2 againstOPi.
To win the dispute, the proponent needs to have a proposed argument against every op-
posing argument of the opponent. Therefore, a winning dispute can be represented as a
dialogue tree, which represents the top-down, step-by-step construction of a proof tree.
We follow [15]’s proposal, which defines a proof for an argument AL as a dialogue tree
for AL. However, our definition of dialogue tree is in accordance with the acceptability
of the arguments of an ELPdP (see Def. 5):

A proposed argumentAL ∈ Argsp(P ) is acceptable if all of its opposing
arguments inArgso(P ) are attacked by acceptable arguments fromArgsp(P ).

To define a dialogue tree for an argumentAL we need first a definition ofdialogue
for an argument. A dialogue forAL is a sequence ofPR andOP moves of proposed
arguments and opposing arguments, such that the firstPR move is the argumentAL.
EachOP (resp.PR) move of a dialogue consists of an argument fromArgso(P )
(resp.Argsp(P )) attacking the previous proposed (resp. opposing) argument in such
a dialogue. Intuitively, we can see that everyPR move wants the conclusion ofAL to
be acceptable, and eachOP move only wants to prevent the conclusion ofAL from
being acceptable. In the case ofPR moves, we can further say that if we impose a
restriction that proposing arguments cannot be used more than once in a sequence of
moves of a dialogue, then the dialogue will have a finite sequence of PR and OP

moves. Therefore, none of the proposed arguments can be usedmore than once in the
same dialogue, but any of the opposing arguments can be repeated as often as required
to attack a proposed argument.

Definition 11 (dialogue
p,o
AL

). LetP be an ELPd,p (resp.o) be the kind (strong or weak)
of a proposed (resp. an opposing) argument ofP , andArgsp(P ) andArgso(P ) be the
set ofp-arguments ando-arguments ofP , respectively. Adialoguep o (in P ) for an
argumentAL ∈ Argsp(P ), calleddialogue

p,o
AL

, is a finite non-empty sequence ofm

movesmovei = ALi
(1 ≤ i ≤ m) such that

1. move1 = AL



74 I. Carnevale de Almeida and J.J. Alferes

2. for every1 < i ≤ m, ALi
attacksALi−1

and
– if i is odd thenALi

∈ Argsp(P ) and there is no oddj < i such thatALj
=

ALi
, or

– if i is even thenALi
∈ Argso(P ).

We say thatmovei is odd ifi is odd; otherwise,movei is even.

A dialogue forAL succeedsif its last move is aPR move. In this proposal, we want
to guarantee that a dialogue tree for an argumentAL is finitary (cf. Prop. 2). Neverthe-
less, we only consider grounded finite ELPd in order to relatethe declarative semantics
(presented in the previous section) to this proposal of operational semantics. By con-
sidering this, every dialogue in such a dialogue tree finishes because there will always
be a last movePR (resp.OP ) in such a dialogue, so no opposing (resp. proposed)
argument against it exists. For non-grounded (infinite) programs, there may be (failed)
dialogues with an infinite sequence of moves. In such a case, these dialogues should
be considered failures, and the argument for such a dialoguetree should be deduced
as defensible. The main problem of such an approach is detecting an infinite sequence
of moves in a dialogue. However, the following definition will consider cases of both
‘grounded finite ELPd’ and ‘non-grounded (infinite) ELPd’.

Definition 12 (The Status of a dialogue).Let P an ELPd. A dialoguep o (in P ) for
an argumentAL ∈ Argsp(P ) is completediff its last move ism, and

– if m is odd then there is no argument inArgso(P ) attackingALm
, or

– if m is even then there is no argument inArgsp(P )− Sp attackingALm
whereSp

is the set of allALj
in the sequence such thatj is odd

(or it is infinite). A completed dialogue isfailed iff its last move isodd (or it is infinite);
otherwise, itsucceeds.

Note that a dialoguep,o
AL

in P and thelfp(F p,o
P ) “grow up” in different ways. In the

former, an argumentA in the last move,movef , is not attacked by any argument in
Args(P ). SinceA attacks the previous move,movef−1, we can say that the argument
B in movef−2 was reinstated byA. Thus, eachmovei (1 ≤ i < f − 1) is reinstated
by movei+2. The latter evaluates argumentA as acceptable in the first iteration of the
characteristic functionF p,o

P . In the second iteration,A reinstatesB, so thatB is accept-
able and might reinstate other arguments in all following iterations. We can further say
that dialoguep,o

AL
decreases (in a top-down way) andlfp(F p,o

P ) increases (in a bottom-up
way) the set of evaluated arguments.

Proposition 4. Let movem = AL be the last move of a succeeded dialoguep,o

A′

L

in P .

Then,AL ∈ F
p,o
P (∅).

A dialogue treeDT for AL is held between a proposed argumentPR and its op-
posing argumentOP againstPR, where the root ofDT is AL. The dialogue treeDT

considers all possible ways in whichAL can be attacked because each branch ofDT is
a dialogue forAL, i.e. every single dialogue forAL is built because we should consider
the overall arguments inArgs(P ) to deduce the status ofAL. The dialogue treeDT

for an argumentAL succeeds if every dialogue ofDT succeeds.



Argumentation-based Proof for an Argument in a Paraconsistent Setting 75

Definition 13 (DT
p,o
AL

). Let P be an ELPd,p (resp.o) be the kind (strong or weak) of
the proposed (resp. opposing) argument ofArgs(P ), andArgsp(P ) (resp.Argso(P ))
be the set ofp-arguments (o-arguments) ofP . A dialogue treep o (in P ) for AL ∈
Argsp(P ), calledDT

p,o
AL

, is a finite tree of movesmovei = ALi
(i > 0) such that

1. each branch ofDT
p,o
AL

is adialogue
p,o
AL

, and
2. for all i, if movei is

– even then its only child is ap-argument attackingALi
∈ Argso(P ), or

– odd then its children are allo-arguments attackingALi
∈ Argsp(P )

A DT
p,o
AL

succeedsiff all branches (i.e. alldialogue
p,o
AL

) of the tree succeeds.

Based on the second condition of Definition 13, we might obtain more than one
dialogue tree for an argument. This occurs because only one proponent’s move is built
for each opponent’s move of a dialogue tree. For instance,

Example 2.Let P = {p ← not a; a ← not b, not c; a ← not d; b; c ← not g; g}.
There are two possibleDT

s,s
Ap

in P : the first dialogue tree does not succeed because
there is a last move which is ano-argument, viz[a ← not b]; the second one also does
not succeed because every last move is ano-argument, viz[g] and[a ← not d].

At this point we can relate, for grounded finite programs, theresults from aDT
p,o
AL

to the status of the argumentAL (see Def. 7), as follows:

Proposition 5. An argumentAp
L in a grounded finiteP is

– justifiedp,o
P iff there exists a successfulDT

p,o
AL

– overruledp,o
P iff for all DT

p,o
AL

: there exists amove2 = Ao
L′ such thatDT

o,p
AL′

suc-
ceeded

– defensiblep,o
P iff it is neither justifiedp,o

P nor overruledp,o
P .

The following example illustrate the concepts presented inProposition 5.

Example 3.Let P2 = {a ← not b; ¬a; b; ¬b; c; ⊥ ← not c}. On the top of Figure 2,
it is illustrated the possibleDT

w,w
AL

in P2. Note that each dialogue tree does not succeed
because its last move is ano-argument. Nevertheless, all arguments are defensiblew,w

P2

because none of these last moves are justifiedw,w
P2 . On the bottom of the Figure 2 it is

also illustrated the possibleDT
s,w
AL

in P2. In such a case, all arguments are justifieds,w
P2 .

Proposition 6. A justifieds,w
P argumentAs

L in a finite groundP is

– contradictorys,w iff L is the symbol⊥, or different from⊥ and there exists at least
a successfulDT

s,w
A¬L

; or
– based-on-contradictions,w iff As

H is not contradictorys,w and
• there exists a contradictorys,w As

L′ (with a ruleL′ ← Body) such thatL ∈
Body, or

• there exists anL′′ in the head of a rule inAs
L such thatAs

L′′ is contradictorys,w,
or



76 I. Carnevale de Almeida and J.J. Alferes

P : [a ← not b, not ¬a, not ⊥]

O : [b ← not ¬b, not ⊥] O : [¬a ← not a, not ⊥]

P : [¬b ← not b, not ⊥]

O : [b ← not ¬b, not ⊥]

P : [c ← not ¬c, not ⊥]

O : Aw
c + [⊥ ← c, not ⊥, not ¬⊥]

P : Aw
c + [⊥ ← c, not ⊥, not ¬⊥]

O : Aw
c + [⊥ ← c, not ⊥, not ¬⊥]

P : [b ← not ¬b, not ⊥]

O : [¬b ← not b, not ⊥]

P : [¬b ← not b, not ⊥]

O : [b ← not ¬b, not ⊥]

P : [¬a ← not a, not ⊥]

O : [a ← not ¬a, not ⊥]

P : [b]

P : [¬b]

P : [c]

P : [¬a]

P : [a ← not b]

O : [b ← not ¬b, not ⊥]

P : [¬b]

P : [c; ⊥ ← c]

Fig. 2.SomeDT
w,w
AL

andDT
s,w
AL

in {a ← not b;¬a; b;¬b; c;⊥ ← not c}



Argumentation-based Proof for an Argument in a Paraconsistent Setting 77

• for all dialogue
s,w
AH

in DT
s,w
AH

: the last move has not a non-contradictorys,w

argument; or
– non-contradictorys,w, otherwise.

To conclude about the truth value of an objective literalL we evaluate more than
one dialogue tree of each argument for suchL:

Proposition 7. An objective literalH is

– true
p,o
P iff there exists a successfulDT

p,o
AH

. Thus,H is
• contradictoryp,o

P iff for all successfulDT
p,o
AH

: A
p
H is contradictoryp,o

P , or
• based-on-contradictionp,o

P iff for all successfulDT
p,o
AH

: A
p
H is based-on-contra-

dictionp,o
P , or

• non-contradictoryp,o
P iff there exists a successfulDT

p,o
AH

such thatAp
H is non-

contradictoryp,o
P ;

– false
p,o
P (in P ) iff ∀DT

p,o
AH

: A
p
H is overruledp,o

P ;
– undefined

p,o
P (in P ) iff ∀DT

p,o
AH

: A
p
H is neither justifiedp,o

P nor overruledp,o
P .

Example 4.Following Example 3, all literals ofP2 are justifieds,w
P2 . However, all liter-

als ofP2 are undefinedw,w
P2 .

4 Conclusions and Further Work

Our argumentation semantics is based on the argumentation metaphor, in the line of
the work developed in [9, 15, 2, 18] for defining semantics of single extended logic pro-
grams. In these argumentation-based semantics, rules of a logic program are viewed as
encoding arguments of an agent. More precisely, an argumentfor an objective literalL
is a sequence of rules that “proves”L, if all default literals (of the formnot L′) in the
body of those rules are assumed true. In other words, arguments encoded by a program
can attack – by undercut – each other. Moreover, an argument for L attacks – by rebut
– another argument if this other argument assumes its explicit negation (of the form
¬L). The meaning of the program is so determined by those arguments that somehow
(depending on the specific semantics) can defend themselvesfrom the attacks of other
arguments.

We generalise [15]’s definition of argument by proposing twokind of arguments,
viz. strong arguments and weak arguments. By having two kinds of arguments, viz.
strong arguments and weak arguments, the attack by undercutis not needed. Simply
note that rebut are undercut attacking weak arguments. Therefore, rebut is not consid-
ered in our proposal since, as already shown in [17, 6, 18], itcan be reduced to under-
cut by considering weaker versions of arguments. [2] also defines a methodology for
transforming non-exact, defensible rules into exact ruleswith explicit non-provability
conditions and shows that this transformation eliminates the need for rebuttal attacks
and for dealing with priorities in the semantics.

Similar to [9, 15] we formalise the concept of acceptable arguments with a fixpoint
operator. However, the acceptability of an argument might have different results and it
depends on which kind of interaction between (strong and weak) arguments is chosen.
Therefore, our argumentation semantics assigns differentlevels of acceptability to an



78 I. Carnevale de Almeida and J.J. Alferes

argument for an objective literalL and so it can be justified, overruled, or defensible.
Moreover, a justified argument forL can be contradictory, based on contradiction, or
non contradictory. Consequently, a truth value ofL can be true (and contradictory, based
on contradiction, or non contradictory), false or undefined.

Since our argumentation semantics is parametrised by the kind of interaction be-
tween arguments, we obtain results from a consistent way of reasoning to a paraconsis-
tent way of reasoning. A consistent way of reasoning neitherconcludes thatL nor¬L

are true, even if one of these is a fact. A paraconsistent way of reasoning can conclude
L is true even if it also concludes that¬L is true. Given that we consider denials in
the agent’s knowledge base – in a conflicting situation – a consistent way of reasoning
cannot conclude that a givenL is true if L is related with the presence of thefalsity; a
paraconsistent way of reasoning might concludeL even it is related withfalsity. Fur-
thermore, our argumentation semantics (and the corresponding proof procedure) suc-
ceeds in detecting conflicts in a paraconsistent extended logic program with denials, i.e.
it handles with contradictory arguments and with the presence offalsity.

For this proposal we have made two implementations, both in XSB System (by re-
sorting to tabling) [19] which computes the argumentation Prolog implementation over
an agent’s knowledge base. One bottom-up implementation ofthe semantics, follow-
ing closely its declarative definition; another of query-driven proof procedures for the
semantics. The proof procedure has also been implemented byusing the toolkit Inter-
prolog [4], a middle-ware for Java and Prolog which providesmethod/predicate calling
between both.

As we mentioned, the original semantics, defined in [5], is a generalisation of the
one presented here to a distributed argumentation-based negotiation semantics. As fu-
ture work we intend to generalise this (centralised) proof procedure to a distributed
proof procedure seeing the negotiation process as a forest of dialogue trees, rather than
a single tree as here.

References

1. J. J. Alferes, C. V. Daḿasio, and L. M. Pereira. A logic programming system for non-
monotonic reasoning.Journal of Automated Reasoning, 14(1):93–147, 1995.

2. A. Bondarenko, P. M. Dung, R. Kowalski, and F. Toni. An abstract,argumentation-theoretic
approach to default reasoning.Journal of Artificial Intelligence, 93(1–2):63–101, 1997.

3. L. M. Pereira e M. Schroeder C. V. Damásio. Revise: Logic programming and diagnosis.
In U. Furbach J. Dix and A. Nerode, editors,4th International Conference (LPNMR’97),
volume LNAI 1265 ofLogic Programming and NonMonotonic Reasoning, pages 353–362.
Springer, July 1997.

4. M. Calejo. Interprolog: Towards a declarative embedding of logic programming in java.
In J. J. Alferes and J. Leite, editors,9th European Conference (JELIA 2004), LNAI, pages
714–71. Springer, 2004. Toolkit available at http://www.declarativa.com/InterProlog/.

5. Iara Carnevale de Almeida and José J́ulio Alferes. An argumentation-based negotiation
framework. In K. Inoue, K. Satoh, and F Toni, editors,VII International Workshop on Com-
putational Logic in Multi-agent Systems (CLIMA), volume 4371 ofLNAI, pages 191–210.
Springer, 2006. Revised Selected and Invited Papers.



Argumentation-based Proof for an Argument in a Paraconsistent Setting 79

6. Iara de Almeida Ḿora and Jośe J́ulio Alferes. Argumentative and cooperative multi-agent
system for extended logic programs. In F. M. Oliveira, editor,XIVth Brazilian Symposium
on Artificial Intelligence, volume 1515 ofLNAI, pages 161–170. Springer, 1998.

7. P. Dung, P. Mancarella, and F. Toni.Computational Logic: Logic Programming and Beyond
– Essays in Honour of Robert A. Kowalski, volume 2408, chapter Argumentation-based proof
procedures for credulous and sceptical non-monotonic reasoning,pages 289–310. Springer,
2002.

8. P. M. Dung. An argumentation semantics for logic programming with explicit negation. In
10th International Conference on LP (ICLP), pages 616–630. MIT Press, 1993.

9. P. M. Dung. On the acceptability of arguments and its fundamental role innonmono-
tonic reasoning, logic programming and n-person games.Journal of Artificial Intelligence,
77(2):321–357, 1995.

10. P. M. Dung, R. Kowalski, and F. Toni. Argumentation-theoretic proof procedures for default
reasoning. Technical Report. Available at http://www.doc.ic.ac.uk/˜ft/PAPERS/arg03.pdf,
May 2003.

11. M. Gelfond and V. Lifschitz. Logic programs with classical negation.In Warren and Szeredi,
editors,7th International Conference on LP (ICLP), pages 579–597. MIT Press, 1990.

12. R. P. Loui. Process and policy: Resource-bounded non-demonstrative reasoning.Journal of
Computational Intelligence, 14:1–38, May 1998.

13. L. M. Pereira and J. J. Alferes. Well founded semantics for logic programs with explicit
negation. InEuropean Conference on Artificial Intelligence (ECAI), pages 102–106. John
Wiley & Sons, 1992.

14. J. L. Pollock. Defeasible reasoning with variable degrees of justification. Journal of Artificial
Intelligence, 133:233–282, 2002.

15. H. Prakken and G. Sartor. Argument-based extended logic programming with defeasible
priorities. Journal of Applied Non-Classical Logics, 7:25–75, 1997.

16. H. Prakken and G. A. W. Vreeswijk.Handbook of Philosophical Logic, volume 4, chapter
Logics for Defeasible Argumentation, pages 218–319. Kluwer Academic, 2 edition, 2002.

17. Michael Schroeder, Iara de Almeida Móra, and Jośe J́ulio Alferes. Vivid agents arguing
about distributed extended logic programs. In Ernesto Costa and AmilcarCardoso, edi-
tors,Progress in Artificial Intelligence, 8th Portuguese Conference on Artificial Intelligence
(EPIA), volume 1323 ofLNAI, pages 217–228. Springer, 1997.

18. R. Schweimeier and M. Schroeder. Notions of attack and justified arguments for extended
logic programs. In F. van Harmelen, editor,15th European Conference on Artificial Intelli-
gence. IOS Press, 2002.

19. T. Swift and et all. Xsb - a logic programming and deductive database system
for unix and windows. Technical report, XSB project, 2003. Toolkit available at
http://xsb.sourceforge.net/.

20. G. A. W. Vreeswijk. Abstract argumentation systems.Journal of Artificial Intelligence,
90(1–2):225–279, 1997.


