
An Ontology-Based Similarity
between Sets of Concepts

Valentina Cordı̀, Paolo Lombardi, Maurizio Martelli and Viviana Mascardi
Dipartimento di Informatica e Scienze dell’Informazione – DISI,
Università di Genova, Via Dodecaneso 35, 16146, Genova, Italy.

Email: cordi@disi.unige.it, 2001s003@educ.disi.unige.it, martelli@disi.unige.it, mascardi@disi.unige.it

Abstract— To help sharing knowledge in those contexts where
documents and services are annotated with semantic information,
such as the Semantic Web, defining and implementing the
similarity between sets of concepts belonging to a common
ontology may prove very useful. In fact, if both the required and
the provided pieces of information (be they textual documents,
services, images, or whatever) are annotated with sets of concepts
taken from a reference ontology O, the evaluation of how good
a piece of information P is, w.r.t. the required one R, may be
based on the similarity between the two sets of concepts that
describe P and R.

One of the first applications of the agent technology, aimed
at “reducing work and information overload”, was that of
retrieving and filtering information in an automatic way. Thus,
the possibility to calculate the semantic distance between two
sets of concepts finds a natural application in the agent field, in
particular for improving those agents that act as “digital butlers”
for their human owners, by exploring the Semantic Web and
looking for useful documents and/or services.

Unfortunately, the metrics for calculating the semantic distance
between two sets of concepts that can be found in the literature,
are often very simple and do not meet some requirements that,
up to us, make the metric closer to the common sense reasoning.
For this reason, we have designed and implemented two new
algorithms for computing the similarity between sets of concepts
belonging to the same ontology.

I. INTRODUCTION

According to the Wikipedia encyclopedia (http://en.
wikipedia.org/wiki/),

The Semantic Web is a project that intends to create
a universal medium for information exchange by
giving meaning (semantics), in a manner under-
standable by machines, to the content of documents
on the Web.

The intent of the Semantic Web is thus to enhance
the usability and usefulness of the Web by means
of common metadata vocabularies (ontologies [7]) and
standard languages suitable for defining them, such as XML
(http://www.w3.org/TR/2004/REC-xml-20040204/),
XML Schema (http://http://www.w3.org/TR/2004/
REC-xmlschema-1-20041028/), RDF [6], RDF Schema
[2], and OWL [17].

In order to share knowledge within the Semantic Web, two
problems must be addressed:

1) The similarity between sets of concepts belonging to the
same ontology O must be defined, in order to allow a
user (be it a human or a software agent) interested in

documents dealing with topics in the set S1, to retrieve
also documents dealing with topics in the set S2, if S1

and S2 are “close enough” with respect to O.
2) Since it is not always possible to have a unique ontology

O to use as a reference for comparing sets of concepts,
documents are often tagged not only with a set of
concepts, but also with the ontology from which the
tagging concepts come from. In this case, maps between
different ontologies must also be provided.

These two problems, although typical of the Semantic Web
context, can be found in many other application scenarios, like
Multiagent, Peer-to-Peer and Grid systems, where the com-
parison of set of concepts is required to provide more precise
answers to the user’ requests. For example, [8] describes a
multiagent system for semantic-driven information retrieval,
based on the peer-to-peer model, where routing of requests
is performed by computing the similarity between the set of
concepts advertised by each agent (the concepts that are dealt
with by the agent’s documents) and the set of concepts that
characterise the documents looked for by the requesting peer.
The similarity is evaluated by referring to a unique ontology
that describes the system’s domain, and from which concepts
appearing both inside advertisements and requests are taken.

More in general, all the application scenarios where an
“intelligent” information retrieval and filtering is required,
may take advantage of programs and instruments that allow
to compare two sets of concepts w.r.t. an ontology. In fact,
all the “agents that reduce work and information overload”
[15] usually need to compare the meta-information extracted
from the retrieved document, with the meta-information that
describes the user’s interests. Very often, this meta-information
consists either of a set of keywords whose similarity can be
computed by using lexical ontologies such as WordNet, or of
a set of concepts taken from a reference ontology.

In this paper, we address the problem of defining a similarity
metric between sets of concepts belonging to the same ontol-
ogy. In Section II we review some existing metrics defined in
the literature to measure the similarity between two concepts
(and, very rarely, between two sets of concepts) in either a
taxonomy or an ontology. In Section III, we describe our
algorithms and provide motivations for the choice we made
in their design, and in Section IV we discuss our algorithms
and we conclude the paper with the future directions of our
work.

WOA 2005 16

II. AN OVERVIEW OF EXISTING METRICS

There are several techniques used to measure the similarity
of two concepts belonging to the same taxonomy, and these
techniques can be also applied to ontologies.

In particular the three main techniques are either 1) based
on the distance between concepts, or 2) based on information
content, or 3) based on a glossary. In this paper we take into
account only the first one.

A. Bouquet, Kuper, Scoz and Zanobini’s metric

In [1], Bouquet, Kuper, Scoz and Zanobini introduce two
kinds of distances, one between simple concepts, and one
between sets of simple concepts.
– Ontological Distance between simple concepts. The Onto-
logical Distance between c and c′, written Ds(c, c′), is the
length of the minimal path between the nodes corresponding
to c and c′ in the ontology O, if such a path exists, and is 0
otherwise. The ontology is defined in the usual way, as a graph
where nodes are labelled with concepts and arcs are labelled
with relations between couples of concepts.
– Ontological Distance between sets of simple concepts. Let A
and B be two sets of simple concepts. The ontological distance
between the sets A and B, Dc(A,B), is the sum of D(c, c′)
for each c in A and c′ in B.

Since this definition involves some redundancy, the notion
of normalized set of simple concepts is introduced:
– Normalized set of simple concepts. Let K be the set of simple
concepts occurring in a complex concept, namely a concept
that is built from simple concepts defined in some ontology O
and organized in a classification structure. A normalized set
of simple concepts K ′ contained in K is defined as the set of
all c belonging to K such that there is no path from c′ to c
in O for some c′ belonging to K.

The ontological distance between complex concepts CA and
CB is then defined as Dc(A′, B′), where A′ and B′ are the
normalized sets of simple concepts for A and B respectively,
and A and B are the sets of simple concepts occurring in CA
and CB, respectively.

B. Haase, Siebes, and van Harmelen’s metric

In [9], the similarity between two concepts belonging to
the same ontology, where a SubTopic relation is defined, is
evaluated as

S(t1, t2) =

{
e−αl · eβh−e−βh

eβh+e−βh if t1 6= t2
1 otherwise

where l is the length of the shortest path between topic
t1 and t2 according to the SubTopic relation, h is the level
in the tree of the direct common subsumer from t1 and
t2, and α >= 0 and β >= 0 are parameters scaling the
contribution of shortest path length l and depth h, respectively.
The intuition behind using the depth of the direct common
subsumer in the definition of the similarity is that topics at
upper layers of hierarchical semantic nets are more general
and are semantically less similar than topics at lower levels.

Given the function for calculating the similarity between
two individual topics, it is possible to define the distance
between two sets of concepts as

SF (s, e) =
1
|s|

·
∑
ti∈s

max
tj∈e

S(t1, tj)

C. Castano, Ferrara, Montanelli, and Racca’s metric

In [5], a term affinity function A(t, t′) is defined to evaluate
the affinity between two terms t and t′ with respect to a
thesaurus Th of terms and terminological relationships among
them.

A(t, t′) is equal to the value of the highest-strength path
of terminological relationships between t and t′ in Th if at
least one path exists, and is 0 otherwise. A path strength is
computed by multiplying the weights associated with each
terminological relationship involved in the path, that is:

A(t, t′) =
{

maxi=1..k {Wt→n
i t′} if k > 1

0 otherwise

where: k is the number of paths between t and t′ in Th;
t →n

i t′ denotes the ith path of length n ≥ 1; Wt→n
i t′ =

W1tr ·W2tr · · · · ·Wntr is the weight associated with the ith
path, where Wjtr such that j = 1, 2, ..., n denotes the weight
associated with the jth terminological relationship in the path.

In [3], Bulskov, Knappe, and Andreasen use basically the
same measure, namely the maximal multiplicative weighted
path length, on ontologies expressed in ONTOLOG [16].

D. Rada, Mili, Bicknell, and Blettner’s metric

In [18] the conceptual distance between any two concepts is
defined as the shortest path through a semantic network. The
semantic network taken into account is MeSH, a hierarchical
network of biomedical concepts that (at the time the paper was
published, namely in 1989) consisted of about 15,000 terms
organized into a nine-level hierarchy, with concepts related
by a broader-than relationships, which includes both is-a and
part-of relationships.

E. Leacock and Chodorow’s metric

The measure presented in [13] is similar to that defined by
Rada, Mili, Bicknell, and Blettner, since it is based on the
length of the shortest paths between noun concepts in a is-a
hierarchy. Leacock and Chodorow’s measure of similarity is
thus defined as follows:

simLeaCho(c1, c2) = max
[
− log

(
length(c1, c2)

(2D)

)]
where length(c1, c2) is the shortest path length between the

two concepts and D is the maximum depth of the taxonomy.
As we can see, the value of the shortest path length is scaled

by the depth D of the hierarchy, where depth is defined as the
length of the longest path from a leaf node to the root node
of the hierarchy.

WOA 2005 17

F. Wu and Palmer’s metric

Wu and Palmer [20] define a measure of similarity that is
also based on path lengths, however, they focus on the distance
between a concept to the root node.

Resnik [19] reformulates their measure slightly. This mea-
sure finds the distance to the root of the most specific node that
intersects the path of the two concepts in the is-a hierarchy.
This intersecting concept is the most specific concept that the
two concepts have in common, and is known as the “lowest
common subsumer” (lcs). The distance of the lcs is then scaled
by the sum of the distances of the individual concepts to the
node.

The measure is formulated as follows:

simWuPal(c1, c2) =
2 · depth(lcs(c1, c2))

depth(c1) + depth(c2)

where depth is the distance from the concept node to the
root of the hierarchy.

G. Hirst and St.Onge’s metric

Hirst and St.Onge [10] introduce a measure of relatedness
that considers many other relations beyond the is-a one, and
that is used for lexical ontologies. This measure classifies
relations as: horizontal, upward, or downward.

• Upward relations connect more specific concepts to more
general ones (i.e., is-a)

• Downward relations connect more general concepts to
more specific ones (i.e., is-a-kind-of)

• Horizontal relations maintain the same level of speci-
ficity.

The measure defined by Hirst and St.Onge has three levels
of relatedness: extra strong, strong and medium strong. An
extra strong relation is based on the syntactic form of the
words, while two words representing the same concept (i.e.,
synonyms) have a strong relation between them. The medium-
strong relation is determined by a set of allowable paths
between concepts. If a path that is neither too long nor too
winding exists, then there is a medium-strong relation between
the concepts. The score given to a medium-strong relation
considers the path length between the concepts and the number
of changes in direction of the path:
path weight =
C − path length− (k ×#changes in direction)

III. COMPUTING THE SIMILARITY OF TWO SETS OF
CONCEPTS: A NEW PROPOSAL

The two algorithms we have designed and implemented
to compute the similarity of two sets of concepts, work on
ontologies represented in OWL, RDF and DAML+OIL [11].
Both algorithms are based on the definition of the “sim c”
function for calculating the similarity of a concept w.r.t. a set
of concepts. Thus, we first introduce “sim c” in Section III-A,
and then we introduce the two algorithms in Section III-B.

A. Computing the similarity between a concept and a set of
concepts

Our algorithm for computing the similarity between a
concept and a set of concepts is an extension of Dijkstra’s
algorithm (shown in Algorithm 1), where there may be more
than one destination node.

Algorithm 1: Dijkstra(G, w, s)

foreach vertex v ∈ V [G] do
d[v] := ∞;
previous[v] := nil;

end
d[s] := 0;
S := ∅;
Q := V ;
while Q 6= ∅ do

u := extract min(Q);
S := S ∪ {u};
foreach edge (u, v) outgoing from u do

if d[v] > d[u] + w(u, v) /* Relax(u,v) */
then

d[v] := d[u] + w(u, v);
previous[v] := u;
Q := update(Q);

end
end

end

Initialisation: The difference in the initialisation phase w.r.t.
Dijkstra’s algorithm is that in ours, the value of a path is
evaluated as the product of the weights of the path’s edges
(kept in a w[,] matrix), and we prefer paths with a higher
value1. Thus, we must initialise the similarity (kept in a d[]
array) of the source concept s from itself as if it were the best
possible similarity (1), and the other similarities as if they
were the worst possible ones (0).

In our algorithm for calculating the “sim c” function we
use the pi[] array that, for each concept in the ontology,
keeps track of its predecessor (if any) in the current best
estimated path towards the destination node(s). The pi data
structure allows us to store a spanning tree of the ontology,
characterised by the nodes pi[j] for 1 ≤ j ≤ |O| (where |O|
is the number of concepts belonging to the ontology) and by
the edges (pi[j], j), for 1 ≤ j ≤ |O|.

1The weights between couples of concepts kept in the w[,] matrix,
representing the similarity of pairs of adjacent concepts, are decided at design
time by the ontology developer who is supposed to be an expert of the
ontology domain.

WOA 2005 18

Algorithm 2: initialise single source(Ontology o,
Concept s)

foreach concept c in Concepts(o) do
d[c] := 0 ;
pi[c] := nil ;

end
d[s] := 1;

Relaxation: The relaxation procedure checks whether the
current best estimate of the similarity between s and v (d[v])
can be improved by going through u (i.e. by making u the
predecessor of v). With respect to Dijkstra’s algorithm, here
we changed a > with a < in the condition of the if statement,
and a + with a ∗ in the evaluation of the path’s total weight.

Algorithm 3: relax(Concept u, Concept v,
double w[][])

if d[v] < d[u] ∗ w[u, v] then
d[v] := d[u] ∗ w[u, v] ;
pi[v] := u ;

end

Implementation of the sim c function: The sim c algo-
rithm, whose pseudo-code is shown in Algorithm 4, evaluates
the similarity between a concept s and a set of concepts
target.

The algorithm returns a value in [0, 1]. If s belongs to
target, 1 is returned and the algorithm stops, otherwise the
algorithm starts by exploring the paths from s to the nodes in
target. The lower bound parameter is the value under which
results are considered no longer relevant, and may range in
[0, 1].

Post processing phase: All the paths with a bet-
ter value than lower bound have been explored; the
current highest similarity array contains 0 for those nodes
in the local ontology whose similarity with s is not rele-
vant; they contain a value different from 0 (and surely >
lower bound) for the other ones. Now, we only need to
combine these values in order to obtain a final value in [0, 1].
The mathematical function used to combine these values is
the following:

combine final value(x1 . . . xn) = f(x1)

where the sequence (x1 . . . xn) is ordered and

f(xi) =
{

xi + (1− xi) ∗ f(x1) if i < n
xi if i = n

This function, when applied to the ordered sequence of
values is in the [0, 1] range representing the similarity of the
source concept with all the other concepts of the matrix (when
this similarity is different from 0), allows us to obtain a value
which is in the [0, 1] range, and that gives more weight to the
higher values, but still allowing the lower values to contribute
to the final outcome.

Algorithm 4: double sim c(Ontology o, Concept s,
set(Concept) target, [0..1] lower bound)

if s ∈ target then
return 1

else
initialise single source(o, s);
foreach concept c ∈ target do
current highest similarity[c] := 0;
go on := true;
/* Make S equal to the source

concept */
S := s;
/* the current concept is the source

concept */
u := s;
C := Concepts(o);
/* while there are still concepts to

explore, and the paths through
these concepts may prove to be
better than the current path to
one of the concepts in target */

while C 6= S and go on do
foreach concept c ∈ Adjacent(u) do

/* the path’s weights going
through "v" are evaluated
and updated */

relax(u, c, w);
end
/* the most promising concept to

reach one of the concepts in
Loc namely the one such that
d[u] is higher is found */

u := extract most similar(C \ S);
if d[u] > lower bound then

S := S ∪ {u};
/* if the path leads to the

destination, we wonder if
this path is better than the
previous one found, leading
to the destination (if any),
and we eventually update the
value of the current best
path */

if u ∈ target then
if d[u] > current highest similarity[u]
then

current highest similarity[u] :=
d[u];

end
end

else
/* if all the paths that still

remain to be considered, are
worst than the lower bound,
the algorithm stops */

go on := false;
end

end
odered val := order(current highest similarity);
return combine final value(ordered val);

end

WOA 2005 19

B. Computing the similarity between two sets of concepts

In the following we present two different algorithms for
computing the similarity between two sets of concepts. The
first is based on a mathematical formula while the second
is based on a recursive approach. There are some conditions
that, in our opinion, an algorithm for computing the similarity
between two sets of concepts should meet :

1) It is not sufficient that a concept in the source set matches
a concept in the target set to obtain 1 as result.

2) To obtain 1 as result, all the concepts in the source set
should have a related concept in the target set.

3) If there are many concepts with high similarity in the two
sets, we would like to “prize” them by having a similarity
function that respects the inequality:

similarity(o, target, source, lower bound) >P
s∈source sim c(o,target,source,lower bound)

|source|
On the other hand, if there are many concepts with low
similarity in the two sets of concepts, we would like
to “punish” them by having a similarity function that
respects the inequality:

similarity(o, target, source, lower bound) <P
s∈source sim c(o,target,source,lower bound)

|source|

1) Algorithm similarity by m th root.: The first algo-
rithm is based on the following formula:

m

√Pn
k=0(ak)m

n where ai ∈ Z

The algorithm that uses this formula is described below in
pseudo-code; it takes as input five parameters: the ontology,
the target set, the source set, a coefficient representing the
value of m in the previous formula and the lower bound under
which results are considered no longer relevant.

Algorithm 5: double similarity by m th root(Ontology o,
set(Concept) target, set(Concept) source, int m,
[0..1] lower bound)

result := 0;
foreach concept c ∈ source do

result :=
result + sim c(o, c, target, lower bound)m;

end
return

m√
result

|source| ;

2) Algorithm similarity by recursive eval.: The second
algorithm is also based on the sim c algorithm for comput-
ing the similarity between a concept and a set of concepts
illustrated previously, but the different idea is to evaluate the
similarity between the target set and the elements of the source
set, and to use a recursive function to calculate the similarity.
The entire pseudo-code is illustrated below.

Algorithm 6: double similarity by recursive eval(
Ontology o, set(Concept) target, set(Concept) source,
[0..1] lower bound)

similarity := nil;
foreach concept c ∈ source do

similarity.add(sim c(o, c, target, lower bound));
end
return calculate(similarity);

Algorithm 7: double calculate(set(Double) similarity)

if similarity.isEmpty() then
return 0

else
value = max(similarity);
similarity.remove(value);
return (value+(1−value)∗calculate(similarity));

end

IV. DISCUSSION AND FUTURE WORK

The similarity by m th root algorithm meets the require-
ments specified in Section III-B. It defines a means where high
values have an higher impact in computing the final result than
low values. The m parameter allows us to specify how much
the higher values should be “prized” with respect to lower
ones.

The similarity by recursive eval, instead, does not sat-
isfy the third requirement: in fact, if one (and only one)
concept belongs both to the source set and to the target
set, the result of the algorithm is 1, and thus the first
condition specified in Section III-B is not met. How-
ever our experiments, discussed in [14], demonstrated that
similarity by recursive eval has a better performance than
similarity by m th root.

Although many techniques for computing the similarity
between concepts belonging to the same ontology or taxonomy
exist, the use of that based on the path length is very common
in the scientific community. Our definition of the similarity
between concepts is also very common, and thus it is not a
novelty w.r.t. the existing literature. However, we have also
defined the similarity between a single concept and a set of
concepts, and between two sets of concepts, establishing some
criteria that our definitions should meet. Up to our knowledge,
the only metrics for defining the similarity between two sets
of concepts are those defined in [1] and [9], but none of
them meets our requirements, that, instead, are met by our
similarity by m th root definition.

Our algorithms have been implemented using the Jena
framework (http://jena.sourceforge.net), and can be
downloaded from http://www.disi.unige.it/person/

MascardiV/Software/SoftwarePaoloLombardi.html.
The main direction of our work consists of integrating our
implemented metrics into the P2P system described in [8], that
is being developed using JXTA (http://www.jxta.org).
Since both Jena and JXTA are based on Java, the integration
should be easy to implement.

WOA 2005 20

Although this system was born as a pure P2P system, we
can easily see it as a MAS. In fact, peers are autonomous (they
actively push their expertise to the other peers in the system,
as discussed below), reactive (they react to incoming requests),
proactive (they have a long term goal of retrieving as many
relevant documents as possible), and social (communication
is asynchronous and uses a structured, XML-based commu-
nication language). Finally, peers are aware of the features,
the topology and the inhabitants of the P2P system where
they live, so they are in some sense situated in they software
environment. Since peers respect the well-known definition of
agent given in [12], in the following we will use the term
agent instead of the term peer.

In the system under consideration, agents may register to
one or more thematic groups. Relevant information retrieval
is achieved through the use of a thematic global ontology
(TGO) for each theme dealt with by the system; the TGO
associates a semantics with the resources to be shared within
the thematic group. All the agents that register to a thematic
group share the TGO of the group. Each arc between two
concepts belonging to the TGO is weighted with a value in
[0, 1] that represents the similarity between the two concepts.
Each agent A is characterised by a set of concepts of interest
CoIA such that CoIA ⊆ V , where V are the concepts in the
TGO. Agents actively and autonomously push their expertises
by sending advertisements, containing the concepts of the
TGO that better describe the resources they share, so each
agent A is also characterised by the sets of advertised concepts
that it pushes towards the system, AdvAi

, for i ∈ 1, .., n such
that AdvAi

⊆ V .
In order to allow an agent A to understand if an agent

B sending an advertisement AdvBj
, shares resources

that may be of interest for A, the similarity between
AdvBj and CoIA w.r.t. the TGO should be evaluated.
By integrating our similarity by nth root algorithm
in the system, we would allow agent A to evaluate
similarity by nth root(TGO,CoIA, AdvBj

, lower bound)
thus obtaining the required similarity.

REFERENCES

[1] P. Bouquet, G. Kuper, M. Scoz and S. Zanobini. Asking and answering
semantic queries. In Proc. of Meaning Coordination and Negotiation
Workshop (MCNW-04) in conjunction with International Semantic Web
Conference (ISWC-04), 2004

[2] J. Broekstra,M. Klein, S. Decker, D. Fensel, F. van Harmelen and I. Hor-
rocks. Enabling knowledge representation on the Web by extending RDF
schema, In Proc. of the 10th international conference on World Wide
Web, pp. 467–478, 2001

[3] H. Bulskov, R. Knappe and T. Andreasen. On Measuring Similarity
for Conceptual Querying. In Proc. of the 5th International Conference
on Flexible Query Answering Systems, Springer-Verlag publisher, pp.
100–111, 2002.

[4] S. Castano, A. Ferrara, S. Montanelli, E. Pagani, and G. P. Rossi.
Ontology-addressable contents in P2P networks. In Proc. of the 1st
SemPGRID Workshop, 2003.

[5] S. Castano, A. Ferrara, S. Montanelli, G. Racca. Semantic Information
Interoperability in Open Networked Systems. In Proc. of the Int. Con-
ference on Semantics of a Networked World (ICSNW), in cooperation
with ACM SIGMOD 2004, pp. 215–230, 2004.

[6] S. Decker, S. Melnik, F. van Harmelen, D. Fensel, M. C. A. Klein,
J. Broekstra, M. Erdmann and I. Horrocks. The Semantic Web: The
Roles of XML and RDF, IEEE Internet Computing, 4(5), pp. 63–74,
2000

[7] T. R. Gruber. A translation approach to portable ontology specifications.
Knowledge Acquisition, 5:199–220, 1993.

[8] G. Guerrini, V. Mascardi, M. Mesiti. A Semantic Information Retrieval
Advertisement and Policy Based System for a P2P Network. In Proc.
of the DBISP2P Conference, 2005.

[9] P. Haase, R. Siebes, F. van Harmelen. Peer Selection in Peer-to-
Peer Networks with Semantic Topologies. In Proc. of International
Conference on Semantics of a Networked World: Semantics for Grid
Databases, 2004.

[10] G. Hirst, D. St. Onge. Lexical chains as representations of context for
the detection and correction of malapropisms, In Fellbaum MIT Press,
pp. 305–332, 1998.

[11] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. Reviewing
the design of DAML+oil: an ontology language for the semantic web.
In Proc. of the 18th National Conference on Artificial Intelligence, pp.
427–428, 2002.

[12] N. R. Jennings and K. Sycara and M. Wooldridge. A Roadmap of
Agent Research and Development. Autonomous Agents and Multi-
Agent Systems, 1:7–38, 1998.

[13] C. Leacock, M. Chodorow. Combining local context and WordNet
similarity for word sense identification, In Fellbaum MIT Press, pp.
265–283, 1998.

[14] P. Lombardi. Progettazione ed implementazione di una nuova metrica
sulle ontologie. Master Thesis, DISI, Università degli Studi di Gen-
ova, 2005. In Italian. http://www.disi.unige.it/person/
MascardiV/Download/Lombardi.zip.

[15] P. Maes. Agents that Reduce Work and Information Overload. Com-
munications of the ACM, 37(7), 1994.

[16] J. F. Nilsson. A Logico-algebraic Framework for Ontologies ON-
TOLOG. In Proc. of the First International OntoQueryWorkshop
Ontology-based interpretation of NP s, 2001.

[17] P. F. Patel-Schneider, P. Hayes, and I. Horrocks. Web Ontology
Language (OWL) Abstract Syntax and Semantics. Technical report,
W3C.

[18] R. Rada, H. Mili, E. Bicknell, M. Blettner. Development and application
of a metricon semantic nets. IEEE Transaction on Systems, Man and
Cybernetics 19(1), pp. 17–30, 1989.

[19] P. Resnik. Semantic similarity in a taxonomy: An information-based
measure and its application to problems of ambiguity in natural languag,
Journal of Artificial Intelligence Research 11, pp. 95–130, 1998.

[20] Z. Wu, M. Palmer. Verb semantics and lexical selection, In 32nd Annual
Meeting of the Association for Computational Linguistics, Las Cruces,
New Mexico, pp. 133–138, 1994.

WOA 2005 21

