
Building Semantic Agents in eXAT
Antonella Di Stefano, Corrado Santoro
University of Catania - Engineering Faculty

Department of Computer and Telecommunication Engineering
Viale A. Doria, 6 - 95125 - Catania, Italy

EMail: {adistefa, csanto}@diit.unict.it

Abstract— This paper describes the FIPA-ACL semantics sup-
port provided by eXAT, an Erlang-based FIPA-compliant agent
platform, developed by the authors, which uses the Erlang
language to offer a complete environment for the realization
of the behavioral, intelligent and social parts of an agent.
eXAT agents can thus exploit a FSM-based abstraction for the
behavioral part and an Erlang-based rule processing engine
(with its own knowledge base) for the implementation of agent’s
reasoning process. In this architecture, a SL Semantics Layer
is introduced to support FIPA-ACL semantics; such a module is
activated during messaging and is able to automatically check and
perform the feasibility precondition and rational effect relevant
to the communicative act sent or received. This is performed
by manipulating the knowledge base of the inference engines
of the sender/receiver agent, by checking for the presence of
suitable facts and/or asserting other facts, according to FIPA-
ACL semantics specification. ACL semantics handling is also
enriched with a reasoning module, charged with the task of
providing an “higher-level” messaging, based on agent actions—
rather than messages—that, after a semantics-aware reasoning
process, are transformed into communicative acts.

Keywords— Interaction Semantics, FIPA-ACL, Ontologies, Agent
Programming Platform, eXAT, Erlang

I. INTRODUCTION

To date, FIPA specification [26] is the most widely used and
referenced standard for the development of software agents
in both academic/research institutions and industries. Even if
there are few projects [30] that use different ad-hoc agent
architectures and models, FIPA is recognized as the leading
reference architecture for open and interoperable multi-agent
systems.

On this basis, some Java-based FIPA-compliant platforms
have been developed [9], [1], [7], and, among them, JADE [9]
can be now considered “the FIPA platform”, as it is the most
widely used in agent-based projects. All of these platforms
take care of only some aspects of FIPA specification, as they
provide a support for agent management, directory service,
ACL interaction, ontology specification and encoding, agent
behavior programming. But all of them fail to take into account
“agent intelligence”: As a consequence, one of the main contri-
bution of FIPA, which is the FIPA-ACL semantics [24], cannot
be supported1. As we argued many times [17], [18], [19],

1We consider FIPA-ACL semantics specification very important because
we argue that, without taking into account “mental attitudes” (i.e. goals,
plans, beliefs, etc.), FIPA specification can be considered a standard for the
interoperability of distributed reactive entities that could not necessarily be
“software agents”.

this gap between agent nature, FIPA specification and FIPA-
compliant platforms is due to the fact that the Java language is
not able to offer native statements to express logic constructs,
like those needed by FIPA-SL language [25]. Neither logic
predicates nor production rules can be described in Java and, to
this aim, additional tools must be introduced [2], [28], which,
however, use a different language and, in any case, are not
able to support FIPA-ACL semantics.

The first attempt to fill such a gap is represented by the
eXAT2 platform [14], [16], [15], [18], [19], which has been
developed by the authors (since 2003) with the aim of offering
an environment that takes care of the three main aspects
of agent-oriented programming: behavior, intelligence and
(semantic and syntactic) interoperability. The key feature of
eXAT that enables such an integration is the use of the Erlang
language [5], [8] for agent programming: It is a functional
language that, thanks to two main features—pattern matching
in function clause declaration and handling of symbols in
data—is very well suited for the implementation of both
(reactive) behaviors and (intelligent) production rules [18],
[13]. eXAT, designed to be FIPA-compliant, includes an
inference engine that can be tightly coupled with ACL message
exchanging, in order to support the reasoning process deriving
from the meaning of messages sent and received, according
to the semantics of FIPA-ACL. This mechanism exploits the
Erlang-native data types—atom (symbols), lists, tuples and
records—in order to represent SL sentences, handled as facts
or predicated for the knowledge base of running agents.

This paper describes the functionalities of the eXAT plat-
form from the point view of the support provided to build
semantics-aware agents. The paper focuses on the tools and
abstractions provided to write ontologies and use them not
only in agent messaging but also in rule-based inference
engines. Then the paper describes the support for FIPA-ACL
semantics dealing with the primitives and mechanisms for
semantic reasoning. A key aspect of the architecture is the use
of pluggable semantics, i.e. user-defined software modules that
can be plugged in the platform in order to implement an ad-hoc
semantic reasoning process. A comparison of the semantics
support of eXAT with other solution is also provided, showing
that, even if eXAT is still a work-in-progress3, its features seem

2erlang eXperimental Agent Tool.
3eXAT is an “experimental” platform and it has been mainly designed for

investigation purposes.

WOA 2005 28

�
1 -module (reactive_agent).
2
3 agent_loop () ->
4 E = wait_for_next_event (),
5 act (E),
6 agent_loop ().
7
8 act ({switch , on }) -> % act when switch is turned on
9 act ({switch , off }) -> % act when switch is turned off

10 act ({temperature , X}) when X > 30 ->
11 % act when the temperature is greater than 30
12 act ({temperature , X}) when X < 20 ->
13 % act when the temperature is less than 20
14 act (_) -> % unknown event, no action

� �

Fig. 1. A simple pure-reactive agent in Erlang

able to provide a “semantic environment” more flexible and
complete than that of other similar proposals.

The paper is organized as follows. Section II illustrates
the motivations behind our choice of employing the Erlang
language in writing agent systems (and thus the reasons why
we developed eXAT). Section III gives a brief overview of
the eXAT platform. Section IV describes the support for SL
and ontology handling in eXAT. Section V deals with the
semantic framework. Section VI compares our approach with
other solutions. Section VII concludes the paper.

II. WHY ERLANG?

Some of the main reasons that led us to choose Erlang as
a possible language for the development of agent systems,
and that in turn guided us in realizing the eXAT platform, are
discussed in [17], [19]. In those papers, the authors first derive
an abstract model of intelligent agent, based on the concepts
of finite-state machine and rule-production system, and then
introduce some properties that should be met by an agent
programming language. Here, the basic properties of agents
listed in [32]—reactivity, pro-activeness and social ability—
are instead taken into account and, starting from them, the
reasons for the use of Erlang are subsequently derived.

A. Reactivity

An agent has the basic capability of reacting to incoming
events. This includes e.g. a change of the state of the reference
environment, the arrival of a messages from the user or other
agents, the occurrence of exceptional conditions, etc. An event
can be considered featured by a type and additional data
bound to the event itself (e.g. for an incoming message, the
additional data could be the payload) and, on this basis,
suitable predicates on bound data can discriminate various
reaction cases to events of the same kind.

From the programming point of view, reacting to events
implies to provide (i) an abstraction for modeling events and
(ii) some constructs or library calls to specify the computation
to be triggered when a particular event occurs, also given that
the bound data could be subject to certain conditions. Erlang
seems particularly suitable to face such requirements for the
following reasons:

�

rule (Engine , {’child -of ’, X, Y}, {female , Y}) ->
eresye :assert (Engine , {’mother -of ’, Y, X});

rule (Engine , {’child -of ’, X, Y}, {male , Y}) ->
eresye :assert (Engine , {’father -of ’, Y, X}).

� �

Fig. 2. Some Erlang function clauses expressing inference rules

1) Erlang is a symbolic language (like Prolog or LISP),
and it is known that the use of literal symbols (atoms)
facilitates the representation of constants in data4. Struc-
tured information can be represented as tuples5 and,
since they are untyped, are well-suited for heteroge-
neous data [31] and thus particularly appropriate for
event types that could be very different one another.
For example, the state of a switch can be represented
as {switch, on } or {switch, off }, a sensed
temperature with {temperature, 25 }, an incoming
message as {message, ’QUERY-IF’, {sender,
’UserAgent’ }}, etc.

2) Erlang is a functional language and functions can have
multiple clauses, each one expressing a match on one
or more parameters; clauses can also have guards to
specify more complex matching expressions. Matching
on function definition can be exploited to specify the
computation to execute following an incoming event
formed as desired: Function (clause) declaration will
specify the matching criteria relevant to a triggering
event, while function body will implement the associated
action.

The example in Figure 1 shows a practical usage of the
concepts indicated above. The listing in the Figure reports
a possible implementation of a (very simple) pure reactive
agent programmed in Erlang. Agent’s main loop (function
agent loop , lines 3–6) waits for an incoming event and
then executes the associated action; computations tied to
events are specified by using multiple clauses of the function
act , each one specifying a different matching value for the
parameter: When the function is invoked using the event
acquired (line 5), only the matching clause is activated (if one
exists, otherwise the default clause—line 14—is chosen). As
the reader can appreciate, using symbols, structured data and
function with several clauses improve not only engineering
and implementing reactive agents, but also the readability of
the source code.

B. Pro-Activeness

Pro-activeness means the capability of an agent to develop
and execute plans, in order to achieve a specific goal. Unless
specific BDI tools are employed [6], [28], such an ability is
generally supported by means of a rule production system [3],

4A symbol (atom), in Erlang, is a string constant beginning with a lowercase
letter or any string literal enclosed in single quotes, e.g. ’My atom’ .

5A tuple, in Erlang, is a comma-separated set of identifiers enclosed in
graph braces.

WOA 2005 29

[2], [4], [13], featuring a knowledge base and a set of infer-
ence rules. In this context, Erlang’s features are particularly
interesting for the following reasons:

1) Symbols and primitive types (i.e. atoms and tuples)
are well suited to represent facts of a knowledge base;
moreover the use of the same types for facts and events
(i.e. tuples) facilitates agent programming, allowing the
direct use of event data in the knowledge base.

2) Function clauses, which indeed represent predicates on
parameters that if matched activate the clause, fit well in
the representation of the precondition part of a rule; at
the same time, the function body can represent the action
part.

3) The Erlang-native pattern matching mechanism facilitates
the implementation of rule-handling algorithms, also im-
proving processing performances.

Note that despite Erlang’s capability to represent rules, the
language and run-time system do not include an engine for
rule processing, which has to be provided by an external tool6.
For this reason, the ERESYE system has been designed by the
authors [13] and it has been included in the eXAT platform.
ERESYE is an Erlang-based rule production system featuring
the same characteristics (from both the syntactic and semantic
point of view) of other well-known similar tools, such as
OPS5 [20], [21], CLIPS, Jess, etc.

The example in Figure 2 gives a sketch of Erlang function
clauses used as rules of an ERESYE inference system. In the
example, the rules shown permit to enrich the knowledge by
deriving the concepts of ’father-of’ and ’mother-of’ ,
on the basis of the knowledge of the ’child-of’ and
“gender” concepts.

In the eXAT platform, ERESYE is used not only to
support a (user-defined) agent’s reasoning process but also the
inference process required by ACL message semantics, as it
will be explained in Section V.

C. Social Ability

Agent-oriented engineering is based on subdividing a whole
application into a set of goals to be achieved by several
cooperating agents; thus the possibility of supporting interac-
tion among agents is a mandatory functionality of any agent
programming language or platform. The Erlang language and
its run-time system have been explicitly designed to support
communication, thus providing the programmer with a set of
smart and flexible language constructs to perform message
exchanging among (local or remote) processes. Messages that
can be exchanged are basic Erlang data types and include
atoms, tuples, strings, lists, etc., no further manipulation (e.g.
enveloping, etc.) is needed. Moreover, language constructs for
interaction do not change should a receiving process be local
or remote. As reported in [8], [18], the programming model
of applications in Erlang is based on subdividing a problem
into a set of tasks to be assigned to the same number of
concurrent processes that share nothing and interact each other

6Erlang is functional, not logic.

DF

AMS

......
Agent

Agent
eXAT Platform

Agent behaviours ERESYE engines

ACL Semantics

Module

ACL Interface

SL Codecs

MTP (HTTP) module

Network

ontology−specific codecs

Fig. 3. Architecture of the eXAT Platform

only by means of message passing. The reader can appreciate
the similarity between this model and the basics of multi-
agent systems: Erlang concurrency model and interaction con-
structs seem thus perfect “as-is” to support interactions among
(Erlang-programmed) agents. The only concern is with the
exchanging protocol and data representation, which is Erlang-
proprietary and thus non-standard (even if it is documented).
An agent platform is thus needed when standard messaging,
as in FIPA, is required to favor the interoperability with
different platforms and agents written with other programming
languages.

III. OVERVIEW OF EXAT

Even if the eXAT platform has been already described
in [14], [15], [16], [17], [19], [18], [13], it is worthwhile to
give an overview of it, in order to help the reader in better
understanding the remaining part of the paper.

The eXAT platform has been designed with the objective
of providing an “all-in-one” environment to execute agents
and to program them in their behavioral (reactive), intelligent
(pro-active) and cooperative (social) parts, all with the same
language (Erlang).

Agent behaviors can be programmed by means of finite-
state machines (FSMs), enriched with the possibility of using
composition, i.e. serial and parallel execution of sub-FSMs,
and extension, i.e. refining some parts of an existing FSM
(according to the concept of virtual inheritance proper of the
object-oriented technology) in order to support new require-
ments.

Agent intelligence is instead programmed by means of
rule-based code, supported and executed by the ERESYE
tool (as briefly illustrated in the Section II). An ERESYE

WOA 2005 30

(a) wine.onto
�
class (wine_grape) ->
{ name = [string , mandatory , nodefault] };

class (wine) ->
{ name = [string , mandatory , nodefault],

color = [string , mandatory , nodefault],
flavor = [string , mandatory , nodefault],
grape = [set_of (wine_grape), mandatory , nodefault],
sugar = [string , mandatory , nodefault]};

class (’red -wine ’) -> is_a (wine),
{ color = [string , mandatory , default (red)] };

class (’white -wine ’) -> is_a (wine),
{ color = [string , mandatory , default (white)] };

class (’Chianti ’) -> is_a (’red -wine ’),
{ sugar = [string , mandatory , default (dry)] }.

� �

(c) wine agent.erl
�
-module (wine_agent).
-include (" wine .hrl "). % include the ontology records

on_starting (Self) ->
ontology_service :register_codec ("wine ",

wine_ontology_sl_codec).

send_inform_action (Self , _, _, _) ->
acl :inform (
#aclmessage { sender = Self ,

receiver = Dest ,
ontology = wine ,
content = #’Chianti ’ {

name = ’Barone Ricasoli ’,
grape = ...,
flavor = ... }

}).

� �

(b) wine.hrl
�

-record (’ wine_grape ’, {
’name ’}).

-record (’ wine ’, {
’name ’,
’color ’,
’flavor ’,
’grape ’,
’sugar ’}).

-record (’ red -wine ’,{
’name ’,
’color ’ = ’red ’,
’flavor ’,
’grape ’,
’sugar ’}).

-record (’ white -wine ’, {
’name ’,
’color ’ = ’white ’,
’flavor ’,
’grape ’,
’sugar ’}).

-record (’ Chianti ’, {
’name ’,
’color ’ = ’red ’,
’flavor ’,
’grape ’,
’sugar ’ = ’dry ’}).

� �

Fig. 4. The “wine” ontology and an excerpt of the generated include file

engine, together with its programmed rules, can be bound to
an agent of the platform in order to support agent’s inference:
The knowledge base of the engine can thus represent agent’s
mental state, while production rules support agent’s reasoning
process. ERESYE engine’s events can be bound to behaviors,
thus allowing reasoning processes to also trigger user-defined
agent actions.

Agent interaction is performed by means of the exchange
of FIPA-ACL messages; this is supported by the eXAT’s ACL
modules that include library functions to send and receive
communicative acts and codecs for user-defined ontologies.
Message exchanging is mainly connected to behavior execu-
tion in order to make possible the occurrence of a proper event
when a new message is delivered to the agent. But message
exchanging is also able to influence agent’s mental state thanks
to the support of FIPA-ACL semantics: An incoming message
is processed by the ACL semantics module and, according
to the performative name and the message content, suitable
actions are performed on the knowledge base of the ERESYE
engine bound to the receiving agent. The details of such a
process are reported in Section V.

Figure 3 reports a sketch of the architecture of the platform.

According to FIPA abstract architecture [22], the platform (at
runtime) includes also the MTP module7, as well as AMS and
Directory Facilitator agents, which provide the agent directory
and the service directory, respectively.

IV. WRITING AND USING ONTOLOGIES IN EXAT

One of the key features that allows interoperability in multi-
agent systems is to make interacting agents sharing the same
concepts in their “universe of discourse”: In other words,
they should share the same ontology. Ontology writing and
manipulation is thus a mandatory characteristic that any FIPA-
compliant agent platform has to feature, as well as modules to
translate messages, written in the SL language [25], [23], into
constructs and data types proper of the programming language
employed (and vice-versa).

In order to comply with these requirements, eXAT provides
a support for ontologies—i.e. concepts organized in classes
with hierarchies—and for their use in agent behaviors, agent
messaging and ERESYE engines. Ontologies can be written,
in a specification file, using a (more or less) standard notation;

7Current eXAT version supports only the HTTP message transport protocol.

WOA 2005 31

Erlang−encoded
messages

MTP (HTTP)

SL−encoded messages

SL Codec Layer

......

Ontology−specific codecs

ACL Interface

eXAT Platform
Agent

Network

(a) without ACL semantics support

ACL_S Interface

Agent

......

SL Semantics

Pluggable semantics

......

MTP (HTTP)

SL Codec Layer

Ontology−specific codecs

Network

ACL Interface

eXAT Platform

(b) with ACL semantics support

Fig. 5. Architecture of modules for message exchanging and handling in eXAT

in the current version of eXAT, ontologies can be written
using an ad-hoc Erlang-like syntax, as Figure 4a illustrates,
while the ability to translate files written in standard notations,
such as OWL, or by means of visual tools, such as Protégé,
will be available in the next releases of the platform. Then
a suitable Ontology Compiler, provided with eXAT8, is able
to parse such ontology specification files and generate the
relevant Erlang type definitions to be used in agent source
code. Since Erlang is not object-oriented, a task of the Ontol-
ogy Compiler is also to transform the object-based ontology
specification into an Erlang-readable (non-object-based) form,
while maintaining semantics. This is performed by generating
some functions that reflect the class hierarchy.

In detail, the Ontology Compiler generates, from the ontol-
ogy specification file, the following Erlang sources:

i) An Erlang (.hrl) include file, which reports the definition
of an Erlang record for each class9, provided that the
hierarchy is “flattened” by incorporating each attribute
of a class/record into all the relevant child class/records;
therefore, creating a fact referring to an object of class
’T’ implies to create and Erlang record of type ’T’ .
Figure 4b reports an excerpt of the include file generated
from the “wine” ontology in Figure 4a.

ii) An Erlang source (.erl) file (class-hierarchy file), con-
taining information on class hierarchy, which is lost in the
include file, and encoded by means of suitable is a and
childof functions. This source file also contains some
functions to perform class typecasting (up- and down-
casting).

8Also the Ontology Compiler is written in Erlang.
9An record in Erlang is like a “struct” in C, it has a name and a set of

named fields; however, according to Erlang syntax and unlike C, fields are
untyped.

iii) An Erlang source (.erl) file (parser file), containing the
parser (codec) for the translation of the concepts defined
with Erlang records from/to FIPA-SL language.

Once generated, the .hrl file can be included in the agent
source code in order to allow a programmer to directly use the
generated Erlang records in the specification of and access to
a message content. The other files, once compiled, are instead
used as libraries. Functions provided by the class-hierarchy
file can be used by ERESYE engines and/or agent’s code to
perform check or manipulation of ontology records. Functions
provided by the parser file are instead internally used by
the eXAT platform to perform automatic encoding/decoding
of message contents. To this aim, eXAT provides a function
call that agents can use to register an ontology by giving its
name and the name of the parser module (codec) generated by
the Ontology Compiler. This means that, when a message is
received through the network by the platform’s MTP module
(see Figure 5a), its SL-encoded payload is passed to the
SL codec layer: If the ontology specified in the message
is registered, the relevant ontology-specific codec is called
and the message content is automatically translated into the
relevant Erlang record(s)10. A similar process is performed
when a message has to be sent: Erlang record(s) can be directly
used in the source code and it’s up to the ontology-specific
codec to perform automatic Erlang-to-SL translation.

As an example, Figure 4c shows a piece of code
of an agent that, after startup, registers the codec for
the “wine ” ontology (function on starting) and, when
send inform action is called, sends an “inform” speech
act containing information on a Chianti wine.

10If the ontology is not registered the content is passes as is, i.e. encoded
in a string.

WOA 2005 32

(a) SL
�
(B

(agent -identifier
:name alice@JADE
:address

(set (http :// csanto .diit .unict .it:7778/ acc)))
(temperature 50 C)

)

--
(I

(agent -identifier
:name alice@JADE
:address

(set (http :// csanto .diit .unict .it:7778/ acc)))
(done
(action

(agent -identifier)
(purchase computer 500)

)
)

)

--

(iota
?x
(temperature ?x C))

� �

(b) Erlang
�
#’B ’ {

identifier =
#’ agent -identifier ’ {

name = "alice@JADE ",
addresses = ["http :// csanto it :7778/ acc "]

},
formula =

#temperature {value = "50 ", um = "C" }
}
--
#’I ’ {

identifier =
#’ agent -identifier ’ {

name = "alice@JADE ",
addresses = ["http :// csanto it :7778/ acc "]

},
formula = #done {

action = #action {
identifier = #’ agent -identifier ’ { },
action = #purchase { item = "computer ",

price = "500 " }}
}

}
--
#iota { term = #var {name = "x" },

formula = #temperature {
value = #var {name = "x" },
um = "C" }}

� �

Fig. 6. Correspondence between some SL constructs and the relevant constructs traslated in Erlang by eXAT

V. THE SEMANTIC FRAMEWORK OF EXAT

A. eXAT and the FIPA Semantic Language

Supporting FIPA-ACL semantics in an agent platform
means to tie the acts of sending and receiving a message
to agent’s mental state and reasoning process. In fact, the
basic principles regulating FIPA-ACL semantics are in the so-
called feasibility precondition (FP) and rational effect (RE):
For each communicative act type, FP is a predicate, on
sender’s mental state, that has to be true for the message
to be sent, while RE represents a condition, on sender’s and
receiver’s mental state, to be met when the message has been
delivered [24]. These conditions are expressed using modal
logic constructs that have their concrete representation and
implementation in the SL language. Moreover, the semantics
of many communicative acts is based on the fact that the
content field of a message is also expressed in SL or, if this
is not the case, in a language that is able to represent the SL’s
modal logic semantic constructs. SL can be thus considered
not only a simple content language but also a mandatory
building block for a concrete support of FIPA-ACL semantics.

Following the statement above, and given that eXAT allows
agents to handle message contents using Erlang types, not SL
constructs, a suitable way to represent SL logic expressions
is also needed in the platform. In this sense, eXAT handles
SL constructs using a model similar to that of ontologies:
SL sentences and operators are translated into suitable Erlang
records, where the record name is equivalent to the name of
the SL operator, while the other fields represent the arguments.
As an example, Figure 6 reports the correspondence between

some SL constructs and the relevant constructs translated
in Erlang records; in particular the Figure shows the “B ”
(believes) and “I ” (intends) modal operators, and the “ι” (iota)
referential operator. This means that, in encoding/decoding
a message content (see Figure 5a), SL-specific constructs
and operators are first taken into account by the SL Codec
Layer; then all other non-SL-specific constructs that appear in
the message are passed to the ontology-specific codec, thus
building the final message in the proper representation. Note
that the use of Erlang records to represent SL constructs is
not a case, since such types can be directly used in ERESYE
engines; this means that not only message contents but also
SL constructs can take concrete part to the agent’s reasoning
process.

B. Architecture and Functionality

FIPA-ACL semantics is supported, in eXAT, by means
of several modules that connect the incoming and outgoing
messages to the “agent’s mind”, i.e. the ERESYE engine
representing agent’s mental state. With reference to Figure 5b,
which reports the architecture of eXAT with ACL semantics
support, such modules are ACL Interface, SL Semantic Layer
and ACL S Interface. The first two are the main modules
responsible for handling the basic FIPA-ACL semantics, while
the third module, ACL S Interface, is charged with the task
of providing an “higher-level” messaging, based on agent
actions—rather than messages—that, after a semantics-aware
reasoning process, are then transformed into communicative
acts (this functionality is detailed in Section V-C).

WOA 2005 33

In order to use the semantic support, an agent has to activate
it; this is performed by means of a suitable function, to be
called in the agent’s body, that also associates an ERESYE
engine to the agent, to be used as “agent’s mind”. After that, as
Figure 5b depicts, each incoming (resp. outgoing) message is
processed by the SL Semantic Layer before being delivered to
the agent (resp. sent through the network). On the basis of the
message’s direction (incoming or outgoing), the SL Semantic
Layer performs the following tasks:

a. Outgoing messages. Before sending a message, the SL
Semantic Layer checks for its feasibility precondition,
according to the communicative act being issued. Since
FP is based on SL modal logic predicates, this opera-
tion is performed by checking that the relevant Erlang-
translated SL expressions are asserted (i.e. present)—or not
asserted—in the knowledge base of the ERESYE engine
representing the sender agent’s mental state. For example,
for a “confirm” communicative act whose content is X , the
FP is BiX ∧ BiUjX

11, thus the task of the SL Semantic
Layer is to verify that facts “X ” and “#’U’ {identifier
= j, formula = X}” are present in i’s mind.
When the message has been successfully sent, the SL
Semantic Layer performs the rational effect for the
sender agent, that is, it asserts the facts that reflect,
in sender agent’s mental state, the communicative act
semantics following message forwarding. For “confirm”,
for example, the SL Semantic Layer will assert the
fact “#’B’ {identifier = j, formula = X}” in
i’s mind. Appropriate internal rules are also implemented to
avoid consistency problems in the presence of contradictory
facts; as instance, the assertion of both BjX and UjX

results in a contradiction, so an internal rule is used to
remove (in this case) the latter fact, leaving the former
asserted.

b. Incoming messages. When a message is received in a
platform, before forwarding it to the destination agent, the
SL Semantic Layer is charged with the task of asserting the
FP and performing the RE (for the receiver agent12), that is
(once again) to assert the proper facts, in the agent’s mind,
according to the communicative act and message context.
For a “confirm” communicative act with content X , for
example, the RE will be the assertion of X in receiver
agent’s mind.

The internal architecture of the SL Semantic Layer is
organized in a way as to provide a great flexibility in semantics
handling, allowing a programmer to define and implement its
own semantic support. Such a functionality is achieved by
means of pluggable semantics module, i.e. Erlang modules13

that can be plugged-in at run-time in order to support user-
defined semantics. In fact, it should be noted that, even if

11The formula means that “i believes X and it believes that j is uncertain
about X”, where i is the sender and j is the receiver.

12These operations are performed only if the receiver agent has enabled the
support for ACL semantics.

13A “module” in Erlang is a set of functions belonging to the same source
file.

FIPA-ACL semantics is a FIPA-approved standard, it has
been often criticized14 and alternative proposals have been
provided [12]; therefore the possibility of employing user-
defined semantics is, in the authors’ opinion, a very important
characteristics that any semantics-aware agent platform should
feature.

In eXAT, plugging-in operation is performed at the agent
level, using the same function call that enables ACL semantics
for an agent; this function, called agent:set rational ,
takes two arguments: (i) the name of the ERESYE en-
gine representing agent’s mind and (ii) the name of the
Erlang module implementing the code for semantic sup-
port (in particular, for FIPA-ACL standard, the module is
“fipa std semantics ”).

In order to be plugged-in, semantics modules must export
two functions: is feasible and rational effect . The
former is called by the SL Semantic Layer before sending
the message, by passing, together with the message to be
sent, the (identifier of the) sender agent and the (identifier
of the) ERESYE engine representing sender agent’s mind.
Multiple clauses of this function can be used to discriminate
the action to be taken on the basis of the different com-
municative act carried by the message. The latter function—
rational effect —is instead called when the message is
sent (from sender’s side) and received (from receiver’s side).
The function takes the same data of the former function plus
an additional parameter, which can assume the value of one
of the atoms “sender” or “receiver” and indicates the peer
at which the function is called. Also in this case, multiple
clauses can discriminate the various cases, i.e. sender or
receiver side, as well as the communicative act, thus allowing
the implementation of the rational effect appropriate for the
message.

An additional feature of the pluggable semantics support
is the possibility of refining some parts of another semantics
module, according to the principles of code inheritance, proper
of the object-oriented technology. Programmers can “inherit”
all the functionalities of a yet existing semantics module
and modify only some parts of it, e.g. the FP of one or
more communicative act, the RE of only one communicative
act at sender side, etc. In this case, the programmer has to
specify the name of the module to extend and then to write
only the functions implementing the new functionalities. Such
an object-based behavior (which is not Erlang-standard but
provided by eXAT as an additional feature) introduces great
flexibility and improves semantics engineering a lot. As an
example, Figure 7 shows a user-defined semantics module that
inherits all functionalities from “fipa std semantics ”
(see functions extends) and overrides the actions to be taken
for the “inform” communicative act. In particular, no checks

14One of the main critique is that FIPA agents are “benevolent”, e.g. issuing
an “inform” implies, as a precondition, that the sender has to believe what it
is saying: So a FIPA agent cannot lie. But this could not be a practical case,
as in auctions, for example, a competitive behavior could also consider lying
in order to try to convince other agents to give up bidding and thus win the
auction.

WOA 2005 34

�
-module (fipa_semantics_simple).
-export ([extends/0, is_feasible/4, rational_effect /5]).
-include ("acl.hrl").
-include ("sl.hrl").

extends () -> fipa_std_semantics .

is_feasible (Self, Agent , Engine,
AclMessage =

#aclmessage { speechact = ’INFORM ’ }) ->
true .

rational_effect (Self , Agent, Engine ,
AclMessage =

#aclmessage { speechact = ’INFORM ’ },
sender) ->

% rational effect on sender side
Fact = #’B’ {identifier = AclMessage #aclmessage .receiver,

formula = AclMessage #aclmessage.content },
eresye :assert (Engine , Fact),
true ;

rational_effect (Self , Agent, Engine ,
AclMessage =

#aclmessage { speechact = ’INFORM ’ },
receiver) ->

% rational effect on receiver side
eresye :assert (Engine , AclMessage #aclmessage.content),
true .

� �

Fig. 7. A pluggable semantics module

are performed for the FP, while some facts are asserted for
the RE.

C. Semantics-aware Messaging in eXAT

The interaction model of eXAT, as that of other agent
platforms, is based on the assumption that agents explicitly
perform the actions of sending and receiving communicative
acts as part of their behavior. To this aim, appropriate “send”
and “receive” primitives (or equivalent mechanisms) are avail-
able to agent programmer.

But the situation could change when ACL semantics is
considered, since the actions of sending and receiving a
message are intrinsically and tightly connected to the agent’s
mental state, which is dynamic in nature. A clear example
is the “confirm”/“inform” question; given that both of these
communicative act are used for the same purpose (commu-
nicating that a given proposition is true), the use of one of
these depends on the feasibility precondition: If the sender
believes that the receiver is uncertain about the proposition
then a “confirm” should be used, otherwise an “inform” is
made necessary.

Another example, is the fact that some communicative acts
carrying certain proposition are considered equivalent to other
communicative acts. As instance, saying that agent j agrees to
perform a requested action a (“agree” comm. act) is equivalent
to inform that j intends to do a, i.e. IjDone(a); this means
that issuing an “inform” communicative act with IjDone(a)
as content, and given that j has received a prior request to do
a, should result in an “agree”, instead of “inform”.

For these reasons, in ACL semantics-aware agents, a better
approach seems to avoid the direct use of communicative acts
and replace them “higher level” actions [10], [11].

In eXAT, such a support is provided by the ACL S Interface
(see Figure 5b), which offers to the agent a set of primitives
for high-level actions derived from grouping the various com-
municative acts into some categories. Such a categorization
has been performed following not only the principles of the
speech act theory [29], but also the semantic equivalence of
some communicative acts as reported in [24]. However, note
that the functionalities of the ACL S Interface, as well as
the communicative act categorization, is still at a preliminary
experimental level.

The categories considered are:

• Assertive—This category holds all communicative acts
that express the truth of a proposition. The acts are
“accept-proposal”, “agree”, “cancel”, “confirm”, “dis-
confirm”, “inform”, “refuse” and “reject-proposal”.

• Directive—This category holds all communicative acts
that express the desire of the sender agent that an action
has to be performed, i.e. “cfp”, “request”, “request-
when”, “request-whenever”, “propagate” and “proxy”.

• Interrogative—This category holds all communicative
acts that express a query to a given agent. Communicative
acts of this category are “query-if ” and “query-ref ”.

• Exceptional—This category holds all communicative acts
that express an (exceptional) error condition, i.e. “not-
understood” and “failure”.

The ACL S Interface provides a different primitive—
i.e. assert , perform , query , report —for each of the
four categories; each of these primitives, on the basis of the
message content passed as parameter and the sender agent’s
mental state, builds the proper communicative act and then
sends it. For example, invoking the query primitive with a
referential operator as message content (i.e. #iota , #all
or #any) will automatically results in a “query-ref ” commu-
nicative act, while, if the content is a simple proposition, a
“query-if ” is issued.

The ACL S Interface is also able to react to incoming
messages by automatically sending a reply on the basis of
the knowledge of the receiver agent, present in the associated
ERESYE engine. For example, if a “request” is received
and the knowledge base of the receiver agents contains a
fact expressing that the agent (already) has the intention of
doing the action, then an “agree” is automatically replied.
Similarly, if a “query-ref ” is received, the knowledge base of
the ERESYE engine of the receiver agent is queried for facts
meeting the referential expression, and a subsequent “inform”
is generated and issued.

Such an automatic reaction process can be however con-
trolled by the receiver agent, in order to allow agents main-
taining their autonomy, as this is a mandatory characteristic
of agent technology.

VI. RELATED WORK

Currently, the sole proposal15 dealing with FIPA-ACL se-
mantics is the JADE Semantic Agent [27] (JSA), presented, for

15At the time this paper has been written.

WOA 2005 35

the first time, at AAMAS 2005. JSA is a JADE add-on that
implements a reasoning engine that, on the basis of agent’s
knowledge and some built-in production rules, is able to auto-
matically generate and send the messages needed for an agent
to achieve its goal. Similarly, incoming communicative acts are
processed in order to affect receiver agent’s knowledge on the
basis of the rules of FIPA-ACL semantics, thus automatically
generating a proper reply, if needed.

A great advantage of JSA is that it can be integrated
in JADE, even if this integration is not so tight. In fact,
JSA requires to handle concepts directly in SL forms, using
Java strings in agent’s code and without any connection to
JADE ontology framework. This impedes (or burdensome)
the operation of porting agents that yet use JADE ontologies
to a “semantics-aware” form, but such agents will have to
be almost entirely rewritten. Moreover, even if the reasoning
framework provides a programming capability (e.g. user-
defined “listeners” can be defined when a fact has been
asserted), the rules implementing the reasoning process are
built-in and cannot be modified to implement an ad-hoc
semantic support.

From this point of view, the semantic support of eXAT
seems more flexible, as it is basically possible to use the same
Erlang structures (and the same data) to represent message
contents, SL expressions and facts, thus tightly avoid any form
of data conversion to use a message content or SL expression
in a rule-based reasoning (and vice-versa). Moreover, not
only a user-defined reasoning process can be implemented
through the provided ERESYE tool, but also the FIPA-ACL
semantics support is programmable, thus giving the program-
mer a full control over the reasoning mechanisms behind
semantics handling and providing a flexible and complete
agent programming environment. The only issue could be that
eXAT is based on Erlang, not Java, but, as argued in [14],
[15], [16], [17], [19], [18], Java does not seem the best choice
for agent implementation.

VII. CONCLUSIONS

In this paper, the semantic framework of eXAT has been
presented. Such a framework is able to support FIPA-ACL
semantics, thus allowing the implementation of “really ra-
tional” agents. This objective has been achieved by means
of a platform architecture that integrates and connects one
another the modules for messaging, ontology handling and
rule-based reasoning. Moreover, the full programmability of
such modules provides a very flexible environment for the
development of semantics-aware multi-agent systems.

REFERENCES

[1] “http://fipa-os.sourceforge.net/. FIPA-OS Web Site.” 2003.
[2] “http://herzberg.ca.sandia.gov/jess/. JESS Web Site,” 2003.
[3] “http://www.ghg.net/clips/CLIPS.html. CLIPS Web Site,” 2003.
[4] “http://www.drools.org. Drools Home Page,” 2004.
[5] “http://www.erlang.org. Erlang Language Home Page,” 2004.
[6] “http://www.agent-software.com,” 2004.
[7] “http://sourceforge.net/projects/zeusagent/. ZEUS Agent Toolkit Web

Site.” 2005.

[8] J. L. Armstrong, M. C. Williams, C. Wikstrom, and S. C. Virding,
Concurrent Programming in Erlang, 2nd Edition. Prentice-Hall, 1995.

[9] F. Bellifemine, A. Poggi, and G. Rimassa, “Developing multi-agent
systems with a FIPA-compliant agent framework,” Software: Practice
and Experience, vol. 31, no. 2, pp. 103–128, 2001.

[10] F. Bergenti and A. Poggi, “A development toolkit to realize autonomous
and interoperable agents,” in 5

th International Conference on Au-
tonomous Agents (Agents 2001), Montreal, Quebec, Canada, 2001.

[11] ——, “Formalizing the Reusability of Software Agents,” in 4
th Interna-

tional Workshops on Engineering Societies in the Agents World (ESAW
2003), London, UK, 2003.

[12] M. Colombetti, N. Fornara, and M. Verdicchio, “A Social Approach to
Communication in Multiagent Systems,” in First International Workshop
on Declarative Agent Languages and Technologies (DALT 2003), vol.
LNCS 2990. Melbourne, Australia: Springer, 2003.

[13] A. Di Stefano, F. Gangemi, and C. Santoro, “ERESYE: Artificial
Intelligence in Erlang Programs,” in Erlang Workshop at 2005 Intl. ACM
Conference on Functional Programming (ICFP 2005), Tallinn, Estonia,
25 Sept. 2005.

[14] A. Di Stefano and C. Santoro, “eXAT: an Experimental Tool for
Programming Multi-Agent Systems in Erlang,” in AI*IA/TABOO Joint
Workshop on Objects and Agents (WOA 2003), Villasimius, CA, Italy,
10–11 Sept. 2003.

[15] ——, “eXAT: A Platform to Develop Erlang Agents,” in Agent Exhibi-
tion Workshop at Net.ObjectDays 2004, Erfurt, Germany, 27–30 Sept.
2004.

[16] ——, “Designing Collaborative Agents with eXAT,” in ACEC 2004
Workshop at WETICE 2004, Modena, Italy, 14–16 June 2004.

[17] ——, “On the use of Erlang as a Promising Language to Develop Agent
Systems,” in AI*IA/TABOO Joint Workshop on Objects and Agents
(WOA 2004), Torino, Italy, 29–30 Nov. 2004.

[18] ——, “Supporting Agent Development in Erlang through the eXAT
Platform,” in Software Agent-Based Applications, Platforms and De-
velopment Kits. Whitestein Technologies, 2005.

[19] ——, “Using the Erlang Language for Multi-Agent Systems Implemen-
tation,” in 2005 IEEE/WIC/ACM International Conference on Intelligent
Agent Technology (IAT’05), Compiégne, France, 19–22 Sept. 2005.

[20] C. Forgy, “OPS5 Users Manual,” Dept. of Computer Science, Carnegie-
Mellon Univ., Tech. Rep. CMU-CS-81-135, 1981.

[21] ——, “The OPS Languages: An Historical Overview,” PC AI, Sept.
1995.

[22] Foundation for Intelligent Physical Agents, “FIPA Abstract Architecture
Specification—No. SC00001L,” 2002.

[23] ——, “FIPA ACL Message Representation in String Specification—No.
SC00070I,” 2002.

[24] ——, “FIPA Communicative Act Library Specification—No.
SC00037J,” 2002.

[25] ——, “FIPA SL Content Language Specification—-No. SC00008I,”
2002.

[26] ——, “http://www.fipa.org,” 2002.
[27] T. Martinez and L. Vincent, “JADE Semantic Framework,” in JADE

Workshop at 4
th AAMAS 2005, Uthrect, The Netherlands, 2004.

[28] A. Pokahr, L. Braubach, and W. Lamersdorf, “Jadex: Implementing a
BDI-Infrastructure for JADE Agents,” Telecom Italia Journal: EXP - In
Search of Innovation (Special Issue on JADE), vol. 3, no. 3, Sept. 2003.

[29] J. R. Searle, Speech Acts: An Essay in the Philosophy of Language.
Cambridge University Press, 1969.

[30] K. Sycara, M. Paolucci, M. van Velsen, and J. Giampapa, “The
RETSINA MAS Infrastructure,” Special joint issue of Autonomous
Agents and Multi-Agent Systems Journal, vol. 7, no. 1 and 2, July 2003.

[31] C. van Reeuwijk and H. J. Sips, “Adding tuples to Java: a study in
lightweight data structures,” Concurrency and Computation: Practice
and Experience, vol. 17, no. 5–6, pp. 423–438, 2005.

[32] M. J. Wooldridge, Multiagent Systems. G. Weiss, editor. The MIT
Press, April 1999.

WOA 2005 36

